1
|
Ning H, Ren H, Zhao Y, Yin H, Gan Z, Shen Y, Yu Y. Targeting the DP2 receptor alleviates muscle atrophy and diet-induced obesity in mice through oxidative myofiber transition. J Cachexia Sarcopenia Muscle 2023; 14:342-355. [PMID: 36527201 PMCID: PMC9891918 DOI: 10.1002/jcsm.13136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Mammalian skeletal muscles consist of two main fibre types: slow-twitch (type I, oxidative) and fast-twitch (type IIa, fast oxidative; type IIb/IIx, fast glycolytic). Muscle fibre composition switch is closely associated with chronic diseases such as muscle atrophy, obesity, type II diabetes and athletic performance. Prostaglandin D2 (PGD2 ) is a bioactive lipid derived from arachidonic acid that aggravates muscle damage and wasting during muscle atrophy. This study aimed to investigate the precise mechanisms underlying PGD2 -mediated muscle homeostasis and myogenesis. METHODS Skeletal muscle-specific PGD2 receptor DP2-deficient mice (DP2fl/fl HSACre ) and their littermate controls (DP2fl/fl ) were subjected to exhaustive exercise and fed a high-fat diet (HFD). X-linked muscular dystrophy (MDX) mice and HFD-challenged mice were treated with the selective DP2 inhibitor CAY10471. Exercise tolerance, body weight, glycometabolism and skeletal muscle fibre composition were measured to determine the role of the skeletal muscle PGD2 /DP2 signalling axis in obesity and muscle disorders. Multiple genetic and pharmacological approaches were also used to investigate the intracellular signalling cascades underlying the PGD2 /DP2-mediated skeletal muscle fibre transition. RESULTS PGD2 generation and DP2 expression were significantly upregulated in the hindlimb muscles of HFD-fed mice (P < 0.05 or P < 0.01 vs. normal chow diet). Compared with DP2fl/fl mice, DP2fl/fl HSACre mice exhibited remarkable glycolytic-to-oxidative fibre-type transition in hindlimb muscles and were fatigue resistant during endurance exercise (154.9 ± 6.0 vs. 124.2 ± 8.1 min, P < 0.05). DP2fl/fl HSACre mice fed an HFD showed less weight gain (P < 0.05) and hepatic lipid accumulation (P < 0.01), reduced insulin resistance and enhanced energy expenditure (P < 0.05) compared with DP2fl/fl mice. Mechanistically, DP2 deletion promoted the nuclear translocation of nuclear factor of activated T cells 1 (NFATc1) by suppressing RhoA/Rho-associated kinase 2 (ROCK2) signalling, which led to enhanced oxidative fibre-specific gene transcription in muscle cells. Treatment with CAY10471 enhanced NFATc1 activity in the skeletal muscles and ameliorated HFD-induced obesity (P < 0.05 vs. saline) and insulin resistance in mice. CAY10471 also enhanced exercise tolerance in MDX mice (100.8 ± 8.0 vs. 68.9 ± 11.1 min, P < 0.05 vs. saline) by increasing the oxidative fibre-type ratio in the muscles (45.1 ± 2.3% vs. 32.3 ± 2.6%, P < 0.05 vs. saline). CONCLUSIONS DP2 activation suppresses oxidative fibre transition via RhoA/ROCK2/NFATc1 signalling. The inhibition of DP2 may be a potential therapeutic approach against obesity and muscle disorders.
Collapse
Affiliation(s)
- Huying Ning
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Huiwen Ren
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yan Zhao
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - HaiFang Yin
- Department of Cell Biology and Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Zhenji Gan
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Yujun Shen
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ying Yu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
2
|
Sharma P, Dhanjal DS, Chopra C, Tambuwala MM, Sohal SS, van der Spek PJ, Sharma HS, Satija S. Targeting eosinophils in chronic respiratory diseases using nanotechnology-based drug delivery. Chem Biol Interact 2022; 365:110050. [DOI: 10.1016/j.cbi.2022.110050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 11/03/2022]
|
3
|
Sahiner UM, Layhadi JA, Golebski K, István Komlósi Z, Peng Y, Sekerel B, Durham SR, Brough H, Morita H, Akdis M, Turner P, Nadeau K, Spits H, Akdis C, Shamji MH. Innate lymphoid cells: The missing part of a puzzle in food allergy. Allergy 2021; 76:2002-2016. [PMID: 33583026 DOI: 10.1111/all.14776] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 12/11/2022]
Abstract
Food allergy is an increasingly prevalent disease driven by uncontrolled type 2 immune response. Currently, knowledge about the underlying mechanisms that initiate and promote the immune response to dietary allergens is limited. Patients with food allergy are commonly sensitized through the skin in their early life, later on developing allergy symptoms within the gastrointestinal tract. Food allergy results from a dysregulated type 2 response to food allergens, characterized by enhanced levels of IgE, IL-4, IL-5, and IL-13 with infiltration of mast cells, eosinophils, and basophils. Recent studies raised a possible role for the involvement of innate lymphoid cells (ILCs) in driving food allergy. Unlike lymphocytes, ILCs lack They represent a group of lymphocytes that lack specific antigen receptors. ILCs contribute to immune responses not only by releasing cytokines and other mediators but also by responding to cytokines produced by activated cells in their local microenvironment. Due to their localization at barrier surfaces of the airways, gut, and skin, ILCs form a link between the innate and adaptive immunity. This review summarizes recent evidence on how skin and gastrointestinal mucosal immune system contribute to both homeostasis and the development of food allergy, as well as the involvement of ILCs toward inflammatory processes and regulatory mechanisms.
Collapse
Affiliation(s)
- Umit M Sahiner
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Inflammation, Repair and Development, Imperial College London, London, UK.,School of Medicine Department of Pediatric Allergy, Hacettepe University, Ankara, Turkey
| | - Janice A Layhadi
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Inflammation, Repair and Development, Imperial College London, London, UK
| | - Korneliusz Golebski
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Yaqi Peng
- Swiss Institute of Allergy and Asthma Research, Davos, Switzerland
| | - Bulent Sekerel
- School of Medicine Department of Pediatric Allergy, Hacettepe University, Ankara, Turkey
| | - Stephen R Durham
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Inflammation, Repair and Development, Imperial College London, London, UK
| | - Helen Brough
- Children's Allergy Service, Evelina London, Guys and St Thomas, NHS Trust, London, UK.,Paediatric Allergy Group, Department of Women and Children's Heath, School of Life Course Sciences, London, UK.,Paediatric Allergy Group, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Hideaki Morita
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.,Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland.,Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research, Davos, Switzerland
| | - Paul Turner
- Section of Inflammation, Repair and Development, National Heart & Lung Institute, Imperial College London, London, UK
| | - Kari Nadeau
- Sean N. Parker Center for Allergy & Asthma Research, Stanford University, Stanford, CA, USA
| | - Hergen Spits
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Cezmi Akdis
- Swiss Institute of Allergy and Asthma Research, Davos, Switzerland
| | - Mohamed H Shamji
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Inflammation, Repair and Development, Imperial College London, London, UK
| |
Collapse
|
4
|
Hon KL, Li JTS, Leung AKC, Lee VWY. Current and emerging pharmacotherapy for chronic spontaneous Urticaria: a focus on non-biological therapeutics. Expert Opin Pharmacother 2021; 22:497-509. [PMID: 32990110 DOI: 10.1080/14656566.2020.1829593] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Chronic spontaneous urticaria (CSU) refers to urticaria (wheals) or angioedema, which occur for a period of six weeks or longer without an apparent cause. The condition may impair the patient's quality of life. AREAS COVERED Treatment for CSU is mainly symptomatic. Both AAAAI/ACAAI practice parameters and EAACI/GA2LEN/EDF/WAO guidelines suggest CSU management in a stepwise manner. First-line therapy is with second-generation H1-antihistamines. Treatment should be stepped up along the algorithm if symptoms are not adequately controlled. Increasing the dosage of second-generation H1-antihistamines, with the addition of first-generation H1-antihistamines, H2 antagonist, omalizumab, ciclosporin A, or short-term corticosteroid may be necessary. New medications are being developed to treat refractory CSU. They include spleen tyrosine kinase inhibitor, Bruton tyrosine kinase inhibitor, prostaglandin D2 receptor inhibitor, H4-antihistamine, and other agents. The authors discuss these treatments and provide expert perspectives on the management of CSU. EXPERT OPINION Second-generation H1-antihistamines remain the first-line therapeutic options for the management of CSU. For patients not responding to higher-dose H1-antihistamines, international guidelines recommend the addition of omalizumab. Efficacy and safety data for newer agents are still pending. Large-scale, well-designed, randomized, double-blind, placebo-controlled trials will further provide evidence on the safety profile and efficacy of these agents in patients with CSU.
Collapse
Affiliation(s)
- Kam Lun Hon
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong & Department of Paediatrics and adolescent Medicine, the Hong Kong Children's Hospital, Shatin, Hong Kong
| | - Joyce T S Li
- Centre for Learning Enhancement and Research, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Alexander K C Leung
- Department of Pediatrics, The University of Calgary and The Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Vivian W Y Lee
- Centre for Learning Enhancement and Research, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
5
|
|
6
|
Athari SS. Targeting cell signaling in allergic asthma. Signal Transduct Target Ther 2019; 4:45. [PMID: 31637021 PMCID: PMC6799822 DOI: 10.1038/s41392-019-0079-0] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/03/2019] [Accepted: 09/15/2019] [Indexed: 02/08/2023] Open
Abstract
Asthma is chronic inflammation of the airways characterized by airway hyper-responsiveness, wheezing, cough, and dyspnea. Asthma affects >350 million people worldwide. The Th2 immune response is a major contributor to the pathophysiology of asthma. Targeted therapy modulating cell signaling pathways can be a powerful strategy to design new drugs to treat asthma. The potential molecular pathways that can be targeted include IL-4-IL-13-JAK-STAT-MAP kinases, adiponectin-iNOS-NF-κB, PGD2-CRTH2, IFNs-RIG, Wnt/β-catenin-FAM13A, FOXC1-miR-PI3K/AKT, JNK-Gal-7, Nrf2-ROS, Foxp3-RORγt, CysLTR, AMP, Fas-FasL, PTHrP/PPARγ, PAI-1, FcɛRI-LAT-SLP-76, Tim-3-Gal-9, TLRs-MyD88, PAR2, and Keap1/Nrf2/ARE. Therapeutic drugs can be designed to target one or more of these pathways to treat asthma.
Collapse
Affiliation(s)
- Seyyed Shamsadin Athari
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
7
|
Stability of peripheral blood immune markers in patients with asthma. Allergy Asthma Clin Immunol 2019; 15:30. [PMID: 31168305 PMCID: PMC6489239 DOI: 10.1186/s13223-019-0343-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/17/2019] [Indexed: 02/01/2023] Open
Abstract
Background Asthma is a complex disease with variable course. Efforts to identify biomarkers to predict asthma severity, the course of disease and response to treatment have not been very successful so far. We have previous suggested that PAR-2 and CRTh2 expression on specific peripheral blood cell subtypes may be biomarkers of asthma severity. We reasoned that parameters that remain stable when asthma symptoms are controlled would be the most appropriate to evaluate for their utility to predict loss of asthma control and/or severity of the disease. Methods Nineteen stable asthmatics were recruited from the University of Alberta Asthma clinic and followed in clinic every 3 months for a total of 4 visits. Patients had spirometry and completed the ACQ questionnaire in every visit. Blood was drawn in every visit and analyzed for a number of immune parameters by flow cytometry. These parameters included PAR-2 and CRTh2 expression on monocyte subgroups and T lymphocytes respectively, as well as numbers of eosinophils, innate lymphoid type-2 cells (ILC2) and dendritic cells. Within person stability of immune and physiological parameters was calculated using the intraclass correlation (ICC) using R version 3.4.0. Results FEV1 (% predicted), FEV1/FVC ratio, ACQ5 and ACQ7 did not differ significantly over the 4 visits, as would be expected for patients with stable asthma. Peripheral blood eosinophil numbers by Kimura stain and by flow cytometry showed ICC scores of 0.44 and 0.52 respectively, indicating moderate stability. The % of ILC2 cells in peripheral blood also showed moderate stability [ICC score of 0.45 (0.14–0.67)]. The stability for all other immune parameters was poor. Conclusion Among the peripheral blood immune parameters we studied, only numbers of eosinophils and ILC2 in peripheral blood were moderately stable over a year in stable asthmatics. Further studies are required to understand the reasons for the variability of the other cell types.
Collapse
|
8
|
Oliver ET, Chichester K, Devine K, Sterba PM, Wegner C, Vonakis BM, Saini SS. Effects of an Oral CRTh2 Antagonist (AZD1981) on Eosinophil Activity and Symptoms in Chronic Spontaneous Urticaria. Int Arch Allergy Immunol 2019; 179:21-30. [PMID: 30879003 PMCID: PMC6500753 DOI: 10.1159/000496162] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 12/11/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Approximately 50% of patients with chronic spontaneous urticaria (CSU) experience symptoms that are not fully controlled by antihistamines, indicating an unmet clinical need. OBJECTIVE To evaluate the effects of the selective CRTh2 antagonist AZD1981 on symptoms and targeted leukocytes in adults with persistent CSU despite treatment with H1-antihistamines. METHODS We performed a single-center, randomized, placebo-controlled study involving adult CSU subjects with symptoms despite daily antihistamines. The subjects underwent a 2-week placebo run-in and 4 weeks of double-blinded therapy with either AZD1981 40 mg TID or placebo, followed by a 2-week placebo washout. The primary objective was to assess the effect of AZD1981 on CSU signs and symptoms. Secondary objectives included the effects of AZD1981 on prostaglandin D2 (PGD2)-induced eosinophil shape change, circulating leukocyte subsets, CRTh2 expression on blood leukocytes, and total blood leukocyte histamine content. RESULTS Twenty-eight subjects were randomized to AZD1981 or placebo, with 26 subjects completing the study. The urticaria activity scores declined during the treatment phase in both groups, and they were significantly reduced in the AZD1981 group at the end of washout. AZD1981 treatment increased circulating eosinophils and significantly impaired PGD2-mediated eosinophil shape change. CRTh2 surface expression rose significantly on blood basophils during active treatment. No serious adverse events were observed. CONCLUSIONS This is the first study to examine the efficacy of a CRTh2 antagonist in antihistamine-refractory CSU. AZD1981 treatment was well tolerated, effectively inhibited PGD2-mediated eosinophil shape change, shifted numbers of circulating eosinophils, and reduced weekly itch scores more than hives during treatment and into washout. Further studies are needed to determine whether inhibition of the PGD2/CRTh2 pathway will be an -effective treatment for CSU.
Collapse
Affiliation(s)
- Eric Tyrell Oliver
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,
| | - Kris Chichester
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kelly Devine
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Patricia Meghan Sterba
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Craig Wegner
- Scientific Partnering and Alliances, IMED Biotech Unit, AstraZeneca, Boston, Massachusetts, USA
| | - Becky Marie Vonakis
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sarbjit Singh Saini
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Domingo C, Palomares O, Sandham DA, Erpenbeck VJ, Altman P. The prostaglandin D 2 receptor 2 pathway in asthma: a key player in airway inflammation. Respir Res 2018; 19:189. [PMID: 30268119 PMCID: PMC6162887 DOI: 10.1186/s12931-018-0893-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 09/17/2018] [Indexed: 12/22/2022] Open
Abstract
Asthma is characterised by chronic airway inflammation, airway obstruction and hyper-responsiveness. The inflammatory cascade in asthma comprises a complex interplay of genetic factors, the airway epithelium, and dysregulation of the immune response.Prostaglandin D2 (PGD2) is a lipid mediator, predominantly released from mast cells, but also by other immune cells such as TH2 cells and dendritic cells, which plays a significant role in the pathophysiology of asthma. PGD2 mainly exerts its biological functions via two G-protein-coupled receptors, the PGD2 receptor 1 (DP1) and 2 (DP2). The DP2 receptor is mainly expressed by the key cells involved in type 2 immune responses, including TH2 cells, type 2 innate lymphoid cells and eosinophils. The DP2 receptor pathway is a novel and important therapeutic target for asthma, because increased PGD2 production induces significant inflammatory cell chemotaxis and degranulation via its interaction with the DP2 receptor. This interaction has serious consequences in the pulmonary milieu, including the release of pro-inflammatory cytokines and harmful cationic proteases, leading to tissue remodelling, mucus production, structural damage, and compromised lung function. This review will discuss the importance of the DP2 receptor pathway and the current understanding of its role in asthma.
Collapse
Affiliation(s)
- Christian Domingo
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Pulmonary Service, Corporació Sanitària Parc Taulí, Sabadell, Barcelona, Spain
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain
| | | | | | - Pablo Altman
- Novartis Pharmaceuticals Corporation, One Health Plaza East Hanover, East Hanover, NJ 07936-1080 USA
| |
Collapse
|
10
|
Kong IG, Kim DW. Pathogenesis of Recalcitrant Chronic Rhinosinusitis: The Emerging Role of Innate Immune Cells. Immune Netw 2018; 18:e6. [PMID: 29732233 PMCID: PMC5928419 DOI: 10.4110/in.2018.18.e6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 02/05/2018] [Accepted: 02/13/2018] [Indexed: 12/14/2022] Open
Abstract
Chronic rhinosinusitis (CRS) is a major part of the recalcitrant inflammatory diseases of the upper airway that needs enormous socioeconomic burden. T helper (Th) 2 type immune responses recruiting eosinophils were the most well-known immune players in CRS pathogenesis especially in western countries. By the piling up of a vast amount of researches to elucidate the pathogenic mechanism of CRS recently, heterogeneous inflammatory processes were found to be related to the phenotypes of CRS. Recently more cells other than T cells were in the focus of CRS pathogenesis, such as the epithelial cell, macrophage, innate lymphoid cells, and neutrophils. Here, we reviewed the recent research focusing on the innate immune cells related to CRS pathogenesis.
Collapse
Affiliation(s)
- Il Gyu Kong
- Department of Otorhinolaryngology-Head and Neck Surgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Korea
| | - Dae Woo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul 07061, Korea
| |
Collapse
|
11
|
Muehling LM, Lawrence MG, Woodfolk JA. Pathogenic CD4 + T cells in patients with asthma. J Allergy Clin Immunol 2017; 140:1523-1540. [PMID: 28442213 PMCID: PMC5651193 DOI: 10.1016/j.jaci.2017.02.025] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 02/07/2017] [Accepted: 02/20/2017] [Indexed: 02/08/2023]
Abstract
Asthma encompasses a variety of clinical phenotypes that involve distinct T cell-driven inflammatory processes. Improved understanding of human T-cell biology and the influence of innate cytokines on T-cell responses at the epithelial barrier has led to new asthma paradigms. This review captures recent knowledge on pathogenic CD4+ T cells in asthmatic patients by drawing on observations in mouse models and human disease. In patients with allergic asthma, TH2 cells promote IgE-mediated sensitization, airway hyperreactivity, and eosinophilia. Here we discuss recent discoveries in the myriad molecular pathways that govern the induction of TH2 differentiation and the critical role of GATA-3 in this process. We elaborate on how cross-talk between epithelial cells, dendritic cells, and innate lymphoid cells translates to T-cell outcomes, with an emphasis on the actions of thymic stromal lymphopoietin, IL-25, and IL-33 at the epithelial barrier. New concepts on how T-cell skewing and epitope specificity are shaped by multiple environmental cues integrated by dendritic cell "hubs" are discussed. We also describe advances in understanding the origins of atypical TH2 cells in asthmatic patients, the role of TH1 cells and other non-TH2 types in asthmatic patients, and the features of T-cell pathogenicity at the single-cell level. Progress in technologies that enable highly multiplexed profiling of markers within a single cell promise to overcome barriers to T-cell discovery in human asthmatic patients that could transform our understanding of disease. These developments, along with novel T cell-based therapies, position us to expand the assortment of molecular targets that could facilitate personalized treatments.
Collapse
Affiliation(s)
- Lyndsey M Muehling
- Allergy Division, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Va
| | - Monica G Lawrence
- Allergy Division, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Va
| | - Judith A Woodfolk
- Allergy Division, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Va.
| |
Collapse
|
12
|
Kim J, Kim G, Min H. Pathological and therapeutic roles of innate lymphoid cells in diverse diseases. Arch Pharm Res 2017; 40:1249-1264. [PMID: 29032487 DOI: 10.1007/s12272-017-0974-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/12/2017] [Indexed: 12/14/2022]
Abstract
Innate lymphoid cells (ILCs) are a recently defined type of innate-immunity cells that belong to the lymphoid lineage and have lymphoid morphology but do not express an antigen-specific B cell or T-cell receptor. ILCs regulate immune functions prior to the formation of adaptive immunity and exert effector functions through a cytokine release. ILCs have been classified into three groups according to the transcription factors that regulate their development and function and the effector cytokines they produce. Of note, ILCs resemble T helper (Th) cells, such as Th1, Th2, and Th17 cells, and show a similar dependence on transcription factors and distinct cytokine production. Despite their short history in immunology, ILCs have received much attention, and numerous studies have revealed biological functions of ILCs including host defense against pathogens, inflammation, tissue repair, and metabolic homeostasis. Here, we describe recent findings about the roles of ILCs in the pathogenesis of various diseases and potential therapeutic targets.
Collapse
Affiliation(s)
- Jisu Kim
- College of Pharmacy, Chung-Ang University, 84 Heukseokro, Dongjakgu, Seoul, 06974, Korea
| | - Geon Kim
- College of Pharmacy, Chung-Ang University, 84 Heukseokro, Dongjakgu, Seoul, 06974, Korea
| | - Hyeyoung Min
- College of Pharmacy, Chung-Ang University, 84 Heukseokro, Dongjakgu, Seoul, 06974, Korea.
| |
Collapse
|
13
|
Pearson D, Weiss HM, Jin Y, Jaap van Lier J, Erpenbeck VJ, Glaenzel U, End P, Woessner R, Eggimann F, Camenisch G. Absorption, Distribution, Metabolism, and Excretion of the Oral Prostaglandin D2 Receptor 2 Antagonist Fevipiprant (QAW039) in Healthy Volunteers and In Vitro. Drug Metab Dispos 2017; 45:817-825. [PMID: 28442499 DOI: 10.1124/dmd.117.075358] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/20/2017] [Indexed: 11/22/2022] Open
Abstract
Fevipiprant is a novel oral prostaglandin D2 receptor 2 (DP2; also known as CRTh2) antagonist, which is currently in development for the treatment of severe asthma and atopic dermatitis. We investigated the absorption, distribution, metabolism, and excretion properties of fevipiprant in healthy subjects after a single 200-mg oral dose of [14C]-radiolabeled fevipiprant. Fevipiprant and metabolites were analyzed by liquid chromatography coupled to tandem mass spectrometry and radioactivity measurements, and mechanistic in vitro studies were performed to investigate clearance pathways and covalent plasma protein binding. Biotransformation of fevipiprant involved predominantly an inactive acyl glucuronide (AG) metabolite, which was detected in plasma and excreta, representing 28% of excreted drug-related material. The AG metabolite was found to covalently bind to human plasma proteins, likely albumin; however, in vitro covalent binding to liver protein was negligible. Excretion was predominantly as unchanged fevipiprant in urine and feces, indicating clearance by renal and possibly biliary excretion. Fevipiprant was found to be a substrate of transporters organic anion transporter 3 (OAT3; renal uptake), multidrug resistance gene 1 (MDR1; possible biliary excretion), and organic anion-transporting polypeptide 1B3 (OATP1B3; hepatic uptake). Elimination of fevipiprant occurs via glucuronidation by several uridine 5'-diphospho glucuronosyltransferase (UGT) enzymes as well as direct excretion. These parallel elimination pathways result in a low risk of major drug-drug interactions or pharmacogenetic/ethnic variability for this compound.
Collapse
Affiliation(s)
- David Pearson
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland (D.P., H.M.W., Y.J., V.J.E., U.G., P.E., R.W., F.E., G.C.); PRA International, Early Development Services, Zuidlaren, the Netherlands (J.J.v.L.)
| | - H Markus Weiss
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland (D.P., H.M.W., Y.J., V.J.E., U.G., P.E., R.W., F.E., G.C.); PRA International, Early Development Services, Zuidlaren, the Netherlands (J.J.v.L.)
| | - Yi Jin
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland (D.P., H.M.W., Y.J., V.J.E., U.G., P.E., R.W., F.E., G.C.); PRA International, Early Development Services, Zuidlaren, the Netherlands (J.J.v.L.)
| | - Jan Jaap van Lier
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland (D.P., H.M.W., Y.J., V.J.E., U.G., P.E., R.W., F.E., G.C.); PRA International, Early Development Services, Zuidlaren, the Netherlands (J.J.v.L.)
| | - Veit J Erpenbeck
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland (D.P., H.M.W., Y.J., V.J.E., U.G., P.E., R.W., F.E., G.C.); PRA International, Early Development Services, Zuidlaren, the Netherlands (J.J.v.L.)
| | - Ulrike Glaenzel
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland (D.P., H.M.W., Y.J., V.J.E., U.G., P.E., R.W., F.E., G.C.); PRA International, Early Development Services, Zuidlaren, the Netherlands (J.J.v.L.)
| | - Peter End
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland (D.P., H.M.W., Y.J., V.J.E., U.G., P.E., R.W., F.E., G.C.); PRA International, Early Development Services, Zuidlaren, the Netherlands (J.J.v.L.)
| | - Ralph Woessner
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland (D.P., H.M.W., Y.J., V.J.E., U.G., P.E., R.W., F.E., G.C.); PRA International, Early Development Services, Zuidlaren, the Netherlands (J.J.v.L.)
| | - Fabian Eggimann
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland (D.P., H.M.W., Y.J., V.J.E., U.G., P.E., R.W., F.E., G.C.); PRA International, Early Development Services, Zuidlaren, the Netherlands (J.J.v.L.)
| | - Gian Camenisch
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland (D.P., H.M.W., Y.J., V.J.E., U.G., P.E., R.W., F.E., G.C.); PRA International, Early Development Services, Zuidlaren, the Netherlands (J.J.v.L.)
| |
Collapse
|
14
|
Sandham DA, Barker L, Brown L, Brown Z, Budd D, Charlton SJ, Chatterjee D, Cox B, Dubois G, Duggan N, Hall E, Hatto J, Maas J, Manini J, Profit R, Riddy D, Ritchie C, Sohal B, Shaw D, Stringer R, Sykes DA, Thomas M, Turner KL, Watson SJ, West R, Willard E, Williams G, Willis J. Discovery of Fevipiprant (NVP-QAW039), a Potent and Selective DP 2 Receptor Antagonist for Treatment of Asthma. ACS Med Chem Lett 2017; 8:582-586. [PMID: 28523115 DOI: 10.1021/acsmedchemlett.7b00157] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 04/25/2017] [Indexed: 12/15/2022] Open
Abstract
Further optimization of an initial DP2 receptor antagonist clinical candidate NVP-QAV680 led to the discovery of a follow-up molecule 2-(2-methyl-1-(4-(methylsulfonyl)-2-(trifluoromethyl)benzyl)-1H-pyrrolo[2,3-b]pyridin-3-yl)acetic acid (compound 11, NVP-QAW039, fevipiprant), which exhibits improved potency on human eosinophils and Th2 cells, together with a longer receptor residence time, and is currently in clinical trials for severe asthma.
Collapse
Affiliation(s)
- David A. Sandham
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Lucy Barker
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Lyndon Brown
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Zarin Brown
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - David Budd
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Steven J. Charlton
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Devnandan Chatterjee
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Brian Cox
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Gerald Dubois
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Nicholas Duggan
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Edward Hall
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Julia Hatto
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Janet Maas
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Jodie Manini
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Rachael Profit
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Darren Riddy
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Catherine Ritchie
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Bindi Sohal
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Duncan Shaw
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Rowan Stringer
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - David A. Sykes
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Matthew Thomas
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Katharine L. Turner
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Simon J. Watson
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Ryan West
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Elisabeth Willard
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Gareth Williams
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Jennifer Willis
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| |
Collapse
|
15
|
15-Deoxy-Δ 12,14-prostaglandin J 2 Exerts Antioxidant Effects While Exacerbating Inflammation in Mice Subjected to Ureteral Obstruction. Mediators Inflamm 2017; 2017:3924912. [PMID: 28503033 PMCID: PMC5414590 DOI: 10.1155/2017/3924912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/17/2017] [Accepted: 03/12/2017] [Indexed: 02/01/2023] Open
Abstract
Urinary obstruction is associated with inflammation and oxidative stress, leading to renal dysfunction. Previous studies have shown that 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) has both antioxidant and anti-inflammatory effects. Using a unilateral ureteral obstruction (UUO) mouse model, we examined the effects of 15d-PGJ2 on oxidative stress and inflammation in the kidney. Mice were subjected to UUO for 3 days and treated with 15d-PGJ2. Protein and RNA expression were examined using immunoblotting and qPCR. 15d-PGJ2 increased NF-E2-related nuclear factor erythroid-2 (Nrf2) protein expression in response to UUO, and heme oxygenase 1 (HO-1), a downstream target of Nrf2, was induced by 15d-PGJ2. Additionally, 15d-PGJ2 prevented protein carbonylation, a UUO-induced oxidative stress marker. Inflammation, measured by nuclear NF-κB, F4/80, and MCP-1, was increased in response to UUO and further increased by 15d-PGJ2. Renal injury was aggravated by 15d-PGJ2 treatment as measured by kidney injury molecule-1 (KIM-1) and cortical caspase 3 content. No effect of 15d-PGJ2 was observed on renal function in mice subjected to UUO. This study illustrates differentiated functioning of 15d-PGJ2 on inflammation and oxidative stress in response to obstructive nephropathy. High concentrations of 15d-PGJ2 protects against oxidative stress during 3-day UUO in mice; however, it aggravates the associated inflammation.
Collapse
|
16
|
Gangwar RS, Landolina N, Arpinati L, Levi-Schaffer F. Mast cell and eosinophil surface receptors as targets for anti-allergic therapy. Pharmacol Ther 2016; 170:37-63. [PMID: 27773785 DOI: 10.1016/j.pharmthera.2016.10.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Roopesh Singh Gangwar
- Pharmacology & Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Nadine Landolina
- Pharmacology & Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Ludovica Arpinati
- Pharmacology & Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Francesca Levi-Schaffer
- Pharmacology & Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
17
|
Lipid mediators as regulators of human ILC2 function in allergic diseases. Immunol Lett 2016; 179:36-42. [PMID: 27396531 DOI: 10.1016/j.imlet.2016.07.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/06/2016] [Accepted: 07/06/2016] [Indexed: 12/29/2022]
Abstract
Group 2 innate lymphoid cells (ILC2) are specialized in type 2 immunity. ILC2 are activated early in immune responses and, despite their low abundance, are able to initiate and amplify allergic inflammation by orchestrating other type 2 immune cells. Based on recent discoveries, the spectrum of ILC2 regulating factors has been extended. It is now well established that not only epithelial cell-derived innate cytokines, but also bioactive lipids can regulate ILC2 activity and accumulation. Additionally, ILC2 appear to be susceptible to changes in the cytokine milieu and can acquire an ILC1-like phenotype due to a high degree of cellular plasticity. As ILC2 are fundamentally involved in the pathogenesis of type 2 diseases, they represent a promising therapeutic target for allergic airway and skin diseases. In this review we summarize the current knowledge about ILC2 biology in the allergy context, with a particular focus on the emerging role of lipid mediators in regulating ILC2 function.
Collapse
|
18
|
Huang T, Hazen M, Shang Y, Zhou M, Wu X, Yan D, Lin Z, Solon M, Luis E, Ngu H, Shi Y, Katewa A, Choy DF, Ramamoorthi N, Castellanos ER, Balazs M, Xu M, Lee WP, Matsumoto ML, Payandeh J, Arron JR, Hongo JA, Wang J, Hötzel I, Austin CD, Reif K. Depletion of major pathogenic cells in asthma by targeting CRTh2. JCI Insight 2016; 1:e86689. [PMID: 27699264 DOI: 10.1172/jci.insight.86689] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Eosinophilic inflammation and Th2 cytokine production are central to the pathogenesis of asthma. Agents that target either eosinophils or single Th2 cytokines have shown benefits in subsets of biomarker-positive patients. More broadly effective treatment or disease-modifying effects may be achieved by eliminating more than one inflammatory stimulator. Here we present a strategy to concomitantly deplete Th2 T cells, eosinophils, basophils, and type-2 innate lymphoid cells (ILC2s) by generating monoclonal antibodies with enhanced effector function (19A2) that target CRTh2 present on all 4 cell types. Using human CRTh2 (hCRTh2) transgenic mice that mimic the expression pattern of hCRTh2 on innate immune cells but not Th2 cells, we demonstrate that anti-hCRTh2 antibodies specifically eliminate hCRTh2+ basophils, eosinophils, and ILC2s from lung and lymphoid organs in models of asthma and Nippostrongylus brasiliensis infection. Innate cell depletion was accompanied by a decrease of several Th2 cytokines and chemokines. hCRTh2-specific antibodies were also active on human Th2 cells in vivo in a human Th2-PBMC-SCID mouse model. We developed humanized hCRTh2-specific antibodies that potently induce antibody-dependent cell cytotoxicity (ADCC) of primary human eosinophils and basophils and replicated the in vivo depletion capacity of their murine parent. Therefore, depletion of hCRTh2+ basophils, eosinophils, ILC2, and Th2 cells with h19A2 hCRTh2-specific antibodies may be a novel and more efficacious treatment for asthma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jian Payandeh
- Department of Protein Engineering, Genentech Inc., South San Francisco, California, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Santini G, Mores N, Malerba M, Mondino C, Macis G, Montuschi P. Investigational prostaglandin D2 receptor antagonists for airway inflammation. Expert Opin Investig Drugs 2016; 25:639-52. [PMID: 27094922 DOI: 10.1080/13543784.2016.1175434] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION By activating DP1 and DP2 receptors on immune and non-immune cells, prostaglandin D2 (PGD2), a major metabolic product of cyclo-oxygenase pathway released after IgE-mediated mast cell activation, has pro-inflammatory effects, which are relevant to the pathophysiology of allergic airway disease. At least 15 selective, orally active, DP2 receptor antagonists and one DP1 receptor antagonist (asapiprant) are under development for asthma and/or allergic rhinitis. AREAS COVERED In this review, the authors cover the pharmacology of PGD2 and PGD2 receptor antagonists and look at the preclinical, phase I and phase II studies with selective DP1 and DP2 receptor antagonists. EXPERT OPINION Future research should aim to develop once daily compounds and increase the drug clinical potency which, apart from OC000459 and ADC-3680, seems to be relatively low. Further research and development of DP2 receptor antagonists is warranted, particularly in patients with severe uncontrolled asthma, whose management is a top priority. Pediatric studies, which are not available, are required for assessing the efficacy and safety of this novel drug class in children with asthma and allergic rhinitis. Studies on the efficacy of DP2 receptor antagonists in various asthma phenotypes including: smokers, obese subjects, early vs late asthma onset, fixed vs reversible airflow limitation, are required for establishing their pharmacotherapeutic role.
Collapse
Affiliation(s)
- Giuseppe Santini
- a Department of Pharmacology, Faculty of Medicine , Catholic University of the Sacred Heart , Rome , Italy
| | - Nadia Mores
- a Department of Pharmacology, Faculty of Medicine , Catholic University of the Sacred Heart , Rome , Italy
| | - Mario Malerba
- b Department of Internal Medicine , University of Brescia , Brescia , Italy
| | - Chiara Mondino
- c Department of Allergology , 'Bellinzona e Valli' Hospital , Bellinzona , Switzerland
| | - Giuseppe Macis
- d Department of Radiological Sciences, Faculty of Medicine , Catholic University of the Sacred Heart , Rome , Italy
| | - Paolo Montuschi
- a Department of Pharmacology, Faculty of Medicine , Catholic University of the Sacred Heart , Rome , Italy
| |
Collapse
|
20
|
Barnes PJ. Therapeutic approaches to asthma-chronic obstructive pulmonary disease overlap syndromes. J Allergy Clin Immunol 2015; 136:531-45. [PMID: 26343937 DOI: 10.1016/j.jaci.2015.05.052] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 05/21/2015] [Accepted: 05/22/2015] [Indexed: 12/14/2022]
Abstract
The recognition that there are some patients with features of asthma and chronic obstructive pulmonary disease (COPD) has highlighted the need to develop more specific treatments for these clinical phenotypes. Some patients with COPD have predominantly eosinophilic inflammation and might respond to high doses of inhaled corticosteroids and newly developed specific antieosinophil therapies, including blocking antibodies against IL-5, IL-13, IL-33, and thymic stromal lymphopoietin, as well as oral chemoattractant receptor-homologous molecule expressed on TH2 cells antagonists. Other patients have severe asthma or are asthmatic patients who smoke with features of COPD-induced inflammation and might benefit from treatments targeting neutrophils, including macrolides, CXCR2 antagonists, phosphodiesterase 4 inhibitors, p38 mitogen-activating protein kinase inhibitors, and antibodies against IL-1 and IL-17. Other patients appear to have largely fixed obstruction with little inflammation and might respond to long-acting bronchodilators, including long-acting muscarinic antagonists, to reduce hyperinflation. Highly selected patients with severe asthma might benefit from bronchial thermoplasty. Some patients with overlap syndromes can be conveniently treated with triple fixed-dose combination inhaler therapy with an inhaled corticosteroid, long-acting β2-agonist, and long-acting muscarinic antagonist, several of which are now in development. Corticosteroid resistance is a feature of asthma-COPD overlap syndrome, and understanding the various molecular mechanisms of this resistance has identified novel therapeutic targets and presented the prospect of therapies that can restore corticosteroid responsiveness.
Collapse
Affiliation(s)
- Peter J Barnes
- National Heart and Lung Institute, Imperial College, London, United Kingdom.
| |
Collapse
|
21
|
|
22
|
Lieberman JA. Pharmacotherapy for eosinophilic esophagitis. Ann Allergy Asthma Immunol 2015; 114:357-63. [PMID: 25952635 DOI: 10.1016/j.anai.2015.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/17/2015] [Accepted: 03/17/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Jay Adam Lieberman
- Department of Pediatrics, The University of Tennessee Health Science Center, Memphis, Tennessee.
| |
Collapse
|
23
|
Abstract
Chronic rhinosinusitis (CRS) is a heterogeneous disease characterized by local inflammation of the upper airways and sinuses which persists for at least 12 weeks. CRS can be divided into two phenotypes dependent on the presence of nasal polyps (NPs); CRS with NPs (CRSwNP) and CRS without NPs (CRSsNP). Immunological patterns in the two diseases are known to be different. Inflammation in CRSsNP is rarely investigated and limited studies show that CRSsNP is characterized by type 1 inflammation. Inflammation in CRSwNP is well investigated and CRSwNP in Western countries shows type 2 inflammation and eosinophilia in NPs. In contrast, mixed inflammatory patterns are found in CRSwNP in Asia and the ratio of eosinophilic NPs and non-eosinophilic NPs is almost 50:50 in these countries. Inflammation in eosinophilic NPs is mainly controlled by type 2 cytokines, IL-5 and IL-13, which can be produced from several immune cells including Th2 cells, mast cells and group 2 innate lymphoid cells (ILC2s) that are all elevated in eosinophilic NPs. IL-5 strongly induces eosinophilia. IL-13 activates macrophages, B cells and epithelial cells to induce recruitment of eosinophils and Th2 cells, IgE mediated reactions and remodeling. Epithelial derived cytokines, TSLP, IL-33 and IL-1 can directly and indirectly control type 2 cytokine production from these cells in eosinophilic NPs. Recent clinical trials showed the beneficial effect on eosinophilic NPs and/or asthma by monoclonal antibodies against IL-5, IL-4Rα, IgE and TSLP suggesting that they can be therapeutic targets for eosinophilic CRSwNP.
Collapse
Affiliation(s)
- Atsushi Kato
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
24
|
Abstract
Introduction: Atopic dermatitis (AD) is a common skin disease. Although most patients are well served by existing therapies, a subset of patients with severe AD are still not adequately treated. An improved understanding of the pathogenic mechanisms behind the disease has led to the development of a range of potential new drugs for this indication. Areas covered: The authors provide a narrative review of the drugs in Phase II trials listed on Clinicaltrials.gov. The authors supplement this information with recently published literature located through PubMed. The main target of new treatments appears to be the inflammation process, whereas drugs aimed at reducing itching or increasing the barrier function are fewer to nonexistent. A wide range of drugs, including small molecules and antibodies, are being tested. Expert opinion: The focus on inflammation is not only driven by the limitations posed by our current understanding of biology, but also by the broader scope of these drugs, which may be used in other diseases. In alignment with the recent drug development of other dermatological diseases, antibodies directed at key molecules in the pathogenesis of AD appear to be the most promising.
Collapse
Affiliation(s)
- Kristina Sophie Ibler
- Roskilde Hospital, Department of Dermatology , Køgevej 7-13, 4000 Roskilde , Denmark +45 47322600 ; +45 47322699 ;
| | | |
Collapse
|
25
|
Lipid mediators and allergic diseases. Ann Allergy Asthma Immunol 2013; 111:155-62. [PMID: 23987187 DOI: 10.1016/j.anai.2013.06.031] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 06/27/2013] [Accepted: 06/27/2013] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To review the basic science and translational relevance of lipid mediators in the pathobiology of allergic diseases. DATA SOURCES PubMed was searched for articles using the key terms lipid mediator, prostaglandin, prostanoid, leukotriene, thromboxane, asthma, and allergic inflammation. STUDY SELECTIONS Articles were selected based on their relevance to the goals of this review. Articles with a particular focus on clinical and translational aspects of basic science discoveries were emphasized. RESULTS Lipid mediators are bioactive molecules generated from cell membrane phospholipids. They play important roles in many disease states, particularly in inflammatory and immune responses. Lipid mediators and their receptors are potentially useful as diagnostic markers of disease and therapeutic targets. CONCLUSIONS Several useful therapeutic agents have been developed based on a growing understanding of the lipid mediator pathways in allergic disease, notably the cysteinyl leukotriene receptor type 1 antagonists and the 5-lipoxygenase inhibitor, zileuton. Additional receptor agonists and antagonists relevant to these pathways are in development, and it is likely that future pharmacologic treatments for allergic disease will become available as our understanding of these molecules continues to evolve.
Collapse
|