1
|
Hellmann JK, Sih A. Integrating social learning, social networks, and non-parental transgenerational plasticity. Trends Ecol Evol 2025; 40:335-345. [PMID: 39755518 DOI: 10.1016/j.tree.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 01/06/2025]
Abstract
Transgenerational plasticity (TGP) has largely focused on how parental exposure to ecological conditions shapes the phenotypes of future generations. However, organisms acquire information about their ecological environment via social learning, which can also shape TGP in profound ways. We demonstrate that non-parents alter how parents detect and respond to environmental cues in ways that spillover to affect offspring, non-parents influence offspring even without direct physical interactions, and parental cues received by offspring can alter the phenotypes of other juveniles. Because parents can draw on the experiences of a network of non-parents, these socially acquired cues may increase parents' ability to accurately detect environmental shifts and may explain why TGP is surprisingly ubiquitous despite theory predicting that it should be relatively rare.
Collapse
Affiliation(s)
- Jennifer K Hellmann
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA.
| | - Andrew Sih
- Department of Environmental Science and Policy, University of California, One Shields Ave, Davis, CA 95616, USA
| |
Collapse
|
2
|
Redhead D. Social structure and the evolutionary ecology of inequality. Trends Cogn Sci 2025; 29:201-213. [PMID: 39632153 DOI: 10.1016/j.tics.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024]
Abstract
From rising disparities in income to limited socio-political representation for minority groups, inequality is a topic of perennial interest for contemporary society. Research in the evolutionary sciences has started to investigate how social structure allows inequality to evolve, but is developing in silo from existing work in the social and cognitive sciences. I synthesise these literatures to present a theoretical framework of how and why cultural and ecological conditions can create social structure that either produces or constrains inequality. According to this framework, such conditions dictate the costs and benefits of cooperation that shape individuals' social preferences and resulting behaviours. These behaviours aggregate to produce distinct structures of a society's social networks, which generate different levels of inequality observed across societies.
Collapse
Affiliation(s)
- Daniel Redhead
- Department of Sociology, University of Groningen, Grote Rozenstraat 31, 9712 TG Groningen, The Netherlands; Inter-University Center for Social Science Theory and Methodology, University of Groningen, Groningen, The Netherlands; Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig 04103, Germany.
| |
Collapse
|
3
|
D'Bastiani E, Anglister N, Lysnyansky I, Mikula I, Acácio M, Vaadia G, Gahm K, Spiegel O, Pinter-Wollman N. Social interactions do not affect mycoplasma infection in griffon vultures. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240500. [PMID: 39665089 PMCID: PMC11632193 DOI: 10.1098/rsos.240500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/22/2024] [Accepted: 11/14/2024] [Indexed: 12/13/2024]
Abstract
Uncovering the ways in which pathogens spread has important implications for population health and management. Pathogen transmission is influenced by various factors, including patterns of social interactions and shared use of space. We aim to understand how the social behaviour of griffon vultures (Gyps fulvus), a species of conservation interest, influences the presence or absence of mycoplasma, a group of bacteria known to cause respiratory diseases in birds. We investigated how direct and indirect social interactions of griffon vultures in the wild, in different social situations, impacted the mycoplasma infection status. We inferred interactions from high-resolution global positioning system (GPS) tracking data. Specifically, we assessed how social behaviour affects infection status when vultures share feeding and roosting locations, either at the same time (direct interactions) or subsequently, when space use is asynchronous (indirect interactions). We did not detect a significant effect of any social situation and type of interaction on infection status. However, we observed a high population prevalence of mycoplasma, suggesting that other factors might be more important than social interactions in determining the transmission of this bacteria in the Israeli vulture population. Uncovering the mechanisms that underlie infection status in wildlife is crucial for maintaining viable populations, designing containment management actions and gaining insights into the ecological mechanisms that drive infectious disease dynamics.
Collapse
Affiliation(s)
- Elvira D'Bastiani
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Nili Anglister
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Inna Lysnyansky
- Mycoplasma unit, Department of Avian Diseases, Kimron Veterinary Institute (KVI), Beit Dagan, Israel
| | - Inna Mikula
- Mycoplasma unit, Department of Avian Diseases, Kimron Veterinary Institute (KVI), Beit Dagan, Israel
| | - Marta Acácio
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Gideon Vaadia
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Kaija Gahm
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Orr Spiegel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Noa Pinter-Wollman
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
4
|
Daoudi-Simison S, Lee P, Buchanan-Smith HM. Using Social Network Analysis to Assess 'Groupness' in a Mixed-Species Zoo Exhibit of Tufted Capuchins ( Sapajus apella) and Squirrel Monkeys ( Saimiri sciureus). Animals (Basel) 2024; 14:3360. [PMID: 39682326 DOI: 10.3390/ani14233360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Mixed-species groups have been recorded in various primates, including tufted capuchin and squirrel monkeys. Measures of their 'groupness' are typically based on factors such as group stability, social interactions, proximity, or behavioural coordination. Social network analysis has become a useful tool for quantifying relationships among group-living individuals. Here, we apply social network analysis to two captive mixed-species groups of tufted capuchins and squirrel monkeys housed at the Living Links to Human Evolution Research Centre, Royal Zoological Society of Scotland, Edinburgh Zoo, UK. We conducted 183 h of focal observations (three hours per individual, excluding co-observations) and calculated association rates using a simple index ratio. Permutation t-tests were used to assess differences in the overall mixed-species network and network metrics according to species. While the two species exhibited some level of association, they formed separate clusters in the mixed-species networks; however, the East group had more balanced group sizes and showed some signs of closer inter-specific social ties compared to the West group. Our data indicate that, in captivity at least, while these groups co-exist in a small, shared space, they do not form cohesive mixed-species groups. We suggest caution in the assumption of mixed-species groups based on shared space only.
Collapse
Affiliation(s)
- Sophia Daoudi-Simison
- School of Psychology, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4DR, UK
| | - Phyllis Lee
- Psychology, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | | |
Collapse
|
5
|
Peng P, Xu Y, Yu L, Xie X. Global Traction Battery Cathode Material Industrial Chain Trade Analysis: A Multilayer Modeling Approach. ENTROPY (BASEL, SWITZERLAND) 2024; 26:895. [PMID: 39593840 PMCID: PMC11593051 DOI: 10.3390/e26110895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/10/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024]
Abstract
The fast expansion of the electric vehicle market has led to a significant increase in the demand for traction batteries, an essential element in these vehicles that provide the opportunity to achieve low-carbon and environmentally friendly growth and carbon neutrality. By analyzing the network structure and key trading countries from 2000 to 2021, this research uses multilayer network theory to explore the trade patterns and the evolution of the global cathode material industrial chain of traction batteries. Our findings indicate the following: (1) The industrial networks display multi-core trading country characteristics. Trade connections among the top 20 countries, which account for more than 80% of the global trade volume, have strengthened. (2) Over time, the geographic center of trade has shifted from being primarily focused in Europe, North America, and East Asia to embracing the entire world, including regions such as Africa, South America, and Oceania. (3) In 2021, Australia overtook Japan as the main exporter, which held the top position in 2000. Similarly, China surpassed the United States, which was the top importer in 2000. (4) Changes in global trade relationships have affected the trading habits of the top-ranked countries.
Collapse
Affiliation(s)
- Peng Peng
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; (P.P.); (Y.X.); (X.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Xu
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; (P.P.); (Y.X.); (X.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Yu
- Center for Strategic Research on Frontier and Interdisciplinary Engineering Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaowei Xie
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; (P.P.); (Y.X.); (X.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Madsen A, de Silva S. Societies with fission-fusion dynamics as complex adaptive systems: the importance of scale. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230175. [PMID: 39034708 PMCID: PMC11293855 DOI: 10.1098/rstb.2023.0175] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/01/2023] [Accepted: 01/13/2024] [Indexed: 07/23/2024] Open
Abstract
In this article, we argue that social systems with fission-fusion (FF) dynamics are best characterized within a complex adaptive systems (CAS) framework. We discuss how different endogenous and exogenous factors drive scale-dependent network properties across temporal, spatial and social domains. Importantly, this view treats the dynamics themselves as objects of study, rather than variously defined notions of static 'social groups' that have hitherto dominated thinking in behavioural ecology. CAS approaches allow us to interrogate FF dynamics in taxa that do not conform to more traditional conceptualizations of sociality and encourage us to pose new types of questions regarding the sources of stability and change in social systems, distinguishing regular variations from those that would lead to system-level reorganization. This article is part of the theme issue 'Connected interactions: enriching food web research by spatial and social interactions'.
Collapse
Affiliation(s)
- Anastasia Madsen
- Department of Ecology, Behavior and Evolution, University of California, San Diego, CA92093-0021, USA
| | - Shermin de Silva
- Department of Ecology, Behavior and Evolution, University of California, San Diego, CA92093-0021, USA
| |
Collapse
|
7
|
Feyer SP, Pinaud B, Klein K, Lein E, Schreiber F. Exploring animal behaviour multilayer networks in immersive environments - a conceptual framework. J Integr Bioinform 2024; 21:jib-2024-0022. [PMID: 39054747 PMCID: PMC11602229 DOI: 10.1515/jib-2024-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/10/2024] [Indexed: 07/27/2024] Open
Abstract
Animal behaviour is often modelled as networks, where, for example, the nodes are individuals of a group and the edges represent behaviour within this group. Different types of behaviours or behavioural categories are then modelled as different yet connected networks which form a multilayer network. Recent developments show the potential and benefit of multilayer networks for animal behaviour research as well as the potential benefit of stereoscopic 3D immersive environments for the interactive visualisation, exploration and analysis of animal behaviour multilayer networks. However, so far animal behaviour research is mainly supported by libraries or software on 2D desktops. Here, we explore the domain-specific requirements for (stereoscopic) 3D environments. Based on those requirements, we provide a proof of concept to visualise, explore and analyse animal behaviour multilayer networks in immersive environments.
Collapse
Affiliation(s)
- Stefan Paul Feyer
- Department of Computer and Information Science, University of Konstanz, Konstanz, Germany
| | - Bruno Pinaud
- University of Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, Bordeaux, France
| | - Karsten Klein
- Department of Computer and Information Science, University of Konstanz, Konstanz, Germany
| | - Etienne Lein
- Behavioural Evolution Lab, Max Planck Institute of Animal Behavior, Konstanz, Germany
| | - Falk Schreiber
- Department of Computer and Information Science, University of Konstanz, Konstanz, Germany
- Faculty of Information Technology, Monash University, Clayton, Australia
| |
Collapse
|
8
|
Hartman CRA, Wilkinson GS, Razik I, Hamilton IM, Hobson EA, Carter GG. Hierarchically embedded scales of movement shape the social networks of vampire bats. Proc Biol Sci 2024; 291:20232880. [PMID: 38654645 PMCID: PMC11040254 DOI: 10.1098/rspb.2023.2880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Social structure can emerge from hierarchically embedded scales of movement, where movement at one scale is constrained within a larger scale (e.g. among branches, trees, forests). In most studies of animal social networks, some scales of movement are not observed, and the relative importance of the observed scales of movement is unclear. Here, we asked: how does individual variation in movement, at multiple nested spatial scales, influence each individual's social connectedness? Using existing data from common vampire bats (Desmodus rotundus), we created an agent-based model of how three nested scales of movement-among roosts, clusters and grooming partners-each influence a bat's grooming network centrality. In each of 10 simulations, virtual bats lacking social and spatial preferences moved at each scale at empirically derived rates that were either fixed or individually variable and either independent or correlated across scales. We found that numbers of partners groomed per bat were driven more by within-roost movements than by roost switching, highlighting that co-roosting networks do not fully capture bat social structure. Simulations revealed how individual variation in movement at nested spatial scales can cause false discovery and misidentification of preferred social relationships. Our model provides several insights into how nonsocial factors shape social networks.
Collapse
Affiliation(s)
- C. Raven A. Hartman
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
| | | | - Imran Razik
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
- Smithsonian Tropical Research Institute, Balboa, Ancón, Apartado Postal 0843-03092, Panama
| | - Ian M. Hamilton
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
- Department of Mathematics, The Ohio State University, Columbus, OH 43210, USA
| | - Elizabeth A. Hobson
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Gerald G. Carter
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
- Smithsonian Tropical Research Institute, Balboa, Ancón, Apartado Postal 0843-03092, Panama
| |
Collapse
|
9
|
Milano M, Agapito G, Cannataro M. An Exploratory Application of Multilayer Networks and Pathway Analysis in Pharmacogenomics. Genes (Basel) 2023; 14:1915. [PMID: 37895264 PMCID: PMC10606656 DOI: 10.3390/genes14101915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Over the years, network analysis has become a promising strategy for analysing complex system, i.e., systems composed of a large number of interacting elements. In particular, multilayer networks have emerged as a powerful framework for modelling and analysing complex systems with multiple types of interactions. Network analysis can be applied to pharmacogenomics to gain insights into the interactions between genes, drugs, and diseases. By integrating network analysis techniques with pharmacogenomic data, the goal consists of uncovering complex relationships and identifying key genes to use in pathway enrichment analysis to figure out biological pathways involved in drug response and adverse reactions. In this study, we modelled omics, disease, and drug data together through multilayer network representation. Then, we mined the multilayer network with a community detection algorithm to obtain the top communities. After that, we used the identified list of genes from the communities to perform pathway enrichment analysis (PEA) to figure out the biological function affected by the selected genes. The results show that the genes forming the top community have multiple roles through different pathways.
Collapse
Affiliation(s)
- Marianna Milano
- Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
- Data Analytics Research Center, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; (G.A.); (M.C.)
| | - Giuseppe Agapito
- Data Analytics Research Center, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; (G.A.); (M.C.)
- Department of Law, Economics and Social Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Mario Cannataro
- Data Analytics Research Center, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; (G.A.); (M.C.)
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
10
|
Dundore-Arias JP, Michalska-Smith M, Millican M, Kinkel LL. More Than the Sum of Its Parts: Unlocking the Power of Network Structure for Understanding Organization and Function in Microbiomes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:403-423. [PMID: 37217203 DOI: 10.1146/annurev-phyto-021021-041457] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plant and soil microbiomes are integral to the health and productivity of plants and ecosystems, yet researchers struggle to identify microbiome characteristics important for providing beneficial outcomes. Network analysis offers a shift in analytical framework beyond "who is present" to the organization or patterns of coexistence between microbes within the microbiome. Because microbial phenotypes are often significantly impacted by coexisting populations, patterns of coexistence within microbiomes are likely to be especially important in predicting functional outcomes. Here, we provide an overview of the how and why of network analysis in microbiome research, highlighting the ways in which network analyses have provided novel insights into microbiome organization and functional capacities, the diverse network roles of different microbial populations, and the eco-evolutionary dynamics of plant and soil microbiomes.
Collapse
Affiliation(s)
- J P Dundore-Arias
- Department of Biology and Chemistry, California State University, Monterey Bay, Seaside, California, USA
| | - M Michalska-Smith
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA;
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, USA
| | | | - L L Kinkel
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA;
| |
Collapse
|
11
|
Sharma N, Anglister N, Spiegel O, Pinter‐Wollman N. Social situations differ in their contribution to population-level social structure in griffon vultures. Ecol Evol 2023; 13:e10139. [PMID: 37274150 PMCID: PMC10238758 DOI: 10.1002/ece3.10139] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 06/06/2023] Open
Abstract
Social relationships among animals emerge from interactions in multiple ecological and social situations. However, we seldom ask how each situation contributes to the global structure of a population, and whether different situations contribute different information about social relationships and the position of individuals within the social fabric. Griffon vultures (Gyps fulvus) interact socially in multiple situations, including communal roosting, joint flights, and co-feeding. These social interactions can influence population-level outcomes, such as disease transmission and information sharing that determine survival and response to changes. We examined the unique contribution of each social and ecological situation to the social structure of the population and individuals' positions within the overall social network using high-resolution GPS tracking. We found that the number of individuals each vulture interacted with (degree) was best predicted by diurnal interactions-both during flights and on the ground (such as when feeding). However, the strength of social bonds, that is, the number of interactions an individual had (strength), was best predicted by interactions on the ground-both during the day (e.g., while feeding) and at night (e.g., while roosting) but not by interactions while flying. Thus, social situations differ in their impact on the relationships that individuals form. By incorporating the ecological situations in which social interactions occur we gain a more complete view of how social relationships are formed and which situations are important for different types of interactions.
Collapse
Affiliation(s)
- Nitika Sharma
- Department of Ecology and Evolutionary BiologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Nili Anglister
- School of Zoology, Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
| | - Orr Spiegel
- School of Zoology, Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
| | - Noa Pinter‐Wollman
- Department of Ecology and Evolutionary BiologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
12
|
Social consequences of rapid environmental change. Trends Ecol Evol 2023; 38:337-345. [PMID: 36473809 DOI: 10.1016/j.tree.2022.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022]
Abstract
While direct influences of the environment on population growth and resilience are well studied, indirect routes linking environmental changes to population consequences are less explored. We suggest that social behavior is key for understanding how anthropogenic environmental changes affect the resilience of animal populations. Social structures of animal groups are evolved and emergent phenotypes that often have demographic consequences for group members. Importantly, environmental drivers may directly influence the consequences of social structure or indirectly influence them through modifications to social interactions, group composition, or group size. We have developed a framework to study these demographic consequences. Estimating the strength of direct and indirect pathways will give us tools to understand, and potentially manage, the effect of human-induced rapid environmental changes.
Collapse
|
13
|
Herrera JP, Moody J, Nunn CL. Predicting primate-parasite associations using exponential random graph models. J Anim Ecol 2023; 92:710-722. [PMID: 36633380 DOI: 10.1111/1365-2656.13883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/07/2022] [Indexed: 01/13/2023]
Abstract
Ecological associations between hosts and parasites are influenced by host exposure and susceptibility to parasites, and by parasite traits, such as transmission mode. Advances in network analysis allow us to answer questions about the causes and consequences of traits in ecological networks in ways that could not be addressed in the past. We used a network-based framework (exponential random graph models or ERGMs) to investigate the biogeographic, phylogenetic and ecological characteristics of hosts and parasites that affect the probability of interactions among nonhuman primates and their parasites. Parasites included arthropods, bacteria, fungi, protozoa, viruses and helminths. We investigated existing hypotheses, along with new predictors and an expanded host-parasite database that included 213 primate nodes, 763 parasite nodes and 2319 edges among them. Analyses also investigated phylogenetic relatedness, sampling effort and spatial overlap among hosts. In addition to supporting some previous findings, our ERGM approach demonstrated that more threatened hosts had fewer parasites, and notably, that this effect was independent of hosts also having a smaller geographic range. Despite having fewer parasites, threatened host species shared more parasites with other hosts, consistent with loss of specialist parasites and threat arising from generalist parasites that can be maintained in other, non-threatened hosts. Viruses, protozoa and helminths had broader host ranges than bacteria, or fungi, and parasites that infect non-primates had a higher probability of infecting more primate species. The value of the ERGM approach for investigating the processes structing host-parasite networks provided a more complete view on the biogeographic, phylogenetic and ecological traits that influence parasite species richness and parasite sharing among hosts. The results supported some previous analyses and revealed new associations that warrant future research, thus revealing how hosts and parasites interact to form ecological networks.
Collapse
Affiliation(s)
- James P Herrera
- Duke Lemur Center SAVA Conservation, Duke University, Durham, North Carolina, USA
| | - James Moody
- Department of Sociology, Duke University, Durham, North Carolina, USA
| | - Charles L Nunn
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA.,Duke Global Health Institute, Duke University, Durham, North Carolina, USA
| |
Collapse
|
14
|
Dunkley K, Whittey KE, Ellison A, Perkins SE, Cable J, Herbert-Read JE. The presence of territorial damselfish predicts choosy client species richness at cleaning stations. Behav Ecol 2023; 34:269-277. [PMID: 36998993 PMCID: PMC10047629 DOI: 10.1093/beheco/arac122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/22/2022] [Accepted: 12/05/2022] [Indexed: 02/23/2023] Open
Abstract
Mutualisms are driven by partners deciding to interact with one another to gain specific services or rewards. As predicted by biological market theory, partners should be selected based on the likelihood, quality, reward level, and or services each partner can offer. Third-party species that are not directly involved in the interaction, however, may indirectly affect the occurrence and or quality of the services provided, thereby affecting which partners are selected or avoided. We investigated how different clients of the sharknose goby (Elacatinus evelynae) cleaner fish were distributed across cleaning stations, and asked what characteristics, relating to biological market theory, affected this distribution. Through quantifying the visitation and cleaning patterns of client fish that can choose which cleaning station(s) to visit, we found that the relative species richness of visiting clients at stations was negatively associated with the presence of disruptive territorial damselfish at the station. Our study highlights, therefore, the need to consider the indirect effects of third-party species and their interactions (e.g., agonistic interactions) when attempting to understand mutualistic interactions between species. Moreover, we highlight how cooperative interactions may be indirectly governed by external partners.
Collapse
Affiliation(s)
- Katie Dunkley
- Christ’s College, University of Cambridge, Cambridge CB2 3BU, UK
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | | | - Amy Ellison
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Sarah E Perkins
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Jo Cable
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - James E Herbert-Read
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
- Aquatic Ecology Unit, Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
15
|
Aguilar-Vega C, Scoglio C, Clavijo MJ, Robbins R, Karriker L, Liu X, Martínez-López B. A tool to enhance antimicrobial stewardship using similarity networks to identify antimicrobial resistance patterns across farms. Sci Rep 2023; 13:2931. [PMID: 36804990 PMCID: PMC9941107 DOI: 10.1038/s41598-023-29980-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Antimicrobial resistance (AMR) is one of the major challenges of the century and should be addressed with a One Health approach. This study aimed to develop a tool that can provide a better understanding of AMR patterns and improve management practices in swine production systems to reduce its spread between farms. We generated similarity networks based on the phenotypic AMR pattern for each farm with information on important bacterial pathogens for swine farming based on the Euclidean distance. We included seven pathogens: Actinobacillus suis, Bordetella bronchiseptica, Escherichia coli, Glaesserella parasuis, Pasteurella multocida, Salmonella spp., and Streptococcus suis; and up to seventeen antibiotics from ten classes. A threshold criterion was developed to reduce the density of the networks and generate communities based on their AMR profiles. A total of 479 farms were included in the study although not all bacteria information was available on each farm. We observed significant differences in the morphology, number of nodes and characteristics of pathogen networks, as well as in the number of communities and susceptibility profiles of the pathogens to different antimicrobial drugs. The methodology presented here could be a useful tool to improve health management, biosecurity measures and prioritize interventions to reduce AMR spread in swine farming.
Collapse
Affiliation(s)
- Cecilia Aguilar-Vega
- grid.27860.3b0000 0004 1936 9684Center for Animal Disease Modeling and Surveillance (CADMS), Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA USA ,grid.4795.f0000 0001 2157 7667Animal Health Department, Faculty of Veterinary Medicine, VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| | - Caterina Scoglio
- grid.36567.310000 0001 0737 1259Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS USA
| | - María J. Clavijo
- grid.34421.300000 0004 1936 7312Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA USA ,Pig Improvement Company (PIC), Hendersonville, TN USA
| | | | - Locke Karriker
- grid.34421.300000 0004 1936 7312Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA USA
| | - Xin Liu
- grid.27860.3b0000 0004 1936 9684Computer Science Department, University of California, Davis, CA USA
| | - Beatriz Martínez-López
- Center for Animal Disease Modeling and Surveillance (CADMS), Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA.
| |
Collapse
|
16
|
Wang Y, Yang Y, Li A, Wang L. Stability of multi-layer ecosystems. J R Soc Interface 2023; 20:20220752. [PMCID: PMC9943886 DOI: 10.1098/rsif.2022.0752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Community structure is reported to play a critical role in ecosystem stability, which indicates the ability of a system to return to equilibrium after perturbations. However, current studies rely on the assumption that the community consists of only a single-layer structure. In practice, multi-layer structures are common in ecosystems, e.g. the distributions of both microorganisms in strata and fish in the ocean usually stratify into multi-layer structures. Here we use multi-layer networks to model species interactions within each layer and between different layers, and study the stability of multi-layer ecosystems under different interaction types. We show that competitive interactions within each layer have a more substantial stabilizing effect in multi-layer ecosystems relative to their impact in single-layer ecosystems. Surprisingly, between different layers, we find that competition between species destabilizes the ecosystem. We further provide a theoretical analysis of the stability of multi-layer ecosystems and confirm the robustness of our findings for different connectances between layers, numbers of species in each layer, and numbers of layers. Our work provides a general framework for investigating the stability of multi-layer ecosystems and uncovers the double-sided role of competitive interactions in the stability of multi-layer ecosystems.
Collapse
Affiliation(s)
- Ye Wang
- Center for Systems and Control, College of Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Yuguang Yang
- Center for Systems and Control, College of Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Aming Li
- Center for Systems and Control, College of Engineering, Peking University, Beijing 100871, People’s Republic of China,Center for Multi-Agent Research, Institute for Artificial Intelligence, Peking University, Beijing 100871, People’s Republic of China
| | - Long Wang
- Center for Systems and Control, College of Engineering, Peking University, Beijing 100871, People’s Republic of China,Center for Multi-Agent Research, Institute for Artificial Intelligence, Peking University, Beijing 100871, People’s Republic of China
| |
Collapse
|
17
|
Webber QMR, Albery GF, Farine DR, Pinter-Wollman N, Sharma N, Spiegel O, Vander Wal E, Manlove K. Behavioural ecology at the spatial-social interface. Biol Rev Camb Philos Soc 2023; 98:868-886. [PMID: 36691262 DOI: 10.1111/brv.12934] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/25/2023]
Abstract
Spatial and social behaviour are fundamental aspects of an animal's biology, and their social and spatial environments are indelibly linked through mutual causes and shared consequences. We define the 'spatial-social interface' as intersection of social and spatial aspects of individuals' phenotypes and environments. Behavioural variation at the spatial-social interface has implications for ecological and evolutionary processes including pathogen transmission, population dynamics, and the evolution of social systems. We link spatial and social processes through a foundation of shared theory, vocabulary, and methods. We provide examples and future directions for the integration of spatial and social behaviour and environments. We introduce key concepts and approaches that either implicitly or explicitly integrate social and spatial processes, for example, graph theory, density-dependent habitat selection, and niche specialization. Finally, we discuss how movement ecology helps link the spatial-social interface. Our review integrates social and spatial behavioural ecology and identifies testable hypotheses at the spatial-social interface.
Collapse
Affiliation(s)
- Quinn M R Webber
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Gregory F Albery
- Department of Biology, Georgetown University, 37th and O Streets, Washington, DC, 20007, USA.,Wissenschaftskolleg zu Berlin, Wallotstraße 19, 14193, Berlin, Germany.,Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany
| | - Damien R Farine
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Department of Collective Behavior, Max Planck Institute of Animal Behavior, Universitatsstraße 10, 78464, Constance, Germany.,Division of Ecology and Evolution, Research School of Biology, Australian National University, 46 Sullivans Creek Road, Canberra, ACT, 2600, Australia
| | - Noa Pinter-Wollman
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Nitika Sharma
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Orr Spiegel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Eric Vander Wal
- Department of Biology, Memorial University, St. John's, NL, A1C 5S7, Canada
| | - Kezia Manlove
- Department of Wildland Resources and Ecology Center, Utah State University, 5200 Old Main Hill, Logan, UT, 84322, USA
| |
Collapse
|
18
|
Garcia-Nisa I, Evans C, Kendal RL. The influence of task difficulty, social tolerance and model success on social learning in Barbary macaques. Sci Rep 2023; 13:1176. [PMID: 36670123 PMCID: PMC9860066 DOI: 10.1038/s41598-022-26699-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/19/2022] [Indexed: 01/21/2023] Open
Abstract
Despite playing a pivotal role in the inception of animal culture studies, macaque social learning is surprisingly understudied. Social learning is important to survival and influenced by dominance and affiliation in social animals. Individuals generally rely on social learning when individual learning is costly, and selectively use social learning strategies influencing what is learned and from whom. Here, we combined social learning experiments, using extractive foraging tasks, with network-based diffusion analysis (using various social relationships) to investigate the transmission of social information in free-ranging Barbary macaques. We also investigated the influence of task difficulty on reliance on social information and evidence for social learning strategies. Social learning was detected for the most difficult tasks only, with huddling relations outside task introductions, and observation networks during task introductions, predicting social transmission. For the most difficult task only, individuals appeared to employ a social learning strategy of copying the most successful demonstrator observed. Results indicate that high social tolerance represents social learning opportunities and influences social learning processes. The reliance of Barbary macaques on social learning, and cues of model-success supports the costly information hypothesis. Our study provides more statistical evidence to the previous claims indicative of culture in macaques.
Collapse
Affiliation(s)
- Ivan Garcia-Nisa
- Durham Cultural Evolution Research Centre, Department of Anthropology, Durham University, Durham, UK.
| | - Cara Evans
- Durham Cultural Evolution Research Centre, Department of Anthropology, Durham University, Durham, UK
| | - Rachel L Kendal
- Durham Cultural Evolution Research Centre, Department of Anthropology, Durham University, Durham, UK
| |
Collapse
|
19
|
Welklin JF, Lantz SM, Khalil S, Moody NM, Karubian J, Webster MS. Photoperiod and rainfall are associated with seasonal shifts in social structure in a songbird. Behav Ecol 2022. [DOI: 10.1093/beheco/arac110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Seasonally breeding animals often exhibit different social structures during non-breeding and breeding periods that coincide with seasonal environmental variation and resource abundance. However, we know little about the environmental factors associated with when seasonal shifts in social structure occur. This lack of knowledge contrasts with our well-defined knowledge of the environmental cues that trigger a shift to breeding physiology in seasonally breeding species. Here, we identified some of the main environmental factors associated with seasonal shifts in social structure and initiation of breeding in the red-backed fairywren (Malurus melanocephalus), an Australian songbird. Social network analyses revealed that social groups, which are highly territorial during the breeding season, interact in social “communities” on larger home ranges during the non-breeding season. Encounter rates among non-breeding groups were related to photoperiod and rainfall, with shifting photoperiod and increased rainfall associated with a shift toward territorial breeding social structure characterized by reductions in home range size and fewer encounters among non-breeding social groups. Similarly, onset of breeding was highly seasonal and was also associated with non-breeding season rainfall, with greater rainfall leading to earlier breeding. These findings reveal that for some species, the environmental factors associated with the timing of shifts in social structure across seasonal boundaries can be similar to those that determine timing of breeding. This study increases our understanding of the environmental factors associated with seasonal variation in social structure and how the timing of these shifts may respond to changing climates.
Collapse
Affiliation(s)
- Joseph F Welklin
- Department of Neurobiology and Behavior, Cornell University , 215 Tower Rd, Ithaca, NY 14853 , USA
- Cornell Lab of Ornithology , 159 Sapsucker Woods Rd, Ithaca, NY 14850 , USA
| | - Samantha M Lantz
- Department of Ecology and Evolutionary Biology, Tulane University , 400 Lindy Boggs Center, New Orleans, LA 70118 , USA
| | - Sarah Khalil
- Cornell Lab of Ornithology , 159 Sapsucker Woods Rd, Ithaca, NY 14850 , USA
- Department of Ecology and Evolutionary Biology, Tulane University , 400 Lindy Boggs Center, New Orleans, LA 70118 , USA
| | - Nicole M Moody
- Department of Ecology and Evolutionary Biology, Tulane University , 400 Lindy Boggs Center, New Orleans, LA 70118 , USA
- Department of Ecology and Evolutionary Biology, Brown University , 80 Waterman St, Providence, RI 02912 , USA
| | - Jordan Karubian
- Department of Ecology and Evolutionary Biology, Tulane University , 400 Lindy Boggs Center, New Orleans, LA 70118 , USA
| | - Michael S Webster
- Department of Neurobiology and Behavior, Cornell University , 215 Tower Rd, Ithaca, NY 14853 , USA
- Cornell Lab of Ornithology , 159 Sapsucker Woods Rd, Ithaca, NY 14850 , USA
| |
Collapse
|
20
|
Dragić N, Keynan O, Ilany A. Protocol to record multiple interaction types in small social groups of birds. STAR Protoc 2022; 3:101814. [DOI: 10.1016/j.xpro.2022.101814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
21
|
Mikula O, Macholán M, Ďureje Ľ, Hiadlovská Z, Daniszová K, Janotová K, Vošlajerová Bímová B. House mouse subspecies do differ in their social structure. Ecol Evol 2022; 12:e9683. [PMID: 36590341 PMCID: PMC9797468 DOI: 10.1002/ece3.9683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 10/17/2022] [Accepted: 12/08/2022] [Indexed: 12/31/2022] Open
Abstract
It is widely acknowledged that population structure can have a substantial impact on evolutionary trajectories. In social animals, this structure is strongly influenced by relationships among the population members, so studies of differences in social structure between diverging populations or nascent species are of prime interest. Ideal models for such a study are two house mouse subspecies, Mus musculus musculus and M. m. domesticus, meeting in Europe along a secondary contact zone. Though the latter subspecies has usually been supposed to form tighter and more isolated social units than the former, the evidence is still inconclusive. Here, we carried out a series of radiofrequency identification experiments in semi-natural enclosures to gather large longitudinal data sets on individual mouse movements. The data were summarized in the form of uni- and multi-layer social networks. Within them, we could delimit and describe the social units ("modules"). While the number of estimated units was similar in both subspecies, domesticus revealed a more "modular" structure. This subspecies also showed more intramodular social interactions, higher spatial module separation, higher intramodular persistence of parent-offspring contacts, and lower multiple paternity, suggesting more effective control of dominant males over reproduction. We also demonstrate that long-lasting modules can be identified with basic reproductive units or demes. We thus provide the first robust evidence that the two subspecies differ in their social structure and dynamics of the structure formation.
Collapse
Affiliation(s)
- Ondřej Mikula
- Laboratory of Mammalian Evolutionary Genetics, Institute of Animal Physiology and GeneticsCzech Academy of SciencesBrnoCzech Republic
- Institute of Vertebrate BiologyCzech Academy of SciencesResearch Facility StudenecBrnoCzech Republic
| | - Miloš Macholán
- Laboratory of Mammalian Evolutionary Genetics, Institute of Animal Physiology and GeneticsCzech Academy of SciencesBrnoCzech Republic
- Department of Botany and Zoology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Ľudovít Ďureje
- Institute of Vertebrate BiologyCzech Academy of SciencesResearch Facility StudenecBrnoCzech Republic
| | - Zuzana Hiadlovská
- Laboratory of Mammalian Evolutionary Genetics, Institute of Animal Physiology and GeneticsCzech Academy of SciencesBrnoCzech Republic
| | - Kristina Daniszová
- Laboratory of Mammalian Evolutionary Genetics, Institute of Animal Physiology and GeneticsCzech Academy of SciencesBrnoCzech Republic
| | - Kateřina Janotová
- Institute of Vertebrate BiologyCzech Academy of SciencesResearch Facility StudenecBrnoCzech Republic
| | - Barbora Vošlajerová Bímová
- Laboratory of Mammalian Evolutionary Genetics, Institute of Animal Physiology and GeneticsCzech Academy of SciencesBrnoCzech Republic
| |
Collapse
|
22
|
Sanz CM, Strait D, Eyana Ayina C, Massamba JM, Ebombi TF, Ndassoba Kialiema S, Ngoteni D, Mbebouti G, Koni Boue DR, Brogan S, Funkhouser JA, Morgan DB. Interspecific interactions between sympatric apes. iScience 2022; 25:105059. [PMID: 36147956 PMCID: PMC9485909 DOI: 10.1016/j.isci.2022.105059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/10/2022] [Accepted: 08/26/2022] [Indexed: 11/29/2022] Open
Abstract
Gorillas reside in sympatry with chimpanzees over the majority of their range. Compiling all known reports of overlap between apes and augmenting these with observations made over twenty years in the Ndoki Forest, we examine the potential predation-related, foraging, and social contexts of interspecific associations between gorillas and chimpanzees. We reveal a greater diversity of interactions than previously recognized, which range from play to lethal aggression. Furthermore, there are indications that interactions between ape species may serve multiple functions. Interactions between gorillas and chimpanzees were most common during foraging activities, but they also overlapped in several other contexts. From a social perspective, we provide evidence of consistent relationships between particular chimpanzee-gorilla dyads. In addition to providing new insights into extant primate community dynamics, the diversity of interactions between apes points to an entirely new field of study in early human origins as early hominins also likely had opportunities to associate. First evidence of social relationships between chimpanzees and gorillas is reported Social ties between chimpanzees and gorillas persisted over years and across contexts Ape species engaged in a wide range of interactions, from play to aggression Coexisting great apes may inform us about interactions between some early hominins
Collapse
Affiliation(s)
- Crickette M Sanz
- Department of Anthropology, Washington University in Saint Louis, 1 Brookings Drive, Saint Louis, MO 63130, USA.,Wildlife Conservation Society, Congo Program, B.P. 14537, Brazzaville, Republic of Congo
| | - David Strait
- Department of Anthropology, Washington University in Saint Louis, 1 Brookings Drive, Saint Louis, MO 63130, USA.,Palaeo-Research Institute, University of Johannesburg, Auckland Park, Gauteng, South Africa
| | - Crepin Eyana Ayina
- Wildlife Conservation Society, Congo Program, B.P. 14537, Brazzaville, Republic of Congo
| | - Jean Marie Massamba
- Wildlife Conservation Society, Congo Program, B.P. 14537, Brazzaville, Republic of Congo
| | - Thierry Fabrice Ebombi
- Wildlife Conservation Society, Congo Program, B.P. 14537, Brazzaville, Republic of Congo
| | | | - Delon Ngoteni
- Wildlife Conservation Society, Congo Program, B.P. 14537, Brazzaville, Republic of Congo
| | - Gaeton Mbebouti
- Wildlife Conservation Society, Congo Program, B.P. 14537, Brazzaville, Republic of Congo
| | | | - Sean Brogan
- Wildlife Conservation Society, Congo Program, B.P. 14537, Brazzaville, Republic of Congo
| | - Jake A Funkhouser
- Department of Anthropology, Washington University in Saint Louis, 1 Brookings Drive, Saint Louis, MO 63130, USA
| | - David B Morgan
- Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, 2001 N. Clark Street, Chicago, IL 60614, USA
| |
Collapse
|
23
|
Hasenjager MJ, Franks VR, Leadbeater E. From dyads to collectives: a review of honeybee signalling. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03218-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AbstractThe societies of honeybees (Apis spp.) are microcosms of divided labour where the fitness interests of individuals are so closely aligned that, in some contexts, the colony behaves as an entity in itself. Self-organization at this extraordinary level requires sophisticated communication networks, so it is not surprising that the celebrated waggle dance, by which bees share information about locations outside the hive, evolved here. Yet bees within the colony respond to several other lesser-known signalling systems, including the tremble dance, the stop signal and the shaking signal, whose roles in coordinating worker behaviour are not yet fully understood. Here, we firstly bring together the large but disparate historical body of work that has investigated the “meaning” of such signals for individual bees, before going on to discuss how network-based approaches can show how such signals function as a complex system to control the collective foraging effort of these remarkable social insect societies.
Collapse
|
24
|
Vuksanović V. Brain morphometric similarity and flexibility. Cereb Cortex Commun 2022; 3:tgac024. [PMID: 35854840 PMCID: PMC9283106 DOI: 10.1093/texcom/tgac024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 05/31/2022] [Accepted: 06/05/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Background
The cerebral cortex is represented through multiple multilayer morphometric similarity networks to study their modular structures. The approach introduces a novel way for studying brain networks' metrics across individuals, and can quantify network properties usually not revealed using conventional network analyses.
Methods
A total of 8 combinations or types of morphometric similarity networks were constructed – 4 combinations of the inter-regional cortical features on 2 brain atlases. The networks' modular structures were investigated by identifying those modular interactions that stay consistent across the combinations of inter-regional morphometric features and individuals.
Results
The results provide evidence of the community structures as the property of (i) cortical lobar divisions, and also as (ii) the product of different combinations of morphometric features used for the construction of the multilayer representations of the cortex. For the first time, this study has mapped out flexible and inflexible morphometric similarity hubs, and evidence has been provided about variations of the modular network topology across the multilayers with age and IQ.
Conclusions
The results contribute to understanding of intra-regional characteristics in cortical interactions, which potentially can be used to map heterogeneous neurodegeneration patterns in diseased brains.
Collapse
Affiliation(s)
- Vesna Vuksanović
- Health Data Science, Swansea University Medical School, Swansea University, Data Science Building , Swansea SA2 8PP, Wales, United Kingdom
| |
Collapse
|
25
|
Bonnell TR, Henzi SP, Barrett L. Using network synchrony to identify drivers of social dynamics. Proc Biol Sci 2022; 289:20220537. [PMID: 35765841 PMCID: PMC9240667 DOI: 10.1098/rspb.2022.0537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Social animals frequently show dynamic social network patterns, the consequences of which are felt at the individual and group level. It is often difficult, however, to identify what drivers are responsible for changes in these networks. We suggest that patterns of network synchronization across multiple social groups can be used to better understand the relative contributions of extrinsic and intrinsic drivers. When groups are socially separated, but share similar physical environments, the extent to which network measures across multiple groups covary (i.e. network synchrony) can provide an estimate of the relative roles of extrinsic and intrinsic drivers. As a case example, we use allogrooming data from three adjacent vervet monkey groups to generate dynamic social networks. We found that network strength was strongly synchronized across the three groups, pointing to shared extrinsic environmental conditions as the driver. We also found low to moderate levels of synchrony in network modularity, suggesting that intrinsic social processes may be more important in driving changes in subgroup formation in this population. We conclude that patterns of network synchronization can help guide future research in identifying the proximate mechanisms behind observed social dynamics in animal groups.
Collapse
Affiliation(s)
- Tyler R. Bonnell
- Department of Psychology, University of Lethbridge, Lethbridge, Alberta, Canada,Applied Behavioural Ecology and Ecosystems Research Unit, University of South Africa, Pretoria, 0002, South Africa
| | - S. Peter Henzi
- Department of Psychology, University of Lethbridge, Lethbridge, Alberta, Canada,Applied Behavioural Ecology and Ecosystems Research Unit, University of South Africa, Pretoria, 0002, South Africa
| | - Louise Barrett
- Department of Psychology, University of Lethbridge, Lethbridge, Alberta, Canada,Applied Behavioural Ecology and Ecosystems Research Unit, University of South Africa, Pretoria, 0002, South Africa
| |
Collapse
|
26
|
Studies of the Behavioral Sequences: The Neuroethological Morphology Concept Crossing Ethology and Functional Morphology. Animals (Basel) 2022; 12:ani12111336. [PMID: 35681801 PMCID: PMC9179564 DOI: 10.3390/ani12111336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 01/25/2023] Open
Abstract
Simple Summary Behavioral sequences analysis is a relevant method for quantifying the behavioral repertoire of animals to respond to the classical Tinbergen’s four questions. Research in ethology and functional morphology intercepts at the level of analysis of behaviors through the recording and interpretation of data from of movement sequence studies with various types of imaging and sensor systems. We propose the concept of Neuroethological morphology to build a holistic framework for understanding animal behavior. This concept integrates ethology (including behavioral ecology and neuroethology) with functional morphology (including biomechanics and physics) to provide a heuristic approach in behavioral biology. Abstract Postures and movements have been one of the major modes of human expression for understanding and depicting organisms in their environment. In ethology, behavioral sequence analysis is a relevant method to describe animal behavior and to answer Tinbergen’s four questions testing the causes of development, mechanism, adaptation, and evolution of behaviors. In functional morphology (and in biomechanics), the analysis of behavioral sequences establishes the motor pattern and opens the discussion on the links between “form” and “function”. We propose here the concept of neuroethological morphology in order to build a holistic framework for understanding animal behavior. This concept integrates ethology with functional morphology, and physics. Over the past hundred years, parallel developments in both disciplines have been rooted in the study of the sequential organization of animal behavior. This concept allows for testing genetic, epigenetic, and evo-devo predictions of phenotypic traits between structures, performances, behavior, and fitness in response to environmental constraints. Based on a review of the literature, we illustrate this concept with two behavioral cases: (i) capture behavior in squamates, and (ii) the ritualistic throat display in lizards.
Collapse
|
27
|
Quantum cyber-physical systems. Sci Rep 2022; 12:7964. [PMID: 35562377 PMCID: PMC9106656 DOI: 10.1038/s41598-022-11691-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 04/22/2022] [Indexed: 11/08/2022] Open
Abstract
This paper aims to promote a quantum framework that analyzes Industry 4.0 cyber-physical systems more efficiently than traditional simulations used to represent integrated systems. The paper proposes a novel configuration of distributed quantum circuits in multilayered complex networks that enable the evaluation of industrial value creation chains. In particular, two different mechanisms for the integration of information between circuits operating at different layers are proposed, where their behavior is analyzed and compared with the classical conditional probability tables linked to the Bayesian networks. With the proposed method, both linear and nonlinear behaviors become possible while the complexity remains bounded. Applications in the case of Industry 4.0 are discussed when a component's health is under consideration, where the effect of integration between different quantum cyber-physical digital twin models appears as a relevant implication.
Collapse
|
28
|
Kappeler PM, Fichtel C, Radespiel U. The Island of Female Power? Intersexual Dominance Relationships in the Lemurs of Madagascar. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.858859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The extant primates of Madagascar (Lemuriformes) represent the endpoints of an adaptive radiation following a single colonization event more than 50 million years ago. They have since evolved a diversity of life history traits, ecological adaptations and social systems that rivals that of all other living primates combined. Their social systems are characterized by a unique combination of traits, including the ability of adult females to dominate adult males. In fact, there is no other group of mammals in which female dominance is so widespread. Yet, recent research has indicated that there is more interspecific variation in lemur intersexual relationships than previously acknowledged. Here, we therefore review and summarize the relevant literature, quantifying the extent of sex-bias in intersexual dominance relations documented in observational and experimental studies in captivity and the wild. Female dominance is often, but not always, implemented by spontaneous male submission in the absence of female aggression and linked to female sexual maturation. We connect the available evidence to the hypotheses that have been proposed to explain the evolution of female dominance among lemurs. The occurrence of female dominance in all lemur families and the interspecific variation in its extent indicate that it has evolved soon after lemurs colonized Madagascar – presumably in response to particular ecological challenges – and that it has since been reduced in magnitude independently in some taxa. Our study contributes important comparative information on sex roles from an independent primate radiation and provides general insights into the conditions, opportunities and obstacles in the evolution of female-biased power.
Collapse
|
29
|
Lee PC. Groups, grouping and networks: dynamic unanswered questions for primatologists. Primates 2022; 63:187-193. [PMID: 35412094 DOI: 10.1007/s10329-022-00988-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/26/2022] [Indexed: 10/18/2022]
Affiliation(s)
- Phyllis C Lee
- Behaviour and Evolution Research Group and Scottish Primate Research Group, Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, UK.
| |
Collapse
|
30
|
Bentzur A, Alon S, Shohat-Ophir G. Behavioral Neuroscience in the Era of Genomics: Tools and Lessons for Analyzing High-Dimensional Datasets. Int J Mol Sci 2022; 23:3811. [PMID: 35409169 PMCID: PMC8998543 DOI: 10.3390/ijms23073811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 12/10/2022] Open
Abstract
Behavioral neuroscience underwent a technology-driven revolution with the emergence of machine-vision and machine-learning technologies. These technological advances facilitated the generation of high-resolution, high-throughput capture and analysis of complex behaviors. Therefore, behavioral neuroscience is becoming a data-rich field. While behavioral researchers use advanced computational tools to analyze the resulting datasets, the search for robust and standardized analysis tools is still ongoing. At the same time, the field of genomics exploded with a plethora of technologies which enabled the generation of massive datasets. This growth of genomics data drove the emergence of powerful computational approaches to analyze these data. Here, we discuss the composition of a large behavioral dataset, and the differences and similarities between behavioral and genomics data. We then give examples of genomics-related tools that might be of use for behavioral analysis and discuss concepts that might emerge when considering the two fields together.
Collapse
Affiliation(s)
- Assa Bentzur
- The Mina & Everard Goodman Faculty of Life Sciences, Gonda Multidisciplinary Brain Research Center, Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel;
- The Alexander Kofkin Faculty of Engineering, Gonda Multidisciplinary Brain Research Center, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Shahar Alon
- The Alexander Kofkin Faculty of Engineering, Gonda Multidisciplinary Brain Research Center, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Galit Shohat-Ophir
- The Mina & Everard Goodman Faculty of Life Sciences, Gonda Multidisciplinary Brain Research Center, Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel;
| |
Collapse
|
31
|
Queen succession in the Indian paper wasp Ropalidia marginata: On the trail of the potential queen. J Biosci 2022. [DOI: 10.1007/s12038-021-00250-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Sharma N, Gadagkar R, Pinter-Wollman N. A reproductive heir has a central position in multilayer social networks of paper wasps. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2021.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
33
|
Redhead D, Power EA. Social hierarchies and social networks in humans. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200440. [PMID: 35000451 PMCID: PMC8743884 DOI: 10.1098/rstb.2020.0440] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/04/2021] [Indexed: 01/06/2023] Open
Abstract
Across species, social hierarchies are often governed by dominance relations. In humans, where there are multiple culturally valued axes of distinction, social hierarchies can take a variety of forms and need not rest on dominance relations. Consequently, humans navigate multiple domains of status, i.e. relative standing. Importantly, while these hierarchies may be constructed from dyadic interactions, they are often more fundamentally guided by subjective peer evaluations and group perceptions. Researchers have typically focused on the distinct elements that shape individuals' relative standing, with some emphasizing individual-level attributes and others outlining emergent macro-level structural outcomes. Here, we synthesize work across the social sciences to suggest that the dynamic interplay between individual-level and meso-level properties of the social networks in which individuals are embedded are crucial for understanding the diverse processes of status differentiation across groups. More specifically, we observe that humans not only navigate multiple social hierarchies at any given time but also simultaneously operate within multiple, overlapping social networks. There are important dynamic feedbacks between social hierarchies and the characteristics of social networks, as the types of social relationships, their structural properties, and the relative position of individuals within them both influence and are influenced by status differentiation. This article is part of the theme issue 'The centennial of the pecking order: current state and future prospects for the study of dominance hierarchies'.
Collapse
Affiliation(s)
- Daniel Redhead
- Department of Human Behaviour, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Eleanor A. Power
- Department of Methodology, London School of Economics and Political Science, London WC2A 2AE, UK
| |
Collapse
|
34
|
McCowan B, Vandeleest J, Balasubramaniam K, Hsieh F, Nathman A, Beisner B. Measuring dominance certainty and assessing its impact on individual and societal health in a nonhuman primate model: a network approach. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200438. [PMID: 35000448 PMCID: PMC8743881 DOI: 10.1098/rstb.2020.0438] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/23/2021] [Indexed: 12/25/2022] Open
Abstract
The notion of dominance is ubiquitous across the animal kingdom, wherein some species/groups such relationships are strictly hierarchical and others are not. Modern approaches for measuring dominance have emerged in recent years taking advantage of increased computational power. One such technique, named Percolation and Conductance (Perc), uses both direct and indirect information about the flow of dominance relationships to generate hierarchical rank order that makes no assumptions about the linearity of these relationships. It also provides a new metric, known as 'dominance certainty', which is a complimentary measure to dominance rank that assesses the degree of ambiguity of rank relationships at the individual, dyadic and group levels. In this focused review, we will (i) describe how Perc measures dominance rank while accounting for both nonlinear hierarchical structure as well as sparsity in data-here we also provide a metric of dominance certainty estimated by Perc, which can be used to compliment the information dominance rank supplies; (ii) summarize a series of studies by our research team reflecting the importance of 'dominance certainty' on individual and societal health in large captive rhesus macaque breeding groups; and (iii) provide some concluding remarks and suggestions for future directions for dominance hierarchy research. This article is part of the theme issue 'The centennial of the pecking order: current state and future prospects for the study of dominance hierarchies'.
Collapse
Affiliation(s)
- Brenda McCowan
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
- California National Primate Research Center, University of California, Davis, CA 95616, USA
| | - Jessica Vandeleest
- California National Primate Research Center, University of California, Davis, CA 95616, USA
| | - Krishna Balasubramaniam
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Fushing Hsieh
- Department of Statistics, University of California, Davis, CA 95616, USA
| | - Amy Nathman
- California National Primate Research Center, University of California, Davis, CA 95616, USA
| | - Brianne Beisner
- Colony Management Department, Yerkes National Primate Research Center Field Station, Lawrenceville, GA, USA
| |
Collapse
|
35
|
Baud A, McPeek S, Chen N, Hughes KA. Indirect Genetic Effects: A Cross-disciplinary Perspective on Empirical Studies. J Hered 2022; 113:1-15. [PMID: 34643239 PMCID: PMC8851665 DOI: 10.1093/jhered/esab059] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Indirect genetic effects (IGE) occur when an individual's phenotype is influenced by genetic variation in conspecifics. Opportunities for IGE are ubiquitous, and, when present, IGE have profound implications for behavioral, evolutionary, agricultural, and biomedical genetics. Despite their importance, the empirical study of IGE lags behind the development of theory. In large part, this lag can be attributed to the fact that measuring IGE, and deconvoluting them from the direct genetic effects of an individual's own genotype, is subject to many potential pitfalls. In this Perspective, we describe current challenges that empiricists across all disciplines will encounter in measuring and understanding IGE. Using ideas and examples spanning evolutionary, agricultural, and biomedical genetics, we also describe potential solutions to these challenges, focusing on opportunities provided by recent advances in genomic, monitoring, and phenotyping technologies. We hope that this cross-disciplinary assessment will advance the goal of understanding the pervasive effects of conspecific interactions in biology.
Collapse
Affiliation(s)
- Amelie Baud
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,the Universitat Pompeu Fabra (UPF), Barcelona,Spain
| | - Sarah McPeek
- the Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Nancy Chen
- the Department of Biology, University of Rochester, Rochester, NY 14627,USA
| | - Kimberly A Hughes
- the Department of Biological Science, Florida State University, Tallahassee, FL 32303,USA
| |
Collapse
|
36
|
Dehnen T, Arbon JJ, Farine DR, Boogert NJ. How feedback and feed-forward mechanisms link determinants of social dominance. Biol Rev Camb Philos Soc 2022; 97:1210-1230. [PMID: 35150197 DOI: 10.1111/brv.12838] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/21/2022]
Abstract
In many animal societies, individuals differ consistently in their ability to win agonistic interactions, resulting in dominance hierarchies. These differences arise due to a range of factors that can influence individuals' abilities to win agonistic interactions, spanning from genetically driven traits through to individuals' recent interaction history. Yet, despite a century of study since Schjelderup-Ebbe's seminal paper on social dominance, we still lack a general understanding of how these different factors work together to determine individuals' positions in hierarchies. Here, we first outline five widely studied factors that can influence interaction outcomes: intrinsic attributes, resource value asymmetry, winner-loser effects, dyadic interaction-outcome history and third-party support. A review of the evidence shows that a variety of factors are likely important to interaction outcomes, and thereby individuals' positions in dominance hierarchies, in diverse species. We propose that such factors are unlikely to determine dominance outcomes independently, but rather form part of feedback loops whereby the outcomes of previous agonistic interactions (e.g. access to food) impact factors that might be important in subsequent interactions (e.g. body condition). We provide a conceptual framework that illustrates the multitude potential routes through which such feedbacks can occur, and how the factors that determine the outcomes of dominance interactions are highly intertwined and thus rarely act independently of one another. Further, we generalise our framework to include multi-generational feed-forward mechanisms: how interaction outcomes in one generation can influence the factors determining interaction outcomes in the next generation via a range of parental effects. This general framework describes how interaction outcomes and the factors determining them are linked within generations via feedback loops, and between generations via feed-forward mechanisms. We then highlight methodological approaches that will facilitate the study of feedback loops and dominance dynamics. Lastly, we discuss how our framework could shape future research, including: how feedbacks generate variation in the factors discussed, and how this might be studied experimentally; how the relative importance of different feedback mechanisms varies across timescales; the role of social structure in modulating the effect of feedbacks on hierarchy structure and stability; and the routes of parental influence on the dominance status of offspring. Ultimately, by considering dominance interactions as part of a dynamic feedback system that also feeds forward into subsequent generations, we will understand better the factors that structure dominance hierarchies in animal groups.
Collapse
Affiliation(s)
- Tobit Dehnen
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Treliever Road, Penryn, TR10 9FE, U.K.,Department of Collective Behavior, Max Planck Institute of Animal Behavior, Universitätsstraße 10, Konstanz, 78464, Germany.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zürich, 8057, Switzerland
| | - Josh J Arbon
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Treliever Road, Penryn, TR10 9FE, U.K
| | - Damien R Farine
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, Universitätsstraße 10, Konstanz, 78464, Germany.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zürich, 8057, Switzerland.,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Universitätsstraße 10, Konstanz, 78464, Germany
| | - Neeltje J Boogert
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Treliever Road, Penryn, TR10 9FE, U.K
| |
Collapse
|
37
|
Gazes RP, Schrock AE, Leard CN, Lutz MC. Dominance and social interaction patterns in brown capuchin monkey (Cebus [Sapajus] apella) social networks. Am J Primatol 2022; 84:e23365. [DOI: 10.1002/ajp.23365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/07/2021] [Accepted: 01/08/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Regina Paxton Gazes
- Program in Animal Behavior Bucknell University Lewisburg Pennsylvania USA
- Department of Psychology Bucknell University Lewisburg Lewisburg USA
| | - Allie E. Schrock
- Program in Animal Behavior Bucknell University Lewisburg Pennsylvania USA
- Department of Evolutionary Anthropology Duke University Durham North Carolina USA
| | - Corinne N. Leard
- Program in Animal Behavior Bucknell University Lewisburg Pennsylvania USA
| | - Meredith C. Lutz
- Program in Animal Behavior Bucknell University Lewisburg Pennsylvania USA
- Department of Mathematics Bucknell University Lewisburg Pennsylvania USA
- Animal Behavior Graduate Group University of California Davis California USA
| |
Collapse
|
38
|
Dragić N, Keynan O, Ilany A. Multilayer social networks reveal the social complexity of a cooperatively breeding bird. iScience 2021; 24:103336. [PMID: 34820604 PMCID: PMC8602051 DOI: 10.1016/j.isci.2021.103336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/12/2021] [Accepted: 10/21/2021] [Indexed: 01/12/2023] Open
Abstract
The social environment of individuals affects various evolutionary and ecological processes. Their social environment is affected by individual and environmental traits. We assessed the effects of these traits on nodes and dyads in six layers of networks of Arabian babblers, representing different interaction types. Additionally, we tested how traits affect social niches in the multilayer networks using the t-distributed stochastic neighbor embedding (tSNE) dimensionality reduction algorithm. The effect of group size and season was similar across network layers, but individual traits had different effects on different layers. Additionally, we documented assortativity with respect to individual traits in the dominance display and allopreening networks. The joint analysis of all six layers revealed that most traits did not affect individuals' social niches. However, older individuals occupied fewer social niches than younger ones. Our results suggest that multilayer social networks are an important tool for understanding the complex social systems of cooperative breeders and intragroup interactions.
Collapse
Affiliation(s)
- Nikola Dragić
- Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Oded Keynan
- Dead Sea and Arava Science Center, Central Arava Branch, Hatzeva 86815, Israel
| | - Amiyaal Ilany
- Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
39
|
Balasubramaniam KN, Kaburu SSK, Marty PR, Beisner BA, Bliss-Moreau E, Arlet ME, Ruppert N, Ismail A, Anuar Mohd Sah S, Mohan L, Rattan S, Kodandaramaiah U, McCowan B. Implementing social network analysis to understand the socioecology of wildlife co-occurrence and joint interactions with humans in anthropogenic environments. J Anim Ecol 2021; 90:2819-2833. [PMID: 34453852 DOI: 10.1111/1365-2656.13584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/23/2021] [Indexed: 11/28/2022]
Abstract
Human population expansion into wildlife habitats has increased interest in the behavioural ecology of human-wildlife interactions. To date, however, the socioecological factors that determine whether, when or where wild animals take risks by interacting with humans and anthropogenic factors still remains unclear. We adopt a comparative approach to address this gap, using social network analysis (SNA). SNA, increasingly implemented to determine human impact on wildlife ecology, can be a powerful tool to understand how animal socioecology influences the spatiotemporal distribution of human-wildlife interactions. For 10 groups of rhesus, long-tailed and bonnet macaques (Macaca spp.) living in anthropogenically impacted environments in Asia, we collected data on human-macaque interactions, animal demographics, and macaque-macaque agonistic and affiliative social interactions. We constructed 'human co-interaction networks' based on associations between macaques that interacted with humans within the same time and spatial locations, and social networks based on macaque-macaque allogrooming behaviour, affiliative behaviours of short duration (agonistic support, lip-smacking, silent bare-teeth displays and non-sexual mounting) and proximity. Pre-network permutation tests revealed that, within all macaque groups, specific individuals jointly took risks by repeatedly, consistently co-interacting with humans within and across time and space. GLMMs revealed that macaques' tendencies to co-interact with humans was positively predicted by their tendencies to engage in short-duration affiliative interactions and tolerance of conspecifics, although the latter varied across species (bonnets>rhesus>long-tailed). Male macaques were more likely to co-interact with humans than females. Neither macaques' grooming relationships nor their dominance ranks predicted their tendencies to co-interact with humans. Our findings suggest that, in challenging anthropogenic environments, less (compared to more) time-consuming forms of affiliation, and additionally greater social tolerance in less ecologically flexible species with a shorter history of exposure to humans, may be key to animals' joint propensities to take risks to gain access to resources. For males, greater exploratory tendencies and less energetically demanding long-term life-history strategies (compared to females) may also influence such joint risk-taking. From conservation and public health perspectives, wildlife connectedness within such co-interaction networks may inform interventions to mitigate zoonosis, and move human-wildlife interactions from conflict towards coexistence.
Collapse
Affiliation(s)
- Krishna N Balasubramaniam
- Department of Population Health & Reproduction, School of Veterinary Medicine (SVM), University of California at Davis, Davis, CA, USA
| | - Stefano S K Kaburu
- Department of Biomedical Science and Physiology, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Pascal R Marty
- Department of Population Health & Reproduction, School of Veterinary Medicine (SVM), University of California at Davis, Davis, CA, USA.,Zoo Zürich, Zürich, Switzerland
| | - Brianne A Beisner
- Department of Population Health & Reproduction, School of Veterinary Medicine (SVM), University of California at Davis, Davis, CA, USA.,Animal Resources Division, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Eliza Bliss-Moreau
- Department of Psychology, University of California, Davis, CA, USA.,California National Primate Research Center, University of California, Davis, CA, USA
| | - Malgorzata E Arlet
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Nadine Ruppert
- School of Biological Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia.,Malaysian Primatological Society, Kulim, Kedah, Malaysia
| | - Ahmad Ismail
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Selangor, Malaysia
| | | | - Lalith Mohan
- Himachal Pradesh Forest Department, Shimla, India
| | | | - Ullasa Kodandaramaiah
- IISER-TVM Centre for Research and Education in Ecology and Evolution (ICREEE), School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, India
| | - Brenda McCowan
- Department of Population Health & Reproduction, School of Veterinary Medicine (SVM), University of California at Davis, Davis, CA, USA.,California National Primate Research Center, University of California, Davis, CA, USA
| |
Collapse
|
40
|
Mousavi E, Gajjar D, Sharma V, Patel S. Use of network analysis to study regional footprint for construction coating applicators. INTERNATIONAL JOURNAL OF CONSTRUCTION MANAGEMENT 2021. [DOI: 10.1080/15623599.2021.1948656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ehsan Mousavi
- Department of Construction Science and Management, Clemson University, Clemson, South Carolina, USA
| | - Dhaval Gajjar
- Department of Construction Science and Management, Clemson University, Clemson, South Carolina, USA
| | - Vivek Sharma
- Department of Construction Science and Management, Clemson University, Clemson, South Carolina, USA
| | - Shreyas Patel
- Department of Construction Science and Management, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
41
|
Hobson EA, Silk MJ, Fefferman NH, Larremore DB, Rombach P, Shai S, Pinter-Wollman N. A guide to choosing and implementing reference models for social network analysis. Biol Rev Camb Philos Soc 2021; 96:2716-2734. [PMID: 34216192 PMCID: PMC9292850 DOI: 10.1111/brv.12775] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 11/29/2022]
Abstract
Analysing social networks is challenging. Key features of relational data require the use of non-standard statistical methods such as developing system-specific null, or reference, models that randomize one or more components of the observed data. Here we review a variety of randomization procedures that generate reference models for social network analysis. Reference models provide an expectation for hypothesis testing when analysing network data. We outline the key stages in producing an effective reference model and detail four approaches for generating reference distributions: permutation, resampling, sampling from a distribution, and generative models. We highlight when each type of approach would be appropriate and note potential pitfalls for researchers to avoid. Throughout, we illustrate our points with examples from a simulated social system. Our aim is to provide social network researchers with a deeper understanding of analytical approaches to enhance their confidence when tailoring reference models to specific research questions.
Collapse
Affiliation(s)
- Elizabeth A Hobson
- Department of Biological Sciences, University of Cincinnati, 318 College Drive, Cincinnati, OH, 45221, U.S.A
| | - Matthew J Silk
- Centre for Ecology and Conservation, University of Exeter Penryn Campus, Treliever Road, Penryn, Cornwall, TR10 9FE, U.K
| | - Nina H Fefferman
- Departments of Ecology and Evolutionary Biology & Mathematics, University of Tennessee, 569 Dabney Hall, Knoxville, TN, 37996, U.S.A
| | - Daniel B Larremore
- Department of Computer Science, University of Colorado Boulder, 1111 Engineering Drive, Boulder, CO, 80309, U.S.A.,BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave,, Boulder, CO, 80303, U.S.A
| | - Puck Rombach
- Department of Mathematics & Statistics, University of Vermont, 82 University Place, Burlington, VT, 05405, U.S.A
| | - Saray Shai
- Department of Mathematics and Computer Science, Wesleyan University, Science Tower 655, 265 Church Street, Middletown, CT, 06459, U.S.A
| | - Noa Pinter-Wollman
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 612 Charles E. Young Drive South, Los Angeles, CA, 90095, U.S.A
| |
Collapse
|
42
|
Mahapatra S, Bhuyan R, Das J, Swarnkar T. Integrated multiplex network based approach for hub gene identification in oral cancer. Heliyon 2021; 7:e07418. [PMID: 34258466 PMCID: PMC8258848 DOI: 10.1016/j.heliyon.2021.e07418] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/27/2021] [Accepted: 06/23/2021] [Indexed: 02/01/2023] Open
Abstract
Background: The incidence of Oral Cancer (OC) is high in Asian countries, which goes undetected at its early stage. The study of genetics, especially genetic networks holds great promise in this endeavor. Hub genes in a genetic network are prominent in regulating the whole network structure of genes. Thus identification of such genes related to specific cancer types can help in reducing the gap in OC prognosis. Methods: Traditional study of network biology is unable to decipher the inter-dependencies within and across diverse biological networks. Multiplex network provides a powerful representation of such systems and encodes much richer information than isolated networks. In this work, we focused on the entire multiplex structure of the genetic network integrating the gene expression profile and DNA methylation profile for OC. Further, hub genes were identified by considering their connectivity in the multiplex structure and the respective protein-protein interaction (PPI) network as well. Results: 46 hub genes were inferred in our approach with a high prediction accuracy (96%), outstanding Matthews coefficient correlation value (93%) and significant biological implications. Among them, genes PIK3CG, PIK3R5, MYH7, CDC20 and CCL4 were differentially expressed and predominantly enriched in molecular cascades specific to OC. Conclusions: The identified hub genes in this work carry ontological signatures specific to cancer, which may further facilitate improved understanding of the tumorigenesis process and the underlying molecular events. Result indicates the effectiveness of our integrated multiplex network approach for hub gene identification. This work puts an innovative research route for multi-omics biological data analysis.
Collapse
Affiliation(s)
- S. Mahapatra
- Department of Computer Application, Siksha O Anusandhan Deemed to be University, Bhubaneswar, India
| | - R. Bhuyan
- Department of Oral Pathology & Microbiology, Siksha O Anusandhan Deemed to be University, Bhubaneswar, India
| | - J. Das
- Centre for Genomics & Biomedical Informatics, Siksha O Anusandhan Deemed to be University, Bhubaneswar, India
| | - T. Swarnkar
- Department of Computer Application, Siksha O Anusandhan Deemed to be University, Bhubaneswar, India
| |
Collapse
|
43
|
Gokcekus S, Cole EF, Sheldon BC, Firth JA. Exploring the causes and consequences of cooperative behaviour in wild animal populations using a social network approach. Biol Rev Camb Philos Soc 2021; 96:2355-2372. [DOI: 10.1111/brv.12757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/26/2022]
Affiliation(s)
- Samin Gokcekus
- Department of Zoology, Edward Grey Institute University of Oxford 11a Mansfield Road Oxford OX1 3SZ U.K
| | - Ella F. Cole
- Department of Zoology, Edward Grey Institute University of Oxford 11a Mansfield Road Oxford OX1 3SZ U.K
| | - Ben C. Sheldon
- Department of Zoology, Edward Grey Institute University of Oxford 11a Mansfield Road Oxford OX1 3SZ U.K
| | - Josh A. Firth
- Department of Zoology, Edward Grey Institute University of Oxford 11a Mansfield Road Oxford OX1 3SZ U.K
| |
Collapse
|
44
|
Silk MJ, Hodgson DJ. Differentiated Social Relationships and the Pace-of-Life-History. Trends Ecol Evol 2021; 36:498-506. [PMID: 33810865 DOI: 10.1016/j.tree.2021.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 10/21/2022]
Abstract
When selection is imposed by both social and ecological environments, the costs and benefits of social relationships can depend on life-history strategy. We argue that the formation and maintenance of differentiated social relationships will prevail in species and individuals with slow life histories. Social behaviours that benefit survival can promote slower life histories. Meanwhile, longer lifespan promotes the development of strong and stable social bonds by allowing fitness payoffs to be postponed. Differentiated social behaviours should be favoured for fast life histories only when they promote the rate of reproduction. Finally, associations between life-history strategies and other traits (e.g., personality) provide a mechanism to drive inter-individual variation in social relationships, making life-history important for sociality across taxonomic scales.
Collapse
Affiliation(s)
- Matthew J Silk
- Centre for Ecology and Conservation, University of Exeter Penryn Campus, Penryn, Cornwall, UK; Environment and Sustainability Institute, University of Exeter Penryn Campus, Penryn, Cornwall, UK.
| | - David J Hodgson
- Centre for Ecology and Conservation, University of Exeter Penryn Campus, Penryn, Cornwall, UK
| |
Collapse
|
45
|
Reichert MS, Enriquez MS, Carlson NV. New dimensions for animal communication networks: space and time. Integr Comp Biol 2021; 61:814-824. [PMID: 33744960 DOI: 10.1093/icb/icab013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Communication is a social process and usually occurs in a network of signalers and receivers. While social network analysis has received enormous recent attention from animal behaviorists, there have been relatively few attempts to apply these techniques to communication networks. Communication networks have the potential to offer novel insights into social network studies, and yet are especially challenging subjects, largely because of their unique spatiotemporal characteristics. Namely, signals propagate through the environment, often dissociating from the body of the signaler, to influence receiver behavior. The speed of signal propagation and the signal's active space will affect the congruence of communication networks and other types of social network; in extreme cases the signal may persist and only first be detected long after the signaler has left the area. Other signals move more rapidly and over greater distances than the signaler could possibly move to reach receivers. We discuss the spatial and temporal consequences of signaling in networks and highlight the distinction between the physical location of the signaler and the spread of influence of its signals, the effects of signal modality and receiver sensitivity on communication network properties, the potential for feedbacks between network layers, and approaches to analyzing spatial and temporal change in communication networks in conjunction with other network layers.
Collapse
Affiliation(s)
| | | | - Nora V Carlson
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior
| |
Collapse
|
46
|
Dang W, Gao Z, Lv D, Sun X, Cheng C. Rhythm-Dependent Multilayer Brain Network for the Detection of Driving Fatigue. IEEE J Biomed Health Inform 2021; 25:693-700. [PMID: 32750954 DOI: 10.1109/jbhi.2020.3008229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Fatigue driving has attracted a great deal of attention for its huge influence on automobile accidents. Recognizing driving fatigue provides a primary but significant way for addressing this problem. In this paper, we first conduct the simulated driving experiments to acquire the EEG signals in alert and fatigue states. Then, for multi-channel EEG signals without pre-processing, a novel rhythm-dependent multilayer brain network (RDMB network) is developed and analyzed for driving fatigue detection. We find that there exists a significant difference between alert and fatigue states from the view of network science. Further, key sub-RDMB network based on closeness centrality are extracted. We calculate six network measures from the key sub-RDMB network and construct feature vectors to classify the alert and fatigue states. The results show that our method can respectively achieve the average accuracy of 95.28% (with sample length of 5 s), 90.25% (2 s), and 87.69% (1 s), significantly higher than compared methods. All these validate the effectiveness of RDMB network for reliable driving fatigue detection via EEG.
Collapse
|
47
|
Albery GF, Morris A, Morris S, Pemberton JM, Clutton-Brock TH, Nussey DH, Firth JA. Multiple spatial behaviours govern social network positions in a wild ungulate. Ecol Lett 2021; 24:676-686. [PMID: 33583128 DOI: 10.1111/ele.13684] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 01/19/2023]
Abstract
The structure of wild animal social systems depends on a complex combination of intrinsic and extrinsic drivers. Population structuring and spatial behaviour are key determinants of individuals' observed social behaviour, but quantifying these spatial components alongside multiple other drivers remains difficult due to data scarcity and analytical complexity. We used a 43-year dataset detailing a wild red deer population to investigate how individuals' spatial behaviours drive social network positioning, while simultaneously assessing other potential contributing factors. Using Integrated Nested Laplace Approximation (INLA) multi-matrix animal models, we demonstrate that social network positions are shaped by two-dimensional landscape locations, pairwise space sharing, individual range size, and spatial and temporal variation in population density, alongside smaller but detectable impacts of a selection of individual-level phenotypic traits. These results indicate strong, multifaceted spatiotemporal structuring in this society, emphasising the importance of considering multiple spatial components when investigating the causes and consequences of sociality.
Collapse
Affiliation(s)
- Gregory F Albery
- Department of Biology, Georgetown University, Washington, DC, USA.,Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Alison Morris
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Sean Morris
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | | | - Tim H Clutton-Brock
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK.,Department of Zoology, University of Cambridge, Cambridge, UK
| | - Daniel H Nussey
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Josh A Firth
- Department of Zoology, University of Oxford, Oxford, UK.,Merton College, University of Oxford, Oxford, UK
| |
Collapse
|
48
|
Social Network Analysis in Farm Animals: Sensor-Based Approaches. Animals (Basel) 2021; 11:ani11020434. [PMID: 33567488 PMCID: PMC7914829 DOI: 10.3390/ani11020434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Social behaviour of farm animals significantly impacts management interventions in the livestock sector and, thereby, animal welfare. Evaluation and monitoring of social networks between farm animals help not only to understand the bonding and agonistic behaviours among individuals but also the interactions between the animals and the animal caretaker. The interrelationship between social and environmental conditions, and the subtle changes in the behaviours of farm animals can be understood and precisely measured only by using sensing technologies. This review aims to highlight the use of sensing technologies in the investigation of social network analysis of farm animals. Abstract Natural social systems within animal groups are an essential aspect of agricultural optimization and livestock management strategy. Assessing elements of animal behaviour under domesticated conditions in comparison to natural behaviours found in wild settings has the potential to address issues of animal welfare effectively, such as focusing on reproduction and production success. This review discusses and evaluates to what extent social network analysis (SNA) can be incorporated with sensor-based data collection methods, and what impact the results may have concerning welfare assessment and future farm management processes. The effectiveness and critical features of automated sensor-based technologies deployed in farms include tools for measuring animal social group interactions and the monitoring and recording of farm animal behaviour using SNA. Comparative analyses between the quality of sensor-collected data and traditional observational methods provide an enhanced understanding of the behavioural dynamics of farm animals. The effectiveness of sensor-based approaches in data collection for farm animal behaviour measurement offers unique opportunities for social network research. Sensor-enabled data in livestock SNA addresses the biological aspects of animal behaviour via remote real-time data collection, and the results both directly and indirectly influence welfare assessments, and farm management processes. Finally, we conclude with potential implications of SNA on modern animal farming for improvement of animal welfare.
Collapse
|
49
|
van der Marel A, Prasher S, Carminito C, O'Connell CL, Phillips A, Kluever BM, Hobson EA. A framework to evaluate whether to pool or separate behaviors in a multilayer network. Curr Zool 2021; 67:101-111. [PMID: 33654494 PMCID: PMC7901760 DOI: 10.1093/cz/zoaa077] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 12/11/2020] [Indexed: 11/24/2022] Open
Abstract
A multilayer network approach combines different network layers, which are connected by interlayer edges, to create a single mathematical object. These networks can contain a variety of information types and represent different aspects of a system. However, the process for selecting which information to include is not always straightforward. Using data on 2 agonistic behaviors in a captive population of monk parakeets (Myiopsitta monachus), we developed a framework for investigating how pooling or splitting behaviors at the scale of dyadic relationships (between 2 individuals) affects individual- and group-level social properties. We designed 2 reference models to test whether randomizing the number of interactions across behavior types results in similar structural patterns as the observed data. Although the behaviors were correlated, the first reference model suggests that the 2 behaviors convey different information about some social properties and should therefore not be pooled. However, once we controlled for data sparsity, we found that the observed measures corresponded with those from the second reference model. Hence, our initial result may have been due to the unequal frequencies of each behavior. Overall, our findings support pooling the 2 behaviors. Awareness of how selected measurements can be affected by data properties is warranted, but nonetheless our framework disentangles these efforts and as a result can be used for myriad types of behaviors and questions. This framework will help researchers make informed and data-driven decisions about which behaviors to pool or separate, prior to using the data in subsequent multilayer network analyses.
Collapse
Affiliation(s)
| | - Sanjay Prasher
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Chelsea Carminito
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Claire L O'Connell
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Alexa Phillips
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Bryan M Kluever
- United States Department of Agriculture, Wildlife Services, National Wildlife Research Center, Florida Field Station, Gainesville, FL, 32641, USA
| | - Elizabeth A Hobson
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| |
Collapse
|
50
|
Fisher DN, Pinter-Wollman N. Using multilayer network analysis to explore the temporal dynamics of collective behavior. Curr Zool 2021; 67:71-80. [PMID: 33654492 PMCID: PMC7901757 DOI: 10.1093/cz/zoaa050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/27/2020] [Indexed: 01/12/2023] Open
Abstract
Social organisms often show collective behaviors such as group foraging or movement. Collective behaviors can emerge from interactions between group members and may depend on the behavior of key individuals. When social interactions change over time, collective behaviors may change because these behaviors emerge from interactions among individuals. Despite the importance of, and growing interest in, the temporal dynamics of social interactions, it is not clear how to quantify changes in interactions over time or measure their stability. Furthermore, the temporal scale at which we should observe changes in social networks to detect biologically meaningful changes is not always apparent. Here we use multilayer network analysis to quantify temporal dynamics of social networks of the social spider Stegodyphus dumicola and determine how these dynamics relate to individual and group behaviors. We found that social interactions changed over time at a constant rate. Variation in both network structure and the identity of a keystone individual was not related to the mean or variance of the collective prey attack speed. Individuals that maintained a large and stable number of connections, despite changes in network structure, were the boldest individuals in the group. Therefore, social interactions and boldness are linked across time, but group collective behavior is not influenced by the stability of the social network. Our work demonstrates that dynamic social networks can be modeled in a multilayer framework. This approach may reveal biologically important temporal changes to social structure in other systems.
Collapse
Affiliation(s)
- David N Fisher
- Department of Psychology, Neuroscience, & Behaviour, McMaster University, Hamilton, ON L8S 4K1, Canada
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 3FX, UK
| | - Noa Pinter-Wollman
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| |
Collapse
|