1
|
Ahmed MG, Elwakeel EA, El-Zarkouny SZ, Al-Sagheer AA. Environmental impact of phytobiotic additives on greenhouse gas emission reduction, rumen fermentation manipulation, and performance in ruminants: an updated review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37943-37962. [PMID: 38772996 PMCID: PMC11189335 DOI: 10.1007/s11356-024-33664-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/06/2024] [Indexed: 05/23/2024]
Abstract
Ruminal fermentation is a natural process involving beneficial microorganisms that contribute to the production of valuable products and efficient nutrient conversion. However, it also leads to the emission of greenhouse gases, which have detrimental effects on the environment and animal productivity. Phytobiotic additives have emerged as a potential solution to these challenges, offering benefits in terms of rumen fermentation modulation, pollution reduction, and improved animal health and performance. This updated review aims to provide a comprehensive understanding of the specific benefits of phytobiotic additives in ruminant nutrition by summarizing existing studies. Phytobiotic additives, rich in secondary metabolites such as tannins, saponins, alkaloids, and essential oils, have demonstrated biological properties that positively influence rumen fermentation and enhance animal health and productivity. These additives contribute to environmental protection by effectively reducing nitrogen excretion and methane emissions from ruminants. Furthermore, they inhibit microbial respiration and nitrification in soil, thereby minimizing nitrous oxide emissions. In addition to their environmental impact, phytobiotic additives improve rumen manipulation, leading to increased ruminant productivity and improved quality of animal products. Their multifaceted properties, including anthelmintic, antioxidant, antimicrobial, and immunomodulatory effects, further contribute to the health and well-being of both animals and humans. The potential synergistic effects of combining phytobiotic additives with probiotics are also explored, highlighting the need for further research in this area. In conclusion, phytobiotic additives show great promise as sustainable and effective solutions for improving ruminant nutrition and addressing environmental challenges.
Collapse
Affiliation(s)
- Mariam G Ahmed
- Agriculture Research Center, Animal Production Research Institute, Nadi El-Said, Giza, 11622, Egypt
- Department of Animal and Fish Production, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt
| | - Eman A Elwakeel
- Department of Animal and Fish Production, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt
| | - Samir Z El-Zarkouny
- Department of Animal and Fish Production, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt
| | - Adham A Al-Sagheer
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| |
Collapse
|
2
|
Li Y, Shi C, Deng J, Qiu X, Zhang S, Wang H, Qin X, He Y, Cao B, Su H. Effects of Grape Pomace on Growth Performance, Nitrogen Metabolism, Antioxidants, and Microbial Diversity in Angus Bulls. Antioxidants (Basel) 2024; 13:412. [PMID: 38671860 PMCID: PMC11047470 DOI: 10.3390/antiox13040412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Polyphenol-rich grape pomace (GP) represents a valuable processing by-product with considerable potential as sustainable livestock feed. This study aimed to investigate the effects of different levels of GP on the growth performance and nitrogen utilization efficiency, antioxidant activity, and rumen and rectum microbiota of Angus bulls. Thirty Angus bulls were allocated three dietary treatments according to a completely randomized design: 0% (G0), 10% (G10), and 20% (G20) corn silage dry matter replaced with dried GP dry matter. The results showed that the average daily gain (ADG) of the G0 group and G10 group was higher than that of the G20 group (p < 0.05); urinary nitrogen levels decreased linearly with the addition of GP (linear, p < 0.05). In terms of antioxidants, the levels of catalase (CAT) in the G10 group were higher than in the G0 and G20 groups (p < 0.05), and the total antioxidative capacity (T-AOC) was significantly higher than that in the G20 group (p < 0.05). In addition, in the analysis of a microbial network diagram, the G10 group had better microbial community complexity and stability. Overall, these findings offer valuable insights into the potential benefits of incorporating GP into the diet of ruminants.
Collapse
Affiliation(s)
- Yingqi Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.L.); (C.S.); (J.D.); (S.Z.); (H.W.); (X.Q.); (Y.H.); (B.C.)
| | - Changxiao Shi
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.L.); (C.S.); (J.D.); (S.Z.); (H.W.); (X.Q.); (Y.H.); (B.C.)
| | - Jiajie Deng
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.L.); (C.S.); (J.D.); (S.Z.); (H.W.); (X.Q.); (Y.H.); (B.C.)
| | - Xinjun Qiu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China;
| | - Siyu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.L.); (C.S.); (J.D.); (S.Z.); (H.W.); (X.Q.); (Y.H.); (B.C.)
| | - Huili Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.L.); (C.S.); (J.D.); (S.Z.); (H.W.); (X.Q.); (Y.H.); (B.C.)
| | - Xiaoli Qin
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.L.); (C.S.); (J.D.); (S.Z.); (H.W.); (X.Q.); (Y.H.); (B.C.)
| | - Yang He
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.L.); (C.S.); (J.D.); (S.Z.); (H.W.); (X.Q.); (Y.H.); (B.C.)
| | - Binghai Cao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.L.); (C.S.); (J.D.); (S.Z.); (H.W.); (X.Q.); (Y.H.); (B.C.)
| | - Huawei Su
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.L.); (C.S.); (J.D.); (S.Z.); (H.W.); (X.Q.); (Y.H.); (B.C.)
| |
Collapse
|
3
|
Narayanaswamy R, Prabhakaran VS, Al-Ansari MM, Al-Humaid LA, Tiwari P. An In Silico Analysis of Synthetic and Natural Compounds as Inhibitors of Nitrous Oxide Reductase (N 2OR) and Nitrite Reductase (NIR). TOXICS 2023; 11:660. [PMID: 37624165 PMCID: PMC10458745 DOI: 10.3390/toxics11080660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/18/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023]
Abstract
Nitrification inhibitors are recognized as a key approach that decreases the denitrification process to inhibit the loss of nitrogen to the atmosphere in the form of N2O. Targeting denitrification microbes directly could be one of the mitigation approaches. However, minimal attempts have been devoted towards the development of denitrification inhibitors. In this study, we aimed to investigate the molecular docking behavior of the nitrous oxide reductase (N2OR) and nitrite reductase (NIR) involved in the microbial denitrification pathway. Specifically, in silico screening was performed to detect the inhibitors of nitrous oxide reductase (N2OR) and nitrite reductase (NIR) using the PatchDock tool. Additionally, a toxicity analysis based on insecticide-likeness, Bee-Tox screening, and a STITCH analysis were performed using the SwissADME, Bee-Tox, and pkCSM free online servers, respectively. Among the twenty-two compounds tested, nine ligands were predicted to comply well with the TICE rule. Furthermore, the Bee-Tox screening revealed that none of the selected 22 ligands exhibited toxicity on honey bees. The STITCH analysis showed that two ligands, namely procyanidin B2 and thiocyanate, have interactions with both the Paracoccus denitrificans and Hyphomicrobium denitrificans microbial proteins. The molecular docking results indicated that ammonia exhibited the second least atomic contact energy (ACE) of -15.83 kcal/mol with Paracoccus denitrificans nitrous oxide reductase (N2OR) and an ACE of -15.20 kcal/mol with Hyphomicrobium denitrificans nitrite reductase (NIR). The inhibition of both the target enzymes (N2OR and NIR) supports the view of a low denitrification property and suggests the potential future applications of natural/synthetic compounds as significant nitrification inhibitors.
Collapse
Affiliation(s)
- Radhakrishnan Narayanaswamy
- Department of Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Vasantha-Srinivasan Prabhakaran
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India;
| | - Mysoon M. Al-Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.M.A.-A.); (L.A.A.-H.)
| | - Latifah A. Al-Humaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.M.A.-A.); (L.A.A.-H.)
| | - Pragya Tiwari
- Department of Biotechnology, Yeungnam University, Gyeongsan-si 38541, Republic of Korea
| |
Collapse
|
4
|
Meskher H, Belhaouari SB, Thakur AK, Sathyamurthy R, Singh P, Khelfaoui I, Saidur R. A review about COVID-19 in the MENA region: environmental concerns and machine learning applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:82709-82728. [PMID: 36223015 PMCID: PMC9554385 DOI: 10.1007/s11356-022-23392-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has delayed global economic growth, which has affected the economic life globally. On the one hand, numerous elements in the environment impact the transmission of this new coronavirus. Every country in the Middle East and North Africa (MENA) area has a different population density, air quality and contaminants, and water- and land-related conditions, all of which influence coronavirus transmission. The World Health Organization (WHO) has advocated fast evaluations to guide policymakers with timely evidence to respond to the situation. This review makes four unique contributions. One, many data about the transmission of the new coronavirus in various sorts of settings to provide clear answers to the current dispute over the virus's transmission were reviewed. Two, highlight the most significant application of machine learning to forecast and diagnose severe acute respiratory syndrome coronavirus (SARS-CoV-2). Three, our insights provide timely and accurate information along with compelling suggestions and methodical directions for investigators. Four, the present study provides decision-makers and community leaders with information on the effectiveness of environmental controls for COVID-19 dissemination.
Collapse
Affiliation(s)
- Hicham Meskher
- Division of Process Engineering, College of Applied Science, Kasdi-Merbah University, 30000, Ouargla, Algeria
| | - Samir Brahim Belhaouari
- Division of Information and Computing Technology, College of Science and Engineering, Hamad Bin Khalifa University, Education City, Qatar Foundation, P.O. Box 34110, Doha, Qatar
| | - Amrit Kumar Thakur
- Department of Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore, Tamil Nadu, 641407, India
| | - Ravishankar Sathyamurthy
- Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dammam, Saudi Arabia.
| | - Punit Singh
- Institute of Engineering and Technology, Department of Mechanical Engineering, GLA University Mathura, Mathura, Uttar Pradesh, 281406, India
| | - Issam Khelfaoui
- School of Insurance and Economics, University of International Business and Economics, Beijing, China
| | - Rahman Saidur
- Research Centre for Nano-Materials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500, Petaling Jaya, Malaysia
| |
Collapse
|