1
|
Bao L, Rao J, Yu D, Zheng B, Yin B. Decoding the language of fear: Unveiling objective and subjective indicators in rodent models through a systematic review and meta-analysis. Neurosci Biobehav Rev 2024; 157:105537. [PMID: 38215801 DOI: 10.1016/j.neubiorev.2024.105537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/23/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
While rodent models are vital for studying mental disorders, the underestimation of construct validity of fear indicators has led to limitations in translating to effective clinical treatments. Addressing this gap, we systematically reviewed 5054 articles from the 1960 s, understanding underlying theoretical advancement, and selected 68 articles with at least two fear indicators for a three-level meta-analysis. We hypothesized correlations between different indicators would elucidate similar functions, while magnitude differences could reveal distinct neural or behavioral mechanisms. Our findings reveal a shift towards using freezing behavior as the primary fear indicator in rodent models, and strong, moderate, and weak correlations between freezing and conditioned suppression ratios, 22-kHz ultrasonic vocalizations, and autonomic nervous system responses, respectively. Using freezing as a reference, moderator analysis shows treatment types and fear stages significantly influenced differences in magnitudes between two indicators. Our analysis supports a two-system model of fear in rodents, where objective and subjective fears could operate on a threshold-based mechanism.
Collapse
Affiliation(s)
- Lili Bao
- School of Psychology, Fujian Normal University, China; Key Laboratory for Learning and Behavioral Sciences, Fujian Normal University, China
| | - Jiaojiao Rao
- School of Psychology, Fujian Normal University, China; Key Laboratory for Learning and Behavioral Sciences, Fujian Normal University, China
| | - Delin Yu
- School of Psychology, Fujian Normal University, China; Key Laboratory for Learning and Behavioral Sciences, Fujian Normal University, China
| | - Benhuiyuan Zheng
- School of Psychology, Fujian Normal University, China; Key Laboratory for Learning and Behavioral Sciences, Fujian Normal University, China
| | - Bin Yin
- School of Psychology, Fujian Normal University, China; Key Laboratory for Learning and Behavioral Sciences, Fujian Normal University, China.
| |
Collapse
|
2
|
Packheiser J, Soyman E, Paradiso E, Michon F, Ramaaker E, Sahin N, Muralidharan S, Wöhr M, Gazzola V, Keysers C. Audible pain squeaks can mediate emotional contagion across pre-exposed rats with a potential effect of auto-conditioning. Commun Biol 2023; 6:1085. [PMID: 37880354 PMCID: PMC10600148 DOI: 10.1038/s42003-023-05474-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/17/2023] [Indexed: 10/27/2023] Open
Abstract
Footshock self-experience enhances rodents' reactions to the distress of others. Here, we tested one potential mechanism supporting this phenomenon, namely that animals auto-condition to their own pain squeaks during shock pre-exposure. In Experiment 1, shock pre-exposure increased freezing and 22 kHz distress vocalizations while animals listened to the audible pain-squeaks of others. In Experiment 2 and 3, to test the auto-conditioning theory, we weakened the noxious pre-exposure stimulus not to trigger pain squeaks, and compared pre-exposure protocols in which we paired it with squeak playback against unpaired control conditions. Although all animals later showed fear responses to squeak playbacks, these were weaker than following typical pre-exposure (Experiment 1) and not stronger following paired than unpaired pre-exposure. Experiment 1 thus demonstrates the relevance of audible pain squeaks in the transmission of distress but Experiment 2 and 3 highlight the difficulty to test auto-conditioning: stimuli weak enough to decouple pain experience from hearing self-emitted squeaks are too weak to trigger the experience-dependent increase in fear transmission that we aimed to study. Although our results do not contradict the auto-conditioning hypothesis, they fail to disentangle it from sensitization effects. Future studies could temporarily deafen animals during pre-exposure to further test this hypothesis.
Collapse
Affiliation(s)
- Julian Packheiser
- Social Brain Lab, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Efe Soyman
- Social Brain Lab, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
- Social Cognitive and Affective Neuroscience Lab, Koc University, Istanbul, Turkey
| | - Enrica Paradiso
- Social Brain Lab, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Frédéric Michon
- Social Brain Lab, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Eline Ramaaker
- Social Brain Lab, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Neslihan Sahin
- Social Brain Lab, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | | | - Markus Wöhr
- Research Unit Brain and Cognition, Laboratory of Biological Psychology, Social and Affective Neuroscience Research Group, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, Philipps-University Marburg, Marburg, Germany
| | - Valeria Gazzola
- Social Brain Lab, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Christian Keysers
- Social Brain Lab, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands.
| |
Collapse
|
3
|
Lupfer G, Brandenburger A, Machado M. Ultrasonic vocalizations near 30 kHz may indicate excitement rather than distress in female Wistar rats. Appl Anim Behav Sci 2023. [DOI: 10.1016/j.applanim.2023.105881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
4
|
Hilton JR, Simpson SR, Sherman ER, Raby‐Smith W, Azvine K, Arribas M, Zhou J, Deiana S, Hengerer B, Cahill EN. Reactivity to conditioned threat cues is distinct from exploratory drive in the elevated plus maze. Eur J Neurosci 2023; 57:54-63. [PMID: 36382836 PMCID: PMC10107846 DOI: 10.1111/ejn.15870] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/05/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Fear and anxiety are adaptive states that allow humans and animals alike to respond appropriately to threatening cues in their environment. Commonly used tasks for studying behaviour akin to fear and anxiety in rodent models are Pavlovian threat conditioning and the elevated plus maze (EPM), respectively. In threat conditioning the rodents learn to associate an aversive event with a specific stimulus or context. The learnt association between the two stimuli (the 'memory') can then be recalled by re-exposing the subject to the conditioned stimulus. The elevated plus maze is argued to measure the agoraphobic avoidance of the brightly lit open maze arms in crepuscular rodents. These two tasks have been used extensively, yet research into whether they interact is scarce. We investigated whether recall of an aversive memory, across contextual, odour or auditory modalities, would potentiate anxiety-like behaviour in the elevated plus maze. The data did not support that memory recall, even over a series of time points, could influence EPM behaviour. Furthermore, there was no correlation between EPM behaviour and conditioned freezing in independent cohorts tested in the EPM before or after auditory threat conditioning. Further analysis found the production of 22 kHz ultrasonic vocalisations revealed the strongest responders to a conditioned threat cue. These results are of particular importance for consideration when using the EPM and threat conditioning to identify individual differences and the possibility to use the tasks in batteries of tests without cross-task interference.
Collapse
Affiliation(s)
- Joe R. Hilton
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Susannah R. Simpson
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Emily R. Sherman
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Will Raby‐Smith
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Keemia Azvine
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Maite Arribas
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Jiaqi Zhou
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Serena Deiana
- CNS Discovery Research, Boehringer Ingelheim Pharma GmbH & Co. KGBiberach an der RissGermany
| | - Bastian Hengerer
- CNS Discovery Research, Boehringer Ingelheim Pharma GmbH & Co. KGBiberach an der RissGermany
| | - Emma N. Cahill
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
- School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolUK
| |
Collapse
|
5
|
Lawrenson C, Paci E, Pickford J, Drake RAR, Lumb BM, Apps R. Cerebellar modulation of memory encoding in the periaqueductal grey and fear behaviour. eLife 2022; 11:76278. [PMID: 35287795 PMCID: PMC8923669 DOI: 10.7554/elife.76278] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/20/2022] [Indexed: 01/02/2023] Open
Abstract
The pivotal role of the periaqueductal grey (PAG) in fear learning is reinforced by the identification of neurons in male rat ventrolateral PAG (vlPAG) that encode fear memory through signalling the onset and offset of an auditory-conditioned stimulus during presentation of the unreinforced conditioned tone (CS+) during retrieval. Some units only display CS+ onset or offset responses, and the two signals differ in extinction sensitivity, suggesting that they are independent of each other. In addition, understanding cerebellar contributions to survival circuits is advanced by the discovery that (i) reversible inactivation of the medial cerebellar nucleus (MCN) during fear consolidation leads in subsequent retrieval to (a) disruption of the temporal precision of vlPAG offset, but not onset responses to CS+, and (b) an increase in duration of freezing behaviour. And (ii) chemogenetic manipulation of the MCN-vlPAG projection during fear acquisition (a) reduces the occurrence of fear-related ultrasonic vocalisations, and (b) during subsequent retrieval, slows the extinction rate of fear-related freezing. These findings show that the cerebellum is part of the survival network that regulates fear memory processes at multiple timescales and in multiple ways, raising the possibility that dysfunctional interactions in the cerebellar-survival network may underlie fear-related disorders and comorbidities. Anxiety disorders are a cluster of mental health conditions characterised by persistent and excessive amounts of fear and worry. They affect millions of people worldwide, but treatments can sometimes be ineffective and have unwanted side effects. Understanding which brain regions are involved in fear and anxiety-related behaviours, and how those areas are connected, is the first step towards designing more effective treatments. A region known as the periaqueductal grey (or PAG) sits at the centre of the brain’s fear and anxiety network, regulating pain, encoding fear memories and responding to threats and stressors. It also controls survival behaviours such as the ‘freeze’ response, when an animal is frightened. A more recent addition to the fear and anxiety network is the cerebellum, which sits at the base of the brain. Two-way connections between this region and the PAG have been well described, but how the cerebellum might influence fear and anxiety-related behaviours remains unclear. To explore this role, Lawrenson, Paci et al. investigated whether the cerebellum modulates brain activity within the PAG and if so, how this relates to fear behaviours. Rats had electrodes implanted in their brains to record the activity of nerve cells within the PAG. A common fear-conditioning task was then used to elicit ‘freeze’ responses: a sound was paired with mild foot shocks until the animals learned to fear the auditory signal. In the rats, a subset of neurons within the PAG responded to the tone, consistent with those cells encoding a fear memory. But when a drug blocked the cerebellum’s output during fear conditioning, the timing of the PAG response was less precise and the rats’ freeze response lasted longer. Lawrenson, Paci et al. concluded that the cerebellum, through its interactions with the brain’s fear and anxiety network, might be responsible for coordinating the most appropriate behavioural response to fear, and how long ‘freezing’ lasts. In summary, these findings show that the cerebellum is a part of the brain’s survival network which regulates fear-memory processes. It raises the possibility that disruption of the cerebellum might underlie anxiety and other fear-related disorders, thereby providing a new target for future therapies.
Collapse
Affiliation(s)
- Charlotte Lawrenson
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Elena Paci
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Jasmine Pickford
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Robert A R Drake
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Bridget M Lumb
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Richard Apps
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
6
|
Willadsen M, Uengoer M, Sługocka A, Schwarting RK, Homberg JR, Wöhr M. Fear Extinction and Predictive Trait-Like Inter-Individual Differences in Rats Lacking the Serotonin Transporter. Int J Mol Sci 2021; 22:ijms22137088. [PMID: 34209318 PMCID: PMC8268876 DOI: 10.3390/ijms22137088] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 11/28/2022] Open
Abstract
Anxiety disorders are associated with a failure to sufficiently extinguish fear memories. The serotonergic system (5-hydroxytryptamine, 5-HT) with the 5-HT transporter (5-HTT, SERT) is strongly implicated in the regulation of anxiety and fear. In the present study, we examined the effects of SERT deficiency on fear extinction in a differential fear conditioning paradigm in male and female rats. Fear-related behavior displayed during acquisition, extinction, and recovery, was measured through quantification of immobility and alarm 22-kHz ultrasonic vocalizations (USV). Trait-like inter-individual differences in novelty-seeking, anxiety-related behavior, habituation learning, cognitive performance, and pain sensitivity were examined for their predictive value in forecasting fear extinction. Our results show that SERT deficiency strongly affected the emission of 22-kHz USV during differential fear conditioning. During acquisition, extinction, and recovery, SERT deficiency consistently led to a reduction in 22-kHz USV emission. While SERT deficiency did not affect immobility during acquisition, genotype differences started to emerge during extinction, and during recovery rats lacking SERT showed higher levels of immobility than wildtype littermate controls. Recovery was reflected in increased levels of immobility but not 22-kHz USV emission. Prominent sex differences were evident. Among several measures for trait-like inter-individual differences, anxiety-related behavior had the best predictive quality.
Collapse
Affiliation(s)
- Maria Willadsen
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University of Marburg, Gutenberg-Str. 18, D-35032 Marburg, Germany; (M.W.); (R.K.W.S.)
| | - Metin Uengoer
- Associative Learning, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University of Marburg, Gutenberg-Str. 18, D-35032 Marburg, Germany;
| | - Anna Sługocka
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 4, 40-752 Katowice, Poland;
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| | - Rainer K.W. Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University of Marburg, Gutenberg-Str. 18, D-35032 Marburg, Germany; (M.W.); (R.K.W.S.)
- Center for Mind, Brain and Behavior, Philipps-University of Marburg, Hans-Meerwein-Str. 6, D-35032 Marburg, Germany
| | - Judith R. Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Kapittelweg 29, 6525 EN Nijmegen, The Netherlands;
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University of Marburg, Gutenberg-Str. 18, D-35032 Marburg, Germany; (M.W.); (R.K.W.S.)
- Center for Mind, Brain and Behavior, Philipps-University of Marburg, Hans-Meerwein-Str. 6, D-35032 Marburg, Germany
- KU Leuven, Faculty of Psychology and Educational Sciences, Research Unit Brain and Cognition, Laboratory of Biological Psychology, Social and Affective Neuroscience Research Group, B-3000 Leuven, Belgium
- KU Leuven, Leuven Brain Institute, B-3000 Leuven, Belgium
- Correspondence: ; Tel.: +32–16–19–45–57
| |
Collapse
|
7
|
Seidisarouei M, van Gurp S, Pranic NM, Calabus IN, van Wingerden M, Kalenscher T. Distinct Profiles of 50 kHz Vocalizations Differentiate Between Social Versus Non-social Reward Approach and Consumption. Front Behav Neurosci 2021; 15:693698. [PMID: 34234654 PMCID: PMC8255485 DOI: 10.3389/fnbeh.2021.693698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/18/2021] [Indexed: 11/21/2022] Open
Abstract
Social animals tend to possess an elaborate vocal communication repertoire, and rats are no exception. Rats utilize ultrasonic vocalizations (USVs) to communicate information about a wide range of socially relevant cues, as well as information regarding the valence of the behavior and/or surrounding environment. Both quantitative and qualitative acoustic properties of these USVs are thought to communicate context-specific information to conspecifics. Rat USVs have been broadly categorized into 22 and 50 kHz call categories, which can be further classified into subtypes based on their sonographic features. Recent research indicates that the 50 kHz calls and their various subtype profiles may be related to the processing of social and non-social rewards. However, only a handful of studies have investigated USV elicitation in the context of both social and non-social rewards. Here, we employ a novel behavioral paradigm, the social-sucrose preference test, that allowed us to measure rats’ vocal responses to both non-social (i.e., 2, 5, and 10% sucrose) and social reward (interact with a Juvenile rat), presented concurrently. We analyzed adult male Long-Evans rats’ vocal responses toward social and non-social rewards, with a specific focus on 50 kHz calls and their 14 subtypes. We demonstrate that rats’ preference and their vocal responses toward a social reward were both influenced by the concentration of the non-social reward in the maze. In other words, rats showed a trade-off between time spent with non-social or social stimuli along with increasing concentrations of sucrose, and also, we found a clear difference in the emission of flat and frequency-modulated calls in the social and non-social reward zones. Furthermore, we report that the proportion of individual subtypes of 50 kHz calls, as well as the total USV counts, showed variation across different types of rewards as well. Our findings provide a thorough overview of rat vocal responses toward non-social and social rewards and are a clear depiction of the variability in the rat vocalization repertoire, establishing the role of call subtypes as key players driving context-specific vocal responses of rats.
Collapse
Affiliation(s)
- Mohammad Seidisarouei
- Social Rodent Lab, Institute of Experimental Psychology, Heinrich-Heine-University, Düsseldorf, Germany.,Comparative Psychology, Institute of Experimental Psychology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sander van Gurp
- Social Rodent Lab, Institute of Experimental Psychology, Heinrich-Heine-University, Düsseldorf, Germany
| | | | - Irina Noguer Calabus
- Comparative Psychology, Institute of Experimental Psychology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Marijn van Wingerden
- Social Rodent Lab, Institute of Experimental Psychology, Heinrich-Heine-University, Düsseldorf, Germany.,Department of Cognitive Science and Artificial Intelligence, Tilburg School of Humanities and Digital Sciences, Tilburg University, Tilburg, Netherlands
| | - Tobias Kalenscher
- Comparative Psychology, Institute of Experimental Psychology, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
8
|
Willadsen M, Uengoer M, Schwarting RKW, Homberg JR, Wöhr M. Reduced emission of alarm 22-kHz ultrasonic vocalizations during fear conditioning in rats lacking the serotonin transporter. Prog Neuropsychopharmacol Biol Psychiatry 2021; 108:110072. [PMID: 32800867 DOI: 10.1016/j.pnpbp.2020.110072] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/02/2020] [Accepted: 08/09/2020] [Indexed: 12/19/2022]
Abstract
Rats display a rich social behavioral repertoire. An important component of this repertoire is the emission of whistle-like calls in the ultrasonic range, so-called ultrasonic vocalizations (USV). Long low-frequency 22-kHz USV occur in aversive situations, including aggressive interactions, predator exposure, and electric shocks during fear conditioning. They are believed to reflect a negative affective state akin to anxiety and fear. A prominent theory suggests that 22-kHz USV function as alarm calls to warn conspecifics. Serotonin (5-hydroxytryptamine, 5-HT) is strongly implicated in the regulation of affective states, particularly anxiety and fear. A key component of the system is the 5-HT transporter (5-HTT, also known as SERT), regulating 5-HT availability in the synaptic cleft. In the present experiment, we studied the effects of SERT deficiency on overt fear-related behavior and alarm 22-kHz USV during fear conditioning in male and female rats. While overt fear-related behavior was not affected by SERT deficiency and sex, the emission of alarm 22-kHz USV was clearly reduced in homozygous SERT-/- but not heterozygous SERT+/- mutants, as compared to their wildtype SERT+/+ littermate controls. Genotype effects were particularly prominent in females. Females in general emitted fewer alarm 22-kHz USV than males. This supports the view that 22-kHz USV are, at least partly, independently regulated from anxiety or fear and as socially mediated alarm calls do not simply express a negative affective state. Reduced 22-kHz USV emission in rats lacking SERT might be due to social deficits in the use of 22-kHz USV as a socio-affective signal to warn conspecifics about threats.
Collapse
Affiliation(s)
- Maria Willadsen
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University of Marburg, Gutenberg-Str. 18, D-35032 Marburg, Germany
| | - Metin Uengoer
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University of Marburg, Gutenberg-Str. 18, D-35032 Marburg, Germany; Center for Mind, Brain and Behavior, Philipps-University of Marburg, Hans-Meerwein-Str. 6, D-35032 Marburg, Germany
| | - Rainer K W Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University of Marburg, Gutenberg-Str. 18, D-35032 Marburg, Germany; Center for Mind, Brain and Behavior, Philipps-University of Marburg, Hans-Meerwein-Str. 6, D-35032 Marburg, Germany
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University of Marburg, Gutenberg-Str. 18, D-35032 Marburg, Germany; Center for Mind, Brain and Behavior, Philipps-University of Marburg, Hans-Meerwein-Str. 6, D-35032 Marburg, Germany; Laboratory for Behavioral Neuroscience, Department of Biology, Faculty of Science, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
| |
Collapse
|
9
|
Fendt M, Gonzalez-Guerrero CP, Kahl E. Observational Fear Learning in Rats: Role of Trait Anxiety and Ultrasonic Vocalization. Brain Sci 2021; 11:brainsci11040423. [PMID: 33810488 PMCID: PMC8066558 DOI: 10.3390/brainsci11040423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 01/09/2023] Open
Abstract
Rats can acquire fear by observing conspecifics that express fear in the presence of conditioned fear stimuli. This process is called observational fear learning and is based on the social transmission of the demonstrator rat’s emotion and the induction of an empathy-like or anxiety state in the observer. The aim of the present study was to investigate the role of trait anxiety and ultrasonic vocalization in observational fear learning. Two experiments with male Wistar rats were performed. In the first experiment, trait anxiety was assessed in a light–dark box test before the rats were submitted to the observational fear learning procedure. In the second experiment, ultrasonic vocalization was recorded throughout the whole observational fear learning procedure, and 22 kHz and 50 kHz calls were analyzed. The results of our study show that trait anxiety differently affects direct fear learning and observational fear learning. Direct fear learning was more pronounced with higher trait anxiety, while observational fear learning was the best with a medium-level of trait anxiety. There were no indications in the present study that ultrasonic vocalization, especially emission of 22 kHz calls, but also 50 kHz calls, are critical for observational fear learning.
Collapse
Affiliation(s)
- Markus Fendt
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (C.P.G.-G.); (E.K.)
- Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Correspondence:
| | - Claudia Paulina Gonzalez-Guerrero
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (C.P.G.-G.); (E.K.)
- Integrative Neuroscience Program, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Evelyn Kahl
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (C.P.G.-G.); (E.K.)
| |
Collapse
|
10
|
Towards a unified theory of emotional contagion in rodents—A meta-analysis. Neurosci Biobehav Rev 2020; 132:1229-1248. [DOI: 10.1016/j.neubiorev.2020.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/30/2020] [Accepted: 09/06/2020] [Indexed: 12/13/2022]
|
11
|
Seo SY, Kim SP, Bang SK, Kang SY, Cho SJ, Choi KH, Ryu Y. The effect of acupuncture stimulation on alleviating emotional changes due to acute alcohol administration and the possibility of sigma 1 receptor involvement. Integr Med Res 2020; 10:100497. [PMID: 33384922 PMCID: PMC7689173 DOI: 10.1016/j.imr.2020.100497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/27/2020] [Accepted: 08/02/2020] [Indexed: 01/17/2023] Open
Abstract
Background Most ETOH addiction preclinical studies have focused on the rewards of chronic ETOH self-administration or the ETOH reinstatement model. Acute ETOH administration studies are scarce despite the potential of ETOH to cause sedation, intoxication and reduced acute functional tolerance. Here, we established a rat model of acute ETOH administration induced by an intraperitoneal injection of 1 g/kg ethanol and assessed the similarities in physiological and behavioral effects between acupuncture and Sigma1 R antagonists. Methods Male Wistar rats (300-330 g) received pretreatment with (1) saline injection, (2) saline + mechanical stimulation using a mechanical acupuncture instrument (MAI) for acupuncture at the Shenmen (HT7), (3) ETOH (1 g/kg) injection, (4) ETOH + HT7, or (5) the selective σ1 R antagonist BD 1047 (3, 10, or 30 mg/kg, intraperitoneal (IP) injection). ETOH (1 g/kg) or saline was IP injected after 10 min. Then, ETOH-induced immobility was evaluated in an open field arena, ultrasonic vocalizations (USVs) indicating ethanol-induced emotional changes were recorded in a recording chamber, and the rats were sacrificed for the analysis of protein levels of σ1 R in several regions of the brain. Results Acute ethanol exposure increased the immobile time, 22-kHz USVs, and protein levels of σ1 R in the ventral tegmental area (VTA). However, pretreatment with acupuncture at HT7 induced recovery of immobile time, reduced 22-kHz USVs, and regulated the protein levels of σ1 R in the VTA. These effects have similarities with IP injection of BD 1047 (10 mg/kg). Conclusion This study showed that acupuncture at HT7 regulates immobility and 22-kHz USVs via Sigma1 R in the VTA upon acute ETOH exposure.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yeonhee Ryu
- Corresponding author at: Clinical Medicine Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-Gu, Daejeon, 34054, Korea.
| |
Collapse
|
12
|
Wöhr M, Willadsen M, Kisko TM, Schwarting RKW, Fendt M. Sex-dependent effects of Cacna1c haploinsufficiency on behavioral inhibition evoked by conspecific alarm signals in rats. Prog Neuropsychopharmacol Biol Psychiatry 2020; 99:109849. [PMID: 31862418 DOI: 10.1016/j.pnpbp.2019.109849] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 01/10/2023]
Abstract
Deficits in processing social signals leads to reduced social functioning and is typically associated with neuropsychiatric disorders, including autism spectrum disorder, schizophrenia, and major depressive disorder. The cross-disorder risk gene CACNA1C is implicated in the etiology of all of these disorders and single-nucleotide polymorphisms within CACNA1C are ranked among the best replicated and most robust genetic findings from genome-wide association studies in psychiatry. Rats are highly social, live in large social groups, and communicate through ultrasonic vocalizations (USV), with low-frequency 22-kHz USV emitted in dangerous and often life-threating situations, such as predator exposure, serving an alarming function. In the present study, we applied an alarm 22-kHz USV playback paradigm to investigate the role of Cacna1c in socio-affective information processing in rats. Specifically, we assessed behavioral inhibition evoked by 22-kHz USV in constitutive heterozygous Cacna1c+/- females and males, as compared to wildtype Cacna1c+/+ littermate controls. To probe specificity, two sets of alarm 22-kHz USV were presented, i.e. 22-kHz USV elicited by predator urine exposure and 22-kHz USV emitted during a retention test on learned fear, together with acoustic control stimuli. Our results show that behavioral inhibition evoked by playback of alarm 22-kHz USV is robust and occurs in response to both sets, yet is modulated by Cacna1c in a sex-dependent manner. In male but not female rats, Cacna1c haploinsufficiency led to less pronounced and less specific behavioral inhibition, supporting the idea that Cacna1c haploinsufficiency results in a lower motivation and/or diminished capability to display appropriate responses to important socio-affective communication signals.
Collapse
Affiliation(s)
- Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Department of Psychology, Philipps-Universität Marburg, Gutenbergstr. 18, D-35032 Marburg, Germany; Center for Mind, Brain, and Behavior (CMBB), Philipps-Universität Marburg, Hans-Meerwein-Str. 6, D-35032 Marburg, Germany.
| | - Maria Willadsen
- Behavioral Neuroscience, Experimental and Biological Psychology, Department of Psychology, Philipps-Universität Marburg, Gutenbergstr. 18, D-35032 Marburg, Germany
| | - Theresa M Kisko
- Behavioral Neuroscience, Experimental and Biological Psychology, Department of Psychology, Philipps-Universität Marburg, Gutenbergstr. 18, D-35032 Marburg, Germany
| | - Rainer K W Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Department of Psychology, Philipps-Universität Marburg, Gutenbergstr. 18, D-35032 Marburg, Germany; Center for Mind, Brain, and Behavior (CMBB), Philipps-Universität Marburg, Hans-Meerwein-Str. 6, D-35032 Marburg, Germany
| | - Markus Fendt
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| |
Collapse
|
13
|
Abstract
The Norway rat has important impacts on our life. They are amongst the most used research subjects, resulting in ground-breaking advances. At the same time, wild rats live in close association with us, leading to various adverse interactions. In face of this relevance, it is surprising how little is known about their natural behaviour. While recent laboratory studies revealed their complex social skills, little is known about their social behaviour in the wild. An integration of these different scientific approaches is crucial to understand their social life, which will enable us to design more valid research paradigms, develop more effective management strategies, and to provide better welfare standards. Hence, I first summarise the literature on their natural social behaviour. Second, I provide an overview of recent developments concerning their social cognition. Third, I illustrate why an integration of these areas would be beneficial to optimise our interactions with them.
Collapse
Affiliation(s)
- Manon K Schweinfurth
- School of Psychology and Neuroscience, University of St AndrewsSt AndrewsUnited Kingdom
| |
Collapse
|
14
|
Redecker TM, Kisko TM, Schwarting RK, Wöhr M. Effects of Cacna1c haploinsufficiency on social interaction behavior and 50-kHz ultrasonic vocalizations in adult female rats. Behav Brain Res 2019; 367:35-52. [DOI: 10.1016/j.bbr.2019.03.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/03/2019] [Accepted: 03/15/2019] [Indexed: 01/28/2023]
|
15
|
Brudzynski SM. Emission of 22 kHz vocalizations in rats as an evolutionary equivalent of human crying: Relationship to depression. Behav Brain Res 2019; 363:1-12. [PMID: 30677449 DOI: 10.1016/j.bbr.2019.01.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 02/08/2023]
Abstract
There is no clear relationship between crying and depression based on human neuropsychiatric observations. This situation originates from lack of suitable animal models of human crying. In the present article, an attempt will be made to answer the question whether emission of rat aversive vocalizations (22 kHz calls) may be regarded as an evolutionary equivalent of adult human crying. Using this comparison, the symptom of crying in depressed human patients will be reanalyzed. Numerous features and characteristics of rat 22 kHz aversive vocalizations and human crying vocalizations are equivalent. Comparing evolutionary, biological, physiological, neurophysiological, social, pharmacological, and pathological aspects have shown vast majority of common features. It is concluded that emission of rat 22 kHz vocalizations may be treated as an evolutionary vocal homolog of human crying, although emission of 22 kHz calls is not exactly the same phenomenon because of significant differences in cognitive processes between these species. It is further concluded that rat 22 kHz vocalizations and human crying vocalizations are both expressing anxiety and not depression. Analysis of the relationship between anxiety and depression reported in clinical studies supports this conclusion regardless of the nature and extent of comorbidity between these pathological states.
Collapse
Affiliation(s)
- Stefan M Brudzynski
- Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
16
|
Fernández-Vargas M. Presence of a potential competitor and its individual identity modulate ultrasonic vocalizations in male hamsters. Anim Behav 2018. [DOI: 10.1016/j.anbehav.2018.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
Burke CJ, Kisko TM, Euston DR, Pellis SM. Do juvenile rats use specific ultrasonic calls to coordinate their social play? Anim Behav 2018. [DOI: 10.1016/j.anbehav.2018.03.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
18
|
Wöhr M, van Gaalen MM. Pharmacological Studies on the Role of Serotonin in Regulating Socioemotional Ultrasonic Vocalizations in Rats. HANDBOOK OF ULTRASONIC VOCALIZATION - A WINDOW INTO THE EMOTIONAL BRAIN 2018. [DOI: 10.1016/b978-0-12-809600-0.00028-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
19
|
Ultrasonic communication in rats: appetitive 50-kHz ultrasonic vocalizations as social contact calls. Behav Ecol Sociobiol 2017. [DOI: 10.1007/s00265-017-2427-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Burke CJ, Kisko TM, Swiftwolfe H, Pellis SM, Euston DR. Specific 50-kHz vocalizations are tightly linked to particular types of behavior in juvenile rats anticipating play. PLoS One 2017; 12:e0175841. [PMID: 28467436 PMCID: PMC5414981 DOI: 10.1371/journal.pone.0175841] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 04/01/2017] [Indexed: 11/19/2022] Open
Abstract
Rat ultrasonic vocalizations have been suggested to be either a byproduct of physical movement or, in the case of 50-kHz calls, a means to communicate positive affect. Yet there are up to 14 distinct types of 50-kHz calls, raising issues for both explanations. To discriminate between these theories and address the purpose for the numerous 50-kHz call types, we studied single juvenile rats that were waiting to play with a partner, a situation associated with a high number of 50-kHz calls. We used a Monte-Carlo shuffling procedure to identify vocalization-behavior correlations that were statistically different from chance. We found that certain call types ("split", "composite" and "multi-step") were strongly associated with running and jumping while other call types (those involving "trills") were more common during slower movements. Further, non-locomotor states such as resting and rearing were strongly predictive of a lack of vocalizations. We also found that the various sub-types of USVs can be clustered into 3-4 categories based on similarities in the way they are used. We did not find a one-to-one relationship between any movements and specific vocalizations, casting doubt on the motion byproduct theory. On the other hand, the use of specific calls during specific behaviors is problematic for the affect communication hypothesis. Based on our results, we suggest that ultrasonic calls may serve to coordinate moment-to-moment social interactions.
Collapse
Affiliation(s)
- Candace J. Burke
- Dept of Neuroscience, Univ. of Lethbridge, Lethbridge, AB, Canada
| | - Theresa M. Kisko
- Behavioural Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Gutenbergstr. 18, Marburg, Germany
| | | | - Sergio M. Pellis
- Dept of Neuroscience, Univ. of Lethbridge, Lethbridge, AB, Canada
| | - David R. Euston
- Dept of Neuroscience, Univ. of Lethbridge, Lethbridge, AB, Canada
- * E-mail:
| |
Collapse
|
21
|
Kagawa H, Seki Y, Okanoya K. Affective valence of neurons in the vicinity of the rat amygdala: Single unit activity in response to a conditioned behavior and vocal sound playback. Behav Brain Res 2017; 324:109-114. [DOI: 10.1016/j.bbr.2017.02.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/09/2017] [Accepted: 02/11/2017] [Indexed: 11/26/2022]
|
22
|
Wöhr M, Schwarting R. Rodent ultrasonic communication and its relevance for models of neuropsychiatric disorders. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s13295-010-0012-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Abstract
Mice and rats produce and perceive calls in the ultrasonic range (so-called ultrasonic vocalizations, USV). Various USV types can be differentiated on the basis of distinct acoustic features. Their occurrence is dependent on stage of development, affective state and social context. When separated from nest and littermates, young mice and rats emit isolation-induced USV, which induce maternal search and retrieval behaviour. Isolation-induced USV are used as an early marker of anxiety. Adult rats emit fear-induced USV in aversive situations such as predator exposure. They fulfil an alarm function and induce anxiety-related behaviour in conspecifics. Fear-induced USV are also used in the field of anxiety research. Finally, juvenile and adult mice and rats emit interaction-induced USV in presumably appetitive situations such as rough-and-tumble play or social investigation. As they can also be elicited by drugs of abuse, they are used in the field of addiction and depression research. They have an affiliative communicative function and induce social approach behaviour in the recipient. Focusing on the communicative function of interaction-induced USV, they serve as a measure for deficits in social behaviour and communication and hence are increasingly used in animal models for neurodevelopmental disorders such as autism.
Collapse
Affiliation(s)
- M. Wöhr
- Experimental and Physiological Psychology, Philipps University of Marburg Gutenbergstr. 18, 35032 Marburg, Germany
| | - R.K.W. Schwarting
- Experimental and Physiological Psychology, Philipps University of Marburg Gutenbergstr. 18, 35032 Marburg, Germany
| |
Collapse
|
23
|
Hernandez-Lallement J, van Wingerden M, Schäble S, Kalenscher T. A Social Reinforcement Learning Hypothesis of Mutual Reward Preferences in Rats. Curr Top Behav Neurosci 2017; 30:159-176. [PMID: 27179526 DOI: 10.1007/7854_2016_436] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Although the use of neuroimaging techniques has revealed much about the neural correlates of social decision making (SDM) in humans, it remains poorly understood how social stimuli are represented, and how social decisions are implemented at the neural level in humans and in other species. To address this issue, the establishment of novel animal paradigms allowing a broad spectrum of neurobiological causal manipulations and neurophysiological recordings provides an exciting tool to investigate the neural implementation of social valuation in the brain. Here, we discuss the potential of a rodent model, Rattus norvegicus, for the understanding of SDM and its neural underpinnings. Particularly, we consider recent data collected in a rodent prosocial choice task within a social reinforcement framework and discuss factors that could drive SDM in rodents.
Collapse
Affiliation(s)
- Julen Hernandez-Lallement
- Department of Comparative Psychology, Institute of Experimental Psychology, Heinrich-Heine University Düsseldorf, Düsseldorf, 40225, Germany.
| | - Marijn van Wingerden
- Department of Comparative Psychology, Institute of Experimental Psychology, Heinrich-Heine University Düsseldorf, Düsseldorf, 40225, Germany
| | - Sandra Schäble
- Department of Comparative Psychology, Institute of Experimental Psychology, Heinrich-Heine University Düsseldorf, Düsseldorf, 40225, Germany
| | - Tobias Kalenscher
- Department of Comparative Psychology, Institute of Experimental Psychology, Heinrich-Heine University Düsseldorf, Düsseldorf, 40225, Germany
| |
Collapse
|
24
|
Abstract
Over the past two decades, the question of how our brain makes us sensitive to the state of conspecifics and how that affects our behaviour has undergone a profound change. Twenty years ago what would now be called social neuroscience was focused on the visual processing of facial expressions and body movements in temporal lobe structures of primates (Puce and Perrett 2003). With the discovery of mirror neurons, this changed rapidly towards the modern field of social neuroscience, in which high-level vision is but one of many focuses of interest. In this essay, we will argue that for the further progress of the field, the integration of animal neuroscience and human neuroscience is paramount. We will do so, by focusing on the field of embodied social cognition. We will first show how the combination of animal and human neuroscience was critical in how the discovery of mirror neurons placed the motor system on the map of social cognition. We will then argue why an integrated cross-species approach will be pivotal to our understanding of the neural basis of emotional empathy and its link to prosocial behaviour.
Collapse
Affiliation(s)
- Christian Keysers
- Netherlands Institute for Neuroscience, A Research Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands.
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands.
| | - Valeria Gazzola
- Netherlands Institute for Neuroscience, A Research Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
25
|
Wöhr M, Engelhardt KA, Seffer D, Sungur AÖ, Schwarting RKW. Acoustic Communication in Rats: Effects of Social Experiences on Ultrasonic Vocalizations as Socio-affective Signals. Curr Top Behav Neurosci 2017; 30:67-89. [PMID: 26577915 DOI: 10.1007/7854_2015_410] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Ultrasonic vocalizations (USV) serve important communicative functions as socio-affective signals in rats. In aversive situations, such as inter-male aggression and predator exposure, 22-kHz USV are emitted. They likely function as appeasement signals during fighting and/or as alarm calls to warn conspecifics. In appetitive situations, 50-kHz USV are uttered, most notably during social interactions, such as rough-and-tumble play and mating. It is believed that they fulfill an affiliative function as social contact calls. Social experiences or their lack, such as social isolation, can have profound impact on the emission of 22- and 50-kHz USV by the sender in later life, albeit direction and strength of observed effects vary, with time point of occurrence and duration being critical determinants. Little, however, is known about how social experiences affect the behavioral responses evoked by 22- and 50-kHz USV in the recipient. By means of our 50-kHz USV radial maze playback paradigm, we recently showed that the behavioral response elicited in the recipient is affected by post-weaning social isolation. Rats exposed to four weeks of isolation during the rough-and-tumble play period did not display social approach behavior toward 50-kHz USV but some signs of social avoidance. We further found that physical environmental enrichment providing minimal opportunities for social interactions has similar detrimental effects. Together, this indicates that social experiences can affect socio-affective communication in rodents, both at the level of sender and recipient. Deficits seen following post-weaning social isolation or physical environmental enrichment might be useful to model aspects of neurodevelopmental disorders characterized by social and communication deficits, such as autism and schizophrenia.
Collapse
Affiliation(s)
- Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Gutenbergstr. 18, 35032, Marburg, Germany.
| | - K Alexander Engelhardt
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Gutenbergstr. 18, 35032, Marburg, Germany
| | - Dominik Seffer
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Gutenbergstr. 18, 35032, Marburg, Germany
| | - A Özge Sungur
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Gutenbergstr. 18, 35032, Marburg, Germany
| | - Rainer K W Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Gutenbergstr. 18, 35032, Marburg, Germany
| |
Collapse
|
26
|
Inagaki H, Ushida T. Changes in acoustic startle reflex in rats induced by playback of 22-kHz calls. Physiol Behav 2016; 169:189-194. [PMID: 27876638 DOI: 10.1016/j.physbeh.2016.11.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/18/2016] [Accepted: 11/18/2016] [Indexed: 10/20/2022]
Abstract
In aversive or dangerous situations, adult rats emit long characteristic ultrasonic calls, often termed "22-kHz calls," which have been suggested to play a role of alarm calls. Although the playback experiment is one of the most effective ways to investigate the alarming properties of 22-kHz calls, clear behavioral evidence showing the anxiogenic effects of these playback stimuli has not been directly obtained to date. In this study, we investigated whether playback of 22-kHz calls or synthesized sine tones could change the acoustic startle reflex (ASR), enhancement of which is widely considered to be a reliable index of anxiety-related negative affective states in rats. Playback of 22-kHz calls significantly enhanced the ASR in rats. Enhancement effects caused by playback of 22-kHz calls from young rats were relatively weak compared to those after calls from adult rats. Playback of synthesized 25-kHz sine tones enhanced ASR in subjects, but not synthesized 60-kHz tones. Further, shortening the individual call duration of synthesized 25-kHz sine tones also enhanced the ASR. Accordingly, it is suggested that 22-kHz calls induce anxiety by socially communicated alarming signals in rats. The results also demonstrated that call frequency, i.e., of 22kHz, appears important for ultrasonic alarm-signal communication in rats.
Collapse
Affiliation(s)
- Hideaki Inagaki
- Center for Animal Research and Education, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | - Takahiro Ushida
- Multidisciplinary Pain Center, Aichi Medical University, Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| |
Collapse
|
27
|
Seagraves KM, Arthur BJ, Egnor SER. Evidence for an audience effect in mice: male social partners alter the male vocal response to female cues. J Exp Biol 2016; 219:1437-48. [PMID: 27207951 PMCID: PMC4874560 DOI: 10.1242/jeb.129361] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 02/23/2016] [Indexed: 11/20/2022]
Abstract
Mice (Mus musculus) form large and dynamic social groups and emit ultrasonic vocalizations in a variety of social contexts. Surprisingly, these vocalizations have been studied almost exclusively in the context of cues from only one social partner, despite the observation that in many social species the presence of additional listeners changes the structure of communication signals. Here, we show that male vocal behavior elicited by female odor is affected by the presence of a male audience - with changes in vocalization count, acoustic structure and syllable complexity. We further show that single sensory cues are not sufficient to elicit this audience effect, indicating that multiple cues may be necessary for an audience to be apparent. Together, these experiments reveal that some features of mouse vocal behavior are only expressed in more complex social situations, and introduce a powerful new assay for measuring detection of the presence of social partners in mice.
Collapse
Affiliation(s)
- Kelly M Seagraves
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Ben J Arthur
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - S E Roian Egnor
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| |
Collapse
|
28
|
Basolateral amygdala lesions abolish mutual reward preferences in rats. Neurobiol Learn Mem 2016; 127:1-9. [DOI: 10.1016/j.nlm.2015.11.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/08/2015] [Indexed: 12/22/2022]
|
29
|
Hamed A, Szyndler J, Taracha E, Turzyńska D, Sobolewska A, Lehner M, Krząścik P, Daszczuk P. κ-opioid receptor as a key mediator in the regulation of appetitive 50-kHz ultrasonic vocalizations. Psychopharmacology (Berl) 2015; 232:1941-55. [PMID: 25466704 DOI: 10.1007/s00213-014-3824-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 11/20/2014] [Indexed: 12/18/2022]
Abstract
RATIONALE Acute administration of high doses of morphine reduced 50-kHz ultrasonic vocalizations (USVs). Although morphine meets the classical criteria for inducing 50-kHz USVs (it causes place preference and induces dopamine release in nucleus accumbens), it also inhibits appetitive vocalizations. OBJECTIVE The aims of this study were to (i) study the pharmacological impact of κ-opioid (KOR) and μ-opioid receptor (MOR) ligands on the emission of 50-kHz USVs triggered by social interaction after long-term isolation and (ii) analyze the concentrations of the main neurotransmitters in reward-related structures (ventral tegmental area (VTA), nucleus accumbens (NAcc), and medial prefrontal cortex (mPFC)). METHODS In an attempt to define the effects of opioid-receptor activation on the reward system, we used a social interaction test (after 21 days isolation). HPLC analysis was used to determine the monoamine and amino acid concentrations in reward-related structures. RESULTS U-50488 (10.0 mg/kg), morphine (5.0 and 1.0 mg/kg), and naltrexone (5.0 mg/kg) decreased, and nor-BNI (10.0 mg/kg) increased 50-kHz USVs. Acute pretreatment with nor-BNI or naltrexone reduced the 50-kHz suppression induced via morphine. The biochemical data showed several variations between groups regarding dopamine concentrations, serotonin, and their metabolites; these data may suggest that the levels of emitted ultrasound in the 50-kHz band are inversely proportional to the 5-hydroxyindoleacetic acid (5-HIAA)/3-methoxytyramine (3-MT) ratio in the VTA. CONCLUSIONS These results indicate an important role for KOR in the regulation of 50-kHz USV emissions and suggest that KOR activation may be a key mediator in the regulation of reward responses. Changes in the balance between serotonin and dopamine concentrations in the VTA may be a key predictor for 50-kHz USV emission.
Collapse
Affiliation(s)
- Adam Hamed
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, Warsaw, 02-957, Poland,
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Pro-social ultrasonic communication in rats: insights from playback studies. J Neurosci Methods 2014; 234:73-81. [PMID: 24508146 DOI: 10.1016/j.jneumeth.2014.01.023] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/13/2014] [Accepted: 01/14/2014] [Indexed: 12/17/2022]
Abstract
Rodent ultrasonic vocalizations (USV) serve as situation-dependent affective signals and convey important communicative functions. In the rat, three major USV types exist: (I) 40-kHz USV, which are emitted by pups during social isolation; (II) 22-kHz USV, which are produced by juvenile and adult rats in aversive situations, including social defeat; and (III) 50-kHz USV, which are uttered by juvenile and adult rats in appetitive situations, including rough-and-tumble play. Here, evidence for a communicative function of 50-kHz USV is reviewed, focusing on findings obtained in the recently developed 50-kHz USV radial maze playback paradigm. Up to now, the following five acoustic stimuli were tested in this paradigm: (A) natural 50-kHz USV, (B) natural 22-kHz USV, (C) artificial 50-kHz sine wave tones, (D) artificial time- and amplitude-matched white noise, and (E) background noise. All studies using the 50-kHz USV radial maze playback paradigm indicate that 50-kHz USV serve a pro-social affiliative function as social contact calls. While playback of the different kinds of acoustic stimuli used so far elicited distinct behavioral response patterns, 50-kHz USV consistently led to social approach behavior in the recipient, indicating that pro-social ultrasonic communication can be studied in a reliable and highly standardized manner by means of the 50-kHz USV radial maze playback paradigm. This appears to be particularly relevant for rodent models of neurodevelopmental disorders, as there is a tremendous need for reliable behavioral assays with face validity to social communication deficits seen in autism and schizophrenia in order to study underlying genetic and neurobiological alterations.
Collapse
|
31
|
Ragan CM, Lonstein JS. Differential postpartum sensitivity to the anxiety-modulating effects of offspring contact is associated with innate anxiety and brainstem levels of dopamine beta-hydroxylase in female laboratory rats. Neuroscience 2014; 256:433-44. [PMID: 24161285 PMCID: PMC4097074 DOI: 10.1016/j.neuroscience.2013.10.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 09/26/2013] [Accepted: 10/09/2013] [Indexed: 12/15/2022]
Abstract
In female mammals, the postpartum period involves dramatic shifts in many socioemotional behaviors. This includes a suppression of anxiety-related behaviors that requires recent physical contact with offspring. Factors contributing to differences among females in their susceptibility to the anxiety-modulating effect of offspring contact are unknown, but could include their innate anxiety and brain monoaminergic activity. Anxiety behavior was assessed in a large group of nulliparous female rats and the least-anxious and most-anxious tertiles were mated. Anxiety was assessed again postpartum after females were permitted or prevented from contacting their offspring 4 h before testing. Levels of dopamine β-hydroxylase (DBH, norepinephrine synthesizing enzyme) and tryptophan hydroxylase-2 (TPH2, serotonin synthesizing enzyme) were measured in the brainstem and dorsal raphe, respectively. It was found that anxiety-related behavior in the two groups did not differ when dams were permitted contact with offspring before testing. Removal of the offspring before testing, however, differentially affected anxiety based on dams' innate anxiety. Specifically, dams reverted back to their pre-mating levels of anxiety such that offspring removal slightly increased anxiety in the most-anxious females but greatly lowered anxiety in the least-anxious females. This reduction in anxiety in the least-anxious females after litter removal was associated with lower brainstem DBH. There was no relationship between females' anxiety and dorsal raphe TPH2. Thus, a primary effect of recent contact with offspring on anxiety-related behavior in postpartum rats is to shift females away from their innate anxiety to a more moderate level of responding. This effect is particularly true for females with the lowest anxiety, may be mediated by central noradrenergic systems, and has implications for their ability to attend to their offspring.
Collapse
Affiliation(s)
- C M Ragan
- Department of Psychology and Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI 48824, USA.
| | - J S Lonstein
- Department of Psychology and Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI 48824, USA.
| |
Collapse
|
32
|
Zaccaroni M, Binazzi R, Massolo A, Dessì-Fulgheri F. Audience effect on aerial alarm calls in the monogamous red-legged partridge. ETHOL ECOL EVOL 2013. [DOI: 10.1080/03949370.2013.798352] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Panksepp J, Panksepp JB. Toward a cross-species understanding of empathy. Trends Neurosci 2013; 36:489-96. [PMID: 23746460 DOI: 10.1016/j.tins.2013.04.009] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 04/18/2013] [Accepted: 04/24/2013] [Indexed: 12/30/2022]
Abstract
Although signs of empathy have now been well documented in non-human primates, only during the past few years have systematic observations suggested that a primal form of empathy exists in rodents. Thus, the study of empathy in animals has started in earnest. Here we review recent studies indicating that rodents are able to share states of fear, and highlight how affective neuroscience approaches to the study of primary-process emotional systems can help to delineate how primal empathy is constituted in mammalian brains. Cross-species evolutionary approaches to understanding the neural circuitry of emotional 'contagion' or 'resonance' between nearby animals, together with the underlying neurochemistries, may help to clarify the origins of human empathy.
Collapse
Affiliation(s)
- Jaak Panksepp
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6520, USA.
| | | |
Collapse
|
34
|
Wöhr M, Schwarting RKW. Affective communication in rodents: ultrasonic vocalizations as a tool for research on emotion and motivation. Cell Tissue Res 2013; 354:81-97. [DOI: 10.1007/s00441-013-1607-9] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 02/28/2013] [Indexed: 10/27/2022]
|
35
|
Yee N, Schwarting RKW, Fuchs E, Wöhr M. Juvenile stress potentiates aversive 22-kHz ultrasonic vocalizations and freezing during auditory fear conditioning in adult male rats. Stress 2012; 15:533-44. [PMID: 22150360 DOI: 10.3109/10253890.2011.646348] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Traumatic experiences that occur during adolescence can render individuals vulnerable to mood and anxiety disorders. A model in juvenile rats (age: 27-29 days) was developed previously to study the long-term effects of adolescent stress exposure on behaviour and physiology. This paradigm, termed juvenile stress, involves subjecting juvenile rats to different stressors on consecutive days over a 3-day period. Here, we investigated the effects of the juvenile stress paradigm on freezing behaviour and aversive 22-kHz ultrasonic vocalizations (USVs) during auditory fear conditioning in adult male rats (age: 68-90 days). We found that rats previously subjected to juvenile stress increased aversive 22-kHz USVs (total calls and time spent calling) compared with controls during fear-conditioning training. The acoustic USV parameters between control and juvenile stress rats were largely equivalent, including duration, peak frequency and amplitude. While rats did not differ in freezing behaviour during fear conditioning, juvenile stress rats exhibited greater cue-conditioned freezing upon testing 24 h later. Our results show that juvenile stress elicited different long-term changes in freezing and aversive USVs during fear conditioning. Furthermore, they highlight the importance of assessing USVs to detect experience-dependent differences between control and stress-exposed animals which are not detectable by measuring visible behaviour.
Collapse
Affiliation(s)
- Nicole Yee
- Clinical Neurobiology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, Göttingen 37077, Germany.
| | | | | | | |
Collapse
|
36
|
Testing social acoustic memory in rats: effects of stimulus configuration and long-term memory on the induction of social approach behavior by appetitive 50-kHz ultrasonic vocalizations. Neurobiol Learn Mem 2012; 98:154-64. [PMID: 22677211 DOI: 10.1016/j.nlm.2012.05.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 05/18/2012] [Accepted: 05/23/2012] [Indexed: 02/03/2023]
Abstract
Rats emit distinct types of ultrasonic vocalizations (USVs), which serve as situation-dependent affective signals. In appetitive situations, such as rough-and-tumble-play, high-frequency 50-kHz USVs occur, whereas low-frequency 22-kHz USVs can be observed in aversive situations, such as social defeat. USVs serve distinct communicative functions and induce call-specific behavioral responses in the receiver. While aversive 22-kHz USVs serve as alarm calls and induce behavioral inhibition, appetitive 50-kHz USVs have a pro-social communicative function and elicit social approach behavior, supporting the notion that they serve as social contact calls to (re)establish or maintain contact among conspecifics. The aim of the present study was to use the rat's ability to communicate in the ultrasonic range via high-frequency 50-kHz USVs in order to develop a test for social acoustic memory in rats with relevance for human verbal memory. Verbal learning and memory is among the seven cognitive domains identified as commonly deficient in human schizophrenia patients, but particularly difficult to model. We therefore tested whether the induction of social approach behavior by playback of appetitive 50-kHz USVs is dependent on (1) acoustic stimulus configuration and (2) social long-term memory, and whether (3) social long-term memory effects can be blocked by the administration of scopolamine, a muscarinic acetylcholine antagonist producing amnesia. Results show that social approach behavior in response to playback of natural 50-kHz USVs depends on acoustic stimulus configuration and occurs only when sound energy is concentrated to a critical frequency band in the ultrasonic range. Social approach behavior was detected during the first exposure to playback of 50-kHz USVs, whereas no such response was observed during the second exposure 1week later, indicating a stable memory trace. In contrast, when memory formation was blocked by i.p. administration of scopolamine (0.5mg/kg or 1.5mg/kg) immediately after the first exposure, rats displayed social approach behavior during the second exposure as well. Induction of social approach behavior in response to repeated playback of natural 50-kHz USVs may therefore provide a new and rather unique approach for testing social acoustic memory in rats with relevance to human verbal memory.
Collapse
|
37
|
Schwarting RKW, Wöhr M. On the relationships between ultrasonic calling and anxiety-related behavior in rats. Braz J Med Biol Res 2012; 45:337-48. [PMID: 22437483 PMCID: PMC3854164 DOI: 10.1590/s0100-879x2012007500038] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 03/08/2012] [Indexed: 11/22/2022] Open
Abstract
In the present review, the phenomenon of ultrasonic vocalization in rats will be outlined, including the three classes of vocalizations, namely 40-kHz calls of pups, and 22- and 50-kHz calls of juvenile and adult rats, their general relevance to behavioral neuroscience, and their special relevance to research on anxiety, fear, and defense mechanisms. Here, the emphasis will be placed on 40- and 22-kHz calls, since they are typical for various situations with aversive properties. Among other topics, we will discuss whether such behavioral signals can index a certain affective state, and how these signals can be used in social neuroscience, especially with respect to communication. Furthermore, we will address the phenomenon of inter-individual variability in ultrasonic calling and what we currently know about the mechanisms, which may determine such variability. Finally, we will address the current knowledge on the neural and pharmacological mechanisms underlying 22-kHz ultrasonic vocalization, which show a substantial overlap with mechanisms known from other research on fear and anxiety, such as those involving the periaqueductal gray or the amygdala.
Collapse
Affiliation(s)
- R K W Schwarting
- Experimental and Physiological Psychology, Philipps-University of Marburg, Germany.
| | | |
Collapse
|
38
|
Panksepp JB, Lahvis GP. Rodent empathy and affective neuroscience. Neurosci Biobehav Rev 2011; 35:1864-75. [PMID: 21672550 DOI: 10.1016/j.neubiorev.2011.05.013] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 05/24/2011] [Accepted: 05/27/2011] [Indexed: 12/30/2022]
Abstract
In the past few years, several experimental studies have suggested that empathy occurs in the social lives of rodents. Thus, rodent behavioral models can now be developed to elucidate the mechanistic substrates of empathy at levels that have heretofore been unavailable. For example, the finding that mice from certain inbred strains express behavioral and physiological responses to conspecific distress, while others do not, underscores that the genetic underpinnings of empathy are specifiable and that they could be harnessed to develop new therapies for human psychosocial impairments. However, the advent of rodent models of empathy is met at the outset with a number of theoretical and semantic problems that are similar to those previously confronted by studies of empathy in humans. The distinct underlying components of empathy must be differentiated from one another and from lay usage of the term. The primary goal of this paper is to review a set of seminal studies that are directly relevant to developing a concept of empathy in rodents. We first consider some of the psychological phenomena that have been associated with empathy, and within this context, we consider the component processes, or endophenotypes of rodent empathy. We then review a series of recent experimental studies that demonstrate the capability of rodents to detect and respond to the affective state of their social partners. We focus primarily on experiments that examine how rodents share affective experiences of fear, but we also highlight how similar types of experimental paradigms can be utilized to evaluate the possibility that rodents share positive affective experiences. Taken together, these studies were inspired by Jaak Panksepp's theory that all mammals are capable of felt affective experiences.
Collapse
Affiliation(s)
- Jules B Panksepp
- Department of Behavioral Neuroscience, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, L470, Portland, OR 97239, USA.
| | | |
Collapse
|
39
|
Roullet FI, Wöhr M, Crawley JN. Female urine-induced male mice ultrasonic vocalizations, but not scent-marking, is modulated by social experience. Behav Brain Res 2011; 216:19-28. [PMID: 20540967 PMCID: PMC3094925 DOI: 10.1016/j.bbr.2010.06.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 05/25/2010] [Accepted: 06/01/2010] [Indexed: 12/20/2022]
Abstract
Despite the evidence for a communicative function of rodent scent marks and ultrasonic vocalizations, relatively little is known about the impact of social factors on these two forms of communication. Here, we tested the effects of two important social factors, prior exposure to a female and freshness of female urine, on male scent marks and ultrasonic vocalizations elicited by female urine. We also asked whether a recently reported strain difference between the highly social strain C57BL/6J (B6) and the mouse model of autism BTBR T+tf/J (BTBR) herein is specifically seen in response to female urine or also detectable in response to male urine traces. Results show that the emission of female urine-elicited ultrasonic vocalizations was dependent on previous female experience, while scent-marking behavior was not affected. A positive correlation was detected between scent-marking behavior and ultrasonic calling in the most biologically relevant context, male mice exposed to fresh female urine after female experience. Correlations were less prominent or missing in less biologically relevant contexts, e.g. in male mice exposed to fresh female urine without previous female experience, indicating that previous female experience is affecting both the emission of female urine-elicited ultrasonic vocalizations and the correlation between olfactory and acoustic communication. The strain difference in scent-marking behavior and ultrasonic calling between B6 and BTBR appears to be specific to female urine-elicited behavior as it was not seen in response to male urine traces, highlighting the relevance of the social context in which mouse communication is evaluated.
Collapse
Affiliation(s)
- Florence I Roullet
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
40
|
Kim EJ, Kim ES, Covey E, Kim JJ. Social transmission of fear in rats: the role of 22-kHz ultrasonic distress vocalization. PLoS One 2010; 5:e15077. [PMID: 21152023 PMCID: PMC2995742 DOI: 10.1371/journal.pone.0015077] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 10/18/2010] [Indexed: 11/17/2022] Open
Abstract
Background Social alarm calls alert animals to potential danger and thereby promote group survival. Adult laboratory rats in distress emit 22-kHz ultrasonic vocalization (USV) calls, but the question of whether these USV calls directly elicit defensive behavior in conspecifics is unresolved. Methodology/Principal Findings The present study investigated, in pair-housed male rats, whether and how the conditioned fear-induced 22-kHz USVs emitted by the ‘sender’ animal affect the behavior of its partner, the ‘receiver’ animal, when both are placed together in a novel chamber. The sender rats’ conditioned fear responses evoked significant freezing (an overt evidence of fear) in receiver rats that had previously experienced an aversive event but not in naïve receiver rats. Permanent lesions and reversible inactivations of the medial geniculate nucleus (MGN) of the thalamus effectively blocked the receivers’ freeezing response to the senders' conditioned fear responses, and this occurred in absence of lesions/inactivations impeding the receiver animals' ability to freeze and emit 22-kHz USVs to the aversive event per se. Conclusions/Significance These results—that prior experience of fear and intact auditory system are required for receiver rats to respond to their conspecifics' conditioned fear responses—indicate that the 22-kHz USV is the main factor for social transmission of fear and that learning plays a crucial role in the development of social signaling of danger by USVs.
Collapse
Affiliation(s)
- Eun Joo Kim
- Department of Psychology, University of Washington, Seattle, Washington, United States of America
| | | | | | | |
Collapse
|
41
|
Wöhr M, Schwarting RK. Activation of limbic system structures by replay of ultrasonic vocalization in rats. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2010. [DOI: 10.1016/b978-0-12-374593-4.00012-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Ultrasonic communication in rats: Effects of morphine and naloxone on vocal and behavioral responses to playback of 50-kHz vocalizations. Pharmacol Biochem Behav 2009; 94:285-95. [DOI: 10.1016/j.pbb.2009.09.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 09/05/2009] [Accepted: 09/08/2009] [Indexed: 02/05/2023]
|
43
|
|