1
|
Gupta S, Su H, Agrawal S, Demirdag Y, Tran M, Gollapudi S. Adaptive Cellular Responses following SARS-CoV-2 Vaccination in Primary Antibody Deficiency Patients. Pathogens 2024; 13:514. [PMID: 38921811 PMCID: PMC11206773 DOI: 10.3390/pathogens13060514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/31/2024] [Accepted: 06/15/2024] [Indexed: 06/27/2024] Open
Abstract
Since the start of the COVID-19 pandemic, in a short span of 3 years, vaccination against SARS-CoV-2 has resulted in the end of the pandemic. Patients with inborn errors of immunity (IEI) are at an increased risk for SARS-CoV-2 infection; however, serious illnesses and mortality, especially in primary antibody deficiencies (PADs), have been lower than expected and lower than other high-risk groups. This suggests that PAD patients may mount a reasonable effective response to the SARS-CoV-2 vaccine. Several studies have been published regarding antibody responses, with contradictory reports. The current study is, perhaps, the most comprehensive study of phenotypically defined various lymphocyte populations in PAD patients following the SARS-CoV-2 vaccine. In this study, we examined, following two vaccinations and, in a few cases, prior to and following the 1st and 2nd vaccinations, subsets of CD4 and CD8 T cells (Naïve, TCM, TEM, TEMRA), T follicular helper cells (TFH1, TFH2, TFH17, TFH1/17), B cells (naïve, transitional, marginal zone, germinal center, IgM memory, switched memory, plasmablasts, CD21low), regulatory lymphocytes (CD4Treg, CD8Treg, TFR, Breg), and SARS-CoV-2-specific activation of CD4 T cells and CD8 T cells (CD69, CD137), SARS-CoV-2 tetramer-positive CD8 T cells, and CD8 CTL. Our data show significant alterations in various B cell subsets including Breg, whereas only a few subsets of various T cells revealed alterations. These data suggest that large proportions of PAD patients may mount significant responses to the vaccine.
Collapse
Affiliation(s)
- Sudhir Gupta
- Program in Primary Immunodeficiencies, Division of Basic and Clinical Immunology, University of California at Irvine, Irvine, CA 92697, USA; (H.S.); (S.A.); (Y.D.); (M.T.); (S.G.)
| | | | | | | | | | | |
Collapse
|
2
|
KARABİBER E, ATİK Ö, TEPETAM F, ERGAN B, İLKİ A, KARAKOÇ AYDINER E, ÖZEN A, ÖZYER F, BARIŞ S. Clinical and immunological outcomes of SARS-CoV-2 infection in patients with inborn errors of immunity receiving different brands and doses of COVID-19 vaccines. Tuberk Toraks 2023; 71:236-249. [PMID: 37740627 PMCID: PMC10912874 DOI: 10.5578/tt.20239705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/17/2023] [Indexed: 09/24/2023] Open
Abstract
Introduction Vaccines against severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) provide successful control of the coronavirus-2019 (COVID-19) pandemic. The safety and immunogenicity studies are encouraging in patients with inborn errors of immunity (IEI); however, data about mortality outcomes and severe disease after vaccination still need to be fully addressed. Therefore, we aimed to determine the clinical and immunological outcomes of SARS-CoV-2 infection in patients with IEI who have received vaccination. Materials and Methods Eighty-eight patients with a broad range of molecular etiologies were studied; 45 experienced SARS-CoV-2 infection. Infection outcomes were analyzed in terms of genetic etiology, background clinical characteristics, and immunization history, including the type and number of doses received and the time elapsed since vaccination. In addition, anti-SARS-CoV-2 antibodies were quantified using electrochemiluminescent immunoassay. Results Patients were immunized using one of the three regimens: inactivated (Sinovac, Coronavac®), mRNA (BNT162b2, Comirnaty®, Pfizer-Biontech), and a combination. All three regimens induced comparable anti-SARS-CoV-2 IgG levels, with no differences in the adverse events. Among 45 patients with COVID-19, 26 received a full course of vaccination, while 19 were vaccine-naive or received incomplete dosing. No patients died due to COVID-19 infection. The fully immunized group had a lower hospitalization rate (23% vs. 31.5%) and a shorter symptomatic phase than the others. Among the fully vaccinated patients, serum IgM and E levels were significantly lower in hospitalized patients than non-hospitalized patients. Conclusion COVID-19 vaccines were well-tolerated by the IEI patients, and a full course of immunization was associated with lower hospitalization rates and a shorter duration of COVID-19 symptoms.
Collapse
Affiliation(s)
- E. KARABİBER
- Division of Adult Immunology and Allergy, Department of Chest Diseases,
Marmara University Pendik Training and Research Hospital, İstanbul, Türkiye
- Division of Adult Immunology and Allergy, Department of Chest Diseases,
Süreyyapaşa Training and Research Hospital, İstanbul, Türkiye
- Department of Medical Microbiology, Marmara University Faculty of
Medicine, İstanbul, Türkiye
- Department of Pediatric Allergy and Immunology, Marmara University
Faculty of Medicine, İstanbul, Türkiye
- İstanbul Jeffrey Modell Diagnostic and Research Center for Primary
Immunodeficiencies, İstanbul, Türkiye
- Işıl Berat Barlan Center for Translational Medicine, İstanbul, Türkiye
| | - Ö. ATİK
- Division of Adult Immunology and Allergy, Department of Chest Diseases,
Süreyyapaşa Training and Research Hospital, İstanbul, Türkiye
| | - F.M. TEPETAM
- Division of Adult Immunology and Allergy, Department of Chest Diseases,
Süreyyapaşa Training and Research Hospital, İstanbul, Türkiye
| | - B. ERGAN
- Department of Medical Microbiology, Marmara University Faculty of
Medicine, İstanbul, Türkiye
| | - A. İLKİ
- Department of Medical Microbiology, Marmara University Faculty of
Medicine, İstanbul, Türkiye
| | - E. KARAKOÇ AYDINER
- Department of Pediatric Allergy and Immunology, Marmara University
Faculty of Medicine, İstanbul, Türkiye
- İstanbul Jeffrey Modell Diagnostic and Research Center for Primary
Immunodeficiencies, İstanbul, Türkiye
- Işıl Berat Barlan Center for Translational Medicine, İstanbul, Türkiye
| | - A. ÖZEN
- Department of Pediatric Allergy and Immunology, Marmara University
Faculty of Medicine, İstanbul, Türkiye
- İstanbul Jeffrey Modell Diagnostic and Research Center for Primary
Immunodeficiencies, İstanbul, Türkiye
- Işıl Berat Barlan Center for Translational Medicine, İstanbul, Türkiye
| | - F. ÖZYER
- Division of Adult Immunology and Allergy, Department of Chest Diseases,
Marmara University Pendik Training and Research Hospital, İstanbul, Türkiye
| | - S. BARIŞ
- Department of Pediatric Allergy and Immunology, Marmara University
Faculty of Medicine, İstanbul, Türkiye
- İstanbul Jeffrey Modell Diagnostic and Research Center for Primary
Immunodeficiencies, İstanbul, Türkiye
- Işıl Berat Barlan Center for Translational Medicine, İstanbul, Türkiye
| |
Collapse
|
3
|
Özdemir Ö, Şeker E, Dikici Ü, Güneş M. Myocarditis development after COVID-19 vaccination in an immunodeficient case. Immunol Lett 2023; 260:22-23. [PMID: 37276946 PMCID: PMC10239145 DOI: 10.1016/j.imlet.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/07/2023]
Affiliation(s)
- Öner Özdemir
- Division of Pediatric Allergy and Immunology, Sakarya University Medical Faculty, Sakarya, 54100, Türkiye.
| | - Elif Şeker
- Department of Pediatrics, Faculty of Medicine, Sakarya University, Sakarya, Türkiye
| | - Ümmügülsüm Dikici
- Division of Pediatric Allergy and Immunology, Sakarya University Medical Faculty, Sakarya, 54100, Türkiye
| | - Muhammed Güneş
- Department of Pediatrics, Division of Cardiology, Faculty of Medicine, Sakarya University, Sakarya, Türkiye
| |
Collapse
|
4
|
Piano Mortari E, Pulvirenti F, Marcellini V, Terreri S, Salinas AF, Ferrari S, Di Napoli G, Guadagnolo D, Sculco E, Albano C, Guercio M, Di Cecca S, Milito C, Garzi G, Pesce AM, Bonanni L, Sinibaldi M, Bordoni V, Di Cecilia S, Accordini S, Castilletti C, Agrati C, Quintarelli C, Zaffina S, Locatelli F, Carsetti R, Quinti I. Functional CVIDs phenotype clusters identified by the integration of immune parameters after BNT162b2 boosters. Front Immunol 2023; 14:1194225. [PMID: 37304298 PMCID: PMC10248522 DOI: 10.3389/fimmu.2023.1194225] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/11/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Assessing the response to vaccinations is one of the diagnostic criteria for Common Variable Immune Deficiencies (CVIDs). Vaccination against SARS-CoV-2 offered the unique opportunity to analyze the immune response to a novel antigen. We identify four CVIDs phenotype clusters by the integration of immune parameters after BTN162b2 boosters. Methods We performed a longitudinal study on 47 CVIDs patients who received the 3rd and 4th vaccine dose of the BNT162b2 vaccine measuring the generation of immunological memory. We analyzed specific and neutralizing antibodies, spike-specific memory B cells, and functional T cells. Results We found that, depending on the readout of vaccine efficacy, the frequency of responders changes. Although 63.8% of the patients have specific antibodies in the serum, only 30% have high-affinity specific memory B cells and generate recall responses. Discussion Thanks to the integration of our data, we identified four functional groups of CVIDs patients with different B cell phenotypes, T cell functions, and clinical diseases. The presence of antibodies alone is not sufficient to demonstrate the establishment of immune memory and the measurement of the in-vivo response to vaccination distinguishes patients with different immunological defects and clinical diseases.
Collapse
Affiliation(s)
- Eva Piano Mortari
- B Cell Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Federica Pulvirenti
- Reference Centre for Primary Immune Deficiencies, Azienda Ospedaliera Universitaria Policlinico Umberto I, Rome, Italy
| | | | - Sara Terreri
- B Cell Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Ane Fernandez Salinas
- B Cell Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Simona Ferrari
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giulia Di Napoli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Daniele Guadagnolo
- Department of Experimental Medicine, Policlinico Umberto I Hospital, Sapienza University of Rome, Rome, Italy
| | - Eleonora Sculco
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Christian Albano
- B Cell Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Marika Guercio
- Department of Onco-Haematology, and Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Stefano Di Cecca
- Department of Onco-Haematology, and Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Cinzia Milito
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Giulia Garzi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Anna Maria Pesce
- Reference Centre for Primary Immune Deficiencies, Azienda Ospedaliera Universitaria Policlinico Umberto I, Rome, Italy
| | - Livia Bonanni
- Reference Centre for Primary Immune Deficiencies, Azienda Ospedaliera Universitaria Policlinico Umberto I, Rome, Italy
| | - Matilde Sinibaldi
- Department of Onco-Haematology, and Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Veronica Bordoni
- Department of Onco-Haematology, and Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | | | - Silvia Accordini
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Verona, Italy
| | - Concetta Castilletti
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Verona, Italy
| | - Chiara Agrati
- Department of Onco-Haematology, and Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Concetta Quintarelli
- Department of Onco-Haematology, and Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Salvatore Zaffina
- Occupational Medicine/Health Technology Assessment and Safety Research Unit, Clinical-Technological Innovations Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Franco Locatelli
- Department of Experimental Medicine, Policlinico Umberto I Hospital, Sapienza University of Rome, Rome, Italy
- Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - Rita Carsetti
- B Cell Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Isabella Quinti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
5
|
Lucane Z, Slisere B, Gersone G, Papirte S, Gailite L, Tretjakovs P, Kurjane N. Cytokine Response Following SARS-CoV-2 Antigen Stimulation in Patients with Predominantly Antibody Deficiencies. Viruses 2023; 15:v15051146. [PMID: 37243231 DOI: 10.3390/v15051146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Predominantly antibody deficiencies (PADs) are inborn disorders characterized by immune dysregulation and increased susceptibility to infections. Response to vaccination, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), may be impaired in these patients, and studies on responsiveness correlates, including cytokine signatures to antigen stimulation, are sparse. In this study, we aimed to describe the spike-specific cytokine response following whole-blood stimulation with SARS-CoV-2 spike peptides in patients with PAD (n = 16 with common variable immunodeficiency and n = 15 with selective IgA deficiency) and its relationship with the occurrence of coronavirus disease 2019 (COVID-19) during up to 10-month follow-up period. Spike-induced antibody and cytokine production was measured using ELISA (anti-spike IgG, IFN-γ) and xMAP technology (interleukin-1β (IL-1β), IL-4, IL-6, IL-10, IL-15, IL-17A, IL-21, TNF-α, TGF-β1). No difference was found in the production of cytokines between patients with PAD and controls. Anti-spike IgG and cytokine levels did not predict contraction of COVID-19. The only cytokine that distinguished between vaccinated and naturally infected unvaccinated PAD patients was IFN-γ (median 0.64 (IQR = 1.08) in vaccinated vs. 0.10 (IQR = 0.28) in unvaccinated). This study describes the spike-specific cytokine response to SARS-CoV-2 antigens, which is not predictive of contracting COVID-19 during the follow-up.
Collapse
Affiliation(s)
- Zane Lucane
- Department of Biology and Microbiology, Riga Stradins University, LV-1007 Riga, Latvia
| | - Baiba Slisere
- The Joint Laboratory, Pauls Stradins Clinical University Hospital, LV-1002 Riga, Latvia
- Department of Internal Diseases, Riga Stradins University, LV-1007 Riga, Latvia
| | - Gita Gersone
- Department of Human Physiology and Biochemistry, Riga Stradins University, LV-1007 Riga, Latvia
| | - Sindija Papirte
- Faculty of Medicine, Riga Stradins University, LV-1007 Riga, Latvia
| | - Linda Gailite
- Scientific Laboratory of Molecular Genetics, Riga Stradins University, LV-1007 Riga, Latvia
| | - Peteris Tretjakovs
- Department of Human Physiology and Biochemistry, Riga Stradins University, LV-1007 Riga, Latvia
| | - Natalja Kurjane
- Department of Biology and Microbiology, Riga Stradins University, LV-1007 Riga, Latvia
- Outpatient Clinic, Pauls Stradins Clinical University Hospital, LV-1002 Riga, Latvia
- Outpatient Clinic, Children's Clinical University Hospital, LV-1004 Riga, Latvia
| |
Collapse
|
6
|
del Pino Molina L, Bravo Gallego LY, Nozal P, Soto-Serrano Y, Martínez-Feito A, Reche-Yebra K, González-Torbay A, Cuesta-Martín de la Cámara R, Gianelli C, Cámara C, González-García J, González-Muñoz M, Rodríguez-Pena R, López Granados E. Detection of specific RBD + IgG + memory B cells by flow cytometry in healthcare workers and patients with inborn errors of immunity after BNT162b2 m RNA COVID-19 vaccination. Front Immunol 2023; 14:1136308. [PMID: 37215146 PMCID: PMC10192857 DOI: 10.3389/fimmu.2023.1136308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/13/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction Inborn errors of immunity (IEI) are a heterogeneous group of diseases caused by intrinsic defects of the immune system. Estimating the immune competence of immunocompromised patients for an infection risk assessment or after SARS-CoV-2 vaccination constituted a challenge. Methods The aim of this study was to determine the humoral responses of patients with IEI through a comprehensive analysis of specific receptor-binding domain-positive (RBD+) IgG+ memory B cells (MBCs) by flow cytometry, together with routine S-specific IgG antibodies and QuantiFERON SARS-CoV-2 (T-cell response), before the vaccine and 3 weeks after a second dose. Results and discussion We first analyzed the percentage of specific RBD+ IgG+ MBCs in healthy healthcare workers. Within the control group, there was an increase in the percentage of specific IgG+ RBD+ MBCs 21 days after the second dose, which was consistent with S-specific IgG antibodies.Thirty-one patients with IEI were included for the pre- and post-vaccination study; IgG+ RBD+ MBCs were not evaluated in 6 patients due to an absence of B cells in peripheral blood. We detected various patterns among the patients with IEI with circulating B cells (25, 81%): an adequate humoral response was observed in 12/25, consider by the detection of positive S-specific IgG antibodies and the presence of specific IgG+ RBD+ MBCs, presenting a positive T-cell response; in 4/25, very low S-specific IgG antibody counts correlated with undetectable events in the IgG+ RBD+ MBC compartment but with positive cellular response. Despite the presence of S-specific IgG antibodies, we were unable to detect a relevant percentage of IgG+ RBD+ MBCs in 5/25; however, all presented positive T-cell response. Lastly, we observed a profound failure of B and T-cell response in 3 (10%) patients with IEI, with no assessment of S-specific IgG antibodies, IgG+ RBD+ MBCs, and negative cellular response. The identification of specific IgG+ RBD+ MBCs by flow cytometry provides information on different humoral immune response outcomes in patients with IEI and aids the assessment of immune competence status after SARS-CoV-2 mRNA vaccine (BNT162b2), together with S-specific IgG antibodies and T-cell responses.
Collapse
Affiliation(s)
- Lucía del Pino Molina
- Center for Biomedical Network Research on Rare Diseases (CIBERER U767), ISCIII, Madrid, Spain
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Luz Yadira Bravo Gallego
- Center for Biomedical Network Research on Rare Diseases (CIBERER U767), ISCIII, Madrid, Spain
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Pilar Nozal
- Clinical Immunology Department, La Paz University Hospital, Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER U754), ISCIII, Madrid, Spain
- Complement Research Group, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Yolanda Soto-Serrano
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Ana Martínez-Feito
- Clinical Immunology Department, La Paz University Hospital, Madrid, Spain
- Immuno-Rheumatology Research Group, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Keren Reche-Yebra
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | | | | | - Carla Gianelli
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
- Clinical Immunology Department, La Paz University Hospital, Madrid, Spain
| | - Carmen Cámara
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
- Clinical Immunology Department, La Paz University Hospital, Madrid, Spain
| | - J. González-García
- HIV Unit, Internal Medicine Department, La Paz University Hospital, AIDS and Infectious Diseases Group, Center for Biomedical Network Research on Infectious Diseases (CIBERINFEC CB21/13/00039), La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | | | - Rebeca Rodríguez-Pena
- Center for Biomedical Network Research on Rare Diseases (CIBERER U767), ISCIII, Madrid, Spain
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
- Clinical Immunology Department, La Paz University Hospital, Madrid, Spain
| | - Eduardo López Granados
- Center for Biomedical Network Research on Rare Diseases (CIBERER U767), ISCIII, Madrid, Spain
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
- Clinical Immunology Department, La Paz University Hospital, Madrid, Spain
| |
Collapse
|
7
|
Infections in Inborn Errors of Immunity with Combined Immune Deficiency: A Review. Pathogens 2023; 12:pathogens12020272. [PMID: 36839544 PMCID: PMC9958715 DOI: 10.3390/pathogens12020272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/13/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Enhanced susceptibility to microbes, often resulting in severe, intractable and frequent infections due to usually innocuous organisms at uncommon sites, is the most striking feature in individuals with an inborn error of immunity. In this narrative review, based on the International Union of Immunological Societies' 2022 (IUIS 2022) Update on phenotypic classification of human inborn errors of immunity, the focus is on commonly encountered Combined Immunodeficiency Disorders (CIDs) with susceptibility to infections. Combined immune deficiency disorders are usually commensurate with survival beyond infancy unlike Severe Combined Immune Deficiency (SCID) and are often associated with clinical features of a syndromic nature. Defective humoral and cellular immune responses result in susceptibility to a broad range of microbial infections. Although disease onset is usually in early childhood, mild defects may present in late childhood or even in adulthood. A precise diagnosis is imperative not only for determining management strategies, but also for providing accurate genetic counseling, including prenatal diagnosis, and also in deciding empiric treatment of infections upfront before investigation reports are available.
Collapse
|
8
|
Long-Term Immunological Memory of SARS-CoV-2 Is Present in Patients with Primary Antibody Deficiencies for up to a Year after Vaccination. Vaccines (Basel) 2023; 11:vaccines11020354. [PMID: 36851231 PMCID: PMC9959530 DOI: 10.3390/vaccines11020354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Some studies have found increased coronavirus disease-19 (COVID-19)-related morbidity and mortality in patients with primary antibody deficiencies. Immunization against COVID-19 may, therefore, be particularly important in these patients. However, the durability of the immune response remains unclear in such patients. In this study, we evaluated the cellular and humoral response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigens in a cross-sectional study of 32 patients with primary antibody deficiency (n = 17 with common variable immunodeficiency (CVID) and n = 15 with selective IgA deficiency) and 15 healthy controls. Serological and cellular responses were determined using enzyme-linked immunosorbent assay and interferon-gamma release assays. The subsets of B and T lymphocytes were measured using flow cytometry. Of the 32 patients, 28 had completed the vaccination regimen with a median time after vaccination of 173 days (IQR = 142): 27 patients showed a positive spike-peptide-specific antibody response, and 26 patients showed a positive spike-peptide-specific T-cell response. The median level of antibody response in CVID patients (5.47 ratio (IQR = 4.08)) was lower compared to healthy controls (9.43 ratio (IQR = 2.13)). No difference in anti-spike T-cell response was found between the groups. The results of this study indicate that markers of the sustained SARS-CoV-2 spike-specific immune response are detectable several months after vaccination in patients with primary antibody deficiencies comparable to controls.
Collapse
|
9
|
Pulvirenti F, Mortari EP, Putotto C, Terreri S, Fernandez Salinas A, Cinicola BL, Cimini E, Di Napoli G, Sculco E, Milito C, Versacci P, Agrati C, Marino B, Carsetti R, Quinti I. COVID-19 Severity, Cardiological Outcome, and Immunogenicity of mRNA Vaccine on Adult Patients With 22q11.2 DS. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:292-305.e2. [PMID: 36280136 PMCID: PMC9584833 DOI: 10.1016/j.jaip.2022.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/21/2022] [Accepted: 10/04/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND The contemporaneous presence of immune defects and heart diseases in patients with 22q11.2 deletion syndrome (22q11.3DS) might represent risk factors for severe coronavirus 2019 disease (COVID-19). OBJECTIVE To analyze severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outcome in 22q11.2DS patients and immunogenicity of different doses of mRNA SARS-CoV-2 vaccine. METHODS Longitudinal observational study on SARS-CoV-2 outcome in 60 adults with 22q11.2DS (March 2020-June 2022). Anti-Spike, and anti-receptor binding domain (RBD) antibody responses, generation of Spike-specific memory B cells (MBCs) and Spike-specific T cells at different time points before and after the mRNA BNT162b2 vaccination were evaluated in 16 22q11.2DS patients. RESULTS We recorded a 95% rate of vaccination, with almost all patients being immunized with the booster dose. Twenty-one patients had SARS-CoV-2 infection. Three patients were infected before vaccine availability, 6 after receiving 2 doses of vaccine, and 12 after one booster dose. The SARS-CoV-2- infection had a mild course, except in one unvaccinated patient with several comorbidities who died from acute respiratory distress syndrome (fatality rate 5%). Infected patients had more frequently moderate/severe intellectual disability, lymphopenia, and lower CD4+ count. Despite major congenital heart diseases, COVID-19 did not impact cardiological conditions. The BNT162b2 vaccine induced S1-immunoglobulin G (IgG) responses, low serum S1-IgA, and slightly impaired specific MBCs response. Specific T-cell responses observed were related to lymphocytes and CD4+ T cell counts. CONCLUSIONS The SARS-CoV-2 infection had a mild course in most patients with 22q11.2DS, even in patients with major cardiovascular diseases. Immunization induced Spike-specific IgG responses and generated specific MBCs and memory T cells. The weaker memory responses in patients with lymphopenia suggested the need for additional doses.
Collapse
Affiliation(s)
- Federica Pulvirenti
- Reference Center for Primary Immune Deficiencies, AOU Policlinico Umberto I, Rome, Italy.
| | - Eva Piano Mortari
- B Cell Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, Viale di San Paolo, Rome, Italy,Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Carolina Putotto
- Pediatric Cardiology Unit, Department of Pediatrics, Obstetrics and Gynecology, Sapienza University of Rome, Policlinico Umberto I, 00161 Rome, Italy
| | - Sara Terreri
- B Cell Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, Viale di San Paolo, Rome, Italy
| | - Ane Fernandez Salinas
- B Cell Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, Viale di San Paolo, Rome, Italy
| | - Bianca Laura Cinicola
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy,Department of Maternal Sciences, Sapienza University of Rome, Italy Viale Regina Elena, 324 00161, Rome, Italy
| | - Eleonora Cimini
- Cellular Immunology Laboratory, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Giulia Di Napoli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Eleonora Sculco
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Cinzia Milito
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Paolo Versacci
- Pediatric Cardiology Unit, Department of Pediatrics, Obstetrics and Gynecology, Sapienza University of Rome, Policlinico Umberto I, 00161 Rome, Italy
| | - Chiara Agrati
- Cellular Immunology Laboratory, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Bruno Marino
- Pediatric Cardiology Unit, Department of Pediatrics, Obstetrics and Gynecology, Sapienza University of Rome, Policlinico Umberto I, 00161 Rome, Italy
| | - Rita Carsetti
- B Cell Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, Viale di San Paolo, Rome, Italy
| | - Isabella Quinti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
10
|
Abstract
Inborn errors of immunity (IEI) are a heterogeneous group of disorders affecting immune host defense and immunoregulation. Considering the predisposition to develop severe and chronic infections, it is crucial to understand the clinical evolution of COVID-19 in IEI patients. This review analyzes clinical outcomes following SARS-CoV-2 infection, as well as response to COVID-19 vaccines in patients with IEI.
Collapse
Affiliation(s)
- Ottavia M. Delmonte
- 1Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Riccardo Castagnoli
- 1Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland,2Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy,3Pediatric Clinic, Fondazione Istituto Di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Luigi D. Notarangelo
- 1Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
11
|
Drzymalla E, Green RF, Knuth M, Khoury MJ, Dotson WD, Gundlapalli A. COVID-19-related health outcomes in people with primary immunodeficiency: A systematic review. Clin Immunol 2022; 243:109097. [PMID: 35973637 PMCID: PMC9375253 DOI: 10.1016/j.clim.2022.109097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 12/29/2022]
Abstract
A better understanding of COVID-19 in people with primary immunodeficiency (PI), rare inherited defects in the immune system, is important for protecting this population, especially as population-wide approaches to mitigation change. COVID-19 outcomes in the PI population could have broader public health implications because some people with PI might be more likely to have extended illnesses, which could lead to increased transmission and emergence of variants. We performed a systematic review on COVID-19-associated morbidity and mortality in people with PI. Of the 1114 articles identified through the literature search, we included 68 articles in the review after removing 1046 articles because they were duplicates, did not involve COVID-19, did not involve PI, were not in English, were commentaries, were gene association or gene discovery studies, or could not be accessed. The 68 articles included outcomes for 459 people with PI and COVID-19. Using data from these 459 people, we calculated a case fatality rate of 9%, hospitalization rate of 49%, and oxygen supplementation rate of 29%. Studies have indicated that a number of people with PI showed at least some immune response to COVID-19 vaccination, with responses varying by type of PI and other factors, although vaccine effectiveness against hospitalization was lower in the PI population than in the general population. In addition to being up-to-date on vaccinations, current strategies for optimizing protection for people with PI can include pre-exposure prophylaxis for those eligible and use of therapeutics. Overall, people with PI, when infected, tested positive and showed symptoms for similar lengths of time as the general population. However, a number of people with X-linked agammaglobulinemia (XLA) or other B-cell pathway defects were reported to have prolonged infections, measured by time from first positive SARS-CoV-2 test to first negative test. As prolonged infections might increase the likelihood of genetic variants emerging, SARS-CoV2 isolates from people with PI and extended illness would be good candidates to prioritize for whole genome sequencing.
Collapse
Affiliation(s)
- Emily Drzymalla
- Office of Genomics and Precision Public Health, Office of Science, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Ridgely Fisk Green
- Office of Genomics and Precision Public Health, Office of Science, Centers for Disease Control and Prevention, Atlanta, GA, United States of America; Tanaq Support Services, LLC, Atlanta, GA, United States of America.
| | - Martha Knuth
- Stephen B Thacker Library, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Muin J Khoury
- Office of Genomics and Precision Public Health, Office of Science, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - W David Dotson
- Office of Genomics and Precision Public Health, Office of Science, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Adi Gundlapalli
- The Center for Surveillance, Epidemiology, and Laboratory Services, Office of the Director, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| |
Collapse
|
12
|
Shin JJ, Par-Young J, Unlu S, McNamara A, Park HJ, Shin MS, Gee RJ, Doyle H, Afinogenova Y, Zidan E, Kwah J, Russo A, Mamula M, Hsu FI, Catanzaro J, Racke M, Bucala R, Wilen C, Kang I. Defining Clinical and Immunological Predictors of Poor Immune Responses to COVID-19 mRNA Vaccines in Patients with Primary Antibody Deficiency. J Clin Immunol 2022; 42:1137-1150. [PMID: 35713752 PMCID: PMC9203263 DOI: 10.1007/s10875-022-01296-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/25/2022] [Indexed: 11/30/2022]
Abstract
Immune responses to coronavirus disease 2019 (COVID-19) mRNA vaccines in primary antibody deficiencies (PADs) are largely unknown. We investigated antibody and CD4+ T-cell responses specific for SARS-CoV-2 spike protein (S) before and after vaccination and associations between vaccine response and patients' clinical and immunological characteristics in PADs. The PAD cohort consisted of common variable immune deficiency (CVID) and other PADs, not meeting the criteria for CVID diagnosis (oPADs). Anti-S IgG, IgA, and IgG subclasses 1 and 3 increased after vaccination and correlated with neutralization activity in HCs and patients with oPADs. However, 42% of CVID patients developed such responses after the 2nd dose. A similar pattern was also observed with S-specific CD4+ T-cells as determined by OX40 and 4-1BB expression. Patients with poor anti-S IgG response had significantly lower levels of baseline IgG, IgA, CD19+ B-cells, switched memory B-cells, naïve CD8+ T-cells, and a higher frequency of EM CD8+ T-cells and autoimmunity compared to patients with adequate anti-S IgG responses. Patients with oPADs can develop humoral and cellular immune responses to vaccines similar to HCs. However, a subset of CVID patients exhibit impairment in developing such responses, which can be predicted by the baseline immune profile and history of autoimmunity.
Collapse
Affiliation(s)
- Junghee Jenny Shin
- Section of Rheumatology, Allergy & Immunology, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, Connecticut, 06520, USA
| | - Jennefer Par-Young
- Section of Rheumatology, Allergy & Immunology, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, Connecticut, 06520, USA
| | - Serhan Unlu
- Section of Rheumatology, Allergy & Immunology, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, Connecticut, 06520, USA
| | - Andrew McNamara
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, 06516, USA
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, 06516, USA
| | - Hong-Jai Park
- Section of Rheumatology, Allergy & Immunology, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, Connecticut, 06520, USA
| | - Min Sun Shin
- Section of Rheumatology, Allergy & Immunology, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, Connecticut, 06520, USA
| | - Renelle J Gee
- Section of Rheumatology, Allergy & Immunology, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, Connecticut, 06520, USA
| | - Hester Doyle
- Section of Rheumatology, Allergy & Immunology, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, Connecticut, 06520, USA
| | - Yuliya Afinogenova
- Section of Rheumatology, Allergy & Immunology, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, Connecticut, 06520, USA
| | - Elena Zidan
- Department of Internal Medicine, Bridgeport Hospital - Yale New Haven Health, Bridgeport, CT, 06610, USA
| | - Jason Kwah
- Section of Rheumatology, Allergy & Immunology, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, Connecticut, 06520, USA
| | - Armand Russo
- Section of Hematology and Oncology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, 06520, USA
| | - Mark Mamula
- Section of Rheumatology, Allergy & Immunology, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, Connecticut, 06520, USA
| | - Florence Ida Hsu
- Section of Rheumatology, Allergy & Immunology, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, Connecticut, 06520, USA
| | - Jason Catanzaro
- Section of Pulmonary, Allergy, Immunology and Sleep Medicine, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, 06520, USA
| | - Michael Racke
- Quest Diagnostics, 500 Plaza Dr, Secaucus, NJ, 07094, USA
| | - Richard Bucala
- Section of Rheumatology, Allergy & Immunology, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, Connecticut, 06520, USA
| | - Craig Wilen
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, 06516, USA
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, 06516, USA
| | - Insoo Kang
- Section of Rheumatology, Allergy & Immunology, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, Connecticut, 06520, USA.
| |
Collapse
|
13
|
Chiarella SE, Jenkins SM, Smith CY, Prasad V, Shakuntulla F, Ahluwalia V, Iyer VN, Theel ES, Joshi AY. Predictors of seroconversion after coronavirus disease 2019 vaccination. Ann Allergy Asthma Immunol 2022; 129:189-193. [PMID: 35640775 PMCID: PMC9144839 DOI: 10.1016/j.anai.2022.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Vaccine nonresponse during the coronavirus disease 2019 (COVID-19) pandemic has considerable individual and societal risks. OBJECTIVE To investigate the clinical characteristics of patients with lack of seroconversion after vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). METHODS Demographic and clinical data were collected from 805 patients who had validated antibody assays against the SARS-CoV-2 spike protein at least 14 days after completion of their COVID-19 vaccination. Clinical characteristics from patients with a negative (< 0.4 U/mL) antibody response were assessed and summarized. RESULTS A total of 622 (77.3%) patients attained seroconversion as defined by a titer of greater than or equal to 0.4 U/mL, whereas 183 out of 805 (22.7%) patients exhibited no seroconversion after vaccination against SARS-CoV-2. Univariately, older age (P = .02) and male sex were associated with a lower likelihood of seroconversion (P = .003). Therapy with immunosuppressive drugs was noted in 93 (50.8%) of seronegative patients with most (n = 83/93, 89.2%) receiving ongoing immunosuppressive therapy at the time of vaccination. Among the 134 (73.2%) seronegative patients with immunodeficiency, 110 (82.1%) had primary immunodeficiency. Cancer (n = 128, 69.9%), B cell depletion therapy (n = 90/115, 78.3%), and immunosuppressant steroid use (n = 71/93 on immunosuppressants, 76.3%) were the other common characteristics among the vaccine nonresponders. More importantly, our study did not evaluate the actual efficacy of COVID-19 vaccination. CONCLUSION Vaccine responses vary by age and sex, with men showing lower rates of seroconversion as compared with women. Primary immunodeficiency along with active malignancy and ongoing immunosuppression with steroids or B cell depletion therapy appeared to be the most common characteristics for those with a lack of vaccine seroconversion after COVID-19 vaccination.
Collapse
Affiliation(s)
| | - Sarah M Jenkins
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, Minnesota
| | - Carin Y Smith
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, Minnesota
| | - Vikas Prasad
- Summer Undergraduate Program, Mayo Clinic, Rochester, Minnesota
| | - Fnu Shakuntulla
- Division of Allergic Diseases, Mayo Clinic, Rochester, Minnesota
| | - Vaibhav Ahluwalia
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota
| | - Vivek N Iyer
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota
| | - Elitza S Theel
- Division of Clinical Microbiology, Mayo Clinic, Rochester, Minnesota
| | - Avni Y Joshi
- Division of Allergic Diseases, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
14
|
Response to mRNA COVID-19 vaccination in three XLA patients. Vaccine 2022; 40:5299-5301. [PMID: 35934578 PMCID: PMC9345887 DOI: 10.1016/j.vaccine.2022.07.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 06/29/2022] [Accepted: 07/28/2022] [Indexed: 11/22/2022]
Abstract
X-linked agammaglobulinemia (XLA) is an inborn error of immunity characterized by insufficient production of immunoglobulins and lack of measurable antibody response to vaccines. The rise of novel infections limits the protective effect of immunoglobulin replacement in immunodeficient patients though. While XLA patients are not expected to mount an antibody response to COVID-19 vaccination, it has been demonstrated that XLA patients can mount a T-cell response to COVID-19 vaccines, similar to the influenza vaccine. We present three patients with XLA who received an mRNA COVID-19 vaccine. One patient demonstrated positive antibody response. Many XLA patients do not receive routine vaccinations due to ongoing immunoglobulin replacement therapy and lack of native antibody production, but in addition to T-cell response to vaccination, select XLA patients may mount a positive antibody response. Therefore, COVID-19 vaccination should be encouraged for all XLA patients.
Collapse
|
15
|
Nielsen BU, Drabe CH, Barnkob MB, Johansen IS, Hansen AKK, Nilsson AC, Rasmussen LD. Antibody response following the third and fourth SARS-CoV-2 vaccine dose in individuals with common variable immunodeficiency. Front Immunol 2022; 13:934476. [PMID: 35967433 PMCID: PMC9366053 DOI: 10.3389/fimmu.2022.934476] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe antibody response after vaccination is impaired in common variable immunodeficiency (CVID).ObjectiveWe aimed to study the spike receptor-binding domain IgG antibody (anti-S-RBD) levels during a four-dose SARS-CoV-2 vaccination strategy and after monoclonal antibody (mAB) treatment in CVID. Moreover, we assessed the anti-S-RBD levels in immunoglobulin replacement therapy (IgRT) products.MethodsIn an observational study, we examined anti-S-RBD levels after the second, third, and fourth dose of mRNA SARS-CoV-2 vaccines. Moreover, we measured anti-S-RBD after treatment with mAB. Finally, anti-S-RBD was assessed in common IgRT products. Antibody non-responders (anti-S-RBD < 7.1) were compared by McNemar’s test and anti-S-RBD levels were compared with paired and non-paired Wilcoxon signed rank tests as well as Kruskal–Wallis tests.ResultsAmong 33 individuals with CVID, anti-S-RBD levels increased after the third vaccine dose (165 BAU/ml [95% confidence interval: 85; 2280 BAU/ml], p = 0.006) and tended to increase after the fourth dose (193 BAU/ml, [−22; 569 BAU/ml], p = 0.080) compared to the previous dose. With increasing number of vaccinations, the proportion of patients who seroconverted (anti-S-RBD ≥ 7.1) increased non-significantly. mAB treatment resulted in a large increase in anti-S-RBD and a higher median level than gained after the fourth dose of vaccine (p = 0.009). IgRT products had varying concentrations of anti-S-RBD (p < 0.001), but none of the products seemed to affect the overall antibody levels (p = 0.460).ConclusionMultiple SARS-CoV-2 vaccine doses in CVID seem to provide additional protection, as antibody levels increased after the third and fourth vaccine dose. However, anti-S-RBD levels from mAB outperform the levels mounted after vaccination.Clinical ImplicationsBoosting with SARS-CoV-2 vaccines seems to improve the antibody response in CVID patients.Capsule summaryThe third and possibly also the fourth dose of mRNA SARS-CoV-2 vaccine in CVID improve the antibody response as well as stimulate seroconversion in most non-responders.
Collapse
Affiliation(s)
- Bibi Uhre Nielsen
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Camilla Heldbjerg Drabe
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | - Isik Somuncu Johansen
- Department of Infectious Diseases, Odense University Hospital, & Research Unit for Infectious Diseases, University of Southern Denmark, Odense, Denmark
| | - Anne Kirstine Kronborg Hansen
- Department of Infectious Diseases, Odense University Hospital, & Research Unit for Infectious Diseases, University of Southern Denmark, Odense, Denmark
| | | | - Line Dahlerup Rasmussen
- Department of Infectious Diseases, Odense University Hospital, & Research Unit for Infectious Diseases, University of Southern Denmark, Odense, Denmark
- OPEN, Odense Patient data Explorative Network, Odense University Hospital, Odense, Denmark
- *Correspondence: Line Dahlerup Rasmussen,
| |
Collapse
|
16
|
Jacob S, Kapadia R, Soule T, Luo H, Schellenberg KL, Douville RN, Pfeffer G. Neuromuscular Complications of SARS-CoV-2 and Other Viral Infections. Front Neurol 2022; 13:914411. [PMID: 35812094 PMCID: PMC9263266 DOI: 10.3389/fneur.2022.914411] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022] Open
Abstract
In this article we review complications to the peripheral nervous system that occur as a consequence of viral infections, with a special focus on complications of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). We discuss neuromuscular complications in three broad categories; the direct consequences of viral infection, autoimmune neuromuscular disorders provoked by viral infections, and chronic neurodegenerative conditions which have been associated with viral infections. We also include discussion of neuromuscular disorders that are treated by immunomodulatory therapies, and how this affects patient susceptibility in the current context of the coronavirus disease 2019 (COVID-19) pandemic. COVID-19 is associated with direct consequences to the peripheral nervous system via presumed direct viral injury (dysgeusia/anosmia, myalgias/rhabdomyolysis, and potentially mononeuritis multiplex) and autoimmunity (Guillain Barré syndrome and variants). It has important implications for people receiving immunomodulatory therapies who may be at greater risk of severe outcomes from COVID-19. Thus far, chronic post-COVID syndromes (a.k.a: long COVID) also include possible involvement of the neuromuscular system. Whether we may observe neuromuscular degenerative conditions in the longer term will be an important question to monitor in future studies.
Collapse
Affiliation(s)
- Sarah Jacob
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Ronak Kapadia
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Tyler Soule
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Honglin Luo
- Centre for Heart and Lung Innovation, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kerri L. Schellenberg
- Division of Neurology, Department of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Renée N. Douville
- Division of Neurodegenerative Disorders, Department of Biology, Albrechtsen St. Boniface Research Centre, University of Winnipeg, Winnipeg, MB, Canada
| | - Gerald Pfeffer
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Medical Genetics, Alberta Child Health Research Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
17
|
Durkee-Shock JR, Keller MD. Immunizing the Imperfect Immune System: COVID-19 Vaccination in Patients with Inborn Errors of Immunity. Ann Allergy Asthma Immunol 2022; 129:562-571.e1. [PMID: 35718282 PMCID: PMC9212748 DOI: 10.1016/j.anai.2022.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 11/18/2022]
Abstract
Objective To update clinicians on current evidence regarding the immunogenicity and safety of coronavirus disease 2019 (COVID-19) vaccines in patients with inborn errors of immunity (IEI). Data Sources Peer-reviewed, published studies in PubMed, clinical trials listed on ClinicalTrials.gov, and professional organization and governmental guidelines. Study Selections Literature searches on PubMed and ClinicalTrials.gov were performed using a combination of the following keywords: primary immunodeficiency, COVID-19, SARS-CoV-2, and vaccination. Results A total of 26 studies met the criteria and were included in this review. Overall, antibody responses to COVID-19 vaccination were found in 72% of study subjects, with stronger responses observed after messenger RNA vaccination. Neutralizing antibodies were detected in patients with IEI, though consistently at lower levels than healthy controls. Risk factors for poor antibody responses included diagnosis of common variable immunodeficiency, presence of autoimmune comorbidities, and use of rituximab. T cell responses were detectable in most patients with IEI, with poorer responses often found in patients with common variable immunodeficiency. Safety of COVID-19 vaccines in patients with IEI was acceptable with high rates of reactogenicity but very few serious adverse events, including in patients with immune dysregulation. Conclusion COVID-19 vaccines are safe in patients with IEI and seem to be immunogenic in most individuals, with stronger responses found after messenger RNA vaccinations.
Collapse
Affiliation(s)
- Jessica R Durkee-Shock
- Laboratory of Infectious Diseases, National Institute for Allergy and Infectious Diseases, Bethesda, Maryland
| | - Michael D Keller
- Division of Allergy & Immunology and Center for Cancer and Immunology Research, Children's National Hospital, Washington, District of Columbia; Department of Pediatrics and GW Cancer Center, George Washington University, Washington, District of Columbia.
| |
Collapse
|
18
|
Bitzenhofer M, Suter-Riniker F, Moor MB, Sidler D, Horn MP, Gschwend A, Staehelin C, Rauch A, Helbling A, Jörg L. Humoral response to mRNA vaccines against SARS-CoV-2 in patients with humoral immunodeficiency disease. PLoS One 2022; 17:e0268780. [PMID: 35679232 PMCID: PMC9182562 DOI: 10.1371/journal.pone.0268780] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/07/2022] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES Although mRNA-based vaccines against SARS-CoV-2 induce a robust immune response and prevent infections and hospitalizations, there are limited data on the antibody response in individuals with humoral immunodeficiency. The aim of this study was to evaluate the humoral immune response after two vaccine doses with BNT162b2 or mRNA-1273 in patients with humoral immunodeficiency disease. METHODS This cross-sectional study assessed 39 individuals with hypogammaglobulinemia under immunoglobulin replacement therapy. IgG anti-SARS-CoV-2 spike protein antibodies (anti-S) were measured 4 weeks to 4 months after two doses of an mRNA vaccine against SARS-CoV-2. The proportion of patients, who developed a humoral immune response to the spike protein were evaluated and compared to 19 healthy controls. RESULTS After vaccination with two vaccine doses, 26/39 patients (66.7%) with humoral immunodeficiency disease and all healthy controls developed anti-S. In subjects with baseline IgG <3 g/l, only 1/5 (20%) showed a humoral immune response. 10 out of 26 with CVID (38.5%) and 7/9 under immunosuppressive drugs (77.8%) developed no immune response (13 subjects with no response) compared to 0/19 in healthy controls. Subgroup analysis in patients without immunosuppressive drugs revealed lower anti-S in patients with moderate to severe humoral immunodeficiency disease: baseline IgG <3 g/l: 12.0 AU/ml (95%CI 12.0-125.0), baseline IgG 3-5 g/l: 99.9 AU/ml (95%CI 14.4-400.0), baseline IgG >5 g/l: 151.5 AU/ml (95%CI 109.0-400.0), healthy controls 250.0 AU/ml (95%CI 209.0-358.0), p = 0.007. CONCLUSION In most patients with mild to moderate humoral immunodeficiency we found only slightly lower anti-S antibodies compared with healthy controls after two vaccine doses with BNT162b2 and mRNA-1273. However, in patients with a decreased baseline IgG below 3 g/l and/or under immunosuppressive drugs, we found severely impaired humoral immune responses.
Collapse
Affiliation(s)
- Michaela Bitzenhofer
- Division of Allergology and clinical Immunology, Department of Pneumology and Allergology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Franziska Suter-Riniker
- Clinical Microbiology, Institute for Infectious Disease, University of Bern, Bern, Switzerland
| | - Matthias B. Moor
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Daniel Sidler
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Michael P. Horn
- Department of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Anna Gschwend
- Division of Allergology and clinical Immunology, Department of Pneumology and Allergology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Cornelia Staehelin
- Department of Infectious Diseases, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andri Rauch
- Department of Infectious Diseases, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Arthur Helbling
- Division of Allergology and clinical Immunology, Department of Pneumology and Allergology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Lukas Jörg
- Division of Allergology and clinical Immunology, Department of Pneumology and Allergology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Dermatology, Allergy Unit, University Hospital of Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Barmettler S, DiGiacomo DV, Yang NJ, Lam T, Naranbhai V, Dighe AS, Burke KE, Blumenthal KG, Ling M, Hesterberg PE, Saff RR, MacLean J, Ofoman O, Berrios C, St Denis KJ, Lam EC, Gregory D, Iafrate AJ, Poznansky M, Lee H, Balazs A, Pillai S, Farmer JR. Response to Severe Acute Respiratory Syndrome Coronavirus 2 Initial Series and Additional Dose Vaccine in Patients With Predominant Antibody Deficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1622-1634.e4. [PMID: 35381395 PMCID: PMC8976568 DOI: 10.1016/j.jaip.2022.03.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/09/2022] [Accepted: 03/06/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in patients with predominant antibody deficiency (PAD) is associated with high morbidity, yet data regarding the response to SARS-CoV-2 immunization in PAD patients, including additional dose vaccine, are limited. OBJECTIVE To characterize antibody response to SARS-CoV-2 vaccine in PAD patients and define correlates of vaccine response. METHODS We assessed the levels and function of anti-SARS-CoV-2 antibodies in 62 PAD patients compared with matched healthy controls at baseline, at 4 to 6 weeks after the initial series of immunization (a single dose of Ad26.COV2.S [Janssen] or two doses of BNT162b2 [Pfizer-BioNTech] or mRNA-1273 [Moderna]), and at 4 to 6 weeks after an additional dose immunization, if received. RESULTS After the initial series of SARS-CoV-2 vaccination, PAD patients had lower mean anti-spike antibody levels compared with matched healthy controls (140.1 vs 547.3 U/mL; P = .02). Patients with secondary PAD (eg, B-cell depletion therapy was used) and those with severe primary PAD (eg, common variable immunodeficiency with autoinflammatory complications) had the lowest mean anti-spike antibody levels. Immune correlates of a low anti-spike antibody response included low CD4+ T helper cells, low CD19+ total B cells, and low class-switched memory (CD27+IgD/M-) B cells. In addition, a low (<100 U/mL) anti-spike antibody response was associated with prior exposure to B-cell depletion therapy, both at any time in the past (odds ratio = 5.5; confidence interval, 1.5-20.4; P = .01) and proximal to vaccination (odds ratio = 36.4; confidence interval, 1.7-791.9; P = .02). Additional dose immunization with an mRNA vaccine in a subset of 31 PAD patients increased mean anti-spike antibody levels (76.3 U/mL before to 1065 U/mL after the additional dose; P < .0001). CONCLUSIONS Patients with secondary and severe primary PAD, characterized by low T helper cells, low B cells, and/or low class-switched memory B cells, were at risk for low antibody response to SARS-CoV-2 immunization, which improved after an additional dose vaccination in most patients.
Collapse
Affiliation(s)
- Sara Barmettler
- Division of Rheumatology, Department of Medicine, Allergy, and Immunology, Massachusetts General Hospital, Boston, Mass; Harvard Medical School, Boston, Mass.
| | - Daniel V DiGiacomo
- Division of Rheumatology, Department of Medicine, Allergy, and Immunology, Massachusetts General Hospital, Boston, Mass
| | - Nancy J Yang
- Division of Rheumatology, Department of Medicine, Allergy, and Immunology, Massachusetts General Hospital, Boston, Mass
| | - Tiffany Lam
- Division of Rheumatology, Department of Medicine, Allergy, and Immunology, Massachusetts General Hospital, Boston, Mass
| | - Vivek Naranbhai
- Harvard Medical School, Boston, Mass; Dana-Farber Cancer Institute, Boston, Mass
| | - Anand S Dighe
- Harvard Medical School, Boston, Mass; Department of Pathology, Massachusetts General Hospital, Boston, Mass
| | - Kristin E Burke
- Gastroenterology Unit, Department of Medicine, Massachusetts General Hospital, Boston, Mass; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, Mass
| | - Kimberly G Blumenthal
- Division of Rheumatology, Department of Medicine, Allergy, and Immunology, Massachusetts General Hospital, Boston, Mass; Harvard Medical School, Boston, Mass
| | - Morris Ling
- Division of Rheumatology, Department of Medicine, Allergy, and Immunology, Massachusetts General Hospital, Boston, Mass; Harvard Medical School, Boston, Mass; Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Mass
| | - Paul E Hesterberg
- Division of Rheumatology, Department of Medicine, Allergy, and Immunology, Massachusetts General Hospital, Boston, Mass; Harvard Medical School, Boston, Mass
| | - Rebecca R Saff
- Division of Rheumatology, Department of Medicine, Allergy, and Immunology, Massachusetts General Hospital, Boston, Mass; Harvard Medical School, Boston, Mass
| | | | - Onosereme Ofoman
- Department of Pathology, Massachusetts General Hospital, Boston, Mass
| | - Cristhian Berrios
- Department of Pathology, Massachusetts General Hospital, Boston, Mass
| | - Kerri J St Denis
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Department of Medicine, Harvard University, Cambridge, Mass
| | - Evan C Lam
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Department of Medicine, Harvard University, Cambridge, Mass
| | - David Gregory
- Division of Infectious Diseases Medicine, Department of Medicine, Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, Mass; Pediatric Infectious Disease Unit, Department of Pediatrics, Massachusetts General Hospital, Boston, Mass
| | | | - Mark Poznansky
- Division of Infectious Diseases Medicine, Department of Medicine, Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, Mass
| | - Hang Lee
- Harvard Medical School, Boston, Mass
| | - Alejandro Balazs
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Department of Medicine, Harvard University, Cambridge, Mass
| | - Shiv Pillai
- Harvard Medical School, Boston, Mass; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Department of Medicine, Harvard University, Cambridge, Mass
| | - Jocelyn R Farmer
- Division of Rheumatology, Department of Medicine, Allergy, and Immunology, Massachusetts General Hospital, Boston, Mass; Harvard Medical School, Boston, Mass; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Department of Medicine, Harvard University, Cambridge, Mass
| |
Collapse
|
20
|
Pham MN, Murugesan K, Banaei N, Pinsky BA, Tang M, Hoyte E, Lewis DB, Gernez Y. Immunogenicity and tolerability of COVID-19 messenger RNA vaccines in primary immunodeficiency patients with functional B-cell defects. J Allergy Clin Immunol 2022; 149:907-911.e3. [PMID: 34952033 PMCID: PMC8690218 DOI: 10.1016/j.jaci.2021.11.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 12/03/2022]
Abstract
BACKGROUND Data on the safety and efficacy of coronavirus disease 2019 (COVID-19) vaccination in people with a range of primary immunodeficiencies (PIDs) are lacking because these patients were excluded from COVID-19 vaccine trials. This information may help in clinical management of this vulnerable patient group. OBJECTIVE We assessed humoral and T-cell immune responses after 2 doses of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) messenger RNA (mRNA) vaccines in patients with PID and functional B-cell defects. METHODS A double-center retrospective review was performed of patients with PID who completed COVID-19 mRNA vaccination and who had humoral responses assessed through SARS-CoV-2 spike protein receptor binding domain (RBD) IgG antibody levels with reflex assessment of the antibody to block RBD binding to angiotensin-converting enzyme 2 (ACE2; hereafter referred to as ACE2 receptor blocking activity, as a surrogate test for neutralization) and T-cell response evaluated by an IFN-γ release assay. Immunization reactogenicity was also reviewed. RESULTS A total of 33 patients with humoral defect were evaluated; 69.6% received BNT162b2 vaccine (Pfizer-BioNTech) and 30.3% received mRNA-1273 (Moderna). The mRNA vaccines were generally well tolerated without severe reactions. The IFN-γ release assay result was positive in 24 (77.4%) of 31 patients. Sixteen of 33 subjects had detectable RBD-specific IgG responses, but only 2 of these 16 subjects had an ACE2 receptor blocking activity level of ≥50%. CONCLUSION Vaccination of this cohort of patients with PID with COVID-19 mRNA vaccines was safe, and cellular immunity was stimulated in most subjects. However, antibody responses to the spike protein RBD were less consistent, and, when detected, were not effective at ACE2 blocking.
Collapse
Affiliation(s)
- Michele N Pham
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Internal Medicine, University of California, San Francisco, Calif
| | - Kanagavel Murugesan
- Department of Pathology, Stanford University School of Medicine, Stanford, Calif
| | - Niaz Banaei
- Department of Pathology, Stanford University School of Medicine, Stanford, Calif; Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, Calif; Clinical Microbiology Laboratory, Stanford Health Care, Stanford, Calif
| | - Benjamin A Pinsky
- Department of Pathology, Stanford University School of Medicine, Stanford, Calif; Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, Calif; Clinical Virology Laboratory, Stanford Health Care, Stanford, Calif
| | - Monica Tang
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Internal Medicine, University of California, San Francisco, Calif
| | - Elisabeth Hoyte
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Stanford, Calif
| | - David B Lewis
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Stanford, Calif
| | - Yael Gernez
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Stanford, Calif.
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused extreme concern for patients with inborn errors of immunity (IEIs). In the first 6 months of the pandemic, the case fatality rate among patients with IEIs resembled that of the general population (9%). This review aims at summarizing what we have learned about the course and outcome of coronavirus disease 2019 (COVID-19) in patients with different IEIs and what this can potentially teach us about the immune mechanisms that could confer protection or predisposition to severe disease. RECENT FINDINGS A total of 649 patients with IEI and COVID-19 have been reported in the last year and a half, spanning all groups of the International Union of Immunological Societies classification of IEIs. For most patients, the underlying IEI does not represent an independent risk factor for severe COVID-19. In fact, some IEI may even be protective against the severe disease due to impaired inflammation resulting in less immune-mediated collateral tissue damage. SUMMARY We review the characteristics of SARS-CoV-2 infection in a large number of patients with IEI. Overall, we found that combined immunodeficiencies, immune dysregulation disorders, and innate immune defects impairing type I interferon responses are associated with severe disease course.
Collapse
Affiliation(s)
- Giorgia Bucciol
- Laboratory of Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven
- Childhood Immunology, Department of Pediatrics, UZ Leuven, Leuven, Belgium
| | - Stuart G. Tangye
- Garvan Institute of Medical Research, Darlinghurst
- St Vincent's Clinical School, UNSW Sydney, Randwick, New South Wales, Australia
| | - Isabelle Meyts
- Laboratory of Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven
- Childhood Immunology, Department of Pediatrics, UZ Leuven, Leuven, Belgium
| |
Collapse
|
22
|
Romano C, Esposito S, Donnarumma G, Marrone A. Authors' response. Ann Allergy Asthma Immunol 2021; 127:703-704. [PMID: 34823757 PMCID: PMC8608551 DOI: 10.1016/j.anai.2021.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Ciro Romano
- Department of Advanced Medical and Surgical Sciences, "Luigi Vanvitelli" University of Campania, Naples, Italy
| | - Sergio Esposito
- Office of Health Management, "Luigi Vanvitelli" Polyclinic Hospital, Naples, Italy
| | - Giovanna Donnarumma
- Department of Experimental Medicine, "Luigi Vanvitelli" University of Campania, Naples, Italy
| | - Aldo Marrone
- Department of Advanced Medical and Surgical Sciences, "Luigi Vanvitelli" University of Campania, Naples, Italy
| |
Collapse
|
23
|
Arroyo-Sánchez D, Cabrera-Marante O, Laguna-Goya R, Almendro-Vázquez P, Carretero O, Gil-Etayo FJ, Suàrez-Fernández P, Pérez-Romero P, Rodríguez de Frías E, Serrano A, Allende LM, Pleguezuelo D, Paz-Artal E. Immunogenicity of Anti-SARS-CoV-2 Vaccines in Common Variable Immunodeficiency. J Clin Immunol 2021; 42:240-252. [PMID: 34787773 PMCID: PMC8596355 DOI: 10.1007/s10875-021-01174-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/16/2021] [Indexed: 01/04/2023]
Abstract
Common variable immunodeficiency (CVID) is characterized by hypogammaglobulinemia and/or a defective antibody response to T-dependent and T-independent antigens. CVID response to immunization depends on the antigen type, the vaccine mechanism, and the specific patient immune defect. In CVID patients, humoral and cellular responses to the currently used COVID-19 vaccines remain unexplored. Eighteen CVID subjects receiving 2-dose anti-SARS-CoV-2 vaccines were prospectively studied. S1-antibodies and S1-specific IFN-γ T cell response were determined by ELISA and FluoroSpot, respectively. The immune response was measured before the administration and after each dose of the vaccine, and it was compared to the response of 50 healthy controls (HC). The development of humoral and cellular responses was slower in CVID patients compared with HC. After completing vaccination, 83% of CVID patients had S1-specific antibodies and 83% had S1-specific T cells compared with 100% and 98% of HC (p = 0.014 and p = 0.062, respectively), but neutralizing antibodies were detected only in 50% of the patients. The strength of both humoral and cellular responses was significantly lower in CVID compared with HC, after the first and second doses of the vaccine. Absent or discordant humoral and cellular responses were associated with previous history of autoimmunity and/or lymphoproliferation. Among the three patients lacking humoral response, two had received recent therapy with anti-B cell antibodies. Further studies are needed to understand if the response to COVID-19 vaccination in CVID patients is protective enough. The 2-dose vaccine schedule and possibly a third dose might be especially necessary to achieve full immune response in these patients.
Collapse
Affiliation(s)
- Daniel Arroyo-Sánchez
- Department of Immunology, Hospital Universitario, 12 de Octubre, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital, 12 de Octubre (imas12), Av. de Córdoba, s/n, 28041, Madrid, Spain
| | - Oscar Cabrera-Marante
- Department of Immunology, Hospital Universitario, 12 de Octubre, Madrid, Spain. .,Instituto de Investigación Sanitaria Hospital, 12 de Octubre (imas12), Av. de Córdoba, s/n, 28041, Madrid, Spain.
| | - Rocío Laguna-Goya
- Department of Immunology, Hospital Universitario, 12 de Octubre, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital, 12 de Octubre (imas12), Av. de Córdoba, s/n, 28041, Madrid, Spain
| | - Patricia Almendro-Vázquez
- Department of Immunology, Hospital Universitario, 12 de Octubre, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital, 12 de Octubre (imas12), Av. de Córdoba, s/n, 28041, Madrid, Spain
| | - Octavio Carretero
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.,Unidad de Enfermedades Infecciosas, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Francisco Javier Gil-Etayo
- Department of Immunology, Hospital Universitario, 12 de Octubre, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital, 12 de Octubre (imas12), Av. de Córdoba, s/n, 28041, Madrid, Spain
| | - Patricia Suàrez-Fernández
- Department of Immunology, Hospital Universitario, 12 de Octubre, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital, 12 de Octubre (imas12), Av. de Córdoba, s/n, 28041, Madrid, Spain
| | - Pilar Pérez-Romero
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Edgard Rodríguez de Frías
- Department of Immunology, Hospital Universitario, 12 de Octubre, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital, 12 de Octubre (imas12), Av. de Córdoba, s/n, 28041, Madrid, Spain
| | - Antonio Serrano
- Department of Immunology, Hospital Universitario, 12 de Octubre, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital, 12 de Octubre (imas12), Av. de Córdoba, s/n, 28041, Madrid, Spain
| | - Luis M Allende
- Department of Immunology, Hospital Universitario, 12 de Octubre, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital, 12 de Octubre (imas12), Av. de Córdoba, s/n, 28041, Madrid, Spain.,National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Daniel Pleguezuelo
- Department of Immunology, Hospital Universitario, 12 de Octubre, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital, 12 de Octubre (imas12), Av. de Córdoba, s/n, 28041, Madrid, Spain
| | - Estela Paz-Artal
- Department of Immunology, Hospital Universitario, 12 de Octubre, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital, 12 de Octubre (imas12), Av. de Córdoba, s/n, 28041, Madrid, Spain.,Department of Immunology, Ophthalmology and ENT, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
24
|
Delmonte OM, Bergerson JRE, Burbelo PD, Durkee-Shock JR, Dobbs K, Bosticardo M, Keller MD, McDermott DH, Rao VK, Dimitrova D, Quiros-Roldan E, Imberti L, Ferrè EMN, Schmitt M, Lafeer C, Pfister J, Shaw D, Draper D, Truong M, Ulrick J, DiMaggio T, Urban A, Holland SM, Lionakis MS, Cohen JI, Ricotta EE, Notarangelo LD, Freeman AF. Antibody responses to the SARS-CoV-2 vaccine in individuals with various inborn errors of immunity. J Allergy Clin Immunol 2021; 148:1192-1197. [PMID: 34492260 PMCID: PMC8418380 DOI: 10.1016/j.jaci.2021.08.016] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND SARS-CoV-2 vaccination is recommended in patients with inborn errors of immunity (IEIs); however, little is known about immunogenicity and safety in these patients. OBJECTIVE We sought to evaluate the impact of genetic diagnosis, age, and treatment on antibody response to COVID-19 vaccine and related adverse events in a cohort of patients with IEIs. METHODS Plasma was collected from 22 health care worker controls, 81 patients with IEIs, and 2 patients with thymoma; the plasma was collected before immunization, 1 to 6 days before the second dose of mRNA vaccine, and at a median of 30 days after completion of the immunization schedule with either mRNA vaccine or a single dose of Johnson & Johnson's Janssen vaccine. Anti-spike (anti-S) and anti-nucleocapsid antibody titers were measured by using a luciferase immunoprecipitation systems method. Information on T- and B-cell counts and use of immunosuppressive drugs was extracted from medical records, and information on vaccine-associated adverse events was collected after each dose. RESULTS Anti-S antibodies were detected in 27 of 46 patients (58.7%) after 1 dose of mRNA vaccine and in 63 of 74 fully immunized patients (85.1%). A lower rate of seroconversion (7 of 11 [63.6%]) was observed in patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. Previous use of rituximab and baseline counts of less than 1000 CD3+ T cells/mL and less than 100 CD19+ B cells/mL were associated with lower anti-S IgG levels. No significant adverse events were reported. CONCLUSION Vaccinating patients with IEIs is safe, but immunogenicity is affected by certain therapies and gene defects. These data may guide the counseling of patients with IEIs regarding prevention of SARS-CoV-2 infection and the need for subsequent boosts.
Collapse
Affiliation(s)
- Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Jenna R E Bergerson
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Peter D Burbelo
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Md
| | - Jessica R Durkee-Shock
- Center for Cancer and Immunology Research and Division of Allergy and Immunology, Children's National Hospital, Washington, DC
| | - Kerry Dobbs
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Michael D Keller
- Center for Cancer and Immunology Research and Division of Allergy and Immunology, Children's National Hospital, Washington, DC
| | - David H McDermott
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - V Koneti Rao
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Dimana Dimitrova
- Experimental Transplantation and Immunotherapy Branch, National Cancer Institute, National Institutes of Health, Bethesda, Md
| | - Eugenia Quiros-Roldan
- Department of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, Brescia, Italy; CREA Laboratory, Diagnostic Laboratory, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Luisa Imberti
- CREA Laboratory, Diagnostic Laboratory, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Elise M N Ferrè
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Monica Schmitt
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Christine Lafeer
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Justina Pfister
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Dawn Shaw
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Deborah Draper
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Meng Truong
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Jean Ulrick
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Tom DiMaggio
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Amanda Urban
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Michail S Lionakis
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Emily E Ricotta
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| |
Collapse
|
25
|
Pulvirenti F, Fernandez Salinas A, Milito C, Terreri S, Piano Mortari E, Quintarelli C, Di Cecca S, Lagnese G, Punziano A, Guercio M, Bonanni L, Auria S, Villani F, Albano C, Locatelli F, Spadaro G, Carsetti R, Quinti I. B Cell Response Induced by SARS-CoV-2 Infection Is Boosted by the BNT162b2 Vaccine in Primary Antibody Deficiencies. Cells 2021; 10:cells10112915. [PMID: 34831138 PMCID: PMC8616496 DOI: 10.3390/cells10112915] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/19/2021] [Accepted: 10/24/2021] [Indexed: 12/23/2022] Open
Abstract
Background: Patients with primary antibody deficiencies are at risk in the current COVID-19 pandemic due to their impaired response to infection and vaccination. Specifically, patients with common variable immunodeficiency (CVID) generated poor spike-specific antibody and T cell responses after immunization. Methods: Thirty-four CVID convalescent patients after SARS-CoV-2 infection, 38 CVID patients immunized with two doses of the BNT162b2 vaccine, and 20 SARS-CoV-2 CVID convalescents later and immunized with BNT162b2 were analyzed for the anti-spike IgG production and the generation of spike-specific memory B cells and T cells. Results: Spike-specific IgG was induced more frequently after infection than after vaccination (82% vs. 34%). The antibody response was boosted in convalescents by vaccination. Although immunized patients generated atypical memory B cells possibly by extra-follicular or incomplete germinal center reactions, convalescents responded to infection by generating spike-specific memory B cells that were improved by the subsequent immunization. Poor spike-specific T cell responses were measured independently from the immunological challenge. Conclusions: SARS-CoV-2 infection primed a more efficient classical memory B cell response, whereas the BNT162b2 vaccine induced non-canonical B cell responses in CVID. Natural infection responses were boosted by subsequent immunization, suggesting the possibility to further stimulate the immune response by additional vaccine doses in CVID.
Collapse
Affiliation(s)
- Federica Pulvirenti
- Regional Reference Centre for Primary Immune Deficiencies, Azienda Ospedaliera Universitaria Policlinico Umberto I, 00185 Rome, Italy; (F.P.); (L.B.); (S.A.); (F.V.)
| | - Ane Fernandez Salinas
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (A.F.S.); (C.M.)
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children’s Hospital, IRCCS, Viale di San Paolo, 00146 Rome, Italy; (S.T.); (E.P.M.); (C.A.); (R.C.)
| | - Cinzia Milito
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (A.F.S.); (C.M.)
| | - Sara Terreri
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children’s Hospital, IRCCS, Viale di San Paolo, 00146 Rome, Italy; (S.T.); (E.P.M.); (C.A.); (R.C.)
| | - Eva Piano Mortari
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children’s Hospital, IRCCS, Viale di San Paolo, 00146 Rome, Italy; (S.T.); (E.P.M.); (C.A.); (R.C.)
| | - Concetta Quintarelli
- Department Onco-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, 00116 Rome, Italy; (C.Q.); (S.D.C.); (M.G.); (F.L.)
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Stefano Di Cecca
- Department Onco-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, 00116 Rome, Italy; (C.Q.); (S.D.C.); (M.G.); (F.L.)
| | - Gianluca Lagnese
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (G.L.); (A.P.); (G.S.)
| | - Alessandra Punziano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (G.L.); (A.P.); (G.S.)
| | - Marika Guercio
- Department Onco-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, 00116 Rome, Italy; (C.Q.); (S.D.C.); (M.G.); (F.L.)
| | - Livia Bonanni
- Regional Reference Centre for Primary Immune Deficiencies, Azienda Ospedaliera Universitaria Policlinico Umberto I, 00185 Rome, Italy; (F.P.); (L.B.); (S.A.); (F.V.)
| | - Stefania Auria
- Regional Reference Centre for Primary Immune Deficiencies, Azienda Ospedaliera Universitaria Policlinico Umberto I, 00185 Rome, Italy; (F.P.); (L.B.); (S.A.); (F.V.)
| | - Francesca Villani
- Regional Reference Centre for Primary Immune Deficiencies, Azienda Ospedaliera Universitaria Policlinico Umberto I, 00185 Rome, Italy; (F.P.); (L.B.); (S.A.); (F.V.)
| | - Christian Albano
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children’s Hospital, IRCCS, Viale di San Paolo, 00146 Rome, Italy; (S.T.); (E.P.M.); (C.A.); (R.C.)
| | - Franco Locatelli
- Department Onco-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, 00116 Rome, Italy; (C.Q.); (S.D.C.); (M.G.); (F.L.)
- Dipartimento Materno-Infantile e Scienze Urologiche, Sapienza University of Rome, 00185 Rome, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (G.L.); (A.P.); (G.S.)
| | - Rita Carsetti
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children’s Hospital, IRCCS, Viale di San Paolo, 00146 Rome, Italy; (S.T.); (E.P.M.); (C.A.); (R.C.)
| | - Isabella Quinti
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (A.F.S.); (C.M.)
- Correspondence: ; Tel.: +39-0649972007
| |
Collapse
|
26
|
COVID-19 in CVID: a Case Series of 17 Patients. J Clin Immunol 2021; 42:29-31. [PMID: 34669142 PMCID: PMC8526524 DOI: 10.1007/s10875-021-01150-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/04/2021] [Indexed: 10/29/2022]
|
27
|
|
28
|
Romano C, Esposito S, Donnarumma G, Marrone A. Detection of neutralizing anti-severe acute respiratory syndrome coronavirus 2 antibodies in patients with common variable immunodeficiency after immunization with messenger RNA vaccines. Ann Allergy Asthma Immunol 2021; 127:499-501. [PMID: 34352358 PMCID: PMC8327608 DOI: 10.1016/j.anai.2021.07.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/10/2021] [Accepted: 07/28/2021] [Indexed: 11/18/2022]
Affiliation(s)
- Ciro Romano
- Clinical Immunology Outpatient Clinic, Division of Internal Medicine, Department of Advanced Medical and Surgical Sciences, "Luigi Vanvitelli" University of Campania, Naples, Italy; Department of Advanced Medical and Surgical Sciences, "Luigi Vanvitelli" University of Campania, Naples, Italy.
| | - Sergio Esposito
- Clinical Immunology Outpatient Clinic, Division of Internal Medicine, Department of Advanced Medical and Surgical Sciences, "Luigi Vanvitelli" University of Campania, Naples, Italy; Office of Health Management, "Luigi Vanvitelli" Polyclinic Hospital, Naples, Italy
| | - Giovanna Donnarumma
- Department of Experimental Medicine, "Luigi Vanvitelli" University of Campania, Naples, Italy
| | - Aldo Marrone
- Department of Advanced Medical and Surgical Sciences, "Luigi Vanvitelli" University of Campania, Naples, Italy
| |
Collapse
|
29
|
D’Amelio R, Asero R, Cassatella MA, Laganà B, Lunardi C, Migliorini P, Nisini R, Parronchi P, Quinti I, Racanelli V, Senna G, Vacca A, Maggi E. Anti-COVID-19 Vaccination in Patients with Autoimmune-Autoinflammatory Disorders and Primary/Secondary Immunodeficiencies: The Position of the Task Force on Behalf of the Italian Immunological Societies. Biomedicines 2021; 9:1163. [PMID: 34572349 PMCID: PMC8465958 DOI: 10.3390/biomedicines9091163] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023] Open
Abstract
The Coronavirus disease 2019 (COVID-19) pandemic has represented an unprecedented challenge for humankind from health, economic, and social viewpoints. In February 2020, Italy was the first western country to be deeply hit by the pandemic and suffered the highest case/fatality rate among western countries. Brand new anti-COVID-19 vaccines have been developed and made available in <1-year from the viral sequence publication. Patients with compromised immune systems, such as autoimmune-autoinflammatory disorders (AIAIDs), primary (PIDs) and secondary (SIDs) immunodeficiencies, have received careful attention for a long time regarding their capacity to safely respond to traditional vaccines. The Italian Immunological Societies, therefore, have promptly faced the issues of safety, immunogenicity, and efficacy/effectiveness of the innovative COVID-19 vaccines, as well as priority to vaccine access, in patients with AIADs, PIDs, and SIDs, by organizing an ad-hoc Task Force. Patients with AIADs, PIDs, and SIDs: (1) Do not present contraindications to COVID-19 vaccines if a mRNA vaccine is used and administered in a stabilized disease phase without active infection. (2) Should usually not discontinue immunosuppressive therapy, which may be modulated depending on the patient's clinical condition. (3) When eligible, should have a priority access to vaccination. In fact, immunizing these patients may have relevant social/health consequences, since these patients, if infected, may develop chronic infection, which prolongs viral spread and facilitates the emergence of viral variants.
Collapse
Affiliation(s)
- Raffaele D’Amelio
- Dipartimento di Medicina Clinica e Molecolare, Sapienza Università di Roma, Via di Grottarossa 1035-1039, 00189 Rome, Italy;
| | - Riccardo Asero
- Ambulatorio di Allergologia, Clinica S. Carlo di Paderno Dugnano, Via Ospedale 21, 20037 Milano, Italy;
| | - Marco Antonio Cassatella
- Sezione di Patologia Generale, Dipartimento di Medicina, Università di Verona, Strada Le Grazie 4, 37134 Verona, Italy;
| | - Bruno Laganà
- UOC Medicina Interna, Dipartimento di Medicina Clinica e Molecolare, AOU S. Andrea, Sapienza Università di Roma, Via di Grottarossa 1035-1039, 00189 Rome, Italy;
| | - Claudio Lunardi
- Responsabile Unità di Malattie Autoimmunitarie, Dipartimento di Medicina, AOU Policlinico G.B. Rossi, Borgo Roma, Università di Verona, Piazzale Ludovico Antonio Scuro 10, 37134 Verona, Italy;
| | - Paola Migliorini
- Direttore Unità Operativa di Immunoallergologia Clinica, Dipartimento di Medicina Clinica e Sperimentale, Azienda Ospedaliero Universitaria Pisana, Università di Pisa, Via Roma 67, 56126 Pisa, Italy;
| | - Roberto Nisini
- Direttore Reparto Immunologia, Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Paola Parronchi
- Direttore SOD Immunologia e Terapie Cellulari, Dipartimento di Medicina Sperimentale e Clinica, AOU Careggi, Università di Firenze, Largo Brambilla 3, 50134 Firenze, Italy;
| | - Isabella Quinti
- Responsabile UOD Centro di Riferimento Regionale per le Immunodeficienze, Dipartimento di Medicina Molecolare, AOU Policlinico Umberto I, Sapienza Università di Roma, Viale dell’Università 37, 00161 Rome, Italy;
| | - Vito Racanelli
- UOC Medicina Interna “Guido Baccelli”, Dipartimento di Scienze Biomediche ed Oncologia Umana, AOU Policlinico, Università di Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy;
| | - Gianenrico Senna
- Direttore USD Allergologia, Dipartimento di Medicina, AOU Policlinico G.B. Rossi, Borgo Roma, Università di Verona, Piazzale Ludovico Antonio Scuro 10, 37134 Verona, Italy;
| | - Angelo Vacca
- Direttore UOC Medicina Interna “Guido Baccelli”, Dipartimento di Scienze Biomediche ed Oncologia Umana, AOU Policlinico, Università di Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy;
| | - Enrico Maggi
- Unità di Immunità Traslazionale, Dipartimento di Immunologia, Ospedale Pediatrico Bambino Gesù, IRCCS, Viale di S. Paolo 15, 00146 Rome, Italy
| |
Collapse
|