1
|
Robayo Noguera L, Stevenson CAL, Wang T, Pasquale MK, Branch CL. Variation in plumage reflectance but not song reflects spatial cognitive performance in black-capped chickadees (Poecile atricapillus). Anim Cogn 2025; 28:14. [PMID: 39969633 PMCID: PMC11839785 DOI: 10.1007/s10071-025-01935-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/16/2025] [Accepted: 02/03/2025] [Indexed: 02/20/2025]
Abstract
In seasonally variable environments, enhanced cognitive abilities may allow animals to adjust their behavior to changing conditions. Nonmigratory food-caching birds, like chickadees, rely on specialized spatial cognition to successfully cache and retrieve food items and survive the winter. Previous studies have linked spatial cognitive performance in chickadees to enhanced fitness, including survival and reproduction; however, it remains unknown whether females assess male cognitive ability via direct observation or secondary sexual traits. In this study, we investigated whether variation in common secondary sexual traits of songbirds, song and plumage, serve as indicators of cognitive ability in black-capped chickadees (Poecile atricapillus) when accounting for dominance rank. To explore this, we brought wild male black-capped chickadees into captivity, tested their performance in three spatial cognitive abilities (spatial learning, cognitive flexibility, and long-term retention), determined the relative social dominance ranks among all individuals, measured plumage reflectance in six body regions, and recorded their fee-bee songs to assess the relationship between these variables. Our findings show that birds with brighter white plumage and greater contrast between black and white plumage patches showed better spatial learning and memory performance. In contrast, we found no significant associations between cognitive performance and song variation. Our results suggest that females may use some secondary sexual traits as signals for cognitive performance, although, we suggest direct observation may also be important for mate choice involving cognitive ability in chickadees. This work provides insights into female mating decisions, highlighting the complex nature of sexual selection and female preferences.
Collapse
Affiliation(s)
| | | | - Tianconghui Wang
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Matteo K Pasquale
- Department of Psychology, University of Western Ontario, London, ON, Canada
| | - Carrie L Branch
- Department of Psychology, University of Western Ontario, London, ON, Canada.
- Department of Biology, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
2
|
Kim D, Thompson PR, Wolfson DW, Merkle JA, Oliveira-Santos LGR, Forester JD, Avgar T, Lewis MA, Fieberg J. Identifying signals of memory from observations of animal movements. MOVEMENT ECOLOGY 2024; 12:72. [PMID: 39558435 PMCID: PMC11575436 DOI: 10.1186/s40462-024-00510-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/03/2024] [Indexed: 11/20/2024]
Abstract
Incorporating memory (i.e., some notion of familiarity or experience with the landscape) into models of animal movement is a rising challenge in the field of movement ecology. The recent proliferation of new methods offers new opportunities to understand how memory influences movement. However, there are no clear guidelines for practitioners wishing to parameterize the effects of memory on moving animals. We review approaches for incorporating memory into step-selection analyses (SSAs), a frequently used movement modeling framework. Memory-informed SSAs can be constructed by including spatial-temporal covariates (or maps) that define some aspect of familiarity (e.g., whether, how often, or how long ago the animal visited different spatial locations) derived from long-term telemetry data. We demonstrate how various familiarity covariates can be included in SSAs using a series of coded examples in which we fit models to wildlife tracking data from a wide range of taxa. We discuss how these different approaches can be used to address questions related to whether and how animals use information from past experiences to inform their future movements. We also highlight challenges and decisions that the user must make when applying these methods to their tracking data. By reviewing different approaches and providing code templates for their implementation, we hope to inspire practitioners to investigate further the importance of memory in animal movements using wildlife tracking data.
Collapse
Affiliation(s)
- Dongmin Kim
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, USA.
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | - Peter R Thompson
- School of Environmental Science, Simon Fraser University, Burnaby, BC, Canada
| | - David W Wolfson
- Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St. Paul, MN, USA
| | - Jerod A Merkle
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | - L G R Oliveira-Santos
- Departmento de Ecologia, Universidade Federal do Mato Grosso do Sul, Campo Grande, Brazil
| | - James D Forester
- Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St. Paul, MN, USA
| | - Tal Avgar
- Department of Biology, University of British Columbia-Okanagan and Wildlife Science Centre, Biodiversity Pathways Ltd, Kelowna, BC, Canada
| | - Mark A Lewis
- Department of Mathematics and Statistics and Department of Biology, University of Victoria, Victoria, BC, Canada
| | - John Fieberg
- Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
3
|
Hope SF, Willgohs KR, Dittakul S, Plotnik JM. Do elephants really never forget? What we know about elephant memory and a call for further investigation. Learn Behav 2024:10.3758/s13420-024-00655-y. [PMID: 39438402 DOI: 10.3758/s13420-024-00655-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
Despite popular culture's promotion of the elephant's ability to "never forget," there is remarkably limited empirical research on the memory capacities of any living elephant species (Asian, Elephas maximus; African savanna, Loxodonta africana; African forest, Loxodonta cyclotis). A growing body of literature on elephant cognition and behavioral ecology has provided insight into the elephant's ability to behave flexibly in changing physical and social environments, but little direct evidence of how memory might relate to this flexibility exists. In this paper, we review and discuss the potential relationships between what we know about elephant cognition and behavior and the elephants' memory for the world around them as they navigate their physical, social, and spatial environments. We also discuss future directions for investigating elephant memory and implications for such research on elephant conservation and human-elephant conflict mitigation.
Collapse
Affiliation(s)
- Sydney F Hope
- Department of Psychology, Hunter College, City University of New York, 695 Park Avenue, New York, NY, 10065, USA.
| | - Kaitlyn R Willgohs
- Department of Psychology, Hunter College, City University of New York, 695 Park Avenue, New York, NY, 10065, USA
- Department of Psychology, The Graduate Center, City University of New York, New York, NY, 10016, USA
| | - Sangpa Dittakul
- Department of Psychology, Hunter College, City University of New York, 695 Park Avenue, New York, NY, 10065, USA
- Golden Triangle Asian Elephant Foundation, Chiang Saen, Chiang Rai, 57150, Thailand
| | - Joshua M Plotnik
- Department of Psychology, Hunter College, City University of New York, 695 Park Avenue, New York, NY, 10065, USA.
- Department of Psychology, The Graduate Center, City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
4
|
Welklin JF, Sonnenberg BR, Branch CL, Heinen VK, Pitera AM, Benedict LM, Whitenack LE, Bridge ES, Pravosudov VV. Spatial cognitive ability is associated with longevity in food-caching chickadees. Science 2024; 385:1111-1115. [PMID: 39236187 DOI: 10.1126/science.adn5633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/01/2024] [Accepted: 07/19/2024] [Indexed: 09/07/2024]
Abstract
Cognitive abilities are hypothesized to affect survival and life span in nonhuman animals. However, most tests of this hypothesis have relied on interspecific comparisons of indirect measures of cognitive ability, such as brain size. We present direct evidence that individual variation in cognitive abilities is associated with differences in life span in a wild food caching bird. We measured the spatial cognitive abilities and tracked the life span of 227 mountain chickadees (Poecile gambeli) in their natural environment and found that individuals with better spatial learning and memory abilities involved in food caching lived longer. These results confirm that enhanced cognitive abilities can be associated with longer life in wild animals and that selection on cognitive abilities can lead to increased life span.
Collapse
|
5
|
Ghahri Lalaklou Z, Haghighat-Manesh E, Montazeri Ghahjavarestani A, Ahmadi E. The effect of transcranial alternating current stimulation on cognitive flexibility and attention of children with intellectual disability: a case report. J Med Case Rep 2024; 18:310. [PMID: 38965608 PMCID: PMC11225214 DOI: 10.1186/s13256-024-04625-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/07/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Intellectual disability is a neurodevelopmental disorder characterized by significant impairments in intellectual functioning and adaptive behavior. Cognitive flexibility and attention are crucial cognitive domains often affected in children with intellectual disability. This case report explores the novel use of transcranial alternating current stimulation, a noninvasive brain stimulation technique, to enhance these cognitive functions. The study's novelty lies in its focus on alpha-wave frequency transcranial alternating current stimulation targeting specific Brodmann areas and its potential sustained impact on cognitive flexibility and attention in the pediatric population with intellectual disability. CASE PRESENTATION The case study involved two elementary school students, both 7 years old with mild intellectual disability, one male and one female, both with Turkic ethnicity, from Shahid Fahmideh School for Exceptional Children in Khosrowshah, Iran. Both participants underwent a 2-week intervention with daily 20-minute sessions of transcranial alternating current stimulation at an alpha-wave frequency (10 Hz), targeting Brodmann areas F3 and P3. Cognitive flexibility and attention were assessed using the Wisconsin Card Sorting Test and the Clock Test, administered at four time points: pre-intervention, week 1, week 2, and 1 month post-intervention. Statistical analysis showed significant improvements in both Wisconsin Card Sorting Test and Clock Test scores for both participants compared with baseline, with sustained enhancement over time. CONCLUSION The findings from this case report indicate that transcranial alternating current stimulation may be a promising intervention for improving cognitive flexibility and attention in children with intellectual disability. The significant and sustained improvements observed suggest that transcranial alternating current stimulation could have a meaningful clinical impact on the cognitive development of this population. However, further research is needed to confirm the efficacy of transcranial alternating current stimulation and to explore its broader applicability and long-term effects in larger, more diverse populations.
Collapse
Affiliation(s)
- Zahra Ghahri Lalaklou
- Faculty of Psychology and Educational Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran.
| | - Elahe Haghighat-Manesh
- Department of Basic Sciences, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | | | - Ezzatollah Ahmadi
- Faculty of Psychology and Educational Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran.
| |
Collapse
|
6
|
Semenov GA, Sonnenberg BR, Branch CL, Heinen VK, Welklin JF, Padula SR, Patel AM, Bridge ES, Pravosudov VV, Taylor SA. Genes and gene networks underlying spatial cognition in food-caching chickadees. Curr Biol 2024; 34:1930-1939.e4. [PMID: 38636515 DOI: 10.1016/j.cub.2024.03.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/06/2023] [Accepted: 03/26/2024] [Indexed: 04/20/2024]
Abstract
Substantial progress has been made in understanding the genetic architecture of phenotypes involved in a variety of evolutionary processes. Behavioral genetics remains, however, among the least understood. We explore the genetic architecture of spatial cognitive abilities in a wild passerine bird, the mountain chickadee (Poecile gambeli). Mountain chickadees cache thousands of seeds in the fall and require specialized spatial memory to recover these caches throughout the winter. We previously showed that variation in spatial cognition has a direct effect on fitness and has a genetic basis. It remains unknown which specific genes and developmental pathways are particularly important for shaping spatial cognition. To further dissect the genetic basis of spatial cognitive abilities, we combine experimental quantification of spatial cognition in wild chickadees with whole-genome sequencing of 162 individuals, a new chromosome-scale reference genome, and species-specific gene annotation. We have identified a set of genes and developmental pathways that play a key role in creating variation in spatial cognition and found that the mechanism shaping cognitive variation is consistent with selection against mildly deleterious non-coding mutations. Although some candidate genes were organized into connected gene networks, about half do not have shared regulation, highlighting that multiple independent developmental or physiological mechanisms contribute to variation in spatial cognitive abilities. A large proportion of the candidate genes we found are associated with synaptic plasticity, an intriguing result that leads to the hypothesis that certain genetic variants create antagonism between behavioral plasticity and long-term memory, each providing distinct benefits depending on ecological context.
Collapse
Affiliation(s)
- Georgy A Semenov
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Boulder, CO 80309, USA.
| | - Benjamin R Sonnenberg
- Department of Biology and Evolution, Ecology Evolution and Conservation Biology Graduate Program, University of Nevada, Reno, NV 89557, USA
| | - Carrie L Branch
- Department of Psychology, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - Virginia K Heinen
- Department of Biology and Evolution, Ecology Evolution and Conservation Biology Graduate Program, University of Nevada, Reno, NV 89557, USA
| | - Joseph F Welklin
- Department of Biology and Evolution, Ecology Evolution and Conservation Biology Graduate Program, University of Nevada, Reno, NV 89557, USA
| | - Sara R Padula
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Boulder, CO 80309, USA
| | - Ajay M Patel
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Boulder, CO 80309, USA
| | - Eli S Bridge
- Oklahoma Biological Survey, University of Oklahoma, Norman, OK 73019, USA
| | - Vladimir V Pravosudov
- Department of Biology and Evolution, Ecology Evolution and Conservation Biology Graduate Program, University of Nevada, Reno, NV 89557, USA
| | - Scott A Taylor
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Boulder, CO 80309, USA
| |
Collapse
|
7
|
Müller M, Pillay N. Cognitive flexibility in urban yellow mongooses, Cynictis penicillata. Anim Cogn 2024; 27:14. [PMID: 38429567 PMCID: PMC10907452 DOI: 10.1007/s10071-024-01839-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 03/03/2024]
Abstract
Cognitive flexibility enables animals to alter their behaviour and respond appropriately to environmental changes. Such flexibility is important in urban settings where environmental changes occur rapidly and continually. We studied whether free-living, urban-dwelling yellow mongooses, Cynictis penicillata, in South Africa, are cognitively flexible in reversal learning and attention task experiments (n = 10). Reversal learning was conducted using two puzzle boxes that were distinct visually and spatially, each containing a preferred or non-preferred food type. Once mongooses learned which box contained the preferred food type, the food types were reversed. The mongooses successfully unlearned their previously learned response in favour of learning a new response, possibly through a win-stay, lose-shift strategy. Attention task experiments were conducted using one puzzle box surrounded by zero, one, two or three objects, introducing various levels of distraction while solving the task. The mongooses were distracted by two and three distractions but were able to solve the task despite the distractions by splitting their attention between the puzzle box task and remaining vigilant. However, those exposed to human residents more often were more vigilant. We provide the first evidence of cognitive flexibility in urban yellow mongooses, which enables them to modify their behaviour to urban environments.
Collapse
Affiliation(s)
- Mijke Müller
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Neville Pillay
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
8
|
Ernst TR, Hogers RMHW, Korosi A, van Leeuwen JL, Kotrschal A, Pollux BJA. Coercive mating has no impact on spatial learning, cognitive flexibility, and fecundity in female porthole livebearers (Poeciliopsis gracilis). JOURNAL OF FISH BIOLOGY 2024. [PMID: 38402692 DOI: 10.1111/jfb.15696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/27/2024]
Abstract
Coercive mating is a sexual selection strategy that is likely to influence female cognition. Female harassment levels have been linked to altered brain gene expression patterns and brain size evolution, suggesting females may respond to coercive mating by investing energy into "outsmarting" males. However, females exposed to coercive males have decreased foraging efficiency and likely increased stress levels, suggesting their brain function might instead be impaired. While it is therefore likely that coercive mating impacts female cognitive abilities, a direct test of this idea is currently lacking. In this study, we investigate the impact of coercive mating on female spatial memory and cognitive flexibility in a species with prevalent coercive mating. We compared the performance of female porthole livebearers (Poeciliopsis gracilis), which had been previously housed alone or with a coercive male, in both a spatial food localization task and a reversal learning task. While we found that both single and paired fish exhibited high proficiency in learning both tasks, we found no differences in learning ability between females that had or had not experienced coercive mating. In addition, our study found that the presence of a coercive male had no impact on female fecundity, but did influence female mass and standard length. Several studies have assumed that the presence of males, particularly coercive males, may affect the cognitive performance of female fish. However, our study shows that for some species females adapted to coercive mating regimes may be unaffected by male presence with regards to some cognitive tasks.
Collapse
Affiliation(s)
- Tiffany R Ernst
- Department of Animal Sciences, Experimental Zoology Group, Wageningen University, Wageningen, The Netherlands
| | - R M H W Hogers
- Department of Animal Sciences, Experimental Zoology Group, Wageningen University, Wageningen, The Netherlands
| | - A Korosi
- University of Amsterdam, Swammerdam Institute of Life Sciences, Center for Neuroscience, Brain Plasticity Group, Amsterdam, The Netherlands
| | - J L van Leeuwen
- Department of Animal Sciences, Experimental Zoology Group, Wageningen University, Wageningen, The Netherlands
| | - A Kotrschal
- Department of Animal Sciences, Behavioral Ecology Group, Wageningen University, Wageningen, The Netherlands
| | - Bart J A Pollux
- Department of Animal Sciences, Experimental Zoology Group, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
9
|
Abadie K, Clark EC, Valanparambil RM, Ukogu O, Yang W, Daza RM, Ng KKH, Fathima J, Wang AL, Lee J, Nasti TH, Bhandoola A, Nourmohammad A, Ahmed R, Shendure J, Cao J, Kueh HY. Reversible, tunable epigenetic silencing of TCF1 generates flexibility in the T cell memory decision. Immunity 2024; 57:271-286.e13. [PMID: 38301652 PMCID: PMC10922671 DOI: 10.1016/j.immuni.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 10/09/2023] [Accepted: 12/07/2023] [Indexed: 02/03/2024]
Abstract
The immune system encodes information about the severity of a pathogenic threat in the quantity and type of memory cells it forms. This encoding emerges from lymphocyte decisions to maintain or lose self-renewal and memory potential during a challenge. By tracking CD8+ T cells at the single-cell and clonal lineage level using time-resolved transcriptomics, quantitative live imaging, and an acute infection model, we find that T cells will maintain or lose memory potential early after antigen recognition. However, following pathogen clearance, T cells may regain memory potential if initially lost. Mechanistically, this flexibility is implemented by a stochastic cis-epigenetic switch that tunably and reversibly silences the memory regulator, TCF1, in response to stimulation. Mathematical modeling shows how this flexibility allows memory T cell numbers to scale robustly with pathogen virulence and immune response magnitudes. We propose that flexibility and stochasticity in cellular decisions ensure optimal immune responses against diverse threats.
Collapse
Affiliation(s)
- Kathleen Abadie
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Elisa C Clark
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Rajesh M Valanparambil
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Obinna Ukogu
- Department of Applied Mathematics, University of Washington, Seattle, WA 98105, USA
| | - Wei Yang
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Riza M Daza
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Kenneth K H Ng
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Jumana Fathima
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Allan L Wang
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Judong Lee
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Tahseen H Nasti
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Avinash Bhandoola
- T-Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Armita Nourmohammad
- Department of Applied Mathematics, University of Washington, Seattle, WA 98105, USA; Department of Physics, University of Washington, Seattle, WA 98105, USA; Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Rafi Ahmed
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA; Allen Discovery Center for Cell Lineage Tracing, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA.
| | - Junyue Cao
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Laboratory of Single-Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY 10065, USA.
| | - Hao Yuan Kueh
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
10
|
Kwak S, Kim H, Chey J. Distinct neuroanatomical correlates of interference-related verbal episodic memory test in healthy older adults. NEUROPSYCHOLOGY, DEVELOPMENT, AND COGNITION. SECTION B, AGING, NEUROPSYCHOLOGY AND COGNITION 2024; 31:97-113. [PMID: 36082908 DOI: 10.1080/13825585.2022.2122392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/01/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Verbal learning test can include a trial of interference process that intrude initial learning and impose additional cognitive stress. However, it has been unclear whether the multiple memory processes underly different brain structural bases. We measured performances of word retrieval that represents distinct memory processes (initial learning, interference, and retention) and regional gray matter morphology from 230 cognitively unimpaired older adults. We identified three distinct multivariate pattern modes using canonical correlation analysis that map correspondence between memory and brain morphometry. The first mode comprised weights highly loaded on temporal lobe and overall performances. The second mode reflected subcortical volumes and initial learning performances. The third mode comprised thickness in the lateral prefrontal and parietal cortex and captured an ability to resist retroactive interference effect. While overall test performance reflected the temporal lobe and whole-gray matter volume, the interim trial of interference signifies neural correlates extending to subcortical and frontoparietal regions.
Collapse
Affiliation(s)
- Seyul Kwak
- Department of Psychology, Pusan National University, Busan, South Korea
| | - Hairin Kim
- Department of Psychiatry, Seoul Metropolitan Government-Seoul National University College Boramae Medical Center, Seoul, South Korea
| | - Jeanyung Chey
- Department of Psychology, Seoul National University, Seoul, South Korea
| |
Collapse
|
11
|
Branch CL, Welklin JF, Sonnenberg BR, Benedict LM, Heinen VK, Pitera AM, Bridge ES, Pravosudov VV. What's in a mate? Social pairing decisions and spatial cognitive ability in food-caching mountain chickadees. Proc Biol Sci 2023; 290:20231073. [PMID: 37700643 PMCID: PMC10498033 DOI: 10.1098/rspb.2023.1073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023] Open
Abstract
While researchers have investigated mating decisions for decades, gaps remain in our understanding of how behaviour influences social mate choice. We compared spatial cognitive performance and food caching propensity within social pairs of mountain chickadees inhabiting differentially harsh winter climates to understand how these measures contribute to social mate choice. Chickadees rely on specialized spatial cognitive abilities to recover food stores and survive harsh winters, and females can discriminate among males with varying spatial cognition. Because spatial cognition and caching propensity are critical for survival and likely heritable, pairing with a mate with such enhanced traits may provide indirect benefits to offspring. Comparing the behaviour of social mates, we found that spatial cognitive performance approached a significant correlation within pairs at low, but not at high elevation. We found no correlation within pairs in spatial reversal cognitive performance at either elevation; however, females at high elevation tended to perform better than their social mates. Finally, we found that caching propensity correlated within pairs at low, while males cached significantly more food than their social mates at high elevations. These results suggest that cognition and caching propensity may influence social mating decisions, but only in certain environments and for some aspects of cognition.
Collapse
Affiliation(s)
- Carrie L. Branch
- Department of Psychology, The University of Western Ontario, London, Ontario, Canada
| | | | - Benjamin R. Sonnenberg
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
- Ecology, Evolution, and Conservation Biology Graduate Program, University of Nevada, Reno, Reno, NV, USA
| | - Lauren M. Benedict
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
- Ecology, Evolution, and Conservation Biology Graduate Program, University of Nevada, Reno, Reno, NV, USA
| | | | - Angela M. Pitera
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
- Ecology, Evolution, and Conservation Biology Graduate Program, University of Nevada, Reno, Reno, NV, USA
| | - Eli S. Bridge
- Department of Biology, University of Oklahoma, Norman, OK, USA
| | - Vladimir V. Pravosudov
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
- Ecology, Evolution, and Conservation Biology Graduate Program, University of Nevada, Reno, Reno, NV, USA
| |
Collapse
|
12
|
Benedict LM, Heinen VK, Welklin JF, Sonnenberg BR, Whitenack LE, Bridge ES, Pravosudov VV. Food-caching mountain chickadees can learn abstract rules to solve a complex spatial-temporal pattern. Curr Biol 2023; 33:3136-3144.e5. [PMID: 37442137 DOI: 10.1016/j.cub.2023.06.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/12/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023]
Abstract
The use of abstract rules in behavioral decisions is considered evidence of executive functions associated with higher-level cognition. Laboratory studies across taxa have shown that animals may be capable of learning abstract concepts, such as the relationships between items, but often use simpler cognitive abilities to solve tasks. Little is known about whether or how animals learn and use abstract rules in natural environments. Here, we tested whether wild, food-caching mountain chickadees (Poecile gambeli) could learn an abstract rule in a spatial-temporal task in which the location of a food reward rotated daily around an 8-feeder square spatial array for up to 34 days. Chickadees initially searched for the daily food reward by visiting the most recently rewarding locations and then moving backward to visit previously rewarding feeders, using memory of previous locations. But by the end of the task, chickadees were more likely to search forward in the correct direction of rotation, moving away from the previously rewarding feeders. These results suggest that chickadees learned the direction rule for daily feeder rotation and used this to guide their decisions while searching for a food reward. Thus, chickadees appear to use an executive function to make decisions on a foraging-based task in the wild. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Lauren M Benedict
- University of Nevada Reno, Department of Biology, Reno, NV 89557, USA; University of Nevada Reno, Ecology, Evolution and Conservation Biology Graduate Program, Reno, NV 89557, USA.
| | - Virginia K Heinen
- University of Nevada Reno, Department of Biology, Reno, NV 89557, USA
| | - Joseph F Welklin
- University of Nevada Reno, Department of Biology, Reno, NV 89557, USA
| | - Benjamin R Sonnenberg
- University of Nevada Reno, Department of Biology, Reno, NV 89557, USA; University of Nevada Reno, Ecology, Evolution and Conservation Biology Graduate Program, Reno, NV 89557, USA
| | - Lauren E Whitenack
- University of Nevada Reno, Department of Biology, Reno, NV 89557, USA; University of Nevada Reno, Ecology, Evolution and Conservation Biology Graduate Program, Reno, NV 89557, USA
| | - Eli S Bridge
- University of Oklahoma, Oklahoma Biological Survey, Norman, OK 73019, USA
| | - Vladimir V Pravosudov
- University of Nevada Reno, Department of Biology, Reno, NV 89557, USA; University of Nevada Reno, Ecology, Evolution and Conservation Biology Graduate Program, Reno, NV 89557, USA
| |
Collapse
|
13
|
van den Heuvel K, Quinn JL, Kotrschal A, van Oers K. Artificial selection for reversal learning reveals limited repeatability and no heritability of cognitive flexibility in great tits ( Parus major). Proc Biol Sci 2023; 290:20231067. [PMID: 37464752 PMCID: PMC10354490 DOI: 10.1098/rspb.2023.1067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/20/2023] [Indexed: 07/20/2023] Open
Abstract
Cognitive flexibility controls how animals respond to changing environmental conditions. Individuals within species vary considerably in cognitive flexibility but the micro-evolutionary potential in animal populations remains enigmatic. One prerequisite for cognitive flexibility to be able to evolve is consistent and heritable among-individual variation. Here we determine the repeatability and heritability of cognitive flexibility among great tits (Parus major) by performing an artificial selection experiment on reversal learning performance using a spatial learning paradigm over three generations. We found low, yet significant, repeatability (R = 0.15) of reversal learning performance. Our artificial selection experiment showed no evidence for narrow-sense heritability of associative or reversal learning, while we confirmed the heritability of exploratory behaviour. We observed a phenotypic, but no genetic, correlation between associative and reversal learning, showing the importance of prior information on reversal learning. We found no correlation between cognitive and personality traits. Our findings emphasize that cognitive flexibility is a multi-faceted trait that is affected by memory and prior experience, making it challenging to retrieve reliable values of temporal consistency and assess the contribution of additive genetic variation. Future studies need to identify what cognitive components underlie variation in reversal learning and study their between-individual and additive genetic components.
Collapse
Affiliation(s)
- Krista van den Heuvel
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB, Wageningen, The Netherlands, The Netherlands
- Behavioural Ecology Group, Wageningen University and Research, 6708 WD, Wageningen, The Netherlands
| | - John L. Quinn
- School of Biological Earth and Environmental Sciences, University College Cork, Cork, T23 N73K4, Ireland
- Environmental Research Institute, University College Cork, Cork, T23 XE10, Ireland
| | - Alexander Kotrschal
- Behavioural Ecology Group, Wageningen University and Research, 6708 WD, Wageningen, The Netherlands
| | - Kees van Oers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB, Wageningen, The Netherlands, The Netherlands
- Behavioural Ecology Group, Wageningen University and Research, 6708 WD, Wageningen, The Netherlands
| |
Collapse
|
14
|
Fichtel C, Henke-von der Malsburg J, Kappeler PM. Cognitive performance is linked to fitness in a wild primate. SCIENCE ADVANCES 2023; 9:eadf9365. [PMID: 37436999 DOI: 10.1126/sciadv.adf9365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 06/08/2023] [Indexed: 07/14/2023]
Abstract
Cognitive performance varies widely across animal species, but the processes underlying cognitive evolution remain poorly known. For cognitive abilities to evolve, performance must be linked to individual fitness benefits, but these links have been rarely studied in primates even though they exceed most other mammals in these traits. We subjected 198 wild gray mouse lemurs to four cognitive and two personality tests and subsequently monitored their survival in a mark-recapture study. Our study revealed that survival was predicted by individual variation in cognitive performance as well as body mass and exploration. Because cognitive performance covaried negatively with exploration, individuals gathering more accurate information enjoyed better cognitive performance and lived longer, but so did heavier and more explorative individuals. These effects may reflect a speed-accuracy trade-off, with alternative strategies yielding similar overall fitness. The observed intraspecific variation in selective benefits of cognitive performance, if heritable, can provide the basis for the evolution of cognitive abilities in members of our lineage.
Collapse
Affiliation(s)
- Claudia Fichtel
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Leibniz Science Campus "Primate Cognition", Göttingen 37077, Germany
| | - Johanna Henke-von der Malsburg
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Peter M Kappeler
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Department of Sociobiology/Anthropology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
15
|
Heinen VK, Pitera AM, Sonnenberg BR, Branch CL, Benedict LM, Welklin JF, Whitenack LE, Bridge ES, Pravosudov VV. Food-caching chickadees with specialized spatial cognition do not use scrounging as a stable strategy when learning a spatial task. Proc Biol Sci 2023; 290:20230900. [PMID: 37434529 PMCID: PMC10336377 DOI: 10.1098/rspb.2023.0900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/09/2023] [Indexed: 07/13/2023] Open
Abstract
Social animals may use alternative strategies when foraging, with producer-scrounger being one stable dichotomy of strategies. While 'producers' search and discover new food sources, 'scroungers' obtain food discovered by producers. Previous work suggests that differences in cognitive abilities may influence tendencies toward being either a producer or a scrounger, but scrounging behaviour in the context of specialized cognitive abilities is less understood. We investigated whether food-caching mountain chickadees, which rely on spatial cognition to retrieve food caches, engage in scrounging when learning a spatial task. We analysed data from seven seasons of spatial cognition testing, using arrays of radio frequency identification-enabled bird feeders, to identify and quantify potential scrounging behaviour. Chickadees rarely engaged in scrounging, scrounging was not repeatable within individuals and nearly all scrounging events occurred before the bird learned the 'producer' strategy. Scrounging was less frequent in harsher winters, but adults scrounged more than juveniles, and birds at higher elevations scrounged more than chickadees at lower elevations. There was no clear association between spatial cognitive abilities and scrounging frequency. Overall, our study suggests that food-caching species with specialized spatial cognition do not use scrounging as a stable strategy when learning a spatial task, instead relying on learning abilities.
Collapse
Affiliation(s)
- Virginia K. Heinen
- Department of Biology and Evolution, University of Nevada, Ecology Evolution and Conservation Biology Graduate Program, Reno, NV 89557, USA
| | - Angela M. Pitera
- Department of Biology and Evolution, University of Nevada, Ecology Evolution and Conservation Biology Graduate Program, Reno, NV 89557, USA
| | - Benjamin R. Sonnenberg
- Department of Biology and Evolution, University of Nevada, Ecology Evolution and Conservation Biology Graduate Program, Reno, NV 89557, USA
| | - Carrie L. Branch
- Department of Biology and Evolution, University of Nevada, Ecology Evolution and Conservation Biology Graduate Program, Reno, NV 89557, USA
- Department of Psychology, The University of Western Ontario, London, Ontario, Canada, N6A 5C2
| | - Lauren M. Benedict
- Department of Biology and Evolution, University of Nevada, Ecology Evolution and Conservation Biology Graduate Program, Reno, NV 89557, USA
| | - Joseph F. Welklin
- Department of Biology and Evolution, University of Nevada, Ecology Evolution and Conservation Biology Graduate Program, Reno, NV 89557, USA
| | - Lauren E. Whitenack
- Department of Biology and Evolution, University of Nevada, Ecology Evolution and Conservation Biology Graduate Program, Reno, NV 89557, USA
| | | | - Vladimir V. Pravosudov
- Department of Biology and Evolution, University of Nevada, Ecology Evolution and Conservation Biology Graduate Program, Reno, NV 89557, USA
| |
Collapse
|
16
|
Lucon-Xiccato T, Montalbano G, Bertolucci C. Adaptive phenotypic plasticity induces individual variability along a cognitive trade-off. Proc Biol Sci 2023; 290:20230350. [PMID: 37357854 PMCID: PMC10291716 DOI: 10.1098/rspb.2023.0350] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/02/2023] [Indexed: 06/27/2023] Open
Abstract
Animal species, including humans, display patterns of individual variability in cognition that are difficult to explain. For instance, some individuals perform well in certain cognitive tasks but show difficulties in others. We experimentally analysed the contribution of cognitive plasticity to such variability. Theory suggests that diametrically opposed cognitive phenotypes increase individuals' fitness in environments with different conditions such as resource predictability. Therefore, if selection has generated plasticity that matches individuals' cognitive phenotypes to the environment, this might produce remarkable cognitive variability. We found that guppies, Poecilia reticulata, exposed to an environment with high resource predictability (i.e. food available at the same time and in the same location) developed enhanced learning abilities. Conversely, guppies exposed to an environment with low resource predictability (i.e. food available at a random time and location) developed enhanced cognitive flexibility and inhibitory control. These cognitive differences align along a trade-off between functions that favour the acquisition of regularities such as learning and functions that adjust behaviour to changing conditions (cognitive flexibility and inhibitory control). Therefore, adaptive cognitive plasticity in response to resource predictability (and potentially similar factors) is a key determinant of cognitive individual differences.
Collapse
Affiliation(s)
- Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Giulia Montalbano
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| |
Collapse
|
17
|
Shen F, Zhang Z, Guo H, Fu Y, Zhang D, Zhang X. Effects of Two Environmental Enrichment Methods on Cognitive Ability and Growth Performance of Juvenile Black Rockfish Sebastes schlegelii. Animals (Basel) 2023; 13:2131. [PMID: 37443928 DOI: 10.3390/ani13132131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/17/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
A widely used approach to restoring marine fishery resources is stock enhancement using hatchery-reared fish. However, artificial rearing environments, which are often lacking in enrichment, may negatively affect the cognition, welfare, and adaptive capacity to new environments of juvenile fish, thereby leading to low post-release survival rates. This study examined the effects of habitat and social enrichment on the growth performance and cognitive ability of Sebastes schlegelii. Following seven weeks of environmental enrichment, a T-maze experiment was conducted, and the telencephalon and visceral mass of the fish were sampled to measure the growth (growth hormone: GH; insulin-like growth factor-1: IGF-1; and somatostatin: SS) and cognitive abilities (brain-derived neurotrophic factor: BDNF; and nerve growth factor: NGF)-related indicator levels. The results indicated that, although the final body length, final body weight, and specific growth rate of both enrichment groups were lower than those of the control group, both methods of enrichment had a positive impact on growth-related factors (increased GH, increased IGF-1, and decreased SS). The enrichment groups demonstrated a stronger learning ability in the T-maze test, and the levels of BDNF and NGF in the telencephalon were significantly higher in the enrichment groups than those in the control group. Additionally, there was a significant interaction between the two enrichment methods on the NGF level. This study confirms that a more complex and enriching environment is beneficial for cultivating the cognitive abilities of cultured juvenile S. schlegelii, and the result can provide a reference for the improvement of the stock enhancement of this species.
Collapse
Affiliation(s)
- Fengyuan Shen
- East China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, 300 Jungong Road, Shanghai 200090, China
| | - Zonghang Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Haoyu Guo
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yiqiu Fu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Dong Zhang
- East China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, 300 Jungong Road, Shanghai 200090, China
| | - Xiumei Zhang
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
18
|
Brunet V, Lafond T, Kleiber A, Lansade L, Calandreau L, Colson V. Environmental enrichment improves cognitive flexibility in rainbow trout in a visual discrimination task: first insights. Front Vet Sci 2023; 10:1184296. [PMID: 37396987 PMCID: PMC10313407 DOI: 10.3389/fvets.2023.1184296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/09/2023] [Indexed: 07/04/2023] Open
Abstract
Research on fish cognition provides strong evidence that fish are endowed with high level cognitive skills. However, most studies on cognitive flexibility and generalization abilities, two key adaptive traits for captive animals, focused on model species, and farmed fish received too little attention. Environmental enrichment was shown to improve learning abilities in various fish species, but its influence on cognitive flexibility and generalization abilities is still unknown. We studied farmed rainbow trout (Oncorhynchus mykiss) as an aquaculture model to study how environmental enrichment impacts their cognitive abilities. Using an operant conditioning device, allowing the expression of a motivated choice, we measured fish cognitive flexibility with serial reversal learning tests, after a successful acquisition phase based on two colors discrimination (2-alternative forced choice, 2-AFC), and their ability to generalize a rewarded color to any shape. Eight fish were divided into two groups: Condition E (fish reared from fry stages under enriched conditions with plants, rocks and pipes for ~9 months); Condition B (standard barren conditions). Only one fish (condition E) failed in the habituation phase of the device and one fish (condition B) failed in the 2-AFC task. We showed that after a successful acquisition phase in which the fish correctly discriminated two colors, they all succeeded in four reversal learnings, supporting evidence for cognitive flexibility in rainbow trout. They were all successful in the generalization task. Interestingly, fish reared in an enriched environment performed better in the acquisition phase and in the reversal learning (as evidenced by fewer trials needed to reach the learning criterion), but not in the generalization task. We assume that color-based generalization may be a simpler cognitive process than discriminative learning and cognitive flexibility, and does not seem to be influenced by environmental conditions. Given the small number of individuals tested, our results may be considered as first insights into cognitive flexibility in farmed fish using an operant conditioning device, but they pave the way for future studies. We conclude that farming conditions should take into account the cognitive abilities of fish, in particular their cognitive flexibility, by allowing them to live in an enriched environment.
Collapse
Affiliation(s)
- Valentin Brunet
- Laboratoire de Physiologie et Génomique des Poissons, INRAE, Rennes, France
| | - Thomas Lafond
- Laboratoire de Physiologie et Génomique des Poissons, INRAE, Rennes, France
| | - Aude Kleiber
- Laboratoire de Physiologie et Génomique des Poissons, INRAE, Rennes, France
- Comportement Animal et Systèmes d’Elevage, JUNIA, Lille, France
| | - Léa Lansade
- Physiologie de la Reproduction et des Comportements, CNRS, IFCE, INRAE, Université de Tours, Nouzilly, France
| | - Ludovic Calandreau
- Physiologie de la Reproduction et des Comportements, CNRS, IFCE, INRAE, Université de Tours, Nouzilly, France
| | - Violaine Colson
- Laboratoire de Physiologie et Génomique des Poissons, INRAE, Rennes, France
| |
Collapse
|
19
|
Bobrowicz K, Thibaut JP. The Development of Flexible Problem Solving: An Integrative Approach. J Intell 2023; 11:119. [PMID: 37367522 DOI: 10.3390/jintelligence11060119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
Flexible problem solving, the ability to deal with currently goal-irrelevant information that may have been goal-relevant in previous, similar situations, plays a prominent role in cognitive development and has been repeatedly investigated in developmental research. However, this research, spanning from infancy to the school years, lacks a unifying framework, obscuring the developmental timing of flexible problem solving. Therefore, in this review paper, previous findings are gathered, organized, and integrated under a common framework to unveil how and when flexible problem solving develops. It is showed that the development of flexible problem solving coincides with increases in executive functions, that is, inhibition, working memory and task switching. The analysis of previous findings shows that dealing with goal-irrelevant, non-salient information received far more attention than generalizing in the presence of goal-irrelevant, salient information. The developmental timing of the latter can only be inferred from few transfer studies, as well as executive functions, planning and theory of mind research, to highlight gaps in knowledge and sketch out future research directions. Understanding how transfer in the presence of seemingly relevant but truly irrelevant information develops has implications for well-balanced participation in information societies, early and lifespan education, and investigating the evolutionary trajectory of flexible problem solving.
Collapse
Affiliation(s)
- Katarzyna Bobrowicz
- Department of Behavioural and Cognitive Sciences, University of Luxembourg, 4366 Esch-sur-Alzette, Luxembourg
| | - Jean-Pierre Thibaut
- LEAD-Centre National de la Recherche Scientifique UMR-5022, University of Burgundy, 21000 Dijon, France
| |
Collapse
|
20
|
Learning predictably changing spatial patterns across days in a food-caching bird. Anim Behav 2023. [DOI: 10.1016/j.anbehav.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
21
|
de Groot C, Wijnhorst RE, Ratz T, Murray M, Araya-Ajoy YG, Wright J, Dingemanse NJ. The importance of distinguishing individual differences in 'social impact' versus 'social responsiveness' when quantifying indirect genetic effects on the evolution of social plasticity. Neurosci Biobehav Rev 2023; 144:104996. [PMID: 36526032 DOI: 10.1016/j.neubiorev.2022.104996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Social evolution and the dynamics of social interactions have previously been studied under the frameworks of quantitative genetics and behavioural ecology. In quantitative genetics, indirect genetic effects of social partners on the socially plastic phenotypes of focal individuals typically lack crucial detail already included in treatments of social plasticity in behavioural ecology. Specifically, whilst focal individuals (e.g. receivers) may show variation in their 'responsiveness' to the social environment, individual social partners (e.g. signallers) may have a differential 'impact' on focal phenotypes. Here we propose an integrative framework, that highlights the distinction between responsiveness versus impact in indirect genetic effects for a range of behavioural traits. We describe impact and responsiveness using a reaction norm approach and provide statistical models for the assessment of these effects of focal and social partner identity in different types of social interactions. By providing such a framework, we hope to stimulate future quantitative research investigating the causes and consequences of social interactions on phenotypic evolution.
Collapse
Affiliation(s)
- Corné de Groot
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich (LMU), 82152 Planegg, Martinsried, Germany.
| | - Rori E Wijnhorst
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich (LMU), 82152 Planegg, Martinsried, Germany
| | - Tom Ratz
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich (LMU), 82152 Planegg, Martinsried, Germany
| | - Myranda Murray
- Center for Biodiversity Dynamics (CBD), Department of Biology, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| | - Yimen G Araya-Ajoy
- Center for Biodiversity Dynamics (CBD), Department of Biology, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| | - Jonathan Wright
- Center for Biodiversity Dynamics (CBD), Department of Biology, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| | - Niels J Dingemanse
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich (LMU), 82152 Planegg, Martinsried, Germany
| |
Collapse
|
22
|
Yang R, Tuan RRL, Hwang FJ, Bloodgood DW, Kong D, Ding JB. Dichotomous regulation of striatal plasticity by dynorphin. Mol Psychiatry 2023; 28:434-447. [PMID: 36460726 PMCID: PMC10188294 DOI: 10.1038/s41380-022-01885-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 12/05/2022]
Abstract
Modulation of corticostriatal plasticity alters the information flow throughout basal ganglia circuits and represents a fundamental mechanism for motor learning, action selection, and reward. Synaptic plasticity in the striatal direct- and indirect-pathway spiny projection neurons (dSPNs and iSPNs) is regulated by two distinct networks of GPCR signaling cascades. While it is well-known that dopamine D2 and adenosine A2a receptors bi-directionally regulate iSPN plasticity, it remains unclear how D1 signaling modulation of synaptic plasticity is counteracted by dSPN-specific Gi signaling. Here, we show that striatal dynorphin selectively suppresses long-term potentiation (LTP) through Kappa Opioid Receptor (KOR) signaling in dSPNs. Both KOR antagonism and conditional deletion of dynorphin in dSPNs enhance LTP counterbalancing with different levels of D1 receptor activation. Behaviorally, mice lacking dynorphin in D1 neurons show comparable motor behavior and reward-based learning, but enhanced flexibility during reversal learning. These findings support a model in which D1R and KOR signaling bi-directionally modulate synaptic plasticity and behavior in the direct pathway.
Collapse
Affiliation(s)
- Renzhi Yang
- Biology Graduate Program, Stanford University, Stanford, CA, USA
| | - Rupa R Lalchandani Tuan
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA, USA
| | - Fuu-Jiun Hwang
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | | | - Dong Kong
- Division of Endocrinology, Department of Pediatrics, F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jun B Ding
- Department of Neurosurgery, Stanford University, Stanford, CA, USA.
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
- Stanford Bio-X, Stanford University, Stanford, CA, USA.
| |
Collapse
|
23
|
Pitt B, Carstensen A, Boni I, Piantadosi ST, Gibson E. Different reference frames on different axes: Space and language in indigenous Amazonians. SCIENCE ADVANCES 2022; 8:eabp9814. [PMID: 36427312 PMCID: PMC9699666 DOI: 10.1126/sciadv.abp9814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Spatial cognition is central to human behavior, but the way people conceptualize space varies within and across groups for unknown reasons. Here, we found that adults from an indigenous Bolivian group used systematically different spatial reference frames on different axes, according to known differences in their discriminability: In both verbal and nonverbal tests, participants preferred allocentric (i.e., environment-based) space on the left-right axis, where spatial discriminations (like "b" versus "d") are notoriously difficult, but the same participants preferred egocentric (i.e., body-based) space on the front-back axis, where spatial discrimination is relatively easy. The results (i) establish a relationship between spontaneous spatial language and memory across axes within a single culture, (ii) challenge the claim that each language group has a predominant spatial reference frame at a given scale, and (iii) suggest that spatial thinking and language may both be shaped by spatial discrimination abilities, as they vary across cultures and contexts.
Collapse
Affiliation(s)
- Benjamin Pitt
- Department of Psychology, UC Berkeley, Berkeley, CA, USA
| | | | - Isabelle Boni
- Department of Psychology, UC Berkeley, Berkeley, CA, USA
| | | | - Edward Gibson
- Department of Brain and Cognitive Science, MIT, Cambridge, MA, USA
| |
Collapse
|
24
|
Experimental manipulation of food distribution alters social networks and information transmission across environments in a food-caching bird. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
25
|
Huang SY, Schaening-Lopez D, Halterman V, Pravosudov VV, Branch CL. Differences in daily singing routines reflect male condition along a montane gradient. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03246-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Sergi C, Schlais A, Marshall M, Rodríguez RL. Western black widow spiders (
Latrodectus hesperus
) remember prey capture location and size, but only alter behavior for prey caught at particular sites. Ethology 2022. [DOI: 10.1111/eth.13328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Clint Sergi
- Behavioral and Molecular Ecology group, Department of Biological Sciences University of Wisconsin Milwaukee Wisconsin USA
| | - Audrey Schlais
- Behavioral and Molecular Ecology group, Department of Biological Sciences University of Wisconsin Milwaukee Wisconsin USA
| | - Martie Marshall
- Behavioral and Molecular Ecology group, Department of Biological Sciences University of Wisconsin Milwaukee Wisconsin USA
| | - Rafael L. Rodríguez
- Behavioral and Molecular Ecology group, Department of Biological Sciences University of Wisconsin Milwaukee Wisconsin USA
| |
Collapse
|
27
|
Degrande R, Cornilleau F, Lansade L, Jardat P, Colson V, Calandreau L. Domestic hens succeed at serial reversal learning and perceptual concept generalisation using a new automated touchscreen device. Animal 2022; 16:100607. [PMID: 35963029 DOI: 10.1016/j.animal.2022.100607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 11/15/2022] Open
Abstract
Improving the welfare of farm animals depends on our knowledge on how they perceive and interpret their environment; the latter depends on their cognitive abilities. Hence, limited knowledge of the range of cognitive abilities of farm animals is a major concern. An effective approach to explore the cognitive range of a species is to apply automated testing devices, which are still underdeveloped in farm animals. In screen-like studies, the uses of automated devices are few in domestic hens. We developed an original fully automated touchscreen device using digital computer-drawn colour pictures and independent sensible cells adapted for cognitive testing in domestic hens, enabling a wide range of test types from low to high complexity. This study aimed to test the efficiency of our device using two cognitive tests. We focused on tasks related to adaptive capacities to environmental variability, such as flexibility and generalisation capacities as this is a good start to approach more complex cognitive capacities. We implemented a serial reversal learning task, categorised as a simple cognitive test, and a delayed matching-to-sample (dMTS) task on an identity concept, followed by a generalisation test, categorised as more complex. In the serial reversal learning task, the hens performed equally for the two changing reward contingencies in only three reversal stages. In the dMTS task, the hens increased their performance rapidly throughout the training sessions. Moreover, to the best of our knowledge, we present the first positive result of identity concept generalisation in a dMTS task in domestic hens. Our results provide additional information on the behavioural flexibility and concept understanding of domestic hens. They also support the idea that fully automated devices would improve knowledge of farm animals' cognition.
Collapse
Affiliation(s)
- Rachel Degrande
- CNRS, IFCE, INRAE, Université de Tours, PRC (Physiologie de la Reproduction et des Comportements), F-37380 Nouzilly, Indre-et-Loire, France.
| | - Fabien Cornilleau
- CNRS, IFCE, INRAE, Université de Tours, PRC (Physiologie de la Reproduction et des Comportements), F-37380 Nouzilly, Indre-et-Loire, France
| | - Léa Lansade
- CNRS, IFCE, INRAE, Université de Tours, PRC (Physiologie de la Reproduction et des Comportements), F-37380 Nouzilly, Indre-et-Loire, France
| | - Plotine Jardat
- CNRS, IFCE, INRAE, Université de Tours, PRC (Physiologie de la Reproduction et des Comportements), F-37380 Nouzilly, Indre-et-Loire, France
| | - Violaine Colson
- INRAE, LPGP (Laboratoire de Physiologie et Génomique des Poissons), Campus de Beaulieu, F-35042 Rennes cedex, Ille-et-Vilaine, France
| | - Ludovic Calandreau
- CNRS, IFCE, INRAE, Université de Tours, PRC (Physiologie de la Reproduction et des Comportements), F-37380 Nouzilly, Indre-et-Loire, France
| |
Collapse
|
28
|
Townsend AK, Sewall KB, Leonard AS, Hawley DM. Infectious disease and cognition in wild populations. Trends Ecol Evol 2022; 37:899-910. [PMID: 35872026 DOI: 10.1016/j.tree.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/19/2022]
Abstract
Infectious disease is linked to impaired cognition across a breadth of host taxa and cognitive abilities, potentially contributing to variation in cognitive performance within and among populations. Impaired cognitive performance can stem from direct damage by the parasite, the host immune response, or lost opportunities for learning. Moreover, cognitive impairment could be compounded by factors that simultaneously increase infection risk and impair cognition directly, such as stress and malnutrition. As highlighted in this review, however, answers to fundamental questions remain unresolved, including the frequency, duration, and fitness consequences of infection-linked cognitive impairment in wild animal populations, the cognitive abilities most likely to be affected, and the potential for adaptive evolution of cognition in response to accelerating emergence of infectious disease.
Collapse
Affiliation(s)
- Andrea K Townsend
- Department of Biology, Hamilton College, 198 College Hill Road, Clinton, NY 13323, USA.
| | - Kendra B Sewall
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Anne S Leonard
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - Dana M Hawley
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
29
|
Abstract
Long-term memory has clear advantages for animals but also has neurological and behavioral costs1-3. Encoding memories is metabolically expensive1. Older memories can interfere with retrieval of more recent memories3, prolong decision-making and reduce cognitive flexibility2,3. Given these opposing selection pressures, understanding how long memories last can shed light on how memory enhances or constrains animals' abilities to exploit their niches. Although testing memory retention in wild animals is difficult, it is important because captive conditions do not reflect the complex cognitive demands of wild environments, and long-term captivity changes the brain4 (Data S1A). Here, we trained wild-caught frog-eating bats (Trachops cirrhosus) to find prey by flying to a novel acoustic cue. After they learned the rewarded sound, we released them back into the wild, and then re-captured some of them one to four years later. When re-tested, all eight 'experienced' bats that previously learned the novel prey sounds flew to those sounds within seconds, whereas 17 naïve bats tested with the same sounds showed weak responses. Experienced bats also showed behavior indicating generalization of memories between novel sounds and rewards over time. The frog-eating bat's remarkably long memory indicates that an ability to remember rarely encountered prey may be advantageous for this predator and suggests hitherto unknown cognitive abilities in bats.
Collapse
Affiliation(s)
- M May Dixon
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Republic of Panamá; Department of Integrative Biology, University of Texas at Austin, 1 University Station C0930, Austin, TX, USA; Department of Ecology, Evolution, and Organismal Biology, The Ohio State University, Columbus, OH, USA.
| | - Patricia L Jones
- Biology Department, Bowdoin College, 6500 College Station, Brunswick, ME, USA
| | - Michael J Ryan
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Republic of Panamá; Department of Integrative Biology, University of Texas at Austin, 1 University Station C0930, Austin, TX, USA
| | - Gerald G Carter
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Republic of Panamá; Department of Ecology, Evolution, and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Rachel A Page
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Republic of Panamá
| |
Collapse
|
30
|
Koh W, Park M, Chun YE, Lee J, Shim HS, Park MG, Kim S, Sa M, Joo J, Kang H, Oh SJ, Woo J, Chun H, Lee SE, Hong J, Feng J, Li Y, Ryu H, Cho J, Lee CJ. Astrocytes Render Memory Flexible by Releasing D-Serine and Regulating NMDA Receptor Tone in the Hippocampus. Biol Psychiatry 2022; 91:740-752. [PMID: 34952697 DOI: 10.1016/j.biopsych.2021.10.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 11/02/2022]
Abstract
BACKGROUND NMDA receptor (NMDAR) hypofunction has been implicated in several psychiatric disorders with impairment of cognitive flexibility. However, the molecular mechanism of how NMDAR hypofunction with decreased NMDAR tone causes the impairment of cognitive flexibility has been minimally understood. Furthermore, it has been unclear whether hippocampal astrocytes regulate NMDAR tone and cognitive flexibility. METHODS We employed cell type-specific genetic manipulations, ex vivo electrophysiological recordings, sniffer patch recordings, cutting-edge biosensor for norepinephrine, and behavioral assays to investigate whether astrocytes can regulate NMDAR tone by releasing D-serine and glutamate. Subsequently, we further investigated the role of NMDAR tone in heterosynaptic long-term depression, metaplasticity, and cognitive flexibility. RESULTS We found that hippocampal astrocytes regulate NMDAR tone via BEST1-mediated corelease of D-serine and glutamate. Best1 knockout mice exhibited reduced NMDAR tone and impairments of homosynaptic and α1 adrenergic receptor-dependent heterosynaptic long-term depression, which leads to defects in metaplasticity and cognitive flexibility. These impairments in Best1 knockout mice can be rescued by hippocampal astrocyte-specific BEST1 expression or enhanced NMDAR tone through D-serine supplement. D-serine injection in Best1 knockout mice during initial learning rescues subsequent reversal learning. CONCLUSIONS These findings indicate that NMDAR tone during initial learning is important for subsequent learning, and hippocampal NMDAR tone regulated by astrocytic BEST1 is critical for heterosynaptic long-term depression, metaplasticity, and cognitive flexibility.
Collapse
Affiliation(s)
- Wuhyun Koh
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, South Korea; Department of Neuroscience, Division of BioMedical Science & Technology, Korea Institute of Science and Technology School, Korea University of Science and Technology, Seoul, South Korea; Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Mijeong Park
- Department of Neuroscience, Division of BioMedical Science & Technology, Korea Institute of Science and Technology School, Korea University of Science and Technology, Seoul, South Korea; Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Ye Eun Chun
- Department of Neuroscience, Division of BioMedical Science & Technology, Korea Institute of Science and Technology School, Korea University of Science and Technology, Seoul, South Korea; Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Jaekwang Lee
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Hyun Soo Shim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Mingu Gordon Park
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, South Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea
| | - Sunpil Kim
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, South Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea; Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Moonsun Sa
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, South Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea
| | - Jinhyeong Joo
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, South Korea; IBS School, Korea University of Science and Technology, Daejeon, South Korea
| | - Hyunji Kang
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, South Korea; IBS School, Korea University of Science and Technology, Daejeon, South Korea
| | - Soo-Jin Oh
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul, South Korea; Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Junsung Woo
- Department of Neuroscience, Division of BioMedical Science & Technology, Korea Institute of Science and Technology School, Korea University of Science and Technology, Seoul, South Korea; Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Heejung Chun
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, South Korea; Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Seung Eun Lee
- Virus Facility, Research Animal Resource Center, Korea Institute of Science and Technology, Seoul, South Korea
| | - Jinpyo Hong
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
| | - Hoon Ryu
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Jeiwon Cho
- Brain and Cognitive Science, Scranton College, Ewha Womans University, Seoul, South Korea
| | - C Justin Lee
- Department of Neuroscience, Division of BioMedical Science & Technology, Korea Institute of Science and Technology School, Korea University of Science and Technology, Seoul, South Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea; IBS School, Korea University of Science and Technology, Daejeon, South Korea.
| |
Collapse
|
31
|
Space, the original frontier. Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2022.101106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Executive Functions in Birds. BIRDS 2022. [DOI: 10.3390/birds3020013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Executive functions comprise of top-down cognitive processes that exert control over information processing, from acquiring information to issuing a behavioral response. These cognitive processes of inhibition, working memory, and cognitive flexibility underpin complex cognitive skills, such as episodic memory and planning, which have been repeatedly investigated in several bird species in recent decades. Until recently, avian executive functions were studied in relatively few bird species but have gained traction in comparative cognitive research following MacLean and colleagues’ large-scale study from 2014. Therefore, in this review paper, the relevant previous findings are collected and organized to facilitate further investigations of these core cognitive processes in birds. This review can assist in integrating findings from avian and mammalian cognitive research and further the current understanding of executive functions’ significance and evolution.
Collapse
|
33
|
Li B, Li X, Stoet G, Lages M. Processing Speed Predicts Mean Performance in Task-Switching but Not Task-Switching Cost. Psychol Rep 2022:332941211072228. [PMID: 35084254 DOI: 10.1177/00332941211072228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In several studies, it has been suggested that task-switching performance is linked to processing speed. Here we argue that the relation between processing speed and high-level cognitive ability found in previous studies may be due to confounded measurements of processing speed and task-switching ability. In the present study we required participants to complete an inspection time (IT) task to probe their processing speed. We employed conventional task-switching paradigms but applied a linear integrated speed-accuracy score (LISAS) which combines latency and accuracy scores to express task-switching ability. The results of regression analyses show that IT predicted average performance in task-switching paradigms. However, IT did not relate to any specific effects common in the task-switching task, which contradicts previous results. Our results suggest independent mechanisms of processing speed and tasks that require a high level of cognitive flexibility and control.
Collapse
Affiliation(s)
- Bingxin Li
- CAS Key Laboratory of Behavioral Science, Institute of Psychology12381Chinese Academy of Sciences
| | - Xiangqian Li
- School of Psychology66315Shanghai University of Sport
| | | | - Martin Lages
- School of Psychology and Neuroscience3526University of Glasgow
| |
Collapse
|
34
|
Bold and bright: shy and supple? The effect of habitat type on personality-cognition covariance in the Aegean wall lizard (Podarcis erhardii). Anim Cogn 2022; 25:745-767. [PMID: 35037121 DOI: 10.1007/s10071-021-01587-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/04/2021] [Accepted: 11/24/2021] [Indexed: 12/27/2022]
Abstract
Animals exhibit considerable and consistent among-individual variation in cognitive abilities, even within a population. Recent studies have attempted to address this variation using insights from the field of animal personality. Generally, it is predicted that animals with "faster" personalities (bolder, explorative, and neophilic) should exhibit faster but less flexible learning. However, the empirical evidence for a link between cognitive style and personality is mixed. One possible reason for such conflicting results may be that personality-cognition covariance changes along ecological conditions, a hypothesis that has rarely been investigated so far. In this study, we tested the effect of habitat complexity on multiple aspects of animal personality and cognition, and how this influenced their relationship, in five populations of the Aegean wall lizard (Podarcis erhardii). Overall, lizards from both habitat types did not differ in average levels of personality or cognition, with the exception that lizards from more complex habitats performed better on a spatial learning task. Nevertheless, we found an intricate interplay between ecology, cognition, and personality, as behavioral associations were often habitat- but also year-dependent. In general, behavioral covariance was either independent of habitat, or found exclusively in the simple, open environments. Our results highlight that valuable insights may be gained by taking ecological variation into account while studying the link between personality and cognition.
Collapse
|
35
|
Cognitive flexibility in the wild: Individual differences in reversal learning are explained primarily by proactive interference, not by sampling strategies, in two passerine bird species. Learn Behav 2022; 50:153-166. [PMID: 35015239 DOI: 10.3758/s13420-021-00505-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 01/17/2023]
Abstract
Behavioural flexibility allows animals to adjust to changes in their environment. Although the cognitive processes that explain flexibility have been relatively well studied in psychology, this is less true for animals in the wild. Here we use data collected automatically during self-administered discrimination-learning trials for two passerine species, and during four phases (habituation, initial learning, first reversal and second reversal) in order to decompose sources of consistent among-individual differences in reversal learning, a commonly used measure for cognitive flexibility. First, we found that, as expected, proactive interference was significantly repeatable and had a negative effect on reversal learning, confirming that individuals with poor ability to inhibit returning to a previously rewarded feeder were also slower to reversal learn. Second, to our knowledge for the first time in a natural population, we examined how sampling of non-rewarding options post-learning affected reversal-learning performance. Sampling quantity was moderately repeatable in blue tits but not great tits; sampling bias, the variance in the proportion of visits to each non-rewarded feeder, was not repeatable for either species. Sampling behaviour did not predict variation in reversal-learning speed to any significant extent. Finally, the repeatability of reversal learning was explained almost entirely by proactive interference for blue tits; in great tits, the effects of proactive interference and sampling bias on the repeatability of reversal learning were indistinguishable. Our results highlight the value of proactive interference as a more direct measurement of cognitive flexibility and shed light on how animals respond to changes in their environment.
Collapse
|
36
|
Benedict LM, Pitera AM, Branch CL, Sonnenberg BR, Heinen VK, Bridge ES, Pravosudov VV. Information maintenance of food sources is associated with environment, spatial cognition and age in a food-caching bird. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Heinen VK, Benedict LM, Pitera AM, Sonnenberg BR, Bridge ES, Pravosudov VV. Social dominance has limited effects on spatial cognition in a wild food-caching bird. Proc Biol Sci 2021; 288:20211784. [PMID: 34784764 PMCID: PMC8596002 DOI: 10.1098/rspb.2021.1784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/27/2021] [Indexed: 12/16/2022] Open
Abstract
Social dominance has long been used as a model to investigate social stress. However, many studies using such comparisons have been performed in captive environments. These environments may produce unnaturally high antagonistic interactions, exaggerating the stress of social subordination and any associated adverse consequences. One such adverse effect concerns impaired cognitive ability, often thought to be associated with social subordination. Here, we tested whether social dominance rank is associated with differences in spatial learning and memory, and in reversal spatial learning (flexibility) abilities in wild food-caching mountain chickadees at different montane elevations. Higher dominance rank was associated with higher spatial cognitive flexibility in harsh environments at higher elevations, but not at lower, milder elevations. By contrast, there were no consistent differences in spatial learning and memory ability associated with dominance rank. Our results suggest that spatial learning and memory ability in specialized food-caching species is a stable trait resilient to social influences. Spatial cognitive flexibility, on the other hand, appears to be more sensitive to environmental influences, including social dominance. These findings contradict those from laboratory studies and suggest that it is critical to investigate the biological consequences of social dominance under natural conditions.
Collapse
Affiliation(s)
| | | | - Angela M. Pitera
- Department of Biology, University of Nevada Reno, Reno, NV 89557, USA
| | | | - Eli S. Bridge
- Oklahoma Biological Survey, University of Oklahoma, Norman, OK 73019, USA
| | | |
Collapse
|
38
|
Rochais C, Hotte H, Pillay N. Seasonal variation in reversal learning reveals greater female cognitive flexibility in African striped mice. Sci Rep 2021; 11:20061. [PMID: 34625648 PMCID: PMC8501043 DOI: 10.1038/s41598-021-99619-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/27/2021] [Indexed: 11/09/2022] Open
Abstract
Cognitive flexibility describes the ability of animals to alter cognitively mediated behaviour in response to changing situational demands, and can vary according to prevailing environemental conditions and individual caracteristics. In the present study, we investigated (1) how learning and reversal learning performance changes between seasons, and (2) how cognitive flexibility is related to sex in a free-living small mammal. We studied 107 African striped mice, Rhabdomys pumilio, in an arid semi-desert, 58 during the hot dry summer with low food availability, and 49 during the cold wet winter with higher food availability. We used an escape box task to test for learning and reversal learning performance. We found that learning and reversal learning efficiency varied seasonally by sex: females tested in summer were faster at solving both learning and reversal tasks than males tested in winter. Performance varied within sex: males tested in winter showed faster learning compared to males tested in summer. During reversal learning, females tested in summer were more efficient and solve the task faster compared to females tested in winter. We suggest that seasonal cognitive performance could be related to sex-specific behavioural characteristics of the species, resulting in adaptation for living in harsh environmental conditions.
Collapse
Affiliation(s)
- Céline Rochais
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Hoël Hotte
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa.,ANSES, Plant Health Laboratory - Nematology Unit, Domaine de la Motte Au Vicomte, BP 35327, 35653, Le Rheu Cédex, France
| | - Neville Pillay
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
39
|
de Guinea M, Estrada A, Nekaris KAI, Van Belle S. Cognitive maps in the wild: revealing the use of metric information in black howler monkey route navigation. J Exp Biol 2021; 224:271801. [PMID: 34384101 PMCID: PMC8380465 DOI: 10.1242/jeb.242430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/15/2021] [Indexed: 01/25/2023]
Abstract
When navigating, wild animals rely on internal representations of the external world – called ‘cognitive maps’ – to take movement decisions. Generally, flexible navigation is hypothesized to be supported by sophisticated spatial skills (i.e. Euclidean cognitive maps); however, constrained movements along habitual routes are the most commonly reported navigation strategy. Even though incorporating metric information (i.e. distances and angles between locations) in route-based cognitive maps would likely enhance an animal's navigation efficiency, there has been no evidence of this strategy reported for non-human animals to date. Here, we examined the properties of the cognitive map used by a wild population of primates by testing a series of cognitive hypotheses against spatially explicit movement simulations. We collected 3104 h of ranging and behavioural data on five groups of black howler monkeys (Alouatta pigra) at Palenque National Park, Mexico, from September 2016 through August 2017. We simulated correlated random walks mimicking the ranging behaviour of the study subjects and tested for differences between observed and simulated movement patterns. Our results indicated that black howler monkeys engaged in constrained movement patterns characterized by a high path recursion tendency, which limited their capacity to travel in straight lines and approach feeding trees from multiple directions. In addition, we found that the structure of observed route networks was more complex and efficient than simulated route networks, suggesting that black howler monkeys incorporate metric information into their cognitive map. Our findings not only expand the use of metric information during route navigation to non-human animals, but also highlight the importance of considering efficient route-based navigation as a cognitively demanding mechanism. Highlighted Article: Black howler monkeys rely on route-based cognitive maps, which constrain their movement decisions, but likely incorporate metric information to navigate more efficiently along frequently used routes.
Collapse
Affiliation(s)
- Miguel de Guinea
- School of Social Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK.,Movement Ecology Lab, Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Alejandro Estrada
- Institute of Biology, National Autonomous University of Mexico, CP 04510 Mexico City, Mexico
| | | | - Sarie Van Belle
- Department of Anthropology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
40
|
Lewis MA, Fagan WF, Auger-Méthé M, Frair J, Fryxell JM, Gros C, Gurarie E, Healy SD, Merkle JA. Learning and Animal Movement. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.681704] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Integrating diverse concepts from animal behavior, movement ecology, and machine learning, we develop an overview of the ecology of learning and animal movement. Learning-based movement is clearly relevant to ecological problems, but the subject is rooted firmly in psychology, including a distinct terminology. We contrast this psychological origin of learning with the task-oriented perspective on learning that has emerged from the field of machine learning. We review conceptual frameworks that characterize the role of learning in movement, discuss emerging trends, and summarize recent developments in the analysis of movement data. We also discuss the relative advantages of different modeling approaches for exploring the learning-movement interface. We explore in depth how individual and social modalities of learning can matter to the ecology of animal movement, and highlight how diverse kinds of field studies, ranging from translocation efforts to manipulative experiments, can provide critical insight into the learning process in animal movement.
Collapse
|
41
|
Vila Pouca C, Mitchell DJ, Lefèvre J, Vega‐Trejo R, Kotrschal A. Early predation risk shapes adult learning and cognitive flexibility. OIKOS 2021. [DOI: 10.1111/oik.08481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Catarina Vila Pouca
- Zoological Inst., Stockholm Univ. Stockholm Sweden
- Behavioural Ecology Group, Wageningen Univ. and Research Wageningen the Netherlands
| | | | | | | | - Alexander Kotrschal
- Zoological Inst., Stockholm Univ. Stockholm Sweden
- Behavioural Ecology Group, Wageningen Univ. and Research Wageningen the Netherlands
| |
Collapse
|
42
|
Sex differences in learning flexibility in an avian brood parasite, the shiny cowbird. Behav Processes 2021; 189:104438. [PMID: 34087347 DOI: 10.1016/j.beproc.2021.104438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/04/2021] [Accepted: 05/28/2021] [Indexed: 02/05/2023]
Abstract
Females of brood parasitic shiny cowbirds, Molothrus bonariensis, search and prospect host nests, synchronizing parasitism with host laying. This behavior is sex-specific, as females perform this task without male's assistance. Host nests must be removed from the female's memory "library" after being parasitized, to avoid repeated parasitism, or when they become unavailable because of predation. Thus, females must adjust their stored information about host nest status more dynamically than males, possibly leading to differences in learning flexibility. We tested for sex differences in a visual (local cues) and a spatial discrimination reversal learning task, expecting females to outperform males as an expression of greater behavioral flexibility. Both sexes learned faster the spatial than the visual task during both acquisition and reversal. In the visual task there were no sex differences in acquisition, but females reversed faster than males. In the spatial task there were no sex differences during either acquisition or reversal, possibly because of a ceiling effect: both sexes learned too fast for differences in performance to be detectable. Faster female reversal in a visual but not spatial task indicates that the greater behavioral flexibility in females may only be detectable above some level of task difficulty.
Collapse
|
43
|
Heinen VK, Pitera AM, Sonnenberg BR, Benedict LM, Bridge ES, Farine DR, Pravosudov VV. Food discovery is associated with different reliance on social learning and lower cognitive flexibility across environments in a food-caching bird. Proc Biol Sci 2021; 288:20202843. [PMID: 34004135 PMCID: PMC8131126 DOI: 10.1098/rspb.2020.2843] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/26/2021] [Indexed: 11/12/2022] Open
Abstract
Social learning is a primary mechanism for information acquisition in social species. Despite many benefits, social learning may be disadvantageous when independent learning is more efficient. For example, searching independently may be more advantageous when food sources are ephemeral and unpredictable. Individual differences in cognitive abilities can also be expected to influence social information use. Specifically, better spatial memory can make a given environment more predictable for an individual by allowing it to better track food sources. We investigated how resident food-caching chickadees discovered multiple novel food sources in both harsher, less predictable high elevation and milder, more predictable low elevation winter environments. Chickadees at high elevation were faster at discovering multiple novel food sources and discovered more food sources than birds at low elevation. While birds at both elevations used social information, the contribution of social learning to food discovery was significantly lower at high elevation. At both elevations, chickadees with better spatial cognitive flexibility were slower at discovering food sources, likely because birds with lower spatial cognitive flexibility are worse at tracking natural resources and therefore spend more time exploring. Overall, our study supported the prediction that harsh environments should favour less reliance on social learning.
Collapse
Affiliation(s)
| | - Angela M. Pitera
- Department of Biology, University of Nevada Reno, Reno, NV 89557, USA
| | | | | | - Eli S. Bridge
- Oklahoma Biological Survey, University of Oklahoma, Norman, OK 73019, USA
| | - Damien R. Farine
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
- Department of Collective Behaviour, Max Planck Institute of Animal Behaviour, 78464 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany
| | | |
Collapse
|
44
|
Rowell MK, Rymer TL. Exploration influences problem solving in the fawn‐footed mosaic‐tailed rat (
Melomys cervinipes
). Ethology 2021. [DOI: 10.1111/eth.13166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Misha Kyla Rowell
- College of Science and Engineering James Cook University Cairns QLD Australia
- Centre for Tropical Environmental and Sustainability Sciences James Cook University Cairns QLD Australia
| | - Tasmin Lee Rymer
- College of Science and Engineering James Cook University Cairns QLD Australia
- Centre for Tropical Environmental and Sustainability Sciences James Cook University Cairns QLD Australia
| |
Collapse
|
45
|
Tait C, Brockmann A, Naug D. Nesting ecology does not explain slow-fast cognitive differences among honeybee species. Anim Cogn 2021; 24:1227-1235. [PMID: 33907939 DOI: 10.1007/s10071-021-01515-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/12/2021] [Accepted: 04/18/2021] [Indexed: 10/21/2022]
Abstract
Slow-fast behavioral and life history differences have been tied to slow-fast variation in cognition that is part of the general speed-accuracy tradeoff. While there is growing evidence for such cognitive variation and its association with behavior and life history at the intraspecific level, it is unknown if a similar relationship extends to the interspecific level. Since interspecific differences in cognition have been shown to be a function of ecology and life history, such differences should be reflected in multiple traits that comprise the slow-fast cognitive axis. In this study, by measuring multiple cognitive traits in individuals, we tested for differences in the cognitive phenotype among four honeybee species, which differ in their behavior and life history in a manner that is associated with differences in their nesting ecology. Our results indicate that a set of cognitive traits consistently covary within each species, resulting in slow and fast cognitive phenotypes that largely meet the predictions of the speed-accuracy tradeoff. We also find that the four species group into two distinct clusters on a slow-fast cognitive axis, although their positions do not align with the known differences in their life history and nesting ecology. We instead find that cognitive differences among the four species are correlated with their brain size. We discuss the possible implications of these results for the role of ecology on slow-fast cognitive differences and the evolution of cognition.
Collapse
Affiliation(s)
- Catherine Tait
- Department of Biology, Colorado State University, 1878 Campus Delivery, Fort Collins, CO, 80523, USA.
| | - Axel Brockmann
- National Centre for Biological Sciences, Bangalore, India
| | - Dhruba Naug
- Department of Biology, Colorado State University, 1878 Campus Delivery, Fort Collins, CO, 80523, USA
| |
Collapse
|
46
|
De Meester G, Sfendouraki-Basakarou A, Pafilis P, Van Damme R. Dealing with the unexpected: the effect of environmental variability on behavioural flexibility in a Mediterranean lizard. BEHAVIOUR 2021. [DOI: 10.1163/1568539x-bja10088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Abstract
Harsh and variable environments have been hypothesized to both drive and constrain the evolution towards higher cognitive abilities and behavioural flexibility. In this study, we compared the cognitive abilities of island and mainland Aegean wall lizards (Podarcis erhardii), which were expected to live in respectively a more variable and a more stable habitat. We used four proxies of behavioural flexibility: a neophobia assay, a problem-solving test and a spatial + reversal learning task. Surprisingly, the two populations did not differ in neophobia or problem-solving. Insular lizards, however, outperformed mainland conspecifics in an initial spatial learning task, but were less successful during the subsequent reversal learning. Our results thus seem to indicate that the effect of environmental variability on cognition is complex, as it may favour some, but not all aspects of behavioural flexibility.
Collapse
Affiliation(s)
- Gilles De Meester
- Department of Biology, Functional Morphology Group, University of Antwerp, Wilrijk, Belgium
- Department of Biology, Section of Zoology and Marine Biology, National & Kapodistrian University of Athens, Athens, Greece
| | - Alkyoni Sfendouraki-Basakarou
- Department of Biology, Section of Zoology and Marine Biology, National & Kapodistrian University of Athens, Athens, Greece
| | - Panayiotis Pafilis
- Department of Biology, Section of Zoology and Marine Biology, National & Kapodistrian University of Athens, Athens, Greece
| | - Raoul Van Damme
- Department of Biology, Functional Morphology Group, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
47
|
Rowell MK, Pillay N, Rymer TL. Problem Solving in Animals: Proposal for an Ontogenetic Perspective. Animals (Basel) 2021; 11:866. [PMID: 33803609 PMCID: PMC8002912 DOI: 10.3390/ani11030866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/16/2022] Open
Abstract
Problem solving, the act of overcoming an obstacle to obtain an incentive, has been studied in a wide variety of taxa, and is often based on simple strategies such as trial-and-error learning, instead of higher-order cognitive processes, such as insight. There are large variations in problem solving abilities between species, populations and individuals, and this variation could arise due to differences in development, and other intrinsic (genetic, neuroendocrine and aging) and extrinsic (environmental) factors. However, experimental studies investigating the ontogeny of problem solving are lacking. Here, we provide a comprehensive review of problem solving from an ontogenetic perspective. The focus is to highlight aspects of problem solving that have been overlooked in the current literature, and highlight why developmental influences of problem-solving ability are particularly important avenues for future investigation. We argue that the ultimate outcome of solving a problem is underpinned by interacting cognitive, physiological and behavioural components, all of which are affected by ontogenetic factors. We emphasise that, due to the large number of confounding ontogenetic influences, an individual-centric approach is important for a full understanding of the development of problem solving.
Collapse
Affiliation(s)
- Misha K. Rowell
- College of Science and Engineering, James Cook University, P. O. Box 6811, Cairns, Queensland 4870, Australia;
- Centre for Tropical Environmental and Sustainability Sciences, James Cook University, P. O. Box 6811, Cairns, Queensland 4870, Australia
| | - Neville Pillay
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa;
| | - Tasmin L. Rymer
- College of Science and Engineering, James Cook University, P. O. Box 6811, Cairns, Queensland 4870, Australia;
- Centre for Tropical Environmental and Sustainability Sciences, James Cook University, P. O. Box 6811, Cairns, Queensland 4870, Australia
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa;
| |
Collapse
|
48
|
de Guinea M, Estrada A, Janmaat KR, Nekaris KAI, Van Belle S. Disentangling the importance of social and ecological information in goal-directed movements in a wild primate. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2020.12.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
49
|
Morinay J, Cauchard L, Bize P, Doligez B. The Role of Cognition in Social Information Use for Breeding Site Selection: Experimental Evidence in a Wild Passerine Population. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.559690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In spatio-temporally variable environments, individuals are known to use information for making optimal decisions regarding where and when to breed. Optimal decision making can be complex when relying on multiple information sources with varying levels of reliability and accessibility. To deal with such complexity, different cognitive abilities such as learning and memory might enable individuals to optimally process and use these information sources. Yet, the link between information use and cognitive ability remains unexplored in natural populations. We investigated whether learning performance on a problem-solving task was related to the use of an experimentally manipulated source of social information for nest site selection in wild collared flycatchers (Ficedula albicollis). Collared flycatchers are known to use heterospecific information from their main competitors, the great tits (Parus major). Here, we created a local apparent preference by tits for an artificial nest site feature (a geometric symbol attached to nest boxes occupied by tits) and recorded whether flycatcher pairs chose to settle in nest boxes displaying the same feature as tits (i.e., copied tit apparent preference). Using a problem-solving task requiring opening a door temporarily blocking the nest box entrance, we then measured flycatchers' learning performance during nestling rearing as the number of entrances required to solve the task and enter the nest box twice in a row below a given efficiency threshold. We found that the probability to copy tit preference decreased with decreasing learning performance in females, particularly yearling ones: fast learning females copied tit preference, while slow learning ones rejected it. Male learning performance did not affect copying behavior. Our results showed that learning performance might play an important role in the ability to optimally use information for nest site selection in females: both fast and slow learning females could process this heterospecific information source but used it differently. This could partly explain the link between cognitive abilities and reproductive success reported in previous studies. Whether cognitive abilities may modulate condition-dependent costs of using different information remains to be explored.
Collapse
|
50
|
Harris C, Liedtke J, Drees C, Schuett W. Exploratory behaviour is not related to associative learning ability in the carabid beetle Nebria brevicollis. Behav Processes 2020; 180:104224. [PMID: 32828809 DOI: 10.1016/j.beproc.2020.104224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/04/2020] [Accepted: 08/18/2020] [Indexed: 01/01/2023]
Abstract
Recently, it has been hypothesised that as learning performance and animal personality vary along a common axis of fast and slow types, natural selection may act on both in parallel leading to a correlation between learning and personality traits. We examined the relationship between risk-taking, exploratory behaviour and associative learning ability in carabid beetle Nebria brevicollis females by quantifying the number of trials individuals required to reach criterion during an associative learning task ('learning performance'). The associative learning task required the females to associate odour and direction with refugia from light and heat in a T-maze. Further, we assessed learning performance in a reversal task by quantifying the number of correct trials when the reinforcement was switched to previously unrewarding stimuli. We found that N. brevicollis females can associate conditional stimuli with a reward. No female was able to reverse the learned association within the number of trials given, however individuals differed in the number of correct trials in the reversal phase. Contrary to previous predictions neither exploratory behaviour, which was repeatable, nor risk-taking were correlated with learning performance. Our results suggest that the relationship between learning and personality may not take a common form across species.
Collapse
Affiliation(s)
- Ciaran Harris
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | - Jannis Liedtke
- Department of Biological and Environmental Science, University of Jyvaskyla, PO Box 35, 40014, Finland
| | - Claudia Drees
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom; Institute of Zoology, Universität Hamburg, Martin-Luther-King Platz 3, 20146 Hamburg, Germany
| | - Wiebke Schuett
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom.
| |
Collapse
|