1
|
Qiu X, Lan X, Li L, Chen H, Zhang N, Zheng X, Xie X. The role of perirenal adipose tissue deposition in chronic kidney disease progression: Mechanisms and therapeutic implications. Life Sci 2024; 352:122866. [PMID: 38936605 DOI: 10.1016/j.lfs.2024.122866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Chronic kidney disease (CKD) represents a significant and escalating global health challenge, with morbidity and mortality rates rising steadily. Evidence increasingly implicates perirenal adipose tissue (PRAT) deposition as a contributing factor in the pathogenesis of CKD. This review explores how PRAT deposition may exert deleterious effects on renal structure and function. The anatomical proximity of PRAT to the kidneys not only potentially causes mechanical compression but also leads to the dysregulated secretion of adipokines and inflammatory mediators, such as adiponectin, leptin, visfatin, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and exosomes. Additionally, PRAT deposition may contribute to renal lipotoxicity through elevated levels of free fatty acids (FFA), triglycerides (TAG), diacylglycerol (DAG), and ceramides (Cer). PRAT deposition is also linked to the hyperactivation of the renin-angiotensin-aldosterone system (RAAS), which further exacerbates CKD progression. Recognizing PRAT deposition as an independent risk factor for CKD underscores the potential of targeting PRAT as a novel strategy for the prevention and management of CKD. This review further discusses interventions that could include measuring PRAT thickness to establish a baseline, managing metabolic risk factors that promote its deposition, and inhibiting key PRAT-induced signaling pathways.
Collapse
Affiliation(s)
- Xiang Qiu
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Xin Lan
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Langhui Li
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Huan Chen
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China; Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Ningjuan Zhang
- The School of Clinical Medical Sciences, Southwest Medical University, Luzhou, China
| | - Xiaoli Zheng
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China.
| | - Xiang Xie
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China.
| |
Collapse
|
2
|
Luo C, Li N, Wang Q, Li C. Sodium acetate promotes fat synthesis by suppressing TATA element modulatory factor 1 in bovine mammary epithelial cells. ANIMAL NUTRITION 2023; 13:126-136. [PMID: 37123620 PMCID: PMC10130354 DOI: 10.1016/j.aninu.2023.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
Short-chain fatty acids are important nutrients that regulate milk fat synthesis. They regulate milk synthesis via the sterol regulatory element binding protein 1 (SREBP1) pathway; however, the details are still unknown. Here, the regulation and mechanism of sodium acetate (SA) in milk fat synthesis in bovine mammary epithelial cells (BMECs) were assessed. BMECs were treated with SA supplementation (SA+) or without SA supplementation (SA-), and milk fat synthesis and activation of the SREBP1 pathway were increased (P = 0.0045; P = 0.0042) by SA+ and decreased (P = 0.0068; P = 0.0031) by SA-, respectively. Overexpression or inhibition of SREBP1 demonstrated that SA promoted milk fat synthesis (P = 0.0045) via the SREBP1 pathway. Overexpression or inhibition of TATA element modulatory factor 1 (TMF1) demonstrated that TMF1 suppressed activation of the SREBP1 pathway (P = 0.0001) and milk fat synthesis (P = 0.0022) activated by SA+. Overexpression or inhibition of TMF1 and SREBP1 showed that TMF1 suppressed milk fat synthesis (P = 0.0073) through the SREBP1 pathway. Coimmunoprecipitation analysis revealed that TMF1 interacted with SREBP1 in the cytoplasm and suppressed the nuclear localization of SREBP1 (P = 0.0066). The absence or presence of SA demonstrated that SA inhibited the expression of TMF1 (P = 0.0002) and the interaction between TMF1 and SREBP1 (P = 0.0001). Collectively, our research suggested that TMF1 was a new negative regulator of milk fat synthesis. In BMECs, SA promoted the SREBP1 pathway and milk fat synthesis by suppressing TMF1. This study enhances the current understanding of the regulation of milk fat synthesis and provides new scientific data for the regulation of milk fat synthesis.
Collapse
|
3
|
Vargas-Bello-Pérez E, Khushvakov J, Ye Y, Pedersen NC, Hansen HH, Ahrné L, Khakimov B. Goat Milk Foodomics. Dietary Supplementation of Sunflower Oil and Rapeseed Oil Modify Milk Amino Acid and Organic Acid Profiles in Dairy Goats. Front Vet Sci 2022; 9:837229. [PMID: 35400103 PMCID: PMC8987497 DOI: 10.3389/fvets.2022.837229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/08/2022] [Indexed: 12/13/2022] Open
Abstract
The dietary supplementation of vegetable oils is known to improve the dietary energy density as well as milk fatty acid profile; however, the impacts on the milk foodome is largely unknown. This study investigated the effect of two different sources of unsaturated fatty acids, rapeseed oil and sunflower oil, as a feeding supplement on the milk foodome from dairy goats. Nine Danish Landrace goats at 42 ± 5 days in milk were allocated to three treatment groups for 42 days with three animals per group. A control group received a basal diet made of forage and concentrate at an 85:15 ratio. On top of the basal diet, the second and third groups received rapeseed oil or sunflower oil supplements at 4% of dry matter, respectively. Goat milk was sampled on days 14, 21, and 42. The milk foodome was measured using gas chromatography–mass spectrometry and proton nuclear magnetic resonance spectroscopy. The milk levels of 2-hydroxyisovaleric acid, oxaloacetic acid, and taurine were higher in the milk from goats fed with sunflower oil compared to the control group. More glucose-1-phosphate was found in the milk from goats fed with rapeseed oil compared to the control group. Amino acids, valine and tyrosine, and 2-hydroxyisovaleric acid and oxaloacetic acid were higher in the sunflower group compared to the rapeseed group, while the milk from the rapeseed-fed goats had greater levels of ethanol and 2-oxoglutaric acid compared to the sunflower group. Thus, results show that foodomics is suitable for studying how milk chemistry changes as a function of feeding regime.
Collapse
Affiliation(s)
- Einar Vargas-Bello-Pérez
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
- *Correspondence: Einar Vargas-Bello-Pérez
| | - Jaloliddin Khushvakov
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
- Institute of Chemistry and Biotechnology, School of Life Sciences and Facility Management, Zurich University of Applied Sciences, Wädenswil, Switzerland
| | - Yongxin Ye
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Nanna Camilla Pedersen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Hanne Helene Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Lilia Ahrné
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Bekzod Khakimov
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
- Bekzod Khakimov
| |
Collapse
|
4
|
Vargas-Bello-Pérez E, Cancino-Padilla N, Geldsetzer-Mendoza C, Morales MS, Leskinen H, Garnsworthy PC, Loor JJ, Romero J. Effects of dietary polyunsaturated fatty acid sources on expression of lipid-related genes in bovine milk somatic cells. Sci Rep 2020; 10:14850. [PMID: 32908177 PMCID: PMC7481231 DOI: 10.1038/s41598-020-71930-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/17/2020] [Indexed: 12/29/2022] Open
Abstract
The objective of this study was to compare the effect of contrasting sources of dietary n-6 and n-3 PUFA on expression of genes related to lipid metabolism in dairy cows. During 63 days, fifteen lactating cows were assigned to a control or basal diet containing no added lipid (n = 5 cows); and treatment diets supplemented with SO (n = 5 cows; unrefined soybean oil; 2.9% of DM) or FO (n = 5 cows; fish oil manufactured from salmon oil; 2.9% of DM). Plasma for fatty acid (FA) analysis and milk somatic cells (MSC) were obtained from all cows at the beginning of the study (day 0) and on days 21, 42 and 63. Plasma was used to determine FA transport dynamics. Compared with control and FO, plasma from SO had increased contents of C18:1 cis-9, C18:1 trans-11, C18:2 cis-9, trans-11 and total monounsaturated FA. On the other hand, compared with control and SO, FO increased plasma contents of C20:3 n-3, C20:3 n-6, C20:4 n-6, C20:5 n-3, C22:6 n-3 and total polyunsaturated FA. Moreover, plasma C18:3 n-3 and C20:5 n-3 increased over time for all diets. Compared with control, SO downregulated ACACA, INSIG1, and DGAT1, whereas FO downregulated ACACA, PPARGC1, LPIN1 and FABP3 on day 63, in MSC. At different time-points, SO and FO downregulated genes related to synthesis and intracellular transport of FA, synthesis of triglycerides, and transcription factors.
Collapse
Affiliation(s)
- Einar Vargas-Bello-Pérez
- Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 3, 1870, Frederiksberg C, Denmark. .,Departamento de Ciencias Animales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Casilla 306., Santiago, 6904411, Chile.
| | - Nathaly Cancino-Padilla
- Departamento de Ciencias Animales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Casilla 306., Santiago, 6904411, Chile
| | - Carolina Geldsetzer-Mendoza
- Departamento de Ciencias Animales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Casilla 306., Santiago, 6904411, Chile
| | - María Sol Morales
- Departamento de Fomento de la Producción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Av. Santa Rosa 11735, La Pintana, Santiago, Chile
| | - Heidi Leskinen
- Milk Production, Production Systems, Natural Resources Institute Finland (Luke), 31600, Jokioinen, Finland
| | - Philip C Garnsworthy
- School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Juan J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Mammalian NutriPhysioGenomics, Urbana, 61801, USA
| | - Jaime Romero
- Laboratorio de Biotecnología en Alimentos, Unidad de Alimentos, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Avda. El Líbano 5524, Macul, 7830490, Santiago, Chile
| |
Collapse
|
5
|
Effects of exogenous C18 unsaturated fatty acids on milk lipid synthesis in bovine mammary epithelial cells. J DAIRY RES 2020; 87:344-348. [PMID: 32893769 DOI: 10.1017/s0022029920000722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We determined the effects of a combination of C18 unsaturated fatty acids (C18-UFAs) consisting of oleic, linoleic, and linolenic acids on milk lipogenesis in bovine mammary epithelial cells (BMECs). By orthogonal experiments to determine cellular triacylglycerol (TAG) accumulation, a combination of 200 μmol/l C18 : 1, 50 μmol/l C18 : 2, and 2 μmol/l C18 : 3 was selected as C18-UFAs combination treatment, and culture in medium containing fatty acid-free bovine serum albumin was used as the control. The expression of genes related to milk lipid synthesis and intracellular FA composition was measured. The results showed that cytosolic TAG formation was higher under C18-UFAs treatment than under control treatment. The mRNA expression of acetyl-CoA carboxylase-α (ACACA), fatty acid synthase (FASN), and peroxisome proliferator-activated receptor gamma (PPARG) did not differ between treatments. The abundance of stearoyl-CoA desaturase (SCD) and acyl-CoA synthetase long-chain family member 1 (ACSL1) was higher, whereas that of sterol regulatory element binding transcription factor 1 (SREBF-1) was lower after C18-UFAs treatment compared to control treatment. The C16 : 0 and SFA content was decreased following C18-UFAs treatment compared to control treatment, while the cis-9 C18 : 1 and UFA content was increased. In conclusion, C18-UFAs could stimulate triglyceride accumulation, increase the cellular UFA concentration, and regulate lipogenic genes in BMECs.
Collapse
|
6
|
Sharmin MM, Mizusawa M, Hayashi S, Arai W, Sakata S, Yonekura S. Effects of fatty acids on inducing endoplasmic reticulum stress in bovine mammary epithelial cells. J Dairy Sci 2020; 103:8643-8654. [PMID: 32622599 DOI: 10.3168/jds.2019-18080] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/20/2020] [Indexed: 12/23/2022]
Abstract
Fatty acids play important roles in the regulation of endoplasmic reticulum (ER) stress-induced apoptosis in different cells. Currently, the effects of fatty acids on bovine mammary epithelial cells (MEC) remain unknown. Our study examined bovine MEC viability and measured unfolded protein response (UPR)-related gene and protein expressions following fatty acid treatments. To evaluate the role of fatty acids, we treated MAC-T cells (a line of MEC) with 100 to 400 μM of saturated (palmitic and stearic acid) and unsaturated (palmitoleic, oleic, linoleic, and linolenic acid) fatty acids and 1 to 5 mM of short- and medium-chain fatty acids (acetic, propionic, butyric, and octanoic acid). Thereafter, we determined UPR-related gene expression using quantitative real-time PCR. Palmitic acid stimulated expression of XBP1s, ATF4, ATF6A, and C/EBP homologous protein (CHOP). Stearic acid increased expression of XBP1s and CHOP and decreased expression of ATF4 and ATF6A. Results of Western blot analysis and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay revealed that palmitic and stearic acid reduced MAC-T cell viability and induced extreme ER stress by increasing the protein expression of ER stress markers, such as phospho-PKR-like endoplasmic reticulum kinase, phospho-eIF2α, cleaved CASP-3, and CHOP. Among unsaturated long-chain fatty acids, palmitoleic acid increased expression of ATF4 and ATF6A. Oleic acid increased expression of XBP1s, ATF4, and ATF6A. Linoleic and linolenic acids increased expression of XBP1s, ATF4, and ATF6A but decreased expression of XBP1s and ATF6A at the highest dose. Although palmitoleic, oleic, and linoleic acid decreased CHOP expression, only palmitoleic acid increased MAC-T cell viability. Therefore, unsaturated long-chain fatty acids did not induce severe ER stress. Acetic, propionic, and butyric acids decreased expression of ATF4, ATF6A, and CHOP and increased XBP1s expression. Although only octanoic acid increased ATF4 and ATF6A expressions, it lowered expression of XBP1s and CHOP. Although fatty acid treatment did not increase the levels of ER stress proteins, butyric and octanoic acids reduced cell viability, possibly because of early differentiation. These results suggest that saturated fatty acids play important roles in MEC viability by inducing severe ER stress compared with unsaturated fatty acids. In addition, acetic and propionic acids (short- and medium-chain fatty acids) reduced ER stress. Therefore, the present study reflects the new insight that serum fatty acid concentration plays an important role in maintaining the lactation physiology of dairy cows.
Collapse
Affiliation(s)
- Mst Mamuna Sharmin
- Graduate School of Medicine, Science and Technology, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano 399-4598, Japan
| | - Moeko Mizusawa
- Graduate School of Science and Technology, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano 399-4598, Japan
| | - Satoko Hayashi
- Graduate School of Medicine, Science and Technology, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano 399-4598, Japan
| | - Wataru Arai
- Graduate School of Science and Technology, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano 399-4598, Japan
| | - Shotaro Sakata
- Graduate School of Science and Technology, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano 399-4598, Japan
| | - Shinichi Yonekura
- Graduate School of Medicine, Science and Technology, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano 399-4598, Japan; Graduate School of Science and Technology, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano 399-4598, Japan; Department of Biomolecular Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano 399-4598, Japan.
| |
Collapse
|
7
|
Yanting C, Ma G, Harrison JH, Block E. Effect of stearic or oleic acid on milk performance and energy partitioning when fed in diets with low and high rumen-active unsaturated fatty acids in early lactation. J Anim Sci 2019; 97:4647-4656. [PMID: 31560748 PMCID: PMC6827400 DOI: 10.1093/jas/skz304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/20/2019] [Indexed: 11/13/2022] Open
Abstract
This experiment was conducted to determine the effects of stearic acid (SA; C18:0) or rumen-protected oleic acid (OA; C18:1 cis-9) on milk performance and energy partitioning of early lactation cows when supplemented in diets with low and high level of rumen unsaturated fatty acids (RUFA). In low RUFA experiment (LRUFA), FA supplement rich in either SA or calcium salts OA was added to a basal diet with a low concentration of RUFA (0.75% vs. 1.4%, LRUFA-SA vs. LRUFA-OA). In high RUFA experiment (HRUFA), 2% soybean oil was added to the diet fed in the LRUFA experiment. In each experiment, 30 multiparous cows were blocked by parity and predicted transmitting ability for milk yield and were randomly fed 1 of 2 treatment diets from 2 to 13 wk postpartum. In the LRUFA experiment, LRUFA-SA had 2.4 kg/d more dry matter intake (DMI) (P < 0.01), 3.8 kg/d more energy-corrected milk (P < 0.01), and 0.3% units more milk fat percentage (P < 0.01) and 0.2 kg/d more milk fat yield (P < 0.01). Dietary treatments did not affect body weight, energy balance, and energy intake partitioning into milk, maintenance, and body tissues (P > 0.1). In the HRUFA experiment, HRUFA-SA had 1.4 kg/d more DMI (P = 0.03) but similar milk and milk components yields (P > 0.1). HRUFA-SA had a tendency to gain more body weight (P = 0.07) and had more positive energy balance (P = 0.01) and decreased gross feed efficiency (milk yield/DMI) (P = 0.01). Consistently, HRUFA-SA increased intake energy partitioning into body tissues (P = 0.02) and decreased energy partitioning into milk (P = 0.01). In summary, SA supplementation had more DMI relative to OA, but the effects on milk and milk fat production were different and affected by the level of RUFA in the basal diet. In application, SA supplementation was more effective to improve milk production when included in the basal diet with the low RUFA.
Collapse
Affiliation(s)
- Chen Yanting
- Department of Animal Science, Washington State University, Pullman, WA
| | - Guiling Ma
- Department of Animal Science, Washington State University, Pullman, WA
| | - Joseph H Harrison
- Department of Animal Science, Washington State University, Puyallup, WA
| | - Elliot Block
- Church and Dwight Animal Nutrition, Princeton, NJ
| |
Collapse
|
8
|
Ahmadpour A, Christensen RG, Zarrin M, Farjood F, Ahmadpour A. Reporting temporal fluctuations of hepatic C16 and C18 fatty acids during late gestation and early lactation in dromedary camel. Trop Anim Health Prod 2019; 51:1651-1660. [PMID: 30864045 DOI: 10.1007/s11250-019-01860-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/28/2019] [Indexed: 02/02/2023]
Abstract
Based on current knowledge, C16 and C18 fatty acids (FA) are considered the most functional FA in hepatic metabolism. Although these FAs have been satisfyingly investigated in cattle, other species such as camel have been neglected. For this reason, the current study was designed to scrutinize changing patterns of C16 and C18 FAs in 10 dromedary camels from the last 2 months of gestation to the first months of lactation. Camels were grazed on natural pasture and supplemented with a balanced ration. Liver biopsies were obtained through blind biopsy technique at about 60, 45, 30, and 15-day antepartum (AP), and at 3, 15, 30, 45, and 60 post-partum (PP). Data were analyzed by the ANOVA procedure of SPSS with repeated measurements. From 15-day AP, saturated FA content of the liver declined (P < 0.01) and 15-day PP reached its peak (P = 0.02). At 30-day PP it went down (P < 0.01), and re-elevated at 45-day PP (P < 0.01) but remained at a steady state for the duration of the study. Mono-unsaturated and polyunsaturated FA content of hepatic tissue were constant throughout AP, albeit observed to peak at 15-day AP compared with 45 (P = 0.04) and 30-day AP (P < 0.01) for mono-unsaturated FAs, and with 60-, 45-, and 30-day AP (P ≤ 0.01) for polyunsaturated FAs. The palmitic acid content of the liver reached a nadir at 30-day AP (P < 0.01), increased sharply (P < 0.01) at the next sampling time-point, and had a trend to escalate until 3-day PP. Palmitoleic acid levels were unchanged from 60- to 30-day AP, decreased at 15 AP and 3-day PP, increased at 15-day PP, then remained constant until the end of the study period (P ≤ 0.04). Stearic acid content started to grow at 15-day AP and reached its peak at 15-day PP (P < 0.01). At 30-day PP, stearic level in liver dropped abruptly (P < 0.01), then intensified at 45-day PP and did not change after; hepatic content of stearic acid was lower during AP compared with PP time-points. Other C18 FAs changed significantly during the study period. These results suggest that parturition could have a profound effect on FA composition and other metabolites in camel liver. Further research is required to establish the metabolic mechanism behind these changes.
Collapse
Affiliation(s)
- Amir Ahmadpour
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, 4815 Old Main Hill, Logan, UT, 84322, USA.
| | - Rachael G Christensen
- USDA-ARS, Northern Great Plains Agricultural Research Laboratory, Mandan, ND, 58554, USA
| | - Mousa Zarrin
- Department of Animal Sciences, Yasouj University, Yasouj, I.R., Iran
| | - Farhad Farjood
- Department of Biological Engineering, Utah State University, Logan, UT, 84322, USA
| | | |
Collapse
|