1
|
Lan T, Cai M, Wang S, Lu Y, Tang Z, Tang Q, Gao J, Xu Y, Peng X, Sun Z. Effects of adding niacinamide to diets with normal and low protein levels on the immunity, antioxidant, and intestinal microbiota in growing-finishing pigs. J Nutr Biochem 2024:109809. [PMID: 39549857 DOI: 10.1016/j.jnutbio.2024.109809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/03/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
This study aimed to investigate the effects of nicotinamide (NAM) applied to diets with different crude protein levels on immune function, antioxidant capacity, and intestinal flora in growing-finishing pigs. Forty barrows (37.0 ± 1.0 kg) were randomly allocated to one of four dietary treatments (n = 10 per group). The diets in the two phases consisted of a basal diet with 30 mg/kg NAM, a basal diet with 360 mg/kg NAM, a low-protein diet with 30 mg/kg NAM, and a low-protein diet with 360 mg/kg NAM. The results showed that dietary addition of 360 mg/kg NAM decreased IL-12, malondialdehyde, IgG and IgM contents in the plasma and increased total superoxide dismutase activity and total antioxidant capacity in the colonic mucosa (P < 0.05). Supplementing the diet with 360 mg/kg NAM increased mRNA expression of the nucleotide-binding oligomerization domain containing 2 and nuclear factor erythroid 2-related factor 2 and protein expression of nuclear factor kappa-B and toll-like receptor 4 in the colonic mucosa (P < 0.05). The concentrations of acetic acid and butyric acid in the colonic contents and the abundance of Actinobacteriota in the colon at the phylum level were significantly decreased by feeding low-protein diets (P < 0.05). Additionally, the addition of 360 mg/kg NAM to diets increased (P < 0.05) the Sobs, Ace, and Chao indices of colonic microorganisms in pigs. Overall, the rational use of NAM can improve inflammatory status, enhance antioxidant capacity and intestinal barrier function, and increase colonic microbial diversity in growing-finishing pigs.
Collapse
Affiliation(s)
- Tianyi Lan
- Center for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Meiya Cai
- Center for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Sishen Wang
- Center for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Yingying Lu
- Center for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Zhiru Tang
- Center for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Qingsong Tang
- Center for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Jingchun Gao
- Center for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Yetong Xu
- Center for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Xie Peng
- Center for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Zhihong Sun
- Center for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
2
|
Li J, Kudereti T, Wusiman A, Abula S, He X, Li J, Yang Y, Guo Q, Guo Q. Regulatory Effects of Alhagi Honey Small-Molecule Sugars on Growth Performance and Intestinal Microbiota of Lambs. Animals (Basel) 2024; 14:2402. [PMID: 39199936 PMCID: PMC11350646 DOI: 10.3390/ani14162402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
The present study was designed to assess the impact of Alhagi honey small-molecule sugars (AHAS) on Hu lambs. Therefore, in this study, AHAS low-dose (AHAS-L, 200 mg/ kg per day), AHAS medium-dose (AHAS-M, 400 mg/kg per day), and AHAS high-dose (AHAS-H, 800 mg/kg per day) were administered to Hu lambs to investigate the regulatory effects of AHAS on growth performance, oxidation index, immune system enhancement, and intestinal microbiota. The results showed that lambs in the AHAS-H group exhibited significantly increased in average daily weight gain, and growth performance compared to those in the control group (p < 0.05). Moreover, AHAS-H supplementation resulted in increased levels of serum antioxidant enzymes (SOD, GSH-Px, and T-AOC), serum antibodies (IgA, IgG, and IgM), and cytokines (IL-4, 10,17, IFN-γ, and TNF-α) compared with the control group (p < 0.05). Additionally, it increased the quantity and richness of beneficial bacteria at such as Sphingomonas, Ralstonia, and Flavobacterium, activating various metabolic pathways and promoting the production of various short-chain fatty acids. In summary, our findings highlight the potential of AHAS-H treatment in enhancing intestinal health of lambs by improving intestinal function, immunity, and related metabolic pathways. Consequently, these results suggest that AHAS holds promising potential as a valuable intervention for optimizing growth performance and intestinal health in lambs.
Collapse
Affiliation(s)
- Jianlong Li
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (T.K.); (A.W.); (S.A.); (X.H.); (J.L.); (Y.Y.); (Q.G.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Tuerhong Kudereti
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (T.K.); (A.W.); (S.A.); (X.H.); (J.L.); (Y.Y.); (Q.G.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Adelijiang Wusiman
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (T.K.); (A.W.); (S.A.); (X.H.); (J.L.); (Y.Y.); (Q.G.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Saifuding Abula
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (T.K.); (A.W.); (S.A.); (X.H.); (J.L.); (Y.Y.); (Q.G.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Xiaodong He
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (T.K.); (A.W.); (S.A.); (X.H.); (J.L.); (Y.Y.); (Q.G.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Jiaxin Li
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (T.K.); (A.W.); (S.A.); (X.H.); (J.L.); (Y.Y.); (Q.G.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Yang Yang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (T.K.); (A.W.); (S.A.); (X.H.); (J.L.); (Y.Y.); (Q.G.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Qianru Guo
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (T.K.); (A.W.); (S.A.); (X.H.); (J.L.); (Y.Y.); (Q.G.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Qingyong Guo
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (T.K.); (A.W.); (S.A.); (X.H.); (J.L.); (Y.Y.); (Q.G.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| |
Collapse
|
3
|
Han X, Hu X, Jin W, Liu G. Dietary nutrition, intestinal microbiota dysbiosis and post-weaning diarrhea in piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:188-207. [PMID: 38800735 PMCID: PMC11126776 DOI: 10.1016/j.aninu.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 05/29/2024]
Abstract
Weaning is a critical transitional point in the life cycle of piglets. Early weaning can lead to post-weaning syndrome, destroy the intestinal barrier function and microbiota homeostasis, cause diarrhea and threaten the health of piglets. The nutritional components of milk and solid foods consumed by newborn animals can affect the diversity and structure of their intestinal microbiota, and regulate post-weaning diarrhea in piglets. Therefore, this paper reviews the effects and mechanisms of different nutrients, including protein, dietary fiber, dietary fatty acids and dietary electrolyte balance, on diarrhea and health of piglets by regulating intestinal function. Protein is an essential nutrient for the growth of piglets; however, excessive intake will cause many harmful effects, such as allergic reactions, intestinal barrier dysfunction and pathogenic growth, eventually aggravating piglet diarrhea. Dietary fiber is a nutrient that alleviates post-weaning diarrhea in piglets, which is related to its promotion of intestinal epithelial integrity, microbial homeostasis and the production of short-chain fatty acids. In addition, dietary fatty acids and dietary electrolyte balance can also facilitate the growth, function and health of piglets by regulating intestinal epithelial function, immune system and microbiota. Thus, a targeted control of dietary components to promote the establishment of a healthy bacterial community is a significant method for preventing nutritional diarrhea in weaned piglets.
Collapse
Affiliation(s)
- Xuebing Han
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan 410125, China
| | - Xiangdong Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Wei Jin
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan 410125, China
| |
Collapse
|
4
|
Zhang L, Ge J, Gao F, Yang M, Li H, Xia F, Bai H, Piao X, Sun Z, Shi L. Rosemary leaf powder improves egg quality, antioxidant status, gut barrier function, and cecal microbiota and metabolites of late-phase laying hens. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:325-334. [PMID: 38800742 PMCID: PMC11127096 DOI: 10.1016/j.aninu.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/09/2024] [Accepted: 02/06/2024] [Indexed: 05/29/2024]
Abstract
This study sought to determine the effects of rosemary leaf powder (RP) on laying performance, egg quality, serum indices, gut barrier function, and cecal microbiota and metabolites of late-phase laying hens. A total of 84 "Jing Tint 6" laying hens at 65-week old were randomly divided into 2 groups and fed either a basal diet (CON) or a basal diet supplemented with 0.3% RP. Our study revealed that RP improved the Haugh unit and decreased yolk n-6/n-3 polyunsaturated fatty acid (PUFA) ratio of laying hens, increased serum superoxide dismutase (SOD), jejunal activities of SOD and catalase (CAT), and jejunal zonula occludens-1 (ZO-1) expression, as well as decreased serum tumor necrosis factor-α (TNF-α) level and jejunal TNF-α mRNA expression. Rosemary leaf powder markedly enhanced (P < 0.05) cecal abundances of Rikenellaceae, Rikenellaceae_RC9_gut_group, and Turicibacter, tended to promote (P = 0.076) butyrate concentration, and reduced (P < 0.05) cecal abundances of Erysipelatoclostridiaceae, Sutterellaceae, Fusobacteriaceae, Campylobacteraceae, Sutterella, Campylobacter, and Fusobacterium, which were closely linked with Haugh unit, yolk n-6/n-3 PUFA ratio, serum SOD and TNF-α. In addition, RP altered the metabolic functions of cecal microbiota and enhanced the abundances of butyrate-synthesizing enzymes, including lysine 2,3-aminomutase, β-lysine 5,6-aminomutase, and 3-oxoacid CoA-transferase. Together, 0.3% RP has the potential to enhance egg quality by partially modulating serum antioxidant status, jejunal barrier function, and cecal microbiota structure and metabolites, indicating that RP could be considered a promising feed additive to promote the production performance of late-phase laying hens.
Collapse
Affiliation(s)
- Lianhua Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junwei Ge
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Fei Gao
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Yang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Hui Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Fei Xia
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Hongtong Bai
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xiangshu Piao
- Beijing Jingwa Agricultural Science & Technology Innovation Center, Beijing 100160, China
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhiying Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lei Shi
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| |
Collapse
|
5
|
Tan K, Bian Z, Liang H, Hu W, Xia M, Han S, Chen B. Enzymolytic soybean meal-impact on growth performance, nutrient digestibility, antioxidative capacity, and intestinal health of weaned piglets. Front Vet Sci 2024; 11:1381823. [PMID: 38585301 PMCID: PMC10995376 DOI: 10.3389/fvets.2024.1381823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
Enzymolytic soybean meal (ESBM) enriches free amino acids and small peptides, while mitigating anti-nutritional factors. Substituting soybean meal with ESBM enhances animal performance, though optimal piglet dietary supplementation levels vary. The present study aimed to assess the impact of ESBM on the growth performance, nutrient digestibility, antioxidative capacity and intestinal health of weaned piglets. A total of 120 piglets (initial body weight, 7.0 ± 0.4 kg) were randomly allocated into 4 dietary groups, each comprising 5 replicates with 6 piglets per replicate. The control group received the basal diet, while the experimental groups were fed diets containing 2, 4% or 8% ESBM as a replacement for soybean meal over 28 days. Compared with the control group, piglets supplemented with 4% ESBM exhibited a significant increase (p < 0.05) in average daily gain and the apparent total tract digestibility of dry matter, ether extract and gross energy (p < 0.05), alongside a notable decrease (p < 0.05) in diarrhea incidence. Fed ESBM linearly increased (p < 0.05) the villus height in the ileum of piglets. The levels of superoxide dismutase and total antioxidant capacity in serum of piglets increased (p < 0.05) in the 2 and 4% ESBM groups, while diamine oxidase content decreased (p < 0.05) in the 4 and 8% ESBM group. ESBM inclusion also upregulated (p < 0.05) the expression of superoxide dismutase 1 (SOD-1), Catalase (CAT) and claudin-1 mRNA. In terms of cecal fermentation characteristics, ESBM supplementation resulted in a increase (p < 0.05) in valerate content and a linear rise (p < 0.05) in propionate, butyrate, and total short-chain fatty acids levels, accompanied by a decrease (p < 0.05) in the concentrations of tryptamine and NH3 in cecal digesta. ESBM had no discernible effect on cecal microbial composition. In summary, substitution of soybean meal with ESBM effectively improved the growth performance of piglets by enhancing nutrient digestibility, antioxidant capacity, intestinal barrier and cecal microbial fermentation characteristics, with the optimal replacement level identified at 4%.
Collapse
Affiliation(s)
| | | | | | | | | | - Shuaijuan Han
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Baojiang Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
6
|
Wang J, Liu S, Ma J, Dong X, Long S, Piao X. Growth performance, serum parameters, inflammatory responses, intestinal morphology and microbiota of weaned piglets fed 18% crude protein diets with different ratios of standardized ileal digestible isoleucine to lysine. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:313-325. [PMID: 38362516 PMCID: PMC10867559 DOI: 10.1016/j.aninu.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 02/17/2024]
Abstract
The present study was to explore the Ile requirement of piglets fed 18% crude protein (CP) diets. Two hundred and fifty 28-day-old Duroc × Landrace × Yorkshire piglets (8.37 ± 1.92 kg) were randomly divided into 5 dietary treatments (10 piglets per replicate, 5 barrows and 5 gilts per replicate) with 45%, 50%, 55%, 60%, 65% standardized ileal digestible (SID) Ile-to-Lys ratios, and the SID Lys was formulated to 1.19%. The experimental design consisted of two phases (d 1 to 14 and d 15 to 28). Results showed that average daily gain (ADG) had a tendency to quadratically increase as the SID Ile-to-Lys ratio increased (P = 0.09), and the optimum SID Ile-to-Lys ratios required to maximize ADG were 48.33% and 54.63% for broken-line linear model and quadratic polynomial model, respectively. Different SID Ile-to-Lys ratios had no significant effects on average daily feed intake and gain-to-feed ratio. Dry matter (P < 0.01), CP (P = 0.01), ether extract (P = 0.04), gross energy (P < 0.01) and organic matter (P < 0.01) digestibility increased quadratically. Serum total cholesterol levels decreased linearly (P = 0.01) and quadratically (P < 0.01); aspartate aminotransferase (P < 0.01), interleukin-1β (P = 0.01), and tumor necrosis factor-α (P < 0.01) levels decreased quadratically; immunoglobulin G (P = 0.03) and immunoglobulin M (P = 0.01) concentrations increased quadratically. Serum Ser levels decreased linearly (P < 0.01) and quadratically (P = 0.01); Glu (P = 0.02), Arg (P = 0.05), and Thr (P = 0.03) levels decreased quadratically; Gly (P < 0.01) and Leu (P = 0.01) levels decreased linearly; Ile (P < 0.01) concentration increased linearly. Duodenal villus height (P < 0.01) and villus height to crypt depth ratio (P < 0.01) increased quadratically. The deficiency or excess of Ile decreased short chain fatty acid-producing bacteria abundance and increased pathogenic bacteria abundance. Overall, taking ADG as the effect index, the optimum SID Ile-to-Lys ratios of piglets offered 18% CP diets were 48.33% and 54.63% based on two different statistical models, respectively, and the deficiency or excess of lle negatively affected piglet growth rates and health status.
Collapse
Affiliation(s)
- Jian Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Sujie Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jiayu Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaoli Dong
- CJ International Trading Co., Ltd, Shanghai 201107, China
| | - Shenfei Long
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Beijing Jingwa Agricultural Science and Technology Innovation Center, Beijing, 101206, China
| |
Collapse
|
7
|
Cheng Y, Liu S, Wang F, Wang T, Yin L, Chen J, Fu C. Effects of Dietary Terminalia chebula Extract on Growth Performance, Immune Function, Antioxidant Capacity, and Intestinal Health of Broilers. Animals (Basel) 2024; 14:746. [PMID: 38473130 DOI: 10.3390/ani14050746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Terminalia chebula extract (TCE) has many physiological functions and is potentially helpful in maintaining poultry health, but its specific effect on the growth of broilers is not yet known. This research investigated the effects of dietary Terminalia chebula extract (TCE) supplementation on growth performance, immune function, antioxidant capacity, and intestinal health in yellow-feathered broilers. A total of 288 one-day-old yellow-feathered broilers were divided into four treatment groups (72 broilers/group), each with six replicates of 12 broilers. The broilers were given a basal diet of corn-soybean meal supplemented with 0 (control), 200, 400, and 600 mg/kg TCE for 56 d. The results demonstrated that, compared with the basal diet, the addition of TCE significantly increased (linear and quadratic, p < 0.05) the final body weight and overall weight gain and performance and decreased (linear and quadratic, p < 0.05) the feed-to-gain ratio in the overall period. Dietary TCE increased (linear, p < 0.05) the levels of IgM, IL-4, and IL-10 and decreased (linear and quadratic, p < 0.05) the level of IL-6 in the serum. Dietary TCE increased (linear and quadratic, p < 0.05) the levels of IL-2 and IL-4, decreased (linear and quadratic, p < 0.05) the level of IL-1β, and decreased (linear, p < 0.05) the level of IL-6 in the liver. Dietary TCE increased (linear and quadratic, p < 0.05) the level of IgM and IL-10, increased (linear, p < 0.05) the level of IgG, and decreased (linear and quadratic, p < 0.05) the levels of IL-1β and IL-6 in the spleen. Supplementation with TCE linearly and quadratically increased (p < 0.05) the catalase, superoxide dismutase, glutathione peroxidase, and total antioxidant capacity activities while decreasing (p < 0.05) the malonic dialdehyde concentrations in the serum, liver, and spleen. TCE-containing diets for broilers resulted in a higher (linear and quadratic, p < 0.05) villus height, a higher (linear and quadratic, p < 0.05) ratio of villus height to crypt depth, and a lower (linear and quadratic, p < 0.05) crypt depth compared with the basal diet. TCE significantly increased (linear, p < 0.05) the acetic and butyric acid concentrations and decreased (quadratic, p < 0.05) the isovaleric acid concentration. Bacteroidaceae and Bacteroides, which regulate the richness and diversity of microorganisms, were more abundant and contained when TCE was added to the diet. In conclusion, these findings demonstrate that supplementing broilers with TCE could boost their immune function, antioxidant capacity, and gut health, improving their growth performance; they could also provide a reference for future research on TCE.
Collapse
Affiliation(s)
- Ying Cheng
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Shida Liu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Fang Wang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Tao Wang
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Lichen Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jiashun Chen
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Chenxing Fu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
8
|
Zhou X, Liang L, Sun B, Li K, Guo H, Zhang Y. The Effects of Yeast Protein on Gut Microbiota in Mice When Compared with Soybean Protein and Whey Protein Isolates. Nutrients 2024; 16:458. [PMID: 38337742 PMCID: PMC10857369 DOI: 10.3390/nu16030458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Different protein sources can impact gut microbiota composition and abundance, and also participate in health regulation. In this study, mice were gavaged with yeast protein (YP), soybean protein isolate (SPI), and whey protein isolate (WPI) for 28 days. Body weights showed similar patterns across different protein administration groups. The ileum in YP-supplemented mice exhibited good morphology, and tight-junction (TJ) proteins were slightly upregulated. Immunoglobulin (Ig)A, IgM, and IgG levels in the ileum of different protein groups were significantly increased (p < 0.05). Interleukin (IL)-10 levels were significantly increased, whereas IL-6 levels were significantly reduced in the YP group when compared with the control (C) (p < 0.05). Glutathione peroxidase (GSH-Px) levels in the ileum were significantly increased in the YP group (p < 0.05). These results indicate that YP potentially improved intestinal immunity and inflammatory profiles. The relative abundances of Parabacteroides, Prevotella, and Pseudobutyrivibrio in the YP group were more enriched when compared with the C and SPI groups, and Parabacteroides was significantly upregulated when compared with the WPI group (p < 0.05). Overall, the results indicate that YP upregulates the beneficial bacteria and improves ileal immunity and anti-inflammatory capabilities.
Collapse
Affiliation(s)
- Xuewei Zhou
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; (X.Z.); (L.L.); (B.S.)
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Li Liang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; (X.Z.); (L.L.); (B.S.)
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; (X.Z.); (L.L.); (B.S.)
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Ku Li
- National Key Laboratory of Agricultural Microbiology Core Facility, Angel Yeast Co., Ltd., Yichang 443003, China; (K.L.); (H.G.)
| | - Hui Guo
- National Key Laboratory of Agricultural Microbiology Core Facility, Angel Yeast Co., Ltd., Yichang 443003, China; (K.L.); (H.G.)
| | - Yuyu Zhang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; (X.Z.); (L.L.); (B.S.)
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
9
|
Van Tran T, Kim YS, Yun HH, Nguyen DH, Bui TT, Van Tran P. A blend of bacillus-fermented soybean meal, functional amino acids, and nucleotides improves nutrient digestibility, bolsters immune response, reduces diarrhea, and enhances growth performance in weaned piglets. J Anim Sci 2024; 102:skae293. [PMID: 39320170 PMCID: PMC11497617 DOI: 10.1093/jas/skae293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024] Open
Abstract
This study investigated the effects of a blend of bacillus-fermented soybean meal, functional amino acids, and nucleotides (Functional protein blend-FP Blend) as a replacement for animal protein sources in a weaner pig diet without antibiotic growth promoters on nutrient digestibility, blood profiles, intestinal morphology, diarrhea incidence, and growth performance. A total of 288 crossbred weaned piglets [♂ Duroc x ♀ (Yorkshire × Landrace)] with an average body weight (BW) of 6.89 ± 0.71 kg were randomly allocated to 6 groups based on initial BW and sex (8 replicate pens per treatment; 3 gilts and 3 barrows/pen). The experiment lasted for 5 wk. Dietary treatments included PC [standard diet with 3% fish meal (FM) and 2% plasma protein (PP)], NC (nonanimal protein, AP), T1 (3% FM replaced with 5% FP Blend), T2 (3% FM and 1% PP replaced with 5% FP Blend), T3 (2% PP replaced with 5% FP Blend), and T4 (3% FM and 2% PP replaced with 5% FP Blend). Data were analyzed using Minitab version 17 software. Key results indicated that FP Blend improved the apparent ileal digestibility (AID) coefficient of dry matter, gross energy, lysine, and valine in T4 compared with NC treatment (P < 0.05), whereas AID coefficient of crude protein and other amino acids remained constant (P > 0.05). Compared with NC diet, the weaned pigs fed T4 diet reduced malondialdehyde, serum IL8, TNF-α, and increased IgG (P < 0.05), while showing no effect on serum IL6, IL10, white blood cells, IgA, and endotoxin (P > 0.05). Furthermore, FP blend significantly increased villus height in the duodenum and ileum in T4 compared with NC (P < 0.05). The average daily gain (ADG) was highest in T4 (502.73 g/d), followed by T1 (477.96 g/d) and T2 (475.85 g/d), compared with PC (450.86 g/d) and NC (439.79 g/d). T4's ADG significantly differed from PC and NC (P < 0.001), whereas no significant differences were observed in T1, T2, and T3 (P > 0.05). The feed conversion ratio (FCR) was significantly lower in T4 (1.45) compared with PC (1.57) and NC (1.59) (P < 0.001), with no significant differences among other groups. In conclusion, FP Blend demonstrated efficacy in improving nutrient digestibility, optimizing intestinal morphology, bolstering immune responses, reducing diarrhea incidence, alleviating the adverse effects of weaning stress, and enhancing growth performance of weaned piglets.
Collapse
Affiliation(s)
- Thang Van Tran
- Faculty of Animal Science and Veterinary Medicine, Thai Nguyen University of Agriculture and Forestry, Vietnam
| | - Yang Su Kim
- CJ BIO, Animal nutrition, Amino acid solution, Cheiljadang Center, 330, Dongho-ro, Jung-gu, Seoul 04560, South Korea
| | - Hyeon Ho Yun
- Technical Marketing, Protein Solution, CJ BIO, Cheiljadang Center, 330, Dongho-ro, Jung-gu, Seoul 04560, South Korea
| | - Dinh Hai Nguyen
- CJ Bio Vietnam, Technical Solution Center of The Asia Pacific Accreditation Cooperation, CJ Cheiljedang Building, Ho Chi Minh 700000, Vietnam
| | - Thom Thi Bui
- Institute of Life Sciences, Thai Nguyen University, Vietnam
| | - Phung Van Tran
- Institute of Life Sciences, Thai Nguyen University, Vietnam
| |
Collapse
|
10
|
Shao D, Liu L, Tong H, Shi S. Dietary pyrroloquinoline quinone improvement of the antioxidant capacity of laying hens and eggs are linked to the alteration of Nrf2/HO-1 pathway and gut microbiota. Food Chem X 2023; 20:101021. [PMID: 38144785 PMCID: PMC10740097 DOI: 10.1016/j.fochx.2023.101021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/24/2023] [Accepted: 11/19/2023] [Indexed: 12/26/2023] Open
Abstract
Pyrroloquinoline quinone disodium (PQQ·Na2) has been considered a human food supplement for human health promotion with its antioxidant properties. To determine whether PQQ·Na2 had similar functions to improve the antioxidant ability of layers and eggs, 180 laying hens were fed with 0 or 0.4 mg/kg PQQ·Na2 diets. Supplementation with PQQ·Na2 increased the albumen height, Haugh unit of the eggs. PQQ·Na2 also led to a higher glutathione peroxidase (GSH-Px) concentration in plasma and a lower malondialdehyde (MDA) content in the liver and egg yolk. Similarly, liver gene and protein expression of nuclear factor erythroid 2-related 2 (Nrf2) and heme oxygenase 1 (HO-1) were up-regulated by PQQ·Na2. Moreover, PQQ·Na2 increased the abundance of Firmicutes, Microbacterium, Erysipelatoclostridium, Mailhella, Lachnospiraceae_UCG-010, and Herbaspirillum in gut. Overall, these results suggested PQQ·Na2 increased the antioxidant ability of layers and eggs which might be in connection with the activation of the Nrf2/HO-1 pathway and optimized gut microflora.
Collapse
Affiliation(s)
- Dan Shao
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, China
| | - Liangji Liu
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, China
| | - Haibing Tong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, China
| | - Shourong Shi
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, China
| |
Collapse
|
11
|
Zhang X, Zhang Z, Sun Y, Liu Y, Zhong X, Zhu J, Yu X, Lu Y, Lu Z, Sun X, Han H, Wang M. Antioxidant Capacity, Inflammatory Response, Carcass Characteristics and Meat Quality of Hu Sheep in Response to Dietary Soluble Protein Levels with Decreased Crude Protein Content. Antioxidants (Basel) 2023; 12:2098. [PMID: 38136218 PMCID: PMC10741046 DOI: 10.3390/antiox12122098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Manipulating dietary nutrients, especially protein fractions, holds significance in enhancing the antioxidant capacity and immunity function of ruminants. This study investigated the impact of dietary adjustments in soluble protein (SP) levels, in conjunction with a reduction in crude protein (CP) content, on the antioxidant capacity, inflammatory response, carcass characteristics, and meat quality of sheep. This study had four dietary treatments, including a control diet (CON) adhering to NRC standards with a CP content of 16.7% on a dry matter basis and three diets with an approximately 10% reduction in CP content compared to CON with SP levels (% of CP) of 21.2 (SPA), 25.9 (SPB) and 29.4% (SPC), respectively. Thirty-two healthy male Hu sheep, with an initial live weight of 40.37 ± 1.18 kg and age of 6 months, were randomly divided into four groups to receive these respective diets. Our data revealed no significant differences in slaughter performance among treatments (p > 0.05), although low-protein treatments decreased the stomachus compositus index (p < 0.05). Compared with CON, as SP was adjusted to 21.2%, total antioxidant capacity (T-AOC) and catalase (CAT) concentrations were decreased in the serum (p < 0.05), glutathione peroxidase (GSH-Px) content was decreased in jejunum and ileum (p < 0.05), superoxide dismutase (SOD) concentration was reduced in the duodenum (p < 0.05), and malondialdehyde (MDA) content was increased in spleen and ileum (p < 0.05). On the other hand, pro-inflammatory cytokine (IL-1β, IL-6 and IL-8) contents were upregulated in the serum (p < 0.05), while immunoglobulin (IgA and IgM) contents were reduced in the duodenum (p < 0.05) with SP adjustments. Additionally, the SPB and SPC diets reduced the content of saturated fatty acids and increased the content of polyunsaturated fatty acids compared with CON (p < 0.05), along with retention in the tenderness and water-holding capacity of the longissimus lumborum muscle. In summary, reducing CP by 10% with an SP proportion of ~25-30% improved meat quality without compromising antioxidant capacity and immunity function, while lower SP levels had adverse effects.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, China
| | - Zhenbin Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yiquan Sun
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yang Liu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xinhuang Zhong
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jun Zhu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiang Yu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yue Lu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhiqi Lu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xuezhao Sun
- AgResearch Limited, Grasslands Research Centre, Palmerston North 4410, New Zealand;
| | - Huanyong Han
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, China
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
12
|
Qiao L, Dou X, Song X, Chang J, Zeng X, Zhu L, Yi H, Xu C. Replacing dietary sodium selenite with biogenic selenium nanoparticles improves the growth performance and gut health of early-weaned piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:99-113. [PMID: 38023380 PMCID: PMC10665811 DOI: 10.1016/j.aninu.2023.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 12/01/2023]
Abstract
Selenium nanoparticles (SeNPs) are proposed as a safer and more effective selenium delivery system than sodium selenite (Na2SeO3). Here, we investigated the effects of replacing dietary Na2SeO3 with SeNPs synthesized by Lactobacillus casei ATCC 393 on the growth performance and gut health of early-weaned piglets. Seventy-two piglets (Duroc × Landrace × Large Yorkshire) weaned at 21 d of age were divided into the control group (basal diet containing 0.3 mg Se/kg from Na2SeO3) and SeNPs group (basal diet containing 0.3 mg Se/kg from SeNPs) during a 14-d feeding period. The results revealed that SeNPs supplementation increased the average daily gain (P = 0.022) and average daily feed intake (P = 0.033), reduced (P = 0.056) the diarrhea incidence, and improved (P = 0.013) the feed conversion ratio compared with Na2SeO3. Additionally, SeNPs increased jejunal microvilli height (P = 0.006) and alleviated the intestinal barrier dysfunction by upregulating (P < 0.05) the expression levels of mucin 2 and tight junction proteins, increasing (P < 0.05) Se availability, and maintaining mitochondrial structure and function, thereby improving antioxidant capacity and immunity. Furthermore, metabolomics showed that SeNPs can regulate lipid metabolism and participate in the synthesis, secretion and action of parathyroid hormone, proximal tubule bicarbonate reclamation and tricarboxylic acid cycle. Moreover, SeNPs increased (P < 0.05) the abundance of Holdemanella and the levels of acetate and propionate. Correlation analysis suggested that Holdemanella was closely associated with the regulatory effects of SeNPs on early-weaned piglets through participating in lipid metabolism. Overall, replacing dietary Na2SeO3 with biogenic SeNPs could be a potential nutritional intervention strategy to prevent early-weaning syndrome in piglets.
Collapse
Affiliation(s)
- Lei Qiao
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Xina Dou
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Xiaofan Song
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Jiajing Chang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Xiaonan Zeng
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Lixu Zhu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Hongbo Yi
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science of Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Chunlan Xu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| |
Collapse
|
13
|
Li S, Guo Y, Guo X, Shi B, Ma G, Yan S, Zhao Y. Effects of Artemisia ordosica Crude Polysaccharide on Antioxidant and Immunity Response, Nutrient Digestibility, Rumen Fermentation, and Microbiota in Cashmere Goats. Animals (Basel) 2023; 13:3575. [PMID: 38003192 PMCID: PMC10668836 DOI: 10.3390/ani13223575] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
The objective of this experiment was to investigate the effect of dietary supplementation with Artemisia ordosica crude polysaccharide (AOCP) on growth performance, nutrient digestibility, antioxidant and immunity capacity, rumen fermentation parameters, and the microbiota of cashmere goats. A total of 12 cashmere goats (2 years old) with similar weight (38.03 ± 2.42 kg of BW ± SD) were randomly divided into two dietary treatments with six replicates. The treatments were as follows: (1) control (CON, basal diet); and (2) AOCP treatment (AOCP, basal diet with 0.3% AOCP). Pre-feeding was conducted for 7 days, followed by an experimental period of 21 days. The results showed that the ADG; feed/gain (F/G); and the digestibility of DM, CP, and ADF of cashmere goats in the AOCP group were greater than in the CON group (p < 0.05). Still, there was no significant effect on the digestibility of EE, NDF, Ca, and P (p > 0.05). Compared to the CON group, AOCP increased BCP, propionate, butyrate, isobutyrate, valerate, isovalerate, and TVFA concentrations (p < 0.05), but it reduced the protozoa numbers of acetate and A/P (p < 0.05). The serum CAT, GSH-Px, T-SOD, 1L-6, and NO levels were higher in AOCP than in the CON group (p < 0.05). The addition of AOCP increased the Sobs and Ace estimators (p < 0.05) and reduced the Simpson estimator in the ruminal fluid compared to the CON group (p < 0.05). Additionally, the AOCP group increased the colonization of beneficial bacteria by positively influencing GSH-Px and IL-6 (norank_f__F082, unclassified_p__Firmicutes), as well as bacteria negatively associated with F/G (norank_f__norank_o__Bacteroidales, unclassified_p__Firmicutes, and norank_f__F082). It decreased the colonization of potential pathogenic bacteria (Aeromonas and Escherichia-Shigella) (p < 0.05) compared to the CON group. In conclusion, 0.3% AOCP improves the growth performance, nutrient digestibility, antioxidant status, immune function, rumen fermentation, and microflora of cashmere goats.
Collapse
Affiliation(s)
| | | | | | | | | | - Sumei Yan
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Huhhot 010018, China; (S.L.); (Y.G.); (X.G.); (B.S.); (G.M.)
| | - Yanli Zhao
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Huhhot 010018, China; (S.L.); (Y.G.); (X.G.); (B.S.); (G.M.)
| |
Collapse
|
14
|
Zhang L, Ge J, Gao F, Yang M, Li H, Xia F, Bai H, Piao X, Sun Z, Shi L. Rosemary extract improves egg quality by altering gut barrier function, intestinal microbiota and oviductal gene expressions in late-phase laying hens. J Anim Sci Biotechnol 2023; 14:121. [PMID: 37667318 PMCID: PMC10476401 DOI: 10.1186/s40104-023-00904-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/04/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Rosemary extract (RE) has been reported to exert antioxidant property. However, the application of RE in late-phase laying hens on egg quality, intestinal barrier and microbiota, and oviductal function has not been systematically studied. This study was investigated to detect the potential effects of RE on performance, egg quality, serum parameters, intestinal heath, cecal microbiota and metabolism, and oviductal gene expressions in late-phase laying hens. A total of 210 65-week-old "Jing Tint 6" laying hens were randomly allocated into five treatments with six replicates and seven birds per replicate and fed basal diet (CON) or basal diet supplemented with chlortetracycline at 50 mg/kg (CTC) or RE at 50 mg/kg (RE50), 100 mg/kg (RE100), and 200 mg/kg (RE200). RESULTS Our results showed that RE200 improved (P < 0.05) Haugh unit and n-6/n-3 of egg yolk, serum superoxide dismutase (SOD) compared with CON. No significant differences were observed for Haugh unit and n-6/n-3 of egg yolk among CTC, RE50, RE100 and RE200 groups. Compared with CTC and RE50 groups, RE200 increased serum SOD activity on d 28 and 56. Compared with CON, RE supplementation decreased (P < 0.05) total cholesterol (TC) level. CTC, RE100 and RE200 decreased (P < 0.05) serum interleukin-6 (IL-6) content compared with CON. CTC and RE200 increased jejunal mRNA expression of ZO-1 and Occludin compared with CON. The biomarkers of cecal microbiota and metabolite induced by RE 200, including Firmicutes, Eisenbergiella, Paraprevotella, Papillibacter, and butyrate, were closely associated with Haugh unit, n-6/n-3, SOD, IL-6, and TC. PICRUSt2 analysis indicated that RE altered carbohydrate and amino acid metabolism of cecal microbiota and increased butyrate synthesizing enzymes, including 3-oxoacid CoA-transferase and butyrate-acetoacetate CoA-transferase. Moreover, transcriptomic analysis revealed that RE200 improved gene expressions and functional pathways related to immunity and albumen formation in the oviductal magnum. CONCLUSIONS Dietary supplementation with 200 mg/kg RE could increase egg quality of late-phase laying hens via modulating intestinal barrier, cecal microbiota and metabolism, and oviductal function. Overall, RE could be used as a promising feed additive to improve egg quality of laying hens at late stage of production.
Collapse
Affiliation(s)
- Lianhua Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Junwei Ge
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Fei Gao
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Yang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Hui Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Fei Xia
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Hongtong Bai
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhiying Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Lei Shi
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
| |
Collapse
|
15
|
Li T, Jin M, Huang L, Zhang Y, Zong J, Shan H, Kang H, Xu M, Liu H, Zhao Y, Cao Q, Jiang J. Oxytetracycline-induced oxidative liver damage by disturbed mitochondrial dynamics and impaired enzyme antioxidants in largemouth bass (Micropterus salmoides). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106616. [PMID: 37348385 DOI: 10.1016/j.aquatox.2023.106616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023]
Abstract
Oxytetracycline (OTC), a commonly used tetracycline antibiotic in aquaculture, has been found to cause significant damage to the liver of largemouth bass (Micropterus salmoides). This study revealed that OTC can lead to severe histopathological damage, structural changes at the cellular level, and increased levels of reactive oxygen species (ROS) in M. salmoides. Meanwhile, OTC impairs the activities of antioxidant enzyme (such as T-SOD, CAT, GST, GR) by suppressing the activation of MAPK/Nrf2 pathway. OTC disrupts mitochondrial dynamics and mitophagy through via PINK1/Parkin pathway. The accumulation of damaged mitochondria, combined with the inhibition of the antioxidant enzyme system, contributes to elevated ROS levels and oxidative liver damage in M. salmoides. Further investigations demonstrated that an enzyme-treated soy protein (ETSP) dietary supplement can help maintain mitochondrial dynamic balance by inhibiting the PINK1/Parkin pathway and activate the MAPK/Nrf2 pathway to counteract oxidative damage. In summary, these findings highlight that exposure to OTC disrupts mitochondrial dynamics and inhibits the antioxidant enzyme system, ultimately exacerbating oxidative liver damage in M. salmoides. We propose the use of a dietary supplement as a preventive measure against OTC-related side effects, providing valuable insights into the mechanisms of antibiotic toxicity in aquatic environments.
Collapse
Affiliation(s)
- Tong Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Min Jin
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lishi Huang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yupeng Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiali Zong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongying Shan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hao Kang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Man Xu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Haifeng Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Ye Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Quanquan Cao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China;.
| | - Jun Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China;.
| |
Collapse
|
16
|
Cheng J, Xiao M, Ren X, Secundo F, Yu Y, Nan S, Chen W, Zhu C, Kong Q, Huang Y, Fu X, Mou H. Response of Salmonella enterica serovar Typhimurium to alginate oligosaccharides fermented with fecal inoculum: integrated transcriptomic and metabolomic analyses. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:242-256. [PMID: 37275545 PMCID: PMC10232696 DOI: 10.1007/s42995-023-00176-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/26/2023] [Indexed: 06/07/2023]
Abstract
Alginate oligosaccharides (AOS), extracted from marine brown algae, are a common functional feed additive; however, it remains unclear whether they modulate the gut microbiota and microbial metabolites. The response of Salmonella enterica serovar Typhimurium, a common poultry pathogen, to AOS fermented with chicken fecal inocula was investigated using metabolomic and transcriptomic analyses. Single-strain cultivation tests showed that AOS did not directly inhibit the growth of S. Typhimurium. However, when AOS were fermented by chicken fecal microbiota, the supernatant of fermented AOS (F-AOS) exhibited remarkable antibacterial activity against S. Typhimurium, decreasing the abundance ratio of S. Typhimurium in the fecal microbiota from 18.94 to 2.94%. Transcriptomic analyses showed that the 855 differentially expressed genes induced by F-AOS were mainly enriched in porphyrin and chlorophyll metabolism, oxidative phosphorylation, and Salmonella infection-related pathways. RT-qPCR confirmed that F-AOS downregulated key genes involved in flagellar assembly and the type III secretory system of S. Typhimurium, indicating metabolites in F-AOS can influence the growth and metabolism of S. Typhimurium. Metabolomic analyses showed that 205 microbial metabolites were significantly altered in F-AOS. Among them, the increase in indolelactic acid and 3-indolepropionic acid levels were further confirmed using HPLC. This study provides a new perspective for the application of AOS as a feed additive against pathogenic intestinal bacteria. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00176-z.
Collapse
Affiliation(s)
- Jiaying Cheng
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Mengshi Xiao
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Xinmiao Ren
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Francesco Secundo
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche, 20131 Milan, Italy
| | - Ying Yu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Shihao Nan
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, 330047 China
| | - Weimiao Chen
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 China
| | - Changliang Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Qing Kong
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Youtao Huang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Xiaodan Fu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, 330047 China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| |
Collapse
|
17
|
Muniyappan M, Shanmugam S, Park JH, Han K, Kim IH. Effects of fermented soybean meal supplementation on the growth performance and apparent total tract digestibility by modulating the gut microbiome of weaned piglets. Sci Rep 2023; 13:3691. [PMID: 36878925 PMCID: PMC9988856 DOI: 10.1038/s41598-023-30698-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
This study investigates the effects of soybean meal fermented by Enterococcus faecium as a replacement for soybean meal on growth performance, apparent total tract digestibility, blood profile and gut microbiota of weaned pigs. Eighty piglets (weaned at 21 days) [(Landrace × Yorkshire) × Duroc] with average body weight of 6.52 ± 0.59 kg) were selected and assigned to 4 treatments/4 replicate pens (3 barrows and 2 gilts). The four diets (SBM, 3, 6 and 9% FSBM) were formulated using fermented soybean meal to replace 0, 3, 6 and 9% of soybean meal, respectively. The trial lasted for 42 days phase 1, 2 and 3. Result showed that supplemental FSBM increased (P < 0.05) the body weight gain (BWG) of piglets at day 7, 21 and 42 and ADG at days 1-7, 8-21, 22-42 and 1-42, and ADFI at days 8-21, 22-42 and 1-42 and G: F at days 1-7, 8-21 and 1-42, and crude protein, dry matter, and gross energy digestibility at day 42, and lowered (P < 0.05) diarrhea at days 1-21 and 22-42. The concentration of glucose levels, WBC, RBC, and lymphocytes were increased while, concentration of BUN level in the serum was lowered in the FSBM treatment compared to the SBM group (P < 0.05). Microbiota sequencing found that FSBM supplementation increased the microbial Shannon, Simpsons and Chao indexs, (P < 0.05) and the abundances of the phylum Firmicutes, and genera prevotella, Lactobacillus, Lachnospiraceae and Lachnoclostridium (P < 0.05), lower in the abundances of the phylum bacteroidetes, Proteobacteria, genera Escherichia-Shigella, Clostridium sensu stricto1, Bacteroides and Parabacteroides (P < 0.05). Overall, FSBM replacing SBM improved the growth performance, apparent total tract digestibility, and blood profiles; perhaps via altering the faecal microbiota and its metabolites in weaned pigs. The present study provides theoretical support for applying FSBM at 6-9% to promote immune characteristics and regulate intestinal health in weaning piglets.
Collapse
Affiliation(s)
- Madesh Muniyappan
- Department of Animal Resource and Science, Dankook University, Cheonan-si, Chungnam, 31116, South Korea
| | - Sureshkumar Shanmugam
- Department of Animal Resource and Science, Dankook University, Cheonan-si, Chungnam, 31116, South Korea
| | - Jae Hong Park
- Department of Animal Resource and Science, Dankook University, Cheonan-si, Chungnam, 31116, South Korea
| | - Kyudong Han
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, 31116, South Korea.
- Center for Bio Medical Engineering Core Facility, Dankook University, Cheonan, 31116, South Korea.
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan-si, Chungnam, 31116, South Korea.
| |
Collapse
|
18
|
Li H, Xue R, Sun J, Ji H. Improving flesh quality of grass carp ( Ctenopharyngodon idellus) by completely replacing dietary soybean meal with yellow mealworm ( Tenebrio molitor). ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 12:375-387. [PMID: 36733784 PMCID: PMC9883186 DOI: 10.1016/j.aninu.2022.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 11/16/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
In order to find viable alternative protein sources for aquaculture, we evaluated the effect of partial or complete replacement of dietary soybean meal with yellow mealworm (TM) on the flesh quality of grass carp. In this study, 180 grass carp (511.85 ± 0.25 g) were fed 3 experimental diets in which 0% (CN), 30% (YM30) and 100% (YM100) dietary soybean meal was replaced by TM for 90 d. The results showed that growth performance, biological parameters and serum antioxidant capacity of grass carp were not affected by dietary TM (P > 0.05). Both muscle and whole body crude protein were obviously promoted with the increase of dietary TM (P < 0.05), and the concentration of heavy metal in muscle was not influenced (P > 0.05), indicating that food safety was not influenced by TM. Dietary TM improved muscle textural characteristics by elevating adhesiveness, springiness and chewiness in YM100 (P < 0.05). In addition, the muscle tenderness was significantly increased by declining the shear force (P < 0.05). The muscle fiber density in YM30 &YM100 and length of dark bands and sarcomeres in YM100 were obviously increased (P < 0.05). The expression of myf5, myog and myhc exhibited a significant upward trend with the increase of dietary TM (P < 0.05), which promoted fiber density, length of sarcomere and texture of grass carp muscle. According to the results of metabolomics, the arachidonate (ARA) and eicosapentaenoic acid (EPA) were notably elevated in YM30 and YM100, which indicated that the improvement of flesh quality of grass carp may contribute to the dietary TM influence on muscle lipid metabolism, especially the polyunsaturated fatty acids. In conclusion, TM can completely replace dietary soybean meal and improve the nutritional value of grass carp.
Collapse
Affiliation(s)
- Handong Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Rongrong Xue
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Jian Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
19
|
Zhang L, Long S, Wang H, Piao X. Dietary 25-hydroxycholecalciferol modulates gut microbiota and improves the growth, meat quality, and antioxidant status of growing-finishing pigs. Front Microbiol 2023; 13:1095509. [PMID: 36713223 PMCID: PMC9875081 DOI: 10.3389/fmicb.2022.1095509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction 25-Hydroxycholecalciferol (25OHD3) is the active metabolite of regular vitamin D3 in vivo, which has a stronger biological activity and is more easily absorbed by the intestine than regular vitamin D3. Our study aimed to detect the potential influences of 25OHD3 on pork quality, antioxidant status, and intestinal microbiota of growing-finishing pigs receiving low-phosphorus (P) diet. Methods and results Forty pigs [initial body weight (BW): 49.42 ± 4.01 kg] were allocated into two groups including low-P diet (CON group) and low-P diet supplemented with 50 μg/kg 25OHD3 (25OHD3 group). The whole experiment lasted for 88 days, including phase 1 (day 1-28), phase 2 (day 29-60), and phase 3 (day 61-88). The results showed that 25OHD3 supplementation tended to decrease feed conversion ratio in phase 3 and overall phase in comparison with the CON group. 25OHD3 increased (p < 0.05) serum contents of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and decreased (p < 0.05) serum bone-specific alkaline phosphatase level. 25OHD3 increased (p < 0.05) mucosal GSH-Px activity in the duodenum and ileum, and tended to increase redness value and the activities of total antioxidant capacity and SOD in longissimus dorsi. 25OHD3 significantly upregulated the mRNA level of copper/zinc superoxide dismutase, and tended to change the mRNA levels of nuclear factor E2-related factor 2 and kelch-like ECH-associated protein 1 in longissimus dorsi. Moreover, 25OHD3 supplementation decreased (p < 0.05) n-6/n-3 and iodine value in longissimus dorsi. For bone quality, 25OHD3 supplementation increased (p < 0.05) calcium content, bone mineral content, and breaking strength in the metacarpal bones. Moreover, the colonic abundance of Lactobacillus was significantly higher in pigs fed with 25OHD3, and exhibited a positive association with serum antioxidant status, pork quality, and bone characteristics. Conclusion Overall, the inclusion of 25OHD3 in low P diet partly improved production performance, meat quality, antioxidant capacity, bone properties, and gut microbiota composition of growing-finishing pigs.
Collapse
Affiliation(s)
- Lianhua Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China,Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China,China National Botanical Garden, Beijing, China
| | - Shenfei Long
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hongliang Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China,*Correspondence: Hongliang Wang, ✉
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China,Xiangshu Piao, ✉
| |
Collapse
|
20
|
Liu Y, Azad MAK, Zhao X, Zhu Q, Kong X. Dietary Protein Levels Modulate the Antioxidant Capacity during Different Growth Stages in Huanjiang Mini-Pigs. Antioxidants (Basel) 2023; 12:antiox12010148. [PMID: 36671010 PMCID: PMC9854851 DOI: 10.3390/antiox12010148] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Adequate crude protein (CP) levels in diets play potential roles in swine production. This study determined the impacts of different CP levels on the antioxidant capacity of pigs during different body weight (BW) stages. Three hundred and sixty Huanjiang mini-pigs were allocated to one of three independent experiments, including a 5−10 kg BW group, where CP levels included 14%, 16%, 18%, 20%, and 22%; a 10−20 kg BW group, where CP levels included 12%, 14%, 16%, 18%, and 20%; and a 20−30 kg BW group, where CP levels included 10%, 12%, 14%, 16%, and 18%. These independent experiments were conducted for 28, 28, and 26 days, respectively. Results showed that the 20% CP level increased (p < 0.05) the plasma CAT and GSH-Px activities and the GSH concentration of pigs than in the pigs supplemented with the 14−18% CP levels, and the 20% CP level up-regulated (p < 0.05) the ileal oxidative stress-related gene expression levels of pigs than in the pigs supplemented with the 14% CP level at the 5−10 kg BW. In addition, diets supplemented with 18% CP level increased (p < 0.05) the ileal GSH concentration of pigs than in the pigs supplemented with the 14% and 20% CP levels, and the 16−18% CP levels increased (p < 0.05) the jejunal SOD activity of pigs than in the pigs supplemented with the 14% CP level. At 10−20 kg BW, the 16% CP level presented the strongest jejunal and ileal antioxidant capacity, the 18% CP level had the lowest plasma concentrations of MDA and highest GSH, and the 14−16% CP levels increased the plasma CAT and SOD activities (p < 0.05). Moreover, the 16−20% CP levels up-regulated (p < 0.05) the oxidative stress-related gene expression levels. At 20−30 kg BW, diets supplemented with the 16% CP level increased the plasma CAT activity of pigs than in the pigs supplemented with the 12−14% CP levels, and the 14−16% CP levels decreased the MDA concentration compared with the 10% CP levels (p < 0.05). In conclusion, these findings indicate adequate CP levels of 20%, 16%, and 14% for Huanjiang mini-pigs at the 5−10, 10−20, and 20−30 kg BW stages, respectively.
Collapse
Affiliation(s)
- Yating Liu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100008, China
| | - Md. Abul Kalam Azad
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100008, China
| | - Xichen Zhao
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Qian Zhu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100008, China
| | - Xiangfeng Kong
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100008, China
- Research Center of Mini-Pig, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China
- Correspondence:
| |
Collapse
|
21
|
Yu J, Yang H, Sun Q, Xu X, Yang Z, Wang Z. Effects of cottonseed meal on performance, gossypol residue, liver function, lipid metabolism, and cecal microbiota in geese. J Anim Sci 2023; 101:skad020. [PMID: 36634076 PMCID: PMC9912706 DOI: 10.1093/jas/skad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/11/2023] [Indexed: 01/13/2023] Open
Abstract
A total of 240 28-d-old male goslings were used to investigate the effects of cottonseed meal (CSM) on performance, gossypol residue, liver function, lipid metabolism, and cecal microbiota. All birds were randomly allotted into five groups (eight goslings/replicate, six replicates/group) and subjected to a 35-d experiment. Five isonitrogenous and isoenergetic diets were formulated to produce diets in which 0% (control), 25% (CSM25), 50% (CSM50), 75% (CSM75), and 100% (CSM100) of protein from soybean meal was replaced by protein from CSM. The free gossypol contents in the five diets were 0, 44, 92, 135, and 183 mg/kg, respectively. Dietary CSM did not affect the growth performance from 29 to 63 d and carcass traits at 63 d (P > 0.05). Liver gossypol residues were influenced (P < 0.05) by dietary CSM and increased linearly (P < 0.05) and quadratically (P < 0.05) as dietary CSM increased. The malondialdehyde content of the liver was lower in the CSM100 group than in the other groups (P < 0.05). Serum triglyceride and low-density lipoprotein cholesterol were influenced (P < 0.05) by dietary CSM and increased linearly (P < 0.05) with increasing dietary CSM. Dietary CSM altered (P < 0.05) the composition of some fatty acids in the liver and breast muscle. The concentration of linolenic acid and Σn-3 polyunsaturated fatty acid (PUFA) in the liver and breast muscle decreased linearly, but the Σn-6/Σn-3 PUFA ratio increased linearly with increasing dietary CSM (P < 0.05). Dietary CSM affected (P < 0.05) the hepatic gene expression of fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), and apolipoprotein B (ApoB). As the dietary CSM concentration increased, the hepatic gene expression of FAS increased linearly (P < 0.05) and quadratically (P < 0.05), but the hepatic gene expression of ACC and ApoB increased linearly (P < 0.05). The CSM diet decreased the relative abundance of the Bacteroidota and Bacteroides (P < 0.05), and the CSM50 diet increased the relative abundance of the Firmicutes and Colidextribacter (P < 0.05) compared to the control group. Overall, these results show that dietary CSM has no adverse effects on the performance of goslings from 29 to 63 d. However, CSM affected organismal lipid metabolism, reduced products' edible value, and adaptively altered cecum microbiota.
Collapse
Affiliation(s)
- Jun Yu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Haiming Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qingyu Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xuean Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhi Yang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225000, China
| | - Zhiyue Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225000, China
| |
Collapse
|
22
|
Gomes MDS, Duarte ME, Saraiva A, de Oliveira LL, Teixeira LM, Rocha GC. Effect of antibiotics and low-crude protein diets on growth performance, health, immune response, and fecal microbiota of growing pigs. J Anim Sci 2023; 101:skad357. [PMID: 37843846 PMCID: PMC10630186 DOI: 10.1093/jas/skad357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 10/13/2023] [Indexed: 10/17/2023] Open
Abstract
This study aimed to investigate the effects of diets with and without antibiotics supplementation and diets with 18.5% and 13.0% crude protein (CP) on growth performance, carcass characteristics, disease incidence, fecal microbiota, immune response, and antioxidant capacity of growing pigs. One hundred and eighty pigs (59-day-old; 18.5 ± 2.5 kg) were distributed in a randomized complete block design in a 2 × 2 factorial arrangement, nine replicates, and five pigs per pen. The factors were CP (18.5% or 13.0%) and antibiotics (none or 100 mg/kg tiamulin + 506 mg/kg oxytetracycline). Medicated diets were fed from days 59 to 73. After that, all pigs were fed their respective CP diets from 73 to 87 days. Data were analyzed using the Mixed procedure in SAS version 9.4. From days 59 to 73, pigs fed antibiotics diets had higher (P < 0.05) average daily feed intake (ADFI), average daily weight gain (ADG), gain to feed ratio (G:F), compared to the diets without antibiotics. From days 73 to 87 (postmedicated period), any previous supplementation of antibiotics did not affect pig growth performance. Overall (days 59 to 87), pigs-fed antibiotics diets had higher (P < 0.05) G:F compared to pigs-fed diets without antibiotics. In all periods evaluated, pigs fed 18.5% CP diets had higher (P < 0.05) ADG and G:F compared to pigs fed 13.0% CP. Pigs fed the 13.0% CP diets had lower (P < 0.05) fecal score and diarrhea incidence than those fed 18.5% CP. Pigs fed 18.5% CP diets had improved (P < 0.05) loin area compared to pigs-fed diets with 13.0% CP. At 66 days of age, pigs-fed antibiotics diets had lower (P < 0.05) alpha diversity estimated with Shannon and Simpson compared to the pig-fed diets without antibiotics. At family level, pigs fed 18.5% CP diets had higher (P < 0.05) relative abundance of Streptococcaceae, and lower (P < 0.05) relative abundance of Clostridiaceae at days 66 and 87 compared with pigs fed 13.0% CP. Pigs-fed antibiotics diets had lower (P < 0.05) immunoglobulin G and protein carbonyl concentrations at day 66 compared to the pigs-fed diets without antibiotics. The reduction of dietary CP from 18.5% to 13.0% reduced the growth performance and loin muscle area of growing pigs, although it was effective to reduce diarrhea incidence. Antibiotics improved growth performance, lowered diarrhea incidence, improved components of the humoral immune response, and reduced microbiota diversity. However, in the postmedicated period, we found no residual effect on the general health of the animals, and considering the overall period, only G:F was improved by the use of antibiotics.
Collapse
Affiliation(s)
- Maykelly da S Gomes
- Muscle Biology and Nutrigenomics Laboratory, Department of Animal Science, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - Marcos E Duarte
- Departament of Animal Science, North Carolina State University, Raleigh, USA
| | - Alysson Saraiva
- Muscle Biology and Nutrigenomics Laboratory, Department of Animal Science, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | | | - Lucas M Teixeira
- Muscle Biology and Nutrigenomics Laboratory, Department of Animal Science, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - Gabriel C Rocha
- Muscle Biology and Nutrigenomics Laboratory, Department of Animal Science, Universidade Federal de Viçosa, Minas Gerais, Brazil
| |
Collapse
|
23
|
Qi N, Zhan X, Milmine J, Sahar M, Chang KH, Li J. Isolation and characterization of a novel hydrolase-producing probiotic Bacillus licheniformis and its application in the fermentation of soybean meal. Front Nutr 2023; 10:1123422. [PMID: 36969826 PMCID: PMC10030947 DOI: 10.3389/fnut.2023.1123422] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/15/2023] [Indexed: 03/29/2023] Open
Abstract
Soybean meal (SBM) is one of the most important sources of plant-based protein in the livestock and poultry industry. However, SBM contains anti-nutritional factors (ANFs) such as glycinin, β-conglycinin, trypsin inhibitor and phytic acid that can damage the intestinal health of animals, inevitably reducing growth performance. Fermentation using microorganisms with probiotic potential is a viable strategy to reduce ANFs and enhance the nutritional value of SBM. In this study, a novel potential probiotic Bacillus licheniformis (B4) with phytase, protease, cellulase and xylanase activity was isolated from camel feces. The ability of B4 to tolerate different pH, bile salts concentrations and temperatures were tested using metabolic activity assay. It was found that B4 can survive at pH 3.0, or 1.0% bile salts for 5 h, and displayed high proliferative activity when cultured at 50°C. Furthermore, B4 was capable of degrading glycinin, β-conglycinin and trypsin inhibitor which in turn resulted in significant increases of the degree of protein hydrolysis from 15.9% to 25.5% (p < 0.01) and crude protein from 44.8% to 54.3% (p < 0.001). After fermentation with B4 for 24 h, phytic acid in SBM was reduced by 73.3% (p < 0.001), the neutral detergent fiber (NDF) and the acid detergent fiber of the fermented SBM were significantly decreased by 38.40% (p < 0.001) and 30.20% (p < 0.05), compared to the unfermented SBM sample. Our results suggested that the effect of solid-state fermented SBM using this novel B. licheniformis (B4) strain, could significantly reduce phytic acid concentrations whilst improving the nutritional value of SBM, presenting itself as a promising alternative to phytase additives.
Collapse
Affiliation(s)
- Nanshan Qi
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Xiaoshu Zhan
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
- Department of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Joshua Milmine
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Maureen Sahar
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Kai-Hsiang Chang
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Julang Li
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
- *Correspondence: Julang Li,
| |
Collapse
|
24
|
Possibility of Using By-Products with High NDF Content to Alter the Fecal Short Chain Fatty Acid Profiles, Bacterial Community, and Digestibility of Lactating Dairy Cows. Microorganisms 2022; 10:microorganisms10091731. [PMID: 36144333 PMCID: PMC9505624 DOI: 10.3390/microorganisms10091731] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/08/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022] Open
Abstract
This study aimed to investigate whether agricultural by-products with a high NDF content and small-particle-size substitute for forage could cause hindgut acidosis and dysbacteriosis in lactating dairy cows. We investigated the impact of soybean hull and beet pulp on the fecal fermentation, bacterial community, and digestibility of cows. Sixteen lactating Holstein cows were treated as follows (% of dry matter (DM)): amount of by-product added was 0 (control, CON), 1.67% (low by-products, LB), 3.33% (medium by-products, MB), and 5% (high by-products, HB). The results showed the fecal pH of cows to be 7.23–7.29, implying no hindgut acidosis. With increased inclusion of by-products in the diets, the proportion of fecal propionate; relative abundance of the phylum Bacteroidetes, the family Lachnospiraceae, and genera unclassified_f_Lachnospiraceae, Acetitomaculum, and Prevotella; and the DM and NDF digestibility of cows all increased linearly. Meanwhile, the fecal genera Turicibacter and Clostridium_sensu_stricto_1 decreased linearly. By-products promoted the abundance of fecal bacteria genes related to energy metabolism, glycolysis/gluconeogenesis, and propanoate metabolism; and correlations between fecal short chain fatty acids, digestibility, and the bacteria genera were seen. Overall, our study suggested that adding 5% by-products could be a viable dietary formulation strategy that promotes digestibility and makes positive changes in hindgut fermentation and bacteria.
Collapse
|
25
|
Li Y, Han Y, Zhao Q, Tang C, Zhang J, Qin Y. Fermented Soy and Fish Protein Dietary Sources Shape Ileal and Colonic Microbiota, Improving Nutrient Digestibility and Host Health in a Piglet Model. Front Microbiol 2022; 13:911500. [PMID: 35814707 PMCID: PMC9257162 DOI: 10.3389/fmicb.2022.911500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/30/2022] [Indexed: 11/25/2022] Open
Abstract
Suitable protein sources are essential requirements for piglet growth and health. Typically, intestinal microbiota co-develops with the host and impact its physiology, which make it more plastic to dietary protein sources at early stages. However, the effects of fermented soybean meal (FSB) and fish meal (FM) on foregut and hindgut microbiota, and their relationship with nutrient digestion and host health remain unclear. In this study, we identified interactions between ileac and colonic microbiota which were reshaped by FSB and FM, and assessed host digestibility and host health in a piglet model. Eighteen weaned piglets (mean weight = 8.58 ± 0.44 kg) were divided into three dietary treatments, with six replicates/treatment. The level of dietary protein was 16%, with FSB, FM, and a mixture of fermented soybean meal and fish meal (MFSM) applied as protein sources. During days 1-14 and 1-28, diets containing MFSM generated higher piglet body weight and average daily gain, but lower feed to weight gain ratios when compared with the FM diet (P < 0.05). Piglets in MFSM and FM groups had lower apparent total tract digestibility (ATTD) of crude protein (CP) compared with the FSB group (P < 0.05). Serum immunoglobulins (IgM and IgG) in MFSM and FM groups were significantly higher on day 28, but serum cytokines (interleukin-6 and tumor necrosis factor-α) were significantly lower than the FSB group on days 14 and 28 (P < 0.05). When compared with FSB and FM groups, dietary MFSM significantly increased colonic acetic acid and butyric acid levels (P < 0.05). Compared with the FM and MFSM groups, the FSB diet increased the relative abundance of ileac Lactobacillus and f_Lactobacillaceae, which were significant positively correlated with CP ATTD (P < 0.05). Compared with the FSB group, the relative abundance of f_Peptostreptococcaceae and Romboutsia in MFSM or FM groups were increased and were significant positively correlated with total carbohydrate (TC) ATTD (P < 0.05). Piglets fed FSB had higher α-diversity in colonic microbiota when compared with other groups (P < 0.05). The relative abundance of colonic unidentified_Clostridiales and Romboutsia in MFSM and FSB groups were significantly higher than in the FM group (P < 0.05). Dietary MFSM or FM increased the relative abundance of colonic Streptococcaceae and Streptococcus, but decreased the relative abundance of Christensenellaceae when compared with the FSB group (P < 0.05). These bacteria showed a significantly positive correlation with serum cytokine and immunoglobulin levels (P < 0.05). Therefore, dietary FSB improved CP digestibility by increasing the relative abundance of ileac f_Lactobacillaceae and Lactobacillus, while dietary MFSM benefited TC digestibility by increasing f_Peptostreptococcaceae and Romboutsia. Dietary MFSM and FM enhanced immunoglobulin secretion by increasing colonic f_Streptococcaceae and Streptococcus prevalence, while dietary FSB promoted cytokine production by increasing microbiota diversity and Romboutsia and Christensenellaceae. Our data provide a theoretical dietary basis for young animals using plant and animal protein sources.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunsheng Han
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Feed Research Institute of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuchang Qin
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science of Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
26
|
Yang N, Li M, Huang Y, Liang X, Quan Z, Liu H, Li J, Yue X. Comparative Efficacy of Fish Meal Replacement With Enzymatically Treated Soybean Meal on Growth Performance, Immunity, Oxidative Capacity and Fecal Microbiota in Weaned Pigs. Front Vet Sci 2022; 9:889432. [PMID: 35711799 PMCID: PMC9195130 DOI: 10.3389/fvets.2022.889432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/26/2022] [Indexed: 11/23/2022] Open
Abstract
This study investigated the growth performance, immunity, antioxidant capacity and fecal microbiota of weaned pigs by partially or completely replacing dietary fish meal with enzymatically treated soybean meal. A total of 144 piglets (initial body weight of 7.19 ± 0.11 kg) weaned at 28 d were allotted to 3 dietary treatments (6 replicates per treatment): 4% fish meal diet (FM); 2% fishmeal plus 6% enzymatically treated soybean meal (ESBM1); and 6% enzymatically treated soybean meal without fish meal (ESBM2). The experimental period was 28 d, serum was collected at day 14 and day 28 for biochemical parameters analysis, feces was obtained for microbiota analysis at 28d. The body weight, average daily gain and average daily feed intake of piglets in the ESBM2 group were significantly increased compared with those in the FM and ESBM1 groups from 0 to 28 d, respectively (P < 0.05). The diets with enzymatically treated soybean meal in ESBM1 and ESBM2 groups decreased the diarrhea rate (P < 0.05). Compared with FM, ESBM1 and ESBM2 decreased 5-hydroxytryptamine (5-HT) (P < 0.05). ESBM1 decreased diamine oxidase (DAO) and Interleukin 6 (IL-6) compared with FM and ESBM2 (P < 0.05). ESBM1 decreased serum Interleukin 1β (IL-1β) compared with FM at d 14 (P < 0.05). The serum Immunoglobulin E (IgE), secretory curl associated protein 5 (sFRP-5) were higher in ESBM1 compared with FM and ESBM2 (P < 0.05). ESBM2 increased super oxidase dismutase (SOD) level and decreased malondialdehyde (MDA) content compared with FM and ESBM1, the concentration of SOD in ESBM1was higher than that in FM (P < 0.05). ESBM1 decreased cortisol and caspase 3 (Casp-3) (P < 0.05). FM showed a higher content of tri-iodothyronine (T3) (P < 0.05) and a lower thyroxine/ tri-iodothyronine ratio compared with those in the other two groups (P < 0.05). The concentration of leptin was lower in ESBM2 (P < 0.05). ESBM1 had a higher α-diversity than ESBM2 (P < 0.05). The microbiota composition was different among three treatments (difference between FM and ESBM1, p = 0.005; FM and ESBM2, p = 0.009; ESBM1 and ESBM2, p = 0.004). ESBM2 tend to increase the abundance of Firmicutes (P = 0.070) and decrease Bacteroidetes (P = 0.069). ESBM2 decreased the abundance of Parabacteroides and increased SMB53 compared with FM (P < 0.05). The spearman correlation analysis revealed that the abundance of Parabacteroides enriched in FM group was negatively correlated with SOD, Megasphaera enriched in ESBM2 group were positively correlated with SOD. The abundance of Lachnospira enriched in ESBM2 group were negatively correlated with serum concentration of D-lactate, DAO, IL-6, and NO. In conclusion, under the conditions of this study, diet with only ESBM demonstrate the beneficial impact on intestinal microbiota developments, antioxidant capacity as well as growth performance for weaned pigs.
Collapse
Affiliation(s)
- Ning Yang
- Animal Food Processing Laboratory, College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Mohan Li
- Animal Food Processing Laboratory, College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Yuetong Huang
- Animal Food Processing Laboratory, College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Xiaona Liang
- Animal Food Processing Laboratory, College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Zhizhong Quan
- Liaoning Complete Biotechnology Co., Ltd., Tieling, China
| | - Haiying Liu
- Animal Nutrition Laboratory, College of Animal Science and Medicine, Shenyang Agricultural University, Shenyang, China
| | - Jiantao Li
- Animal Nutrition Laboratory, College of Animal Science and Medicine, Shenyang Agricultural University, Shenyang, China
| | - Xiqing Yue
- Animal Food Processing Laboratory, College of Food Science, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
27
|
A Comparison Study on the Therapeutic Effect of High Protein Diets Based on Pork Protein versus Soybean Protein on Obese Mice. Foods 2022; 11:foods11091227. [PMID: 35563950 PMCID: PMC9101191 DOI: 10.3390/foods11091227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 02/04/2023] Open
Abstract
In this study, an obese C57BL/6J mice model was induced to compare the effect of different high protein diets (soybean protein and pork protein) on obesity. The obese mice were randomly divided into four groups: natural recovery (NR), high-fat diet (HF), high soybean protein diet (HSP), and high pork protein diet (HPP) groups. After 12 weeks of dietary intervention, the obesity-related indexes of mice were measured, such as body weight, fat coefficients, blood lipid indexes and so on. Results showed that HSP and HPP decreased the weight and fat coefficients of mice, the levels of serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and leptin (p < 0.05). Soybean protein was shown to be more effective in reducing the weight and fat mass of obese mice, although pork protein seemed to have a better effect on regulating serum triglyceride (TG). In addition, the two high protein diets both alleviated hepatic fat deposition effectively. Furthermore, HPP and HSP decreased the expression of hepatic peroxisome proliferator-activated receptor-γ (PPAR-γ) and increased the protein expression of phosphorylated AMP-activated protein kinase (pAMPK), phosphorylated acetyl CoA carboxylase (pACC), and uncoupling protein 2 (UCP2) (p < 0.05). In conclusion, the study shows that high protein diets based on both pork protein and soybean protein alleviated abdominal obesity in mice effectively by regulating lipid metabolism, probably via the UCP2-AMPK-ACC signaling pathway.
Collapse
|
28
|
Eugenio FA, van Milgen J, Duperray J, Sergheraert R, Le Floc'h N. Feeding intact proteins, peptides, or free amino acids to monogastric farm animals. Amino Acids 2022; 54:157-168. [PMID: 35106634 DOI: 10.1007/s00726-021-03118-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022]
Abstract
For terrestrial farm animals, intact protein sources like soybean meal have been the main ingredients providing the required amino acids (AA) to sustain life. However, in recent years, the availability of hydrolysed protein sources and free AA has led to the use of other forms of AA to feed farm animals. The advent of using these new forms is especially important to reduce the negative environmental impacts of animal production because these new forms allow reducing the dietary crude protein content and provide more digestible materials. However, the form in which dietary AA are provided can have an effect on the dynamics of nutrient availability for protein deposition and tissue growth including the efficiency of nutrient utilization. In this literature review, the use of different forms of AA in animal diets is explored, and their differences in digestion and absorption rates are focused on. These differences affect the postprandial plasma appearance of AA, which can have metabolic consequences, like greater insulin response when free AA or hydrolysates instead of intact proteins are fed, which can have a profound effect on metabolism and growth performance. Nevertheless, the use and application of the different AA forms in animal diets are important to achieve a more sustainable and efficient animal production system in the future, as they allow for a more precise diet formulation and reduced negative environmental impact. It is, therefore, important to differentiate the physiological and metabolic effects of different forms of AA to maximize their nutritional value in animal diets.
Collapse
Affiliation(s)
- F A Eugenio
- PEGASE, INRAE, Institut Agro, 35590, Saint Gilles, France
- BCF Life Sciences, Boisel, 56140, Pleucadeuc, France
| | - J van Milgen
- PEGASE, INRAE, Institut Agro, 35590, Saint Gilles, France
| | - J Duperray
- BCF Life Sciences, Boisel, 56140, Pleucadeuc, France
| | - R Sergheraert
- BCF Life Sciences, Boisel, 56140, Pleucadeuc, France
| | - N Le Floc'h
- PEGASE, INRAE, Institut Agro, 35590, Saint Gilles, France.
| |
Collapse
|
29
|
Hydrolyzed Yeast Supplementation to Newly Weaned Piglets: Growth Performance, Gut Health, and Microbial Fermentation. Animals (Basel) 2022; 12:ani12030350. [PMID: 35158673 PMCID: PMC8833445 DOI: 10.3390/ani12030350] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Early-weaning in piglets has negative effects on growth performance and gut health, which may cause economic losses in the swine production worldwide. Therefore, this study aimed to examine the effects of a highly digestible protein ingredient from hydrolyzed yeast (Saccharomyces cerevisiae) on growth performance, nutrient digestibility, gut health, and microbial fermentation in early-weaned piglets. Our study found that supplementing hydrolyzed yeast increased growth performance, crude protein digestibility, villus height, villus height-to-crypt ratio, and immunity and decreased inflammation and fecal pathogen count compared with those fed a diet with no addition of hydrolyzed yeast. These research outcomes indicate that supplementation of hydrolyzed yeast has the potential to enhance the growth performance and gut health of early-weaned piglets. Abstract Hydrolyzed yeast (HY)-derived protein from Saccharomyces cerevisiae has a high digestible protein content and nucleotides and is a sweetener immunostimulatory substance. This could be used in nursery diets to minimize diarrhea and improve the growth rate and gut health of early-weaned piglets. This research was conducted with the objective of examining the effect of the inclusion level of HY as a potential protein ingredient for early-weaned piglets. A total of 72 crossbred weaned piglets [(Landrace × Large White) × Duroc] were assigned to three dietary treatments in six replicates with four pigs per pen. Dietary treatments were: (i) control (CON), piglets weaned at 18 days; (ii) CON diet with 5% HY inclusion (HY5); and (iii) CON diet with 10% HY inclusion (HY10) in a corn–soybean meal-based basal diet. Increasing HY levels positively improved body weight, average daily gain, and average daily feed intake (linear effect, p < 0.05). Furthermore, there was a linear increase in N-retention, albumin, jejunal villus height, villus height-to-crypt depth ratio, immunoglobulin A, acetate and propionate production, and Lactobacillus spp. count proportional to the dose of the HY-supplemented diet (p < 0.05). It also observed a decrease in diarrheal rate, jejunal crypt depth, blood urea nitrogen, pro-inflammatory cytokines, branched amino acids, and E. coli corresponding to the HY-supplemented levels (p < 0.05). However, the changes in the apparent total tract digestibility (dry matter, crude ash, and crude fat), blood glucose, butyrate, and Salmonella spp. were unaffected by the dietary HY level. Therefore, the supplementation of HY in the diet for early-weaned pigs not only supported the growth rate and immune function but also activated the beneficial bacterial growth of the early-weaned piglets.
Collapse
|