1
|
Stephens AD, Wilkinson T. Discovery of Therapeutic Antibodies Targeting Complex Multi-Spanning Membrane Proteins. BioDrugs 2024; 38:769-794. [PMID: 39453540 PMCID: PMC11530565 DOI: 10.1007/s40259-024-00682-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 10/26/2024]
Abstract
Complex integral membrane proteins, which are embedded in the cell surface lipid bilayer by multiple transmembrane spanning polypeptides, encompass families of proteins that are important target classes for drug discovery. These protein families include G protein-coupled receptors, ion channels, transporters, enzymes, and adhesion molecules. The high specificity of monoclonal antibodies and the ability to engineer their properties offers a significant opportunity to selectively bind these target proteins, allowing direct modulation of pharmacology or enabling other mechanisms of action such as cell killing. Isolation of antibodies that bind these types of membrane proteins and exhibit the desired pharmacological function has, however, remained challenging due to technical issues in preparing membrane protein antigens suitable for enabling and driving antibody drug discovery strategies. In this article, we review progress and emerging themes in defining discovery strategies for a generation of antibodies that target these complex membrane protein antigens. We also comment on how this field may develop with the emerging implementation of computational techniques, artificial intelligence, and machine learning.
Collapse
Affiliation(s)
- Amberley D Stephens
- Department of Biologics Engineering, Oncology R&D, The Discovery Centre, AstraZeneca, 1 Francis Crick Avenue, Cambridge, CB2 0AA, UK
| | - Trevor Wilkinson
- Department of Biologics Engineering, Oncology R&D, The Discovery Centre, AstraZeneca, 1 Francis Crick Avenue, Cambridge, CB2 0AA, UK.
| |
Collapse
|
2
|
Sumikawa T, Nakakido M, Matsunaga R, Kuroda D, Nagatoishi S, Tsumoto K. Generation of antibodies to an extracellular region of the transporters Glut1/Glut4 by immunization with a designed antigen. J Biol Chem 2024; 300:105640. [PMID: 38199569 PMCID: PMC10862009 DOI: 10.1016/j.jbc.2024.105640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/14/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024] Open
Abstract
Monoclonal antibodies are one of the fastest growing class of drugs. Nevertheless, relatively few biologics target multispanning membrane proteins because of technical challenges. To target relatively small extracellular regions of multiple membrane-spanning proteins, synthetic peptides, which are composed of amino acids corresponding to an extracellular region of a membrane protein, are often utilized in antibody discovery. However, antibodies to these peptides often do not recognize parental membrane proteins. In this study, we designed fusion proteins in which an extracellular helix of the membrane protein glucose transporter 1 (Glut1) was grafted onto the scaffold protein Adhiron. In the initial design, the grafted fragment did not form a helical conformation. Molecular dynamics simulations of full-length Glut1 suggested the importance of intramolecular interactions formed by surrounding residues in the formation of the helical conformation. A fusion protein designed to maintain such intramolecular interactions did form the desired helical conformation in the grafted region. We then immunized an alpaca with the designed fusion protein and obtained VHH (variable region of heavy-chain antibodies) using the phage display method. The binding of these VHH antibodies to the recombinant Glut1 protein was evaluated by surface plasmon resonance, and their binding to Glut1 on the cell membrane was further validated by flow cytometry. Furthermore, we also succeeded in the generation of a VHH against another integral membrane protein, glucose transporter 4 (Glut4) with the same strategy. These illustrates that our combined biochemical and computational approach can be applied to designing other novel fusion proteins for generating site-specific antibodies.
Collapse
Affiliation(s)
- Taichi Sumikawa
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Makoto Nakakido
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan; Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan.
| | - Ryo Matsunaga
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan; Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Daisuke Kuroda
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan; Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan; Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Satoru Nagatoishi
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan; Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan; Laboratory of Medical Proteomics, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan; Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan; Laboratory of Medical Proteomics, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
3
|
Gallagher A, Edwards M, Nair P, Drew S, Vyas A, Sharma R, Marsden PA, Wang R, Evans DJ. Anti-interleukin-13 and anti-interleukin-4 agents versus placebo, anti-interleukin-5 or anti-immunoglobulin-E agents, for people with asthma. Cochrane Database Syst Rev 2021; 10:CD012929. [PMID: 34664263 PMCID: PMC8524317 DOI: 10.1002/14651858.cd012929.pub2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Targeting the immunoglobulin E pathway and the interleukin-5 pathway with specific monoclonal antibodies directed against the cytokines or their receptors is effective in patients with severe asthma. However, there are patients who have suboptimal responses to these biologics. Since interleukin-4 and interleukin-13, signalling through the interleukin-4 receptor, have multiple effects on the biology of asthma, therapies targeting interleukin-4 and -13 (both individually and combined) have been developed. OBJECTIVES To assess the efficacy and safety of anti-interleukin-13 or anti-interleukin-4 agents, compared with placebo, anti-immunoglobulin E agents, or anti-interleukin-5 agents, for the treatment of children, adolescents, or adults with asthma. SEARCH METHODS We identified studies from the Cochrane Airways Trials Register, which is maintained by the Information Specialist for the Group and through searches of the US National Institutes of Health Ongoing Trials Register ClinicalTrials.gov and the World Health Organization International Clinical Trials Registry Platform. The search was carried out on the 16 October 2020. SELECTION CRITERIA We included parallel-group randomised controlled trials that compared anti-interleukin-13 or -4 agents (or agents that target both interleukin-13 and interleukin-4) with placebo in adolescents and adults (aged 16 years or older) or children (younger than 16 years), with a diagnosis of asthma; participants could receive their usual short- or long-acting medications (e.g. inhaled corticosteroids (ICS), long-acting beta adrenoceptor agonists (LABA), long-acting muscarinic antagonists (LAMA), and/or leukotriene receptor antagonists) provided that they were not part of the randomised treatment. DATA COLLECTION AND ANALYSIS We used standard methods expected by Cochrane. MAIN RESULTS We identified and included 41 RCTs. Of these, 29 studies contributed data to the quantitative analyses, randomly assigning 10,604 people with asthma to receive an anti-interleukin-13 (intervention) or anti-interleukin-4 agent (intervention), or placebo (comparator). No relevant studies were identified where the comparator was an anti-immunoglobulin agent or an anti-interleukin-5 agent. Studies had a duration of between 2 and 52 (median 16) weeks. The mean age of participants across the included studies ranged from 22 to 55 years. Only five studies permitted enrolment of children and adolescents, accounting for less than 5% of the total participants contributing data to the present review. The majority of participants had moderate or severe uncontrolled asthma. Concomitant ICS use was permitted or required in the majority (21 of 29) of the included studies. The use of maintenance systemic corticosteroids was not permitted in 19 studies and was permitted or required in five studies (information not reported in five studies). Regarding the most commonly assessed anti-interleukin-13/-4 agents, four studies evaluated dupilumab (300 mg once every week (Q1W), 200 mg once every two weeks (Q2W), 300 mg Q2W, 200 mg once every four weeks (Q4W), 300 mg Q4W, each administered by subcutaneous (SC) injection); eight studies evaluated lebrikizumab (37.5 mg Q4W, 125 mg Q4W, 250 mg Q4W each administered by SC injection); and nine studies (3259 participants) evaluated tralokinumab (75 mg Q1W, 150 mg Q1W, 300 mg Q1W, 150 mg Q2W, 300 mg Q2W, 600 mg Q2W, 300 mg Q4W, each administered by SC injection; 1/5/10 mg/kg administered by intravenous (IV) injection); all anti-interleukin-13 or-4 agents were compared with placebo. The risk of bias was generally considered to be low or unclear (insufficient detail provided); nine studies were considered to be at high risk for attrition bias and three studies were considered to be at high risk for reporting bias. The following results relate to the primary outcomes. The rate of exacerbations requiring hospitalisation or emergency department (ED) visit was probably lower in participants receiving tralokinumab versus placebo (rate ratio 0.68, 95% CI 0.47 to 0.98; moderate-certainty evidence; data available for tralokinumab (anti-interleukin-13) only). In participants receiving an anti-interleukin-13/-4 agent, the mean improvement versus placebo in adjusted asthma quality of life questionnaire score was 0.18 units (95% CI 0.12 to 0.24; high-certainty evidence); however, this finding was deemed not to be a clinically relevant improvement. There was likely little or no difference between groups in the proportion of patients who reported all-cause serious adverse events (anti-interleukin-13/-4 agents versus placebo, OR 0.91, 95% CI 0.76 to 1.09; moderate-certainty evidence). In terms of secondary outcomes, there may be little or no difference between groups in the proportion of patients who experienced exacerbations requiring oral corticosteroids (anti-interleukin-13/-4 agents versus placebo, rate ratio 0.98, 95% CI 0.72 to 1.32; low-certainty evidence). Anti-interleukin-13/-4 agents probably improve asthma control based on asthma control questionnaire score (anti-interleukin-13/-4 agents versus placebo, mean difference -0.19; 95% CI -0.24 to -0.14); however, the magnitude of this result was deemed not to be a clinically relevant improvement. The proportion of patients experiencing any adverse event was greater in those receiving anti-interleukin-13/-4 agents compared with those receiving placebo (OR 1.16, 95% CI 1.04 to 1.30; high-certainty evidence); the most commonly reported adverse events in participants treated with anti-interleukin-13/-4 agents were upper respiratory tract infection, nasopharyngitis, headache and injection site reaction. The pooled results for the exploratory outcome, the rate of exacerbations requiring oral corticosteroids (OCS) or hospitalisation or emergency department visit, may be lower in participants receiving anti-interleukin-13/-4 agents versus placebo (rate ratio 0.71, 95% CI 0.65 to 0.77; low-certainty evidence). Results were generally consistent across subgroups for different classes of agent (anti-interleukin-13 or anti-interleukin-4), durations of study and severity of disease. Subgroup analysis based on category of T helper 2 (TH2) inflammation suggested greater efficacy in patients with higher levels of inflammatory biomarkers (blood eosinophils, exhaled nitric oxide and serum periostin). AUTHORS' CONCLUSIONS Based on the totality of the evidence, compared with placebo, anti-interleukin-13/-4 agents are probably associated with a reduction in exacerbations requiring hospitalisation or ED visit, at the cost of increased adverse events, in patients with asthma. No clinically relevant improvements in health-related quality of life or asthma control were identified. Therefore, anti-interleukin-13 or anti-interleukin-4 agents may be appropriate for adults with moderate-to-severe uncontrolled asthma who have not responded to other treatments. These conclusions are generally supported by moderate or high-certainty evidence based on studies with an observation period of up to one year.
Collapse
Affiliation(s)
| | - Michaela Edwards
- Nottingham Business School, Nottingham Trent University, Nottingham, UK
| | - Parameswaran Nair
- Firestone Institute for Respiratory Health, McMaster University & St Joseph`s Healthcare, Hamilton, Canada
| | - Stewart Drew
- Children's Physiotherapy Service, Lancashire Care NHS Foundation Trust, Preston, UK
| | - Aashish Vyas
- Department of Respiratory Medicine, Lancashire Teaching Hospitals Trust, Preston, UK
| | - Rashmi Sharma
- Department of Microbiology, BTH NHS Foundation Trust, Blackpool, UK
| | - Paul A Marsden
- Department of Respiratory Medicine, Lancashire Teaching Hospitals Trust, Preston, UK
- North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Ran Wang
- Department of Respiratory Medicine, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
| | - David Jw Evans
- Lancaster Medical School, Lancaster University, Lancaster, UK
| |
Collapse
|
4
|
Fröhlich E, Salar-Behzadi S. Oral inhalation for delivery of proteins and peptides to the lungs. Eur J Pharm Biopharm 2021; 163:198-211. [PMID: 33852968 DOI: 10.1016/j.ejpb.2021.04.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/17/2021] [Accepted: 04/01/2021] [Indexed: 12/14/2022]
Abstract
Oral inhalation is the preferred route for delivery of small molecules to the lungs, because high tissue levels can be achieved shortly after application. Biologics are mainly administered by intravenous injection but inhalation might be beneficial for the treatment of lung diseases (e.g. asthma). This review discusses biological and pharmaceutical challenges for delivery of biologics and describes promising candidates. Insufficient stability of the proteins during aerosolization and the biological environment of the lung are the main obstacles for pulmonary delivery of biologics. Novel nebulizers will improve delivery by inducing less shear stress and administration as dry powder appears suitable for delivery of biologics. Other promising strategies include pegylation and development of antibody fragments, while carrier-encapsulated systems currently play no major role in pulmonary delivery of biologics for lung disease. While development of various biologics has been halted or has shown little effects, AIR DNase, alpha1-proteinase inhibitor, recombinant neuraminidase, and heparin are currently being evaluated in phase III trials. Several biologics are being tested for the treatment of coronavirus disease (COVID)-19, and it is expected that these trials will lead to improvements in pulmonary delivery of biologics.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, Graz, Austria; Research Center Pharmaceutical Engineering GmbH, Graz, Austria.
| | - Sharareh Salar-Behzadi
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria; Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Austria
| |
Collapse
|
5
|
Khumalo J, Kirstein F, Scibiorek M, Hadebe S, Brombacher F. Therapeutic and prophylactic deletion of IL-4Ra-signaling ameliorates established ovalbumin induced allergic asthma. Allergy 2020; 75:1347-1360. [PMID: 31782803 PMCID: PMC7318634 DOI: 10.1111/all.14137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 10/12/2019] [Accepted: 11/07/2019] [Indexed: 12/14/2022]
Abstract
Background Allergic asthma is a chronic inflammatory airway disease driven predominantly by a TH2 immune response to environmental allergens. IL‐4Rα‐signaling is essential for driving TH2‐type immunity to allergens. Anti‐TH2 therapies have the potential to effectively reduce airway obstruction and inflammation in allergic asthma. Objective We investigated potential therapeutic effects of selective inhibition of this pathway in mice with established allergic airway disease. We further investigated whether IL‐4Rα disruption in systemically sensitized mice can prevent the onset of the disease. Methods We used RosacreERT2IL‐4Rα−/lox mice, a tamoxifen (TAM)‐inducible IL‐4Rα knockdown model to investigate the role of IL‐4/IL‐13 signaling prior to the onset of the disease and during the effector phase in the ovalbumin‐induced allergic airway disease. Results Inducible deletion of IL‐4Rα demonstrated therapeutic effects, on established allergic airway disease, and prevented the development of ovalbumin‐induced airway hyperreactivity, eosinophilia, and goblet cell metaplasia in allergen‐sensitized mice. Interestingly, IL‐4Rα knockdown after allergic sensitization did not induce TH17, a neutrophilic inflammatory response as observed in global IL‐4Rα‐deficient mice after intranasal allergen challenge. Conclusion Abrogation of IL‐4Rα signaling after allergic sensitization would have significant therapeutic benefit for TH2‐type allergic asthma.
Collapse
Affiliation(s)
- Jermaine Khumalo
- Division of Immunology, and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases Department of Pathology Faculty of Health Sciences University of Cape Town Cape Town South Africa
- Division of Immunology Health Science Faculty International Centre for Genetic Engineering and Biotechnology (ICGEB) and Institute of Infectious Diseases and Molecular Medicine (IDM) University of Cape Town Cape Town South Africa
| | - Frank Kirstein
- Division of Immunology, and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases Department of Pathology Faculty of Health Sciences University of Cape Town Cape Town South Africa
| | - Martyna Scibiorek
- Division of Immunology, and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases Department of Pathology Faculty of Health Sciences University of Cape Town Cape Town South Africa
- Division of Immunology Health Science Faculty International Centre for Genetic Engineering and Biotechnology (ICGEB) and Institute of Infectious Diseases and Molecular Medicine (IDM) University of Cape Town Cape Town South Africa
| | - Sabelo Hadebe
- Division of Immunology, and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases Department of Pathology Faculty of Health Sciences University of Cape Town Cape Town South Africa
| | - Frank Brombacher
- Division of Immunology, and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases Department of Pathology Faculty of Health Sciences University of Cape Town Cape Town South Africa
- Division of Immunology Health Science Faculty International Centre for Genetic Engineering and Biotechnology (ICGEB) and Institute of Infectious Diseases and Molecular Medicine (IDM) University of Cape Town Cape Town South Africa
- Faculty of Health Sciences Wellcome Centre for Infectious Diseases Research in Africa (CIDRI‐Africa)Institute of Infectious Diseases and Molecular Medicine (IDM)University of Cape Town Cape Town South Africa
| |
Collapse
|
6
|
Generating therapeutic monoclonal antibodies to complex multi-spanning membrane targets: Overcoming the antigen challenge and enabling discovery strategies. Methods 2020; 180:111-126. [PMID: 32422249 DOI: 10.1016/j.ymeth.2020.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/21/2020] [Accepted: 05/13/2020] [Indexed: 12/17/2022] Open
Abstract
Complex integral membrane proteins, which are embedded in the cell surface lipid bilayer by multiple transmembrane spanning helices, encompass families of proteins which are important target classes for drug discovery. These protein families include G protein-coupled receptors, ion channels and transporters. Although these proteins have typically been targeted by small molecule drugs and peptides, the high specificity of monoclonal antibodies offers a significant opportunity to selectively modulate these target proteins. However, it remains the case that isolation of antibodies with desired pharmacological function(s) has proven difficult due to technical challenges in preparing membrane protein antigens suitable to support antibody drug discovery. In this review recent progress in defining strategies for generation of membrane protein antigens is outlined. We also highlight antibody isolation strategies which have generated antibodies which bind the membrane protein and modulate the protein function.
Collapse
|
7
|
Tejwani V, Chang HY, Tran AP, Moloney RM, Khatri SB. The asthma evidence base: a call for core outcomes in interventional trials. J Asthma 2020; 58:855-864. [PMID: 32192353 DOI: 10.1080/02770903.2020.1744641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVES Biologic therapies are emerging as an option to treat a subset of patients with severe asthma, however no direct comparison between these agents has been conducted. Furthermore, heterogeneity of outcomes in clinical trials makes it difficult to compare these agents and traditional therapies. The extent to which this heterogeneity exists has major implications for evidence-based decisions and is yet to be fully reported. We conducted a literature search to examine outcomes currently being used in clinical trials for asthma. DATA SOURCES The Cochrane Library and Clinicaltrials.gov were searched for clinical trials of asthma interventions. STUDY SELECTIONS We limited our search to phase 2 through 4 clinical trials in adults, as early-phase trials tend to have pharmacodynamic and pharmacokinetic endpoints as primary outcomes. Interventions for acute exacerbations were excluded. RESULTS We identified 117 studies and subsequently identified 111 outcomes. The most prevalent outcomes were asthma control and symptom severity, FEV1, and change in ACQ scale. Twenty patient-reported outcomes instruments were identified and de-facto standard asthma outcomes and PROs were under-reported in examined literature. Existing quality of life tools did not capture the day-to-day experience or the unique treatment burden from oral corticosteroids for patient with severe asthma. Compounding the absence of trials directly comparing therapies, the significant variation we identified in outcome definitions and measurement create hurdles to effectively compare traditional and biologic therapies. CONCLUSION With the growing number of clinical trials evaluating advanced therapies such as biologics, a wide range of primary and secondary outcomes are evaluated. A core outcome set created by relevant stakeholders is needed to collectively evaluate pooled outcomes in order to allow more meaningful comparisons of asthma therapies and to incorporate the patient experience.
Collapse
Affiliation(s)
- Vickram Tejwani
- Pulmonary and Critical Care, Johns Hopkins Hospital, Baltimore, MD, USA
| | | | - Annie P Tran
- Center for Medical Technology Policy, Baltimore, MD, USA
| | | | | |
Collapse
|
8
|
Associations Between Individual Characteristics and Blood Eosinophil Counts in Adults with Asthma or COPD. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2019; 8:1606-1613.e1. [PMID: 31891826 DOI: 10.1016/j.jaip.2019.12.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 11/20/2019] [Accepted: 12/09/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Elevated blood eosinophil (bEOS) counts are markers of inflammation associated with poorer outcomes in individuals with asthma and chronic obstructive pulmonary disease (COPD). However, little is known about factors impacting the variability of bEOS counts in individuals with these conditions. OBJECTIVE To determine the association between individual characteristics and bEOS counts in individuals with asthma, COPD, and nonasthma/COPD controls. METHODS Participants in the National Health and Nutrition Examination Surveys (2001-2016) aged 18 years or older with asthma or COPD and nonasthma/COPD controls were identified on the basis of diagnoses by health care practitioners. Associations between bEOS counts and age, sex, race/ethnicity, body mass index, and smoking status were investigated. Statistical analyses incorporated National Health and Nutrition Examination Surveys multistage sampling and sampling weights. RESULTS bEOS counts were significantly higher in individuals with asthma than in nonasthma/COPD controls. There was no significant difference between individuals with COPD and nonasthma/COPD controls. Across all 3 populations, median bEOS counts were consistently higher in men (15%-20%) and in those with higher body mass index (∼5%-25%) and lower in individuals of black race (15%-20%). bEOS counts increased with age in nonasthma/COPD controls but not in individuals with asthma or COPD. Among nonasthma/COPD controls and individuals with asthma, bEOS counts were higher in current and former smokers compared with never smokers, but no such association was found between bEOS counts and smoking status in individuals with COPD. CONCLUSIONS In individuals with asthma or COPD, sex, race, and body mass index should be considered when interpreting bEOS counts. Smoking history should also be considered in individuals with asthma. Future research should evaluate the association between bEOS counts adjusted for demographic factors and clinical outcomes, such as asthma or COPD exacerbations.
Collapse
|
9
|
Chen MH, Huang MT, Yu WK, Lee SS, Wang JH, Cheng TJR, Bowman MR, Hsieh SL. Antibody blockade of Dectin-2 suppresses house dust mite-induced Th2 cytokine production in dendritic cell- and monocyte-depleted peripheral blood mononuclear cell co-cultures from asthma patients. J Biomed Sci 2019; 26:97. [PMID: 31861989 PMCID: PMC6925444 DOI: 10.1186/s12929-019-0598-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022] Open
Abstract
Background Dectin-2, which is a C-type lectin, interacts with the house dust mite (HDM) Dermatophagoides pteronyssinus allergen. This study aimed to investigate whether Dectin-2 blockade by antagonistic monoclonal antibodies (MoAbs) attenuates HDM-induced allergic responses. Methods Two anti-Dectin-2 MoAbs were generated and validated for specific binding to Dectin-2 Fc fusion protein (Dectin-2.Fc) and inhibition of Dectin-2.Fc/HDM interaction. Patients with asthma exhibiting high titers of anti-D. pteronyssinus IgE were enrolled. Peripheral blood mononuclear cells with depleted CD14+ monocytes were obtained from these patients and co-cultured with autologous monocyte-derived conventional dendritic cells in the presence of D. pteronyssinus or its group 2 allergens (Der p 2). Interleukin (IL)-5 and IL-13 levels in the culture supernatants were determined using ELISA in the presence or absence of anti-Dectin-2 MoAbs. Results Two MoAbs, 6A4G7 and 17A1D10, showed specific binding to recombinant Dectin-2.Fc and inhibited HDM binding to Dectin-2.Fc. Both anti-Dectin-2 MoAbs inhibited IL-5 and IL-13 production in co-cultures with Der p 2 stimulation in a dose-dependent manner. 6A4G7 and 17A1D10 (3 μg/mL) significantly inhibited Der p 2-induced (3 μg/mL) IL-5 production by 69.7 and 86.4% and IL-13 production by 84.0 and 81.4%, respectively. Moreover, this inhibitory effect of the two MoAbs remained significant in the presence of D. pteronyssinus. Conclusions Anti-Dectin-2 MoAbs significantly inhibited HDM-induced allergic responses in vitro and therefore have the potential to become therapeutic agents in mite-induced allergic diseases.
Collapse
Affiliation(s)
- Ming-Han Chen
- Division of Allergy, Immunology & Rheumatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medicine, National Yang-Ming University, Taipei, Taiwan
| | | | - Wen-Kuang Yu
- Department of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shinn-Shing Lee
- Section of Allergy, Immunology, and Rheumatology, Department of Medicine, Cheng Hsin Rehabilitation Medical Center, Taipei, Taiwan
| | - Jia-Horng Wang
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Critical Care, Far Eastern Memorial Hospital, Taipei, Taiwan
| | | | - Michael R Bowman
- Inflammation and Immunology Research Unit, Pfizer Inc, Cambridge, MA, USA.,Present address: Immunology and Inflammation Therapeutic Area, Sanofi, Cambridge, MA, USA
| | - Shie-Liang Hsieh
- Genomics Research Center, Academia Sinica, Taipei, Taiwan. .,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan. .,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan. .,Institute for Cancer Biology and Drug Discovery, Taipei Medical University, 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan.
| |
Collapse
|
10
|
Yin LM, Xu YD, Peng LL, Duan TT, Liu JY, Xu Z, Wang WQ, Guan N, Han XJ, Li HY, Pang Y, Wang Y, Chen Z, Zhu W, Deng L, Wu YL, Ge GB, Huang S, Ulloa L, Yang YQ. Transgelin-2 as a therapeutic target for asthmatic pulmonary resistance. Sci Transl Med 2019; 10:10/427/eaam8604. [PMID: 29437149 DOI: 10.1126/scitranslmed.aam8604] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 09/11/2017] [Accepted: 11/01/2017] [Indexed: 12/24/2022]
Abstract
There is a clinical need for new bronchodilator drugs in asthma, because more than half of asthmatic patients do not receive adequate control with current available treatments. We report that inhibition of metallothionein-2 protein expression in lung tissues causes the increase of pulmonary resistance. Conversely, metallothionein-2 protein is more effective than β2-agonists in reducing pulmonary resistance in rodent asthma models, alleviating tension in tracheal spirals, and relaxing airway smooth muscle cells (ASMCs). Metallothionein-2 relaxes ASMCs via transgelin-2 (TG2) and induces dephosphorylation of myosin phosphatase target subunit 1 (MYPT1). We identify TSG12 as a nontoxic, specific TG2-agonist that relaxes ASMCs and reduces asthmatic pulmonary resistance. In vivo, TSG12 reduces pulmonary resistance in both ovalbumin- and house dust mite-induced asthma in mice. TSG12 induces RhoA phosphorylation, thereby inactivating the RhoA-ROCK-MYPT1-MLC pathway and causing ASMCs relaxation. TSG12 is more effective than β2-agonists in relaxing human ASMCs and pulmonary resistance with potential clinical advantages. These results suggest that TSG12 could be a promising therapeutic approach for treating asthma.
Collapse
Affiliation(s)
- Lei-Miao Yin
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Yu-Dong Xu
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Ling-Ling Peng
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Ting-Ting Duan
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Jia-Yuan Liu
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Zhijian Xu
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wen-Qian Wang
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Nan Guan
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Xiao-Jie Han
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Hai-Yan Li
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Yu Pang
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Yu Wang
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Zhaoqiang Chen
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Weiliang Zhu
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Linhong Deng
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Jiangsu 213164, China
| | - Ying-Li Wu
- Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guang-Bo Ge
- Institute of Interdisciplinary Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Shuang Huang
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China.,Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | - Luis Ulloa
- International Laboratory of Neuro-Immunomodulation, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China. .,Center of Immunology and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07101, USA
| | - Yong-Qing Yang
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China.
| |
Collapse
|
11
|
Therapeutic Monoclonal Antibodies to Complex Membrane Protein Targets: Antigen Generation and Antibody Discovery Strategies. BioDrugs 2019; 32:339-355. [PMID: 29934752 DOI: 10.1007/s40259-018-0289-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cell surface membrane proteins comprise a wide array of structurally and functionally diverse proteins involved in a variety of important physiological and homeostatic processes. Complex integral membrane proteins, which are embedded in the lipid bilayer by multiple transmembrane-spanning helices, are represented by families of proteins that are important target classes for drug discovery. Such protein families include G-protein-coupled receptors, ion channels and transporters. Although these targets have typically been the domain of small-molecule drugs, the exquisite specificity of monoclonal antibodies offers a significant opportunity to selectively modulate these target proteins. Nevertheless, the isolation of antibodies with desired pharmacological functions has proved difficult because of technical challenges in preparing membrane protein antigens for antibody drug discovery. In this review, we describe recent progress in defining strategies for the generation of membrane protein antigens. We also describe antibody-isolation strategies that identify antibodies that bind the membrane protein and modulate protein function.
Collapse
|
12
|
Virkud YV, Kelly RS, Croteau-Chonka DC, Celedón JC, Dahlin A, Avila L, Raby BA, Weiss ST, Lasky-Su JA. Novel eosinophilic gene expression networks associated with IgE in two distinct asthma populations. Clin Exp Allergy 2018; 48:1654-1664. [PMID: 30107053 PMCID: PMC6659730 DOI: 10.1111/cea.13249] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/02/2018] [Accepted: 07/02/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Asthma represents a significant public health burden; however, novel biological therapies targeting immunoglobulin E (IgE)-mediated pathways have widened clinical treatment options for the disease. OBJECTIVE In this study, we sought to identify gene transcripts and gene networks involved in the determination of serum IgE levels in people with asthma that can help inform the development of novel therapeutic agents. METHODS We analysed gene expression data from a cross-sectional study of 326 Costa Rican children with asthma, aged 6 to 12 years, from the Genetics of Asthma in Costa Rica Study and 610 young adults with asthma, aged 16 to 25 years, from the Childhood Asthma Management Program trial. We utilized differential gene expression analysis and performed weighted gene coexpression network analysis on 25 060 genes, to identify gene transcripts and network modules associated with total IgE, adjusting for age and gender. We used pathway enrichment analyses to identify key biological pathways underlying significant modules. We compared findings that replicated between both populations. RESULTS We identified 31 transcripts associated with total IgE that replicated between the two study cohorts. These results were notable for increased eosinophil-related transcripts (including IL5RA, CLC, SMPD3, CCL23 and CEBPE). Pathway enrichment identified the regulation of T cell tolerance as important in the determination of total IgE levels, supporting a key role for IDO1. CONCLUSIONS AND CLINICAL RELEVANCE These results provide robust evidence that biologically meaningful gene expression profiles (relating to eosinophilic and regulatory T cell pathways in particular) associated with total IgE levels can be identified in individuals diagnosed with asthma during childhood. These profiles and their constituent genes may represent novel therapeutic targets.
Collapse
Affiliation(s)
- Yamini V Virkud
- Division of Allergy and Immunology, Department of Pediatrics, Harvard Medical School, Massachusetts General Hospital for Children, Boston, Massachusetts.,Channing Division of Network Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts
| | - Rachel S Kelly
- Channing Division of Network Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts
| | - Damien C Croteau-Chonka
- Channing Division of Network Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts
| | - Juan C Celedón
- Division of Pediatric Pulmonary Medicine, Allergy and Immunology, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Amber Dahlin
- Channing Division of Network Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts
| | - Lydiana Avila
- Department of Pediatrics, Hospital Nacional de Niños, San Jose, Costa Rica
| | - Benjamin A Raby
- Channing Division of Network Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts
| | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts
| | - Jessica A Lasky-Su
- Channing Division of Network Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
13
|
Colley CS, England E, Linley JE, Wilkinson TCI. Screening Strategies for the Discovery of Ion Channel Monoclonal Antibodies. ACTA ACUST UNITED AC 2018; 82:e44. [DOI: 10.1002/cpph.44] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Caroline S. Colley
- Antibody Discovery and Protein Engineering, MedImmune; Cambridge United Kingdom
| | - Elizabeth England
- Antibody Discovery and Protein Engineering, MedImmune; Cambridge United Kingdom
| | - John E. Linley
- Neuroscience, IMED Biotech Unit, AstraZeneca; Cambridge United Kingdom
| | | |
Collapse
|
14
|
Abstract
Asthma is increasingly recognised as a heterogeneous group of diseases with similar clinical presentations rather than a singular disease entity. Asthma was historically categorised by clinical symptoms; however, newer methods of subgrouping, describing and categorising the disease have sub-defined asthma. These sub-definitions are intermittently called phenotypes or endotypes, but the real meanings of these words are poorly understood. Novel treatments are currently and increasingly available, partly in the monoclonal antibody environment, and also some physical therapies (bronchial thermoplasty), but additionally small molecules are not far away from clinical practice. Understanding the disease pathogenesis and the mechanism of action more completely may enable identification of treatable traits, biomarkers, mediators and modifiable therapeutic targets. However, there remains a danger that clinicians become preoccupied with the concept of endotypes and biomarkers, ignoring therapies that are hugely effective but have no companion biomarker. This review discusses our understanding of the concept of phenotypes and endotypes in appreciating and managing the heterogeneous condition that is asthma. We consider the role of functional imaging, physiology, blood-, sputum- and breath-based biomarkers and clinical manifestations that could be used to produce a personalised asthma profile, with implications on prognosis, pathophysiology and most importantly specific therapeutic responses. With the advent of increasing numbers of biological therapies and other interventional options such as bronchial thermoplasty, the importance of targeting expensive therapies to patients with the best chance of clinical response has huge health economic importance.
Collapse
Affiliation(s)
- Katrina Dean
- University Hospital South Manchester, Manchester, UK
| | - Robert Niven
- Manchester Academic Health Science Centre, The University of Manchester and University Hospital South Manchester, Manchester, UK.
| |
Collapse
|
15
|
Edwards M, Gallagher A, Nair P, Drew S, Vyas A, Sharma R, Marsden PA, Evans DJW. Anti-interleukin-13 and anti-interleukin-4 agents versus placebo, anti-interleukin-5 or anti-immunoglobulin-E agents, for children and adults with asthma. Hippokratia 2018. [DOI: 10.1002/14651858.cd012929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Michaela Edwards
- Lancaster University; Faculty of Health and Medicine; Lancaster UK
| | | | - Parameswaran Nair
- McMaster University & St Joseph`s Healthcare; Firestone Institute for Respiratory Health; Hamilton ON Canada
| | - Stewart Drew
- Lancashire Care NHS Foundation Trust; Children’s Physiotherapy Service; Preston UK
| | - Aashish Vyas
- Lancashire Teaching Hospitals Trust; Department of Respiratory Medicine; Preston UK
| | - Rashmi Sharma
- BTH NHS Foundation Trust; Department of Microbiology; Blackpool UK
| | - Paul A Marsden
- Lancaster University; Faculty of Health and Medicine; Lancaster UK
- Lancashire Teaching Hospitals Trust; Department of Respiratory Medicine; Preston UK
| | - David JW Evans
- Lancaster University; Lancaster Health Hub; Lancaster UK LA1 4YG
| |
Collapse
|
16
|
Wicher SA, Lawson KL, Jacoby DB, Fryer AD, Drake MG. Ozone-induced eosinophil recruitment to airways is altered by antigen sensitization and tumor necrosis factor- α blockade. Physiol Rep 2017; 5:e13538. [PMID: 29242307 PMCID: PMC5742702 DOI: 10.14814/phy2.13538] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/23/2017] [Accepted: 10/23/2017] [Indexed: 01/21/2023] Open
Abstract
Ozone is an atmospheric pollutant that causes lung inflammation and airway hyperresponsiveness. Ozone's effects occur in two distinct phases that are mediated by different populations of eosinophils. In the acute phase 1 day after exposure, mature airway-resident eosinophils alter parasympathetic nerve function that results in airway hyperresponsiveness. At this time point, the severity of hyperresponsiveness correlates with the number of eosinophils in close proximity to airway nerves, but not with eosinophils in bronchoalveolar lavage. Three days later, newly divided eosinophils are recruited to airways by a tumor necrosis factor-α-dependent mechanism. These new eosinophils paradoxically attenuate ozone-induced airway hyperresponsiveness. Ozone's effects on airway tissue eosinophils and nerve-associated eosinophils 3 days after exposure are unknown. Thus, we tested ozone's effects on eosinophils in airway subepithelium and around airway nerves 1 and 3 days after ozone in nonsensitized and ovalbumin-sensitized guinea pigs with or without the tumor necrosis factor-α antagonist, etanercept, and compared changes in eosinophils with ozone-induced airway hyperresponsiveness. More eosinophils were present in small, noncartilaginous airways and along small airway nerves compared to large cartilaginous airways in all treatment groups. The number of airway and nerve-associated eosinophils were unaffected 1 day after ozone exposure, whereas significantly fewer airway eosinophils were present 3 days later. Airway and nerve-associated eosinophils were also decreased in small airways 3 days after ozone in sensitized animals. These changes were blocked by etanercept. Airway eosinophils, but not nerve-associated or bronchoalveolar lavage eosinophils correlated with airway hyperresponsiveness 3 days after ozone. Our findings indicate ozone causes persistent alterations in airway eosinophils and reinforce the importance of characterizing eosinophils' effects within distinct airway compartments.
Collapse
Affiliation(s)
- Sarah A Wicher
- Department of Physiology and Pharmacology, Oregon Health & Sciences University, Portland, Oregon
| | - Katy L Lawson
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, Oregon
| | - David B Jacoby
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Allison D Fryer
- Department of Physiology and Pharmacology, Oregon Health & Sciences University, Portland, Oregon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Matthew G Drake
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
17
|
Rowe RK, Gill MA. Effects of Allergic Sensitization on Antiviral Immunity: Allergen, Virus, and Host Cell Mechanisms. Curr Allergy Asthma Rep 2017; 17:9. [PMID: 28233152 DOI: 10.1007/s11882-017-0677-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Multiple clinical and epidemiological studies demonstrate links between allergic sensitization and virus-induced atopic disease exacerbations. This review summarizes the recent findings regarding allergen, viral, and host cellular mechanisms relevant to these observations. RECENT FINDINGS Recent studies have focused on the molecular pathways and genetic influences involved in allergen-mediated inhibition of innate antiviral immune responses. Multiple tissue and cell types from atopic individuals across the atopy spectrum exhibit deficient interferon responses to a variety of virus infections. Impairment in barrier function, viral RNA and DNA recognition by intracellular sensing molecules, and dysregulation of signaling components are broadly affected by allergic sensitization. Finally, genetic predisposition by numerous nucleotide polymorphisms also impacts immune pathways and potentially contributes to virus-associated atopic disease pathogenesis. Allergen-virus interactions in the setting of atopy involve complex tissue and cellular mechanisms. Future studies defining the pathways underlying these interactions could uncover potential therapeutic targets. Available data suggest that therapies tailored to restore specific components of antiviral responses will likely lead to improved clinical outcomes in allergic disease.
Collapse
Affiliation(s)
- Regina K Rowe
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9063, USA
| | - Michelle A Gill
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9063, USA. .,Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
18
|
Discovery of functional monoclonal antibodies targeting G-protein-coupled receptors and ion channels. Biochem Soc Trans 2017; 44:831-7. [PMID: 27284048 DOI: 10.1042/bst20160028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Indexed: 11/17/2022]
Abstract
The development of recombinant antibody therapeutics is a significant area of growth in the pharmaceutical industry with almost 50 approved monoclonal antibodies on the market in the US and Europe. Despite this growth, however, certain classes of important molecular targets have remained intractable to therapeutic antibodies due to complexity of the target molecules. These complex target molecules include G-protein-coupled receptors and ion channels which represent a large potential target class for therapeutic intervention with monoclonal antibodies. Although these targets have typically been addressed by small molecule approaches, the exquisite specificity of antibodies provides a significant opportunity to provide selective modulation of these target proteins. Given this opportunity, substantial effort has been applied to address the technical challenges of targeting these complex membrane proteins with monoclonal antibodies. In this review recent progress made in the strategies for discovery of functional monoclonal antibodies for these challenging membrane protein targets is addressed.
Collapse
|
19
|
Grim SA, Reid GE, Clark NM. Update in the treatment of non-influenza respiratory virus infection in solid organ transplant recipients. Expert Opin Pharmacother 2017; 18:767-779. [PMID: 28425766 PMCID: PMC7103702 DOI: 10.1080/14656566.2017.1322063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/19/2017] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Despite the improved outcomes in solid organ transplantation with regard to prevention of rejection and increased patient and graft survival, infection remains a common cause of morbidity and mortality. Respiratory viruses are a frequent and potentially serious cause of infection after solid organ transplantation. Furthermore, clinical manifestations of respiratory virus infection (RVI) may be more severe and unusual in solid organ transplant recipients (SOTRs) compared with the non-immunocompromised population. Areas covered: This article reviews the non-influenza RVIs that are commonly encountered in SOTRs. Epidemiologic and clinical characteristics are highlighted and available treatment options are discussed. Expert opinion: New diagnostic tools, particularly rapid molecular assays, have expanded the ability to identify specific RVI pathogens in SOTRs. This is not only useful from a treatment standpoint but also to guide infection control practices. More data are needed on RVIs in the solid organ transplant population, particularly regarding their effect on rejection and graft dysfunction. There is also a need for new antiviral agents active against these infections as well as markers that can identify which patients would most benefit from treatment.
Collapse
Affiliation(s)
- Shellee A. Grim
- Department of Internal Medicine, Division of Infectious Diseases, Loyola University Medical Center, Maywood, IL, USA
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois, Chicago, IL, USA
| | - Gail E. Reid
- Department of Internal Medicine, Division of Infectious Diseases, Loyola University Medical Center, Maywood, IL, USA
| | - Nina M. Clark
- Department of Internal Medicine, Division of Infectious Diseases, Loyola University Medical Center, Maywood, IL, USA
| |
Collapse
|
20
|
A Recombinant DNA Plasmid Encoding the sIL-4R-NAP Fusion Protein Suppress Airway Inflammation in an OVA-Induced Mouse Model of Asthma. Inflammation 2017; 39:1434-40. [PMID: 27209195 DOI: 10.1007/s10753-016-0375-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Asthma is a chronic inflammatory airway disease. It was prevalently perceived that Th2 cells played the crucial role in asthma pathogenesis, which has been identified as the important target for anti-asthma therapy. The soluble IL-4 receptor (sIL-4R), which is the decoy receptor for Th2 cytokine IL-4, has been reported to be effective in treating asthma in phase I/II clinical trail. To develop more efficacious anti-asthma agent, we attempt to test whether the Helicobacter pylori neutrophil-activating protein (HP-NAP), a novel TLR2 agonist, would enhance the efficacy of sIL-4R in anti-asthma therapy. In our work, we constructed a pcDNA3.1-sIL-4R-NAP plasmid, named PSN, encoding fusion protein of murine sIL-4R and HP-NAP. PSN significantly inhibited airway inflammation, decreased the serum OVA-specific IgE levels and remodeled the Th1/Th2 balance. Notably, PSN is more effective on anti-asthma therapy comparing with plasmid only expressing sIL-4R.
Collapse
|
21
|
Wang T, Hou W, Fu Z. Preventative effect of OMZ-SPT on lipopolysaccharide-induced acute lung injury and inflammation via nuclear factor-kappa B signaling in mice. Biochem Biophys Res Commun 2017; 485:284-289. [PMID: 28223218 DOI: 10.1016/j.bbrc.2017.02.090] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 02/18/2017] [Indexed: 11/17/2022]
Abstract
Acute lung injury (ALI) is an early pathophysiologic change in acute respiratory distress syndrome and its management can be challenging. Omalizumab (Xolair™) is a recombinant DNA-derived, humanized antibody. OMZ-SPT is a polypeptide on the heavy chain of omalizumab monoclonal antibody. Here, we found that intramuscular administration of OMZ-SPT significantly improved survival and attenuated lung inflammation in female C57BL/6 mice suffering from lipopolysaccharide (LPS)-induced ALI. We also demonstrated that OMZ-SPT can inhibit expression of the inflammatory cytokines tumor necrosis factor-α, interleukin-1β and interleukin-6 by ELISA in mice suffering from LPS-induced ALI and a mouse macrophage line (RAW264.7 cells). In addition, we showed that OMZ-SPT inhibited LPS-induced activation of nuclear factor-kappa B (NF-κB) signaling and total expression of NF-κB by western blotting. These data suggest that OMZ-SPT could be a novel therapeutic choice for ALI.
Collapse
Affiliation(s)
- Ting Wang
- Pediatrics Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| | - Wanru Hou
- Secular Peptide Biomedicine, Chengdu, China.
| | - Zhou Fu
- Pediatrics Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
22
|
Xiao L, Li T, Ding M, Yang J, Rodríguez-Corrales J, LaConte SM, Nacey N, Weiss DB, Jin L, Dorn HC, Li X. Detecting Chronic Post-Traumatic Osteomyelitis of Mouse Tibia via an IL-13Rα2 Targeted Metallofullerene Magnetic Resonance Imaging Probe. Bioconjug Chem 2017; 28:649-658. [PMID: 28061526 DOI: 10.1021/acs.bioconjchem.6b00708] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Differential diagnosis of chronic post-traumatic osteomyelitis (CPO) from aseptic inflammation remains challenging, since both pathological processes share similar clinical symptoms. Here we utilized a novel targeted metallofullerene nanoparticle based magnetic resonance imaging (MRI) probe IL-13-TAMRA-Gd3N@C80(OH)30(CH2CH2COOH)20 to detect CPO in mouse tibia via overexpressed IL-13Rα2 receptors. The functionalized metallofullerene was characterized by X-ray photoelectron spectroscopy. Upon lipopolysaccharide (LPS) stimulation, macrophage Raw 264.7 cells showed elevated IL-13Rα2 expression via immunofluorescence staining and increased MRI probe binding via built-in TAMRA fluorescence imaging. Trauma was induced in both tibia of mice and bacteria soaked suture was inserted into the right tibia to initiate infection. During the acute phase (1.5 weeks), luminol-bioluminescence imaging revealed much higher myeloperoxidase activity in the infected tibia compared to the sham. In the chronic phase (4 weeks), X-ray radiography illustrated bone deformation in the infected tibia compared to the sham. With T1 weighted sequences, the probe clearly exhibited hyperintensity in the infection foci at both acute and chronic phases, which was not observed in the sham tibia. Histological analysis revealed severe bone structural destruction and massive inflammatory cell infiltration in the infected tibia. Immunohistochemistry confirmed abundant expression of IL-13Rα2 in the infection site. In summary, we developed a noninvasive imaging approach to detect and differentiate CPO from aseptic inflammation using a new IL-13Rα2 targeted metallofullerene MRI probe. In addition, for the first time, IL-13Rα2 was investigated as a unique biomarker in the context of osteomyelitis. Our data established a foundation for the translational application of this MRI probe in the clinical differentiation of CPO.
Collapse
Affiliation(s)
| | - Tinghui Li
- Department of Chemistry, Virginia Polytechnic Institute and State University , Blacksburg, Virginia 24061, United States
| | | | | | - José Rodríguez-Corrales
- Department of Chemistry, Virginia Polytechnic Institute and State University , Blacksburg, Virginia 24061, United States
| | - Stephen M LaConte
- Virginia Tech Carilion Research Institute , Roanoke, Virginia 24016, United States
| | | | | | | | - Harry C Dorn
- Virginia Tech Carilion Research Institute , Roanoke, Virginia 24016, United States.,Department of Chemistry, Virginia Polytechnic Institute and State University , Blacksburg, Virginia 24061, United States
| | | |
Collapse
|
23
|
Katial RK, Bensch GW, Busse WW, Chipps BE, Denson JL, Gerber AN, Jacobs JS, Kraft M, Martin RJ, Nair P, Wechsler ME. Changing Paradigms in the Treatment of Severe Asthma: The Role of Biologic Therapies. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2017; 5:S1-S14. [PMID: 28143691 DOI: 10.1016/j.jaip.2016.11.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 11/30/2022]
Abstract
Cytokine antagonists are monoclonal antibodies that offer new treatment options for refractory asthma but will also increase complexity because they are effective only for patients with certain asthma subtypes that remain to be more clearly defined. The clinical and inflammatory heterogeneity within refractory asthma makes it difficult to manage the disease and to determine which, if any, biologic therapy is suitable for a specific patient. The purpose of this article is to provide a data-driven discussion to clarify the use of biologic therapies in patients with refractory asthma. We first discuss the epidemiology and pathophysiology of refractory asthma. We then interpret current evidence for biomarkers of eosinophilic or type 2-high asthma so that clinicians can determine potential treatments for patients based on knowledge of their effectiveness in specific asthma phenotypes. We then assess clinical data on the efficacy, safety, and mechanisms of action of approved and pipeline biologic therapies. We conclude by discussing the potential of phenotyping or endotyping refractory asthma and how biologic therapies can play a role in treating patients with refractory asthma.
Collapse
Affiliation(s)
- Rohit K Katial
- Department of Medicine, Division of Allergy and Clinical Immunology, National Jewish Health, Denver, Colo.
| | - Greg W Bensch
- Allergy, Immunology and Asthma Medical Group, Stockton, Calif
| | - William W Busse
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Bradley E Chipps
- Capital Allergy and Respiratory Disease Center, Sacramento, Calif
| | - Joshua L Denson
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, Colo; Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado at Denver, Anschutz Medical Campus, Aurora, Colo
| | - Anthony N Gerber
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, Colo; Department of Biomedical Research, National Jewish Health, Denver, Colo
| | - Joshua S Jacobs
- Allergy and Asthma Clinical Research, Inc., Walnut Creek, Calif
| | - Monica Kraft
- Department of Medicine, Asthma and Airway Disease Research Center, University of Arizona Health Sciences, Tucson, Ariz
| | | | - Parameswaran Nair
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Michael E Wechsler
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, Colo
| |
Collapse
|
24
|
Park SY, Hong GH, Park S, Shin B, Yoon SY, Kwon HS, Kim TB, Moon HB, Cho YS. Serum progranulin as an indicator of neutrophilic airway inflammation and asthma severity. Ann Allergy Asthma Immunol 2016; 117:646-650. [PMID: 28073702 DOI: 10.1016/j.anai.2016.09.437] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/05/2016] [Accepted: 09/23/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Progranulin, a protein secreted from the airway epithelium, is known to attenuate the downstream cascade of neutrophilic inflammation in particular. We hypothesized that progranulin may have a role in inflammatory regulation in asthma. OBJECTIVE To investigate the association between serum progranulin levels and various clinical features in patients with asthma. METHODS Serum samples and clinical data of 475 patients with asthma and 35 healthy controls at a tertiary referral hospital and its affiliated health promotion center were collected. Serum progranulin levels were compared between patients with asthma and healthy controls and then were compared within the patients with asthma in terms of pulmonary function and measures of inflammatory status. Univariate and multivariate analyses were performed to identify factors associated with severity of asthma. RESULTS Serum progranulin levels were significantly lower in the asthma group than in healthy group and were positively correlated with prebronchodilator forced expiratory volume in 1 second predicted within patients with asthma. We found a negative correlation between serum progranulin levels and blood neutrophil counts. Multivariate analysis revealed that higher serum progranulin levels were associated with a lower risk of severe asthma (odds ratio, 0.888; 95% confidence interval, 0.846-0.932; P < .001) after adjustment for other variables, such as age, sex, smoking status, blood neutrophil count, and current use of systemic corticosteroids. CONCLUSION Although the exact mechanism of the anti-inflammatory action of progranulin remains unknown, we suggest that serum progranulin may be an indicator of severe asthma with airflow limitation. Future studies with comprehensive airway sampling strategies are warranted to clarify its role, particularly in neutrophilic asthma.
Collapse
Affiliation(s)
- So Young Park
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | | | - Sunjoo Park
- Asan Institute for Life Sciences, Seoul, Korea
| | - Bomi Shin
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sun-Young Yoon
- Department of Internal Medicine, Konkuk University Chungju Hospital, Chungju, Korea
| | - Hyouk-Soo Kwon
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Tae-Bum Kim
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hee-Bom Moon
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - You Sook Cho
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
25
|
Pharmacological opportunities to control inflammatory diseases through inhibition of the leukocyte recruitment. Pharmacol Res 2016; 112:37-48. [DOI: 10.1016/j.phrs.2016.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/14/2016] [Accepted: 01/15/2016] [Indexed: 12/30/2022]
|
26
|
Ruan G, Tao B, Wang D, Li Y, Wu J, Yin G. Chinese herbal medicine formula Gu-Ben-Fang-Xiao-Tang attenuates airway inflammation by modulating Th17/Treg balance in an ovalbumin-induced murine asthma model. Exp Ther Med 2016; 12:1428-1434. [PMID: 27588063 PMCID: PMC4998120 DOI: 10.3892/etm.2016.3507] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 05/25/2016] [Indexed: 12/16/2022] Open
Abstract
Gu-Ben-Fang-Xiao-Tang (GBFXT) is a traditional Chinese medicine formula consisting of 11 medicinal plants, which has been used in the treatment of asthma. The present study aimed to determine the protective effects and the underlying mechanisms of GBFXT on ovalbumin (OVA)-induced allergic inflammation in a mouse model of allergic asthma. A total of 50 mice were randomly assigned to the following five experimental groups: Normal, model, montelukast (2.6 mg/kg), 12 g/kg GBFXT and 36 g/kg GBFXT groups. Airway responsiveness was measured using the forced oscillation technique, while differential cell count in the bronchoalveolar lavage fluid (BALF) was measured by Wright-Giemsa staining. Histological assessment was performed by hematoxylin and eosin staining, while BALF levels of Th17/Treg cytokines were measured by enzyme-linked immunosorbent assay, and the proportions of Th17 and Treg cells were evaluated by flow cytometry. The results showed that GBFXT suppressed airway hyperresponsiveness during methacholine-induced constriction, reduced the percentage of leukocytes and eosinophils, and resulted in decreased absolute neutrophil infiltration in lung tissue. In addition, GBFXT treatment significantly decreased the IL-17A cytokine level and increased the IL-10 cytokine level in the BALF. Furthermore, GBFXT significantly suppressed Th17 cells and increased Treg cells in asthmatic mice. In conclusion, the current results demonstrated that GBFXT may effectively inhibit the progression of airway inflammation in allergic asthma, partially by modulating the Th17/Treg cell balance.
Collapse
Affiliation(s)
- Guiying Ruan
- Department of Paediatrics, Taizhou Municipal Hospital, Medical College of Taizhou University, Taizhou, Zhejiang 318000, P.R. China
| | - Baohong Tao
- Department of Otorhinolaryngology, Taizhou Municipal Hospital, Medical College of Taizhou University, Taizhou, Zhejiang 318000, P.R. China
| | - Dongguo Wang
- Central Laboratory, Taizhou Municipal Hospital, Medical College of Taizhou University, Taizhou, Zhejiang 318000, P.R. China
| | - Yong Li
- Department of Otorhinolaryngology, Taizhou Municipal Hospital, Medical College of Taizhou University, Taizhou, Zhejiang 318000, P.R. China
| | - Jingyi Wu
- Department of Traditional Chinese Medicine, Taizhou Municipal Hospital, Medical College of Taizhou University, Taizhou, Zhejiang 318000, P.R. China
| | - Genquan Yin
- Department of Paediatrics, Taizhou Municipal Hospital, Medical College of Taizhou University, Taizhou, Zhejiang 318000, P.R. China
| |
Collapse
|
27
|
Abstract
RATIONALE Bronchial thermoplasty is an alternative treatment for patients with severe, uncontrolled asthma in which the airway smooth muscle is eliminated using radioablation. Although this emerging therapy shows promising outcomes, little is known about its effects on airway inflammation. OBJECTIVES We examined the presence of bronchoalveolar lavage cytokines and expression of smooth muscle actin in patients with severe asthma before and in the weeks after bronchial thermoplasty. METHODS Endobronchial biopsies and bronchoalveolar lavage samples from 11 patients with severe asthma were collected from the right lower lobe before and 3 and 6 weeks after initial bronchial thermoplasty. Samples were analyzed for cell proportions and cytokine concentrations in bronchoalveolar lavage and for the presence of α-SMA in endobronchial biopsies. MEASUREMENTS AND MAIN RESULTS α-SMA expression was decreased in endobronchial biopsies of 7 of 11 subjects by Week 6. In bronchoalveolar lavage fluid, both transforming growth factor-β1 and regulated upon activation, normal T-cell expressed and secreted (RANTES)/CCL5 were substantially decreased 3 and 6 weeks post bronchial thermoplasty in all patients. The cytokine tumor-necrosis-factor-related apoptosis-inducing ligand (TRAIL), which induces apoptosis in several cell types, was increased in concentration both 3 and 6 weeks post bronchial thermoplasty. CONCLUSIONS Clinical improvement and reduction in α-SMA after bronchial thermoplasty in severe, uncontrolled asthma is associated with substantial changes in key mediators of inflammation. These data confirm the substantial elimination of airway smooth muscle post thermoplasty in the human asthmatic airway and represent the first characterization of significant changes in airway inflammation in the first weeks after thermoplasty.
Collapse
|
28
|
Bujarski S, Parulekar AD, Hanania NA. Lebrikizumab in the treatment of asthma. Expert Opin Biol Ther 2016; 16:847-852. [PMID: 27161908 DOI: 10.1080/14712598.2016.1182152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Severe asthma continues to be a major clinical problem despite the availability of effective asthma medications such as inhaled corticosteroids. Several targeted biologic therapies are emerging to treat patients with severe asthma. Areas Covered: This review provides an update of information on lebrikizumab, a novel monoclonal antibody that targets IL-13 and is currently in advanced stages of development. It describes the role of IL-13, a key effector cytokine in Type 2 (T2) airway inflammation in asthma and discusses the results of recent phase 2 trials investigating lebrikizumab's efficacy and safety in patients with severe asthma. Furthermore, it provides insight into the current ongoing trials with lebrikizumab and outlines future research needs. Expert Opinion: Several emerging therapeutic targets have been identified for patients with severe asthma. By specifically targeting IL-13, lebrikizumab has the potential to block several downstream signals that play a role in disease progression including airway inflammation, mucous hypersecretion and airway remodeling. The effects of lebrikizumab have been more marked in individuals with high serum periostin levels which reflect underlying IL-13 activity and T2 airway inflammation. Ongoing trials with lebrikizumab aim to further examine its long-term safety and efficacy in a larger population and explore its effects on airway inflammation and function.
Collapse
Affiliation(s)
- Stephen Bujarski
- a Section of Pulmonary, Critical Care and Sleep Medicine , Baylor College of Medicine , Houston , Texas
| | - Amit D Parulekar
- a Section of Pulmonary, Critical Care and Sleep Medicine , Baylor College of Medicine , Houston , Texas
| | - Nicola A Hanania
- a Section of Pulmonary, Critical Care and Sleep Medicine , Baylor College of Medicine , Houston , Texas
| |
Collapse
|
29
|
Holding the Inflammatory System in Check: TLRs and Their Targeted Therapy in Asthma. Mediators Inflamm 2016; 2016:2180417. [PMID: 27274620 PMCID: PMC4870363 DOI: 10.1155/2016/2180417] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/13/2016] [Indexed: 02/06/2023] Open
Abstract
Inflammation is a complex biological response to detrimental stimuli and can be a double-edged sword. Inflammation plays a protective role in removing pathogenic factors, but dysregulated inflammation is associated with several major fatal diseases such as asthma, cancer, and cardiovascular diseases. Asthma is a complex heterogenous disease caused by genetic and environmental factors. TLRs are the primary proteins associated with the innate and adaptive immune responses to these fatal factors and play an important role in recognizing pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs), which initiates the downstream immune response. Due to the complex TLRs cascade and nowadays unsuccessful control in asthma, new studies are focused on TLRs and other potential targets in TLR cascade to minimize airway inflammation.
Collapse
|
30
|
Hosseini A, Hirota JA, Hackett TL, McNagny KM, Wilson SJ, Carlsten C. Morphometric analysis of inflammation in bronchial biopsies following exposure to inhaled diesel exhaust and allergen challenge in atopic subjects. Part Fibre Toxicol 2016; 13:2. [PMID: 26758251 PMCID: PMC4711081 DOI: 10.1186/s12989-016-0114-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/06/2016] [Indexed: 02/08/2023] Open
Abstract
Background Allergen exposure and air pollution are two risk factors for asthma development and airway inflammation that have been examined extensively in isolation. The impact of combined allergen and diesel exhaust exposure has received considerably less attention. Diesel exhaust (DE) is a major contributor to ambient particulate matter (PM) air pollution, which can act as an adjuvant to immune responses and augment allergic inflammation. We aimed to clarify whether DE increases allergen-induced inflammation and cellular immune response in the airways of atopic human subjects. Methods Twelve atopic subjects were exposed to DE 300 μg.m−3 or filtered air for 2 h in a blinded crossover study design with a four-week washout period between arms. One hour following either filtered air or DE exposure, subjects were exposed to allergen or saline (vehicle control) via segmental challenge. Forty-eight hours post-allergen or control exposure, bronchial biopsies were collected. The study design generated 4 different conditions: filtered air + saline (FAS), DE + saline (DES), filtered air + allergen (FAA) and DE + allergen (DEA). Biopsies sections were immunostained for tryptase, eosinophil cationic protein (ECP), neutrophil elastase (NE), CD138, CD4 and interleukin (IL)-4. The percent positivity of positive cells were quantified in the bronchial submucosa. Results The percent positivity for tryptase expression and ECP expression remained unchanged in the bronchial submucosa in all conditions. CD4 % positive staining in DEA (0.311 ± 0.060) was elevated relative to FAS (0.087 ± 0.018; p = 0.035). IL-4 % positive staining in DEA (0.548 ± 0.143) was elevated relative to FAS (0.127 ± 0.062; p = 0.034). CD138 % positive staining in DEA (0.120 ± 0.031) was elevated relative to FAS (0.017 ± 0.006; p = 0.015), DES (0.044 ± 0.024; p = 0.040), and FAA (0.044 ± 0.008; p = 0.037). CD138 % positive staining in FAA (0.044 ± 0.008) was elevated relative to FAS (0.017 ± 0.006; p = 0.049). NE percent positive staining in DEA (0.224 ± 0.047) was elevated relative to FAS (0.045 ± 0.014; p = 0.031). Conclusions In vivo allergen and DE co-exposure results in elevated CD4, IL-4, CD138 and NE in the respiratory submucosa of atopic subjects, while eosinophils and mast cells are not changed. Trial registration URL: http://www.clinicaltrials.gov. Unique identifier: NCT01792232. Electronic supplementary material The online version of this article (doi:10.1186/s12989-016-0114-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ali Hosseini
- Department of Medicine, Division of Respiratory Medicine, Chan-Yeung Centre for Occupational and Environmental Respiratory Disease, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada. .,Institute for Heart and Lung Health, University of British Columbia, Vancouver, BC, V6Z 1Y6, Canada. .,The Lung Center, Vancouver General Hospital (VGH) - Gordon and Leslie Diamond Health Care Centre, 2775 Laurel Street, 7th floor, Vancouver, BC, V5Z 1M9, Canada.
| | - Jeremy A Hirota
- Department of Medicine, Division of Respiratory Medicine, Chan-Yeung Centre for Occupational and Environmental Respiratory Disease, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada. .,Institute for Heart and Lung Health, University of British Columbia, Vancouver, BC, V6Z 1Y6, Canada. .,The Lung Center, Vancouver General Hospital (VGH) - Gordon and Leslie Diamond Health Care Centre, 2775 Laurel Street, 7th floor, Vancouver, BC, V5Z 1M9, Canada.
| | - Tillie L Hackett
- Institute for Heart and Lung Health, University of British Columbia, Vancouver, BC, V6Z 1Y6, Canada.
| | - Kelly M McNagny
- Biomedical Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | - Susan J Wilson
- Histochemistry Research Unit, Faculty of Medicine, University of Southampton, Southampton, S016 6YD, UK.
| | - Chris Carlsten
- Department of Medicine, Division of Respiratory Medicine, Chan-Yeung Centre for Occupational and Environmental Respiratory Disease, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada. .,Institute for Heart and Lung Health, University of British Columbia, Vancouver, BC, V6Z 1Y6, Canada. .,The Lung Center, Vancouver General Hospital (VGH) - Gordon and Leslie Diamond Health Care Centre, 2775 Laurel Street, 7th floor, Vancouver, BC, V5Z 1M9, Canada.
| |
Collapse
|
31
|
Li J, Zhang F, Li J. The Immunoregulatory Effects of Traditional Chinese Medicine on Treatment of Asthma or Asthmatic Inflammation. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2015; 43:1059-81. [PMID: 26364661 DOI: 10.1142/s0192415x15500615] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Asthma is a chronic respiratory symptoms with variable airflow limitation and airway hyperresponsiveness (AHR), and causes high economic burden. Traditional Chinese medicine (TCM) has a long-lasting history of using herbal medicine in the treatment of various respiratory diseases including asthma. In the last several decades, an increasing number of herbs have been shown to be effective in the treatment of asthma in clinical trials or asthmatic inflammation in animal models. Literature about the effects of TCM on the immune system were searched in electronic databases such as PubMed, Google Scholar and Scopus from 2000 to 2014. 'TCM' and 'asthma' were used as keywords for the searches. Over 400 literatures were searched and the literatures about the immune system were selected and reviewed. We only reviewed literatures published in English. Accumulating evidence suggests that TCM can directly inhibit the activation and migration of inflammatory cells, regulate the balance of Th1/Th2 responses, and suppress allergic hyperreactivity through inducing regulatory T cells or attenuating the function of dendritic cells (DCs). These studies provided useful information to facilitate the use of TCM to treat asthma. This review was conducted to classify the findings based on their possible mechanisms of action reported.
Collapse
Affiliation(s)
- Jinyu Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Fuchun Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
32
|
Enhanced spinal neuronal responses as a mechanism for the increased nociceptive sensitivity of interleukin-4 deficient mice. Exp Neurol 2015; 271:198-204. [DOI: 10.1016/j.expneurol.2015.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 05/22/2015] [Accepted: 06/11/2015] [Indexed: 12/22/2022]
|
33
|
Ethanol Extract of Perilla frutescens Suppresses Allergen-Specific Th2 Responses and Alleviates Airway Inflammation and Hyperreactivity in Ovalbumin-Sensitized Murine Model of Asthma. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:324265. [PMID: 26064160 PMCID: PMC4429230 DOI: 10.1155/2015/324265] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/10/2014] [Indexed: 12/11/2022]
Abstract
This study was to investigate the effects of different fractions of Perilla frutescens (Pf)
leaves extracted by water or ethanol on asthma. BALB/c mice sensitized intraperitoneally and
challenged with ovalbumin (OVA) were divided into six groups. Each group of mice was
tube-feeding with 0 (control), 80 μg (PfWL), or 320 μg (PfWH) water extracts or 80 μg
(PfEL) or 320 μg (PfEH) ethanol extracts of perilla leaves daily for 3 weeks. A negative
control group (PBS) was neither sensitized nor treated with Pf. The effects of perilla leave
extracts on allergic immune response were evaluated. The results showed that OVA-specific
IL-5 and IL-13 secretions from OVA-stimulated splenocytes were significantly suppressed in
the ethanol extract groups PfEL and PfEH. Serum level of anti-OVA IgE tended to be lower in
the PfEH group. The inflammatory mediators, such as eotaxin and histamine, and total cells,
particularly eosinophils in bronchoalveolar lavage fluid (BALF), were also decreased in the
PfEL and the PfEH groups. Therefore, the PfEL and the PfEH groups had significantly lower
methacholine-induced hyperresponsiveness (AHR). In conclusion, ethanol extracts, rather than
water extract, of perilla leaves could significantly suppress Th2 responses and airway
inflammation in allergic murine model of asthma.
Collapse
|
34
|
Hauptman M, Phipatanakul W. Year in review: pediatric allergy and asthma, excluding food allergy. Ann Allergy Asthma Immunol 2015; 114:175-7. [PMID: 25744902 PMCID: PMC4526163 DOI: 10.1016/j.anai.2015.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 01/08/2015] [Accepted: 01/14/2015] [Indexed: 02/07/2023]
Affiliation(s)
- Marissa Hauptman
- Division of General Pediatrics, Boston Children's Hospital, Boston, Massachusetts; Region 1 New England Pediatric Environmental Health Speciality Unit, Boston, Massachusetts; Division of Allergy and Immunology, Boston Children's Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Wanda Phipatanakul
- Division of Allergy and Immunology, Boston Children's Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
35
|
|
36
|
Caminati M, Senna G, Guerriero M, Dama AR, Chieco-Bianchi F, Stefanizzi G, Montagni M, Ridolo E. Omalizumab for severe allergic asthma in clinical trials and real-life studies: what we know and what we should address. Pulm Pharmacol Ther 2015; 31:28-35. [PMID: 25640019 DOI: 10.1016/j.pupt.2015.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 02/01/2023]
Abstract
Randomized clinical trials (RCTs) are the gold standard for the assessment of any therapeutic intervention. Real-life (R-L) studies are needed to verify the provided results beyond the experimental setting. This review aims at comparing RCTs and R-L studies on omalizumab in adult severe allergic asthma, in order to highlight the concurring results and the discordant/missing data. The results of a selective literature research, including "omalizumab, controlled studies, randomized trial, real-life studies" as key words are discussed. Though some similarities between RCTs and R-L studies strengthen omalizumab efficacy and safety outcomes, significant differences concerning study population features, follow-up duration, local adverse events and drop-out rate for treatment inefficacy emerge between the two study categories. Furthermore the comparative analysis between RCTs and R-L studies highlights the need for further research, concerning in particular long-term effects of omalizumab and its impact on asthma comorbidities.
Collapse
Affiliation(s)
- Marco Caminati
- Allergy Unit, Verona University and General Hospital, Verona, Italy.
| | - Gianenrico Senna
- Allergy Unit, Verona University and General Hospital, Verona, Italy.
| | - Massimo Guerriero
- Department of Computer Science, University of Verona, Verona, Italy.
| | - Anna Rita Dama
- Allergy Unit, Verona University and General Hospital, Verona, Italy.
| | - Fulvia Chieco-Bianchi
- Respiratory Pathophysiology Division, University-City Hospital of Padua, Padua, Italy.
| | | | - Marcello Montagni
- University of Parma, Department of Clinical and Experimental Medicine, Parma, Italy.
| | - Erminia Ridolo
- University of Parma, Department of Clinical and Experimental Medicine, Parma, Italy.
| |
Collapse
|
37
|
Roviezzo F, Sorrentino R, Bertolino A, De Gruttola L, Terlizzi M, Pinto A, Napolitano M, Castello G, D'Agostino B, Ianaro A, Sorrentino R, Cirino G. S1P-induced airway smooth muscle hyperresponsiveness and lung inflammation in vivo: molecular and cellular mechanisms. Br J Pharmacol 2015; 172:1882-93. [PMID: 25439580 DOI: 10.1111/bph.13033] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 11/24/2014] [Accepted: 11/27/2014] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Sphingosine-1-phosphate (S1P) has been shown to be involved in the asthmatic disease as well in preclinical mouse experimental models of this disease. The aim of this study was to understand the mechanism(s) underlying S1P effects on the lung. EXPERIMENTAL APPROACH BALB/c, mast cell-deficient and Nude mice were injected with S1P (s.c.) on days 0 and 7. Functional, molecular and cellular studies were performed. KEY RESULTS S1P administration to BALB/c mice increased airway smooth muscle reactivity, mucus production, PGD2 , IgE, IL-4 and IL-13 release. These features were associated to a higher recruitment of mast cells to the lung. Mast cell-deficient Kit (W) (-sh/) (W) (-sh) mice injected with S1P did not display airway smooth muscle hyper-reactivity. However, lung inflammation and IgE production were still present. Treatment in vivo with the anti-CD23 antibody B3B4, which blocks IgE production, inhibited both S1P-induced airway smooth muscle reactivity in vitro and lung inflammation. S1P administration to Nude mice did not elicit airway smooth muscle hyper-reactivity and lung inflammation. Naïve (untreated) mice subjected to the adoptive transfer of CD4+ T-cells harvested from S1P-treated mice presented all the features elicited by S1P in the lung. CONCLUSIONS AND IMPLICATIONS S1P triggers a cascade of events that sequentially involves T-cells, IgE and mast cells reproducing several asthma-like features. This model may represent a useful tool for defining the role of S1P in the mechanism of action of currently-used drugs as well as in the development of new therapeutic approaches for asthma-like diseases.
Collapse
Affiliation(s)
- F Roviezzo
- Dipartimento di Farmacia, Università di Napoli Federico II, Napoli, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Noda S, Krueger JG, Guttman-Yassky E. The translational revolution and use of biologics in patients with inflammatory skin diseases. J Allergy Clin Immunol 2014; 135:324-36. [PMID: 25541257 DOI: 10.1016/j.jaci.2014.11.015] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/12/2014] [Accepted: 11/17/2014] [Indexed: 12/28/2022]
Abstract
Psoriasis and atopic dermatitis (AD) are common inflammatory skin diseases characterized by immune-mediated inflammation and abnormal keratinocyte differentiation. Although T-cell infiltration characterizes both diseases, T-cell polarization differs. Psoriasis is currently the best model for translational medicine because many targeted therapeutics have been developed and testing of targeted therapeutics has cemented psoriasis as IL-23/TH17 polarized. In patients with AD, although therapeutic development is approximately a decade behind that in patients with psoriasis, there is now active development and testing of targeted therapeutics against various immune axes (TH2, TH22, and IL-23/TH17). These clinical trials and subsequent molecular analyses using human samples will be able to clarify the relative roles of polar cytokines in patients with AD.
Collapse
Affiliation(s)
- Shinji Noda
- Laboratory for Investigative Dermatology, Rockefeller University, New York, NY
| | - James G Krueger
- Laboratory for Investigative Dermatology, Rockefeller University, New York, NY
| | - Emma Guttman-Yassky
- Laboratory for Investigative Dermatology, Rockefeller University, New York, NY; Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
39
|
Palomares O, Crameri R, Rhyner C. The contribution of biotechnology toward progress in diagnosis, management, and treatment of allergic diseases. Allergy 2014; 69:1588-601. [PMID: 25307026 DOI: 10.1111/all.12533] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2014] [Indexed: 12/18/2022]
Abstract
'Biotechnology' has been intuitively used by humans since thousands of years for the production of foods, beverages, and drugs based on the experience without any scientific background. However, the golden era of this discipline emerged only during the second half of the last century. Incredible progresses have been achieved on all fields starting from the industrialization of the production of foods to the discovery of antibiotics, the decipherment of the genetic code, and rational approaches to understand and define the status we now call 'healthy'. The extremely complex interactions between genetic background, life style, and environmental factors influencing our continuously increasing life span have become more and more evident and steadily generate new questions which are only partly answered. Here, we try to summarize the contribution of biotechnology to our understanding, control, and cure of IgE-mediated allergic diseases. We are aware that a review of such a vast topic can never cover all aspects of the progress achieved in the different fields.
Collapse
Affiliation(s)
- O. Palomares
- Department of Biochemistry and Molecular Biology; School of Chemistry; Complutense University of Madrid; Madrid Spain
| | - R. Crameri
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zürich; Davos Switzerland
| | - C. Rhyner
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zürich; Davos Switzerland
| |
Collapse
|
40
|
Bonini M, Di Maria G, Paggiaro P, Rossi A, Senna G, Triggiani M, Canonica GW. Potential benefit of omalizumab in respiratory diseases. Ann Allergy Asthma Immunol 2014; 113:513-9. [PMID: 25442695 DOI: 10.1016/j.anai.2014.06.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/13/2014] [Accepted: 06/20/2014] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To provide an overview of primary and secondary mechanisms associated with anti-IgE therapy and their relation to other potential indications in diseases affecting the respiratory tract. DATA SOURCES Literature from PubMed searches for publications providing insight into secondary mechanisms resulting from anti-IgE therapy and publications reporting on the use of omalizumab to treat conditions that affect the respiratory tract, other than severe atopic asthma. STUDY SELECTIONS Clinical trials or case reports were identified for asthma in patients without atopy, allergic rhinitis, nasal polyposis, and allergic bronchopulmonary aspergillosis. RESULTS There is substantial evidence from controlled trials supporting a benefit for allergic rhinitis. Case reports and series on more than 50 patients with allergic bronchopulmonary aspergillosis have been published, including patients with or without cystic fibrosis; most have reported benefits in terms of decreased steroid use, exacerbation rates, and, in patients with cystic fibrosis, improvement in lung function. Several small controlled studies on nasal polyposis have shown equivocal results. One small controlled trial in patients with nonatopic asthma showed a significant improvement for lung function but not in exacerbation rate or asthma scores. CONCLUSION Recent insight into the immunopathology of respiratory diseases should be used to identify patient populations likely to respond to anti-IgE therapy. Controlled clinical trials are needed to confirm efficacy and determine the clinical significance of the effects of omalizumab in these populations.
Collapse
Affiliation(s)
- Matteo Bonini
- Department of Public Health and Infectious Diseases, "Sapienza" University of Rome, Rome, Italy
| | - Giuseppe Di Maria
- Department of Clinical and Molecular Bio-Medicine, University of Catania, Catania, Italy
| | - Pierluigi Paggiaro
- Department of Surgery, Medicine, Molecular Biology and Critical Care, University of Pisa, Pisa, Italy
| | - Andrea Rossi
- Pulmonary Unit, University and General Hospital, Verona, Italy
| | - GianEnrico Senna
- Allergology Unit, University and General Hospital, Verona, Italy
| | - Massimo Triggiani
- Division of Allergy and Clinical Immunology, University of Salerno, Salerno, Italy
| | - Giorgio Walter Canonica
- Clinica Pneumologica e Allergologia, DIMI, Università di Genova, IRCCS AOU San Martino, Genoa, Italy.
| |
Collapse
|
41
|
Raphael I, Nalawade S, Eagar TN, Forsthuber TG. T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine 2014; 74:5-17. [PMID: 25458968 DOI: 10.1016/j.cyto.2014.09.011] [Citation(s) in RCA: 718] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/26/2014] [Accepted: 09/29/2014] [Indexed: 12/17/2022]
Abstract
CD4(+) T helper (Th) cells are critical for proper immune cell homeostasis and host defense, but are also major contributors to pathology of autoimmune and inflammatory diseases. Since the discovery of the Th1/Th2 dichotomy, many additional Th subsets were discovered, each with a unique cytokine profile, functional properties, and presumed role in autoimmune tissue pathology. This includes Th1, Th2, Th17, Th22, Th9, and Treg cells which are characterized by specific cytokine profiles. Cytokines produced by these Th subsets play a critical role in immune cell differentiation, effector subset commitment, and in directing the effector response. Cytokines are often categorized into proinflammatory and anti-inflammatory cytokines and linked to Th subsets expressing them. This article reviews the different Th subsets in terms of cytokine profiles, how these cytokines influence and shape the immune response, and their relative roles in promoting pathology in autoimmune and inflammatory diseases. Furthermore, we will discuss whether Th cell pathogenicity can be defined solely based on their cytokine profiles and whether rigid definition of a Th cell subset by its cytokine profile is helpful.
Collapse
Affiliation(s)
- Itay Raphael
- Department of Biology, University of Texas at San Antonio, TX 78249, United States
| | - Saisha Nalawade
- Department of Biology, University of Texas at San Antonio, TX 78249, United States
| | - Todd N Eagar
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, TX 77030, United States
| | - Thomas G Forsthuber
- Department of Biology, University of Texas at San Antonio, TX 78249, United States.
| |
Collapse
|
42
|
Alexis NE, Carlsten C. Interplay of air pollution and asthma immunopathogenesis: a focused review of diesel exhaust and ozone. Int Immunopharmacol 2014; 23:347-55. [PMID: 25194677 DOI: 10.1016/j.intimp.2014.08.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 08/12/2014] [Indexed: 12/20/2022]
Abstract
Controlled human exposure experiments with diesel exhaust particles (DEPs) and ozone serve to illustrate the important role pollutants play in modulating both allergic mechanisms and immune responses to affect the immunopathogenesis of airway diseases such as asthma. For DEP, evidence is stronger for the exacerbation of existing asthma rather than for the development of new disease. To the extent that this enhancement occurs, the augmentation of Th2-type immunity seems to be a common element. For ozone, neutrophilic inflammation, altered immune cell phenotype and function and oxidative stress are all marked responses that likely contribute to underlying immune-inflammatory features of asthma. Evidence is also emerging that unique gene signatures and epigenetic control of immune and inflammatory-based genes are playing important roles in the magnitude of the impact ozone is having on respiratory health. Indeed, the interplay between air pollutants such as DEP and ozone and asthma immunopathogenesis is an ongoing concern in terms of understanding how exposure to these agents can lead to worsening of disease. To this end, asthmatics may be pre-disposed to the deleterious effects of pollutants like ozone, having constitutively modified host defense functions and gene signatures. Although this review has utilized DEP and ozone as example pollutants, more research is needed to better understand the interplay between air pollution in general and asthma immumopathogenesis.
Collapse
Affiliation(s)
- Neil E Alexis
- Center for Environmental Medicine Asthma and Lung Biology, Department of Pediatrics, UNC Chapel Hill, Chapel Hill, NC, United States.
| | - Chris Carlsten
- Department of Medicine and School of Population and Public Health, University of British Columbia, Canada
| |
Collapse
|