1
|
Oosterholt S, Pavord ID, Brusselle G, Yorgancıoğlu A, Pitrez PM, Pg A, Teli C, Della Pasqua O. Modelling ASthma TrEatment Responses (MASTER): Effect of individual patient characteristics on the risk of exacerbation in moderate or severe asthma: A time-to-event analysis of randomized clinical trials. Br J Clin Pharmacol 2023; 89:3273-3290. [PMID: 37221636 DOI: 10.1111/bcp.15801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/05/2023] [Accepted: 05/04/2023] [Indexed: 05/25/2023] Open
Abstract
AIMS There is limited understanding of how clinical and demographic characteristics are associated with exacerbation risk in patients with moderate-to-severe asthma, and how these factors correlate with symptom control and treatment response. Here we assess the relationship between baseline characteristics and exacerbation risk during regular dosing with inhaled corticosteroids (ICS) monotherapy or in combination with long-acting beta2-agonists (ICS/LABA) in clinical trial patients with varying levels of symptom control, as assessed by the asthma control questionnaire (ACQ-5). METHODS A time-to-event model was developed using pooled patient data (N = 16 282) from nine clinical studies [Correction added on 26 July 2023, after first online publication: The N value in the preceding sentence has been corrected in this version.]. A parametric hazard function was used to describe the time-to-first exacerbation. Covariate analysis included the assessment of the effect of seasonal variation, clinical and demographic baseline characteristics on baseline hazard. Predictive performance was evaluated by standard graphical and statistical methods. RESULTS An exponential hazard model best described the time-to-first exacerbation in moderate-to-severe asthma patients. Body mass index, smoking status, sex, ACQ-5, % predicted forced expiratory volume over 1 s (FEV1 p) and season were identified as statistically significant covariates affecting baseline hazard irrespective of ICS or ICS/LABA use. Fluticasone propionate/salmeterol (FP/SAL) combination therapy resulted in a significant reduction in the baseline hazard (30.8%) relative to FP monotherapy. CONCLUSIONS Interindividual differences at baseline and seasonal variation affect the exacerbation risk independently from drug treatment. Moreover, it appears that even when a comparable level of symptom control is achieved in a group of patients, each individual may have a different exacerbation risk, depending on their baseline characteristics and time of the year. These findings highlight the importance of personalized interventions in moderate-to-severe asthma patients.
Collapse
Affiliation(s)
- Sean Oosterholt
- Clinical Pharmacology Modelling and Simulation, GSK, London, UK
| | - Ian D Pavord
- Respiratory Medicine Unit and NIHR Respiratory BRC, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Guy Brusselle
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | | | | | - Abhijith Pg
- Global Classic and Established Medicines, GSK, Singapore, Singapore
| | - Chirag Teli
- Global Classic and Established Medicines, GSK, Mumbai, India
| | - Oscar Della Pasqua
- Clinical Pharmacology Modelling and Simulation, GSK, London, UK
- Clinical Pharmacology & Therapeutics Group, University College London, London, UK
| |
Collapse
|
2
|
Amo G, Martí M, García-Menaya JM, Cordobés C, Cornejo-García JA, Blanca-López N, Canto G, Doña I, Blanca M, Torres MJ, Agúndez JAG, García-Martín E. Identification of Novel Biomarkers for Drug Hypersensitivity After Sequencing of the Promoter Area in 16 Genes of the Vitamin D Pathway and the High-Affinity IgE Receptor. Front Genet 2019; 10:582. [PMID: 31293618 PMCID: PMC6603231 DOI: 10.3389/fgene.2019.00582] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 06/04/2019] [Indexed: 12/16/2022] Open
Abstract
The prevalence of allergic diseases and drug hypersensitivity reactions (DHRs) during recent years is increasing. Both, allergic diseases and DHRs seem to be related to an interplay between environmental factors and genetic susceptibility. In recent years, a large effort in the elucidation of the genetic mechanisms involved in these disorders has been made, mostly based on case-control studies, and typically focusing on isolated SNPs. These studies provide a limited amount of information, which now can be greatly expanded by the complete coverage that Next Generation Sequencing techniques offer. In this study, we analyzed the promoters of sixteen genes related to the Vitamin D pathway and the high-affinity IgE receptor, including FCER1A, MS4A2, FCER1G, VDR, GC, CYP2R1, CYP27A1, CYP27B1, CYP24A1, RXRA, RXRB, RXRG, IL4, IL4R, IL13, and IL13RA1. The study group was composed of patients with allergic rhinitis plus asthma (AR+A), patients with hypersensitivity to beta-lactams (BLs), to NSAIDs including selective hypersensitivity (SH) and cross-reactivity (CR), and healthy controls without antecedents of atopy or adverse drug reactions. We identified 148 gene variations, 43 of which were novel. Multinomial analyses revealed that three SNPs corresponding to the genes FCER1G (rs36233990 and rs2070901), and GC (rs3733359), displayed significant associations and, therefore, were selected for a combined dataset study in a cohort of 2,476 individuals. The strongest association was found with the promoter FCER1G rs36233990 SNP that alters a transcription factor binding site. This SNP was over-represented among AR+A patients and among patients with IgE-mediated diseases, as compared with control individuals or with the rest of patients in this study. Classification models based on the above-mentioned SNPs were able to predict correct clinical group allocations in patients with DHRs, and patients with IgE-mediated DHRs. Our findings reveal gene promoter SNPs that are significant predictors of drug hypersensitivity, thus reinforcing the hypothesis of a genetic predisposition for these diseases.
Collapse
Affiliation(s)
- Gemma Amo
- University Institute of Molecular Pathology Biomarkers, UEx, Cáceres, Spain.,ARADyAL Instituto de Salud Carlos III, Cáceres, Spain
| | - Manuel Martí
- University Institute of Molecular Pathology Biomarkers, UEx, Cáceres, Spain.,ARADyAL Instituto de Salud Carlos III, Cáceres, Spain
| | - Jesús M García-Menaya
- Allergy Service, Badajoz University Hospital, Badajoz, Spain.,ARADyAL Instituto de Salud Carlos III, Badajoz, Spain
| | - Concepción Cordobés
- Allergy Service, Mérida Hospital, Badajoz, Spain.,ARADyAL Instituto de Salud Carlos III, Cáceres, Spain
| | - José A Cornejo-García
- Research Laboratory, IBIMA, Regional University Hospital of Málaga, UMA, Málaga, Spain.,ARADyAL Instituto de Salud Carlos III, Cáceres, Spain
| | - Natalia Blanca-López
- Allergy Service, Infanta Leonor University Hospital, Madrid, Spain.,ARADyAL Instituto de Salud Carlos III, Madrid, Spain
| | - Gabriela Canto
- Allergy Service, Infanta Leonor University Hospital, Madrid, Spain.,ARADyAL Instituto de Salud Carlos III, Madrid, Spain
| | - Inmaculada Doña
- Allergy Unit, IBIMA, Regional University Hospital of Málaga, UMA, Málaga, Spain.,ARADyAL Instituto de Salud Carlos III, Málaga, Spain
| | - Miguel Blanca
- Allergy Service, Infanta Leonor University Hospital, Madrid, Spain.,ARADyAL Instituto de Salud Carlos III, Madrid, Spain
| | - María José Torres
- Allergy Unit, IBIMA, Regional University Hospital of Málaga, UMA, Málaga, Spain.,ARADyAL Instituto de Salud Carlos III, Málaga, Spain
| | - José A G Agúndez
- University Institute of Molecular Pathology Biomarkers, UEx, Cáceres, Spain.,ARADyAL Instituto de Salud Carlos III, Cáceres, Spain
| | - Elena García-Martín
- University Institute of Molecular Pathology Biomarkers, UEx, Cáceres, Spain.,ARADyAL Instituto de Salud Carlos III, Cáceres, Spain
| |
Collapse
|
3
|
Sunadome H, Matsumoto H, Petrova G, Kanemitsu Y, Tohda Y, Horiguchi T, Kita H, Kuwabara K, Tomii K, Otsuka K, Fujimura M, Ohkura N, Tomita K, Yokoyama A, Ohnishi H, Nakano Y, Oguma T, Hozawa S, Nagasaki T, Ito I, Oguma T, Inoue H, Tajiri T, Iwata T, Izuhara Y, Ono J, Ohta S, Hirota T, Tamari M, Yokoyama T, Niimi A, Izuhara K, Mishima M. IL4Rα and ADAM33 as genetic markers in asthma exacerbations and type-2 inflammatory endotype. Clin Exp Allergy 2017; 47:998-1006. [PMID: 28326636 DOI: 10.1111/cea.12927] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 03/02/2017] [Accepted: 03/08/2017] [Indexed: 02/03/2023]
Abstract
BACKGROUND Genetic markers of susceptibility to asthma exacerbations in adults remain unclear. OBJECTIVE To identify genetic markers of asthma exacerbations, particularly in patients with type-2 inflammatory endotype. METHODS In this observational study of patients enrolled in the Kinki Hokuriku Airway disease Conference multicenter study, frequency of exacerbations requiring systemic corticosteroids during 2 years after enrolment and associated risk factors was determined. For genetic marker analysis, interleukin-4 receptor α (IL4RA) rs8832 and a disintegrin and metalloprotease 33 (ADAM33) S_2 (rs528557), T_1 (rs2280091), T_2 (rs2280090), and V_4 (rs2787094) variants were included. Elevated serum periostin levels at enrolment (≥95 ng/mL, defined as type-2 inflammatory endotype) were considered in the analysis. RESULTS Among 217 patients who were successfully followed up for 2 years after enrolment, 60 patients showed at least one asthma exacerbation during the 2 years. Airflow limitation (%FEV1 <80%) and recent exacerbations but not genetic variants were identified as risk markers of exacerbations. A total of 27 patients showed type-2 inflammatory endotype (serum periostin ≥95 ng/mL at enrolment) and subsequent exacerbations; risk factors in these patients were airflow limitation (odds ratio, 6.51; 95% confidence interval (CI): 2.37-18.6; P=.0003), GG genotype of IL4RA rs8832 (odds ratio, 4.01; 95% CI: 1.47-11.0; P=.007), and A allele of ADAM33 T_2 (odds ratio, 2.81; 95% CI: 1.05-7.67; P=.04) by multivariate analysis. In addition, GG genotype of IL4RA rs8832 was associated with type-2 endotype, whereas A allele of ADAM33 T_2 was associated with mixed type of eosinophilic/type-2 and neutrophilic inflammations. CONCLUSIONS AND CLINICAL RELEVANCE IL4RA and ADAM33 variants may be risk markers of asthma exacerbations in type-2 inflammatory endotype. Precise endotyping may facilitate the identification of genetic risk markers of asthma exacerbations.
Collapse
Affiliation(s)
- H Sunadome
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Kinki Hokuriku Airway disease Conference (KiHAC), Sayama, Japan
| | - H Matsumoto
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Kinki Hokuriku Airway disease Conference (KiHAC), Sayama, Japan
| | - G Petrova
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Y Kanemitsu
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Kinki Hokuriku Airway disease Conference (KiHAC), Sayama, Japan
| | - Y Tohda
- Kinki Hokuriku Airway disease Conference (KiHAC), Sayama, Japan.,Department of Respiratory Medicine and Allergology, Faculty of Medicine, Kinki University, Sayama, Japan
| | - T Horiguchi
- Kinki Hokuriku Airway disease Conference (KiHAC), Sayama, Japan.,Department of Respiratory Internal Medicine, Fujita Health University Second Educational Hospital, Nagoya, Japan
| | - H Kita
- Kinki Hokuriku Airway disease Conference (KiHAC), Sayama, Japan.,Department of Respiratory Medicine, Takatsuki Red Cross Hospital, Takatsuki, Japan
| | - K Kuwabara
- Kinki Hokuriku Airway disease Conference (KiHAC), Sayama, Japan.,Department of Respiratory Internal Medicine, Fujita Health University Second Educational Hospital, Nagoya, Japan
| | - K Tomii
- Kinki Hokuriku Airway disease Conference (KiHAC), Sayama, Japan.,Department of Respiratory Medicine, Kobe City Medical Center General Hospital, Kobe, Japan
| | - K Otsuka
- Kinki Hokuriku Airway disease Conference (KiHAC), Sayama, Japan.,Department of Respiratory Medicine, Kobe City Medical Center General Hospital, Kobe, Japan
| | - M Fujimura
- Kinki Hokuriku Airway disease Conference (KiHAC), Sayama, Japan.,Department of Respiratory Medicine, Cellular Transplantation Biology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - N Ohkura
- Kinki Hokuriku Airway disease Conference (KiHAC), Sayama, Japan.,Department of Respiratory Medicine, Cellular Transplantation Biology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - K Tomita
- Kinki Hokuriku Airway disease Conference (KiHAC), Sayama, Japan.,Department of Respiratory Medicine and Allergology, Faculty of Medicine, Kinki University, Sayama, Japan
| | - A Yokoyama
- Kinki Hokuriku Airway disease Conference (KiHAC), Sayama, Japan.,Department of Hematology and Respiratory Medicine, Kochi University, Kochi, Japan
| | - H Ohnishi
- Kinki Hokuriku Airway disease Conference (KiHAC), Sayama, Japan.,Department of Hematology and Respiratory Medicine, Kochi University, Kochi, Japan
| | - Y Nakano
- Kinki Hokuriku Airway disease Conference (KiHAC), Sayama, Japan.,Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Japan
| | - T Oguma
- Kinki Hokuriku Airway disease Conference (KiHAC), Sayama, Japan.,Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Japan
| | - S Hozawa
- Kinki Hokuriku Airway disease Conference (KiHAC), Sayama, Japan.,Hiroshima Allergy and Respiratory Clinic, Hiroshima, Japan
| | - T Nagasaki
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - I Ito
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - T Oguma
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - H Inoue
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - T Tajiri
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - T Iwata
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Y Izuhara
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - J Ono
- Shino-Test Corporation, Sagamihara, Japan
| | - S Ohta
- Department of Laboratory Medicine, Saga Medical School, Saga, Japan
| | - T Hirota
- Laboratory for Respiratory and Allergic Diseases, Core for Genomic Medicine, Center for Integrative Medical Sciences, Institute of Physical and Chemical Research (RIKEN), Yokohama, Japan
| | - M Tamari
- Laboratory for Respiratory and Allergic Diseases, Core for Genomic Medicine, Center for Integrative Medical Sciences, Institute of Physical and Chemical Research (RIKEN), Yokohama, Japan
| | - T Yokoyama
- Department of Health Promotion, National Institute of Public Health, Wako, Japan
| | - A Niimi
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Kinki Hokuriku Airway disease Conference (KiHAC), Sayama, Japan.,Division of Respiratory Medicine, Department of Medical Oncology and Immunology, Nagoya City University School of Medical Sciences, Nagoya, Japan
| | - K Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - M Mishima
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Kinki Hokuriku Airway disease Conference (KiHAC), Sayama, Japan
| |
Collapse
|
4
|
McGeachie MJ, Wu AC, Tse SM, Clemmer GL, Sordillo J, Himes BE, Lasky-Su J, Chase RP, Martinez FD, Weeke P, Shaffer CM, Xu H, Denny JC, Roden DM, Panettieri RA, Raby BA, Weiss ST, Tantisira KG. CTNNA3 and SEMA3D: Promising loci for asthma exacerbation identified through multiple genome-wide association studies. J Allergy Clin Immunol 2015; 136:1503-1510. [PMID: 26073756 PMCID: PMC4676949 DOI: 10.1016/j.jaci.2015.04.039] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 04/06/2015] [Accepted: 04/15/2015] [Indexed: 01/03/2023]
Abstract
BACKGROUND Asthma exacerbations are a major cause of morbidity and medical cost. OBJECTIVE The objective of this study was to identify genetic predictors of exacerbations in asthmatic subjects. METHODS We performed a genome-wide association study meta-analysis of acute asthma exacerbation in 2 pediatric clinical trials: the Childhood Asthma Management Program (n = 581) and the Childhood Asthma Research and Education (n = 205) network. Acute asthma exacerbations were defined as treatment with a 5-day course of oral steroids. We obtained a replication cohort from Biobank of Vanderbilt University Medical Center (BioVU; n = 786), the Vanderbilt University electronic medical record-linked DNA biobank. We used CD4(+) lymphocyte genome-wide mRNA expression profiling to identify associations of top single nucleotide polymorphisms with mRNA abundance of nearby genes. RESULTS A locus in catenin (cadherin-associated protein), alpha 3 (CTNNA3), reached genome-wide significance (rs7915695, P = 2.19 × 10(-8); mean exacerbations, 6.05 for minor alleles vs 3.71 for homozygous major alleles). Among the 4 top single nucleotide polymorphisms replicated in BioVU, rs993312 in Sema domain, immunoglobulin domain (Ig), short basic domain, secreted, (semaphorin) 3D (SEMA3D) was significant (P = .0083) and displayed stronger association among African Americans (P = .0004 in BioVU [mean exacerbations, 3.91 vs 1.53]; P = .0089 in the Childhood Asthma Management Program [mean exacerbations, 6.0 vs 3.25]). CTNNA3 variants did not replicate in BioVU. A regulatory variant in the CTNNA3 locus was associated with CTNNA3 mRNA expression in CD4(+) cells from asthmatic patients (P = .00079). CTNNA3 appears to be active in the immune response, and SEMA3D has a plausible role in airway remodeling. We also provide a replication of a previous association of purinergic receptor P2X, ligand-gated ion channel, 7 (P2RX7), with asthma exacerbation. CONCLUSIONS We identified 2 loci associated with exacerbations through a genome-wide association study. CTNNA3 met genome-wide significance thresholds, and SEMA3D replicated in a clinical biobank database.
Collapse
Affiliation(s)
- Michael J McGeachie
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Mass.
| | - Ann C Wu
- Center for Child Health Care Studies, Department of Population Medicine, Harvard Pilgrim Health Care Institute and Harvard Medical School, Boston, Mass; Division of General Pediatrics, Department of Pediatrics, Children's Hospital, Boston, Mass
| | - Sze Man Tse
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Mass
| | - George L Clemmer
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Mass
| | - Joanne Sordillo
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Mass
| | - Blanca E Himes
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, Pa
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Mass
| | - Robert P Chase
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Mass
| | | | - Peter Weeke
- Department of Internal Medicine, Vanderbilt University School of Medicine, Nashville, Tenn; Department of Cardiology, Copenhagen University Hospital, Gentofte, Denmark
| | - Christian M Shaffer
- Department of Internal Medicine, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Hua Xu
- Health Science Center at Houston, University of Texas, Houston, Tex
| | - Josh C Denny
- Department of Internal Medicine, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Dan M Roden
- Office of Personalized Medicine, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Reynold A Panettieri
- Airways Biology Initiative, University of Pennsylvania Medical Center, Philadelphia, Pa
| | - Benjamin A Raby
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Mass
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Mass
| | - Kelan G Tantisira
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Mass
| |
Collapse
|