1
|
Latue PE, Ariyadi B, Kurniawati A, Al Anas M. Positive effect of fermented sorghum on productivity, jejunal histomorphology, and tight junction gene expression in broiler chickens. Poult Sci 2024; 104:104548. [PMID: 39603187 PMCID: PMC11635656 DOI: 10.1016/j.psj.2024.104548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 11/29/2024] Open
Abstract
This study aimed to investigate the effects of dietary fermented sorghum (FS) as a substitute for corn on growth performance, jejunal histomorphology, cecal short-chain fatty acid (SCFA) levels, and gene expression of tight junctions in broiler chickens. A total of 240 one-day-old male New Lohmann Indian River chicks were randomly divided into five groups, with each group receiving different dietary treatments: a control group (CTRL) with a basal diet, groups supplemented with 10% (NFS10) and 20% (NFS20) non-fermented sorghum, and groups supplemented with 10% (FS10) and 20% (FS20) fermented sorghum. Each group was further divided into six replications, with eight birds per replicate. Orthogonal contrasts were used to compare the feed treatments (fermented sorghum and non-fermented sorghum) to the control. The results revealed that the inclusion of 20% fermented sorghum significantly increased feed intake (FI, P = 0.005), body weight (BW; P = 0.025), and body weight gain (BWG; P = 0.010) compared to other groups. Additionally, the FS20 group exhibited a notable increase in villus height (P = 0.001). There were significant differences in cecal short-chain fatty acid (SCFA) production among the treatment groups (P < 0.05). Furthermore, fermented sorghum notably upregulated the gene expression of occludin (OCLN, P = 0.008), without significant impacts on the expression of claudin-1 (CLDN-1), junctional adhesion molecules-2 (JAM-2), and zonula occludens-1 (ZO-1). In conclusion, addition of 20% fermented sorghum in broiler diets could enhance growth performance and intestinal histomorphology, indicating its potential as a beneficial feed ingredient for poultry production.
Collapse
Affiliation(s)
| | - Bambang Ariyadi
- Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Asih Kurniawati
- Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Muhsin Al Anas
- Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| |
Collapse
|
2
|
Ndunguru SF, Reda GK, Csernus B, Knop R, Lugata JK, Szabó C, Lendvai ÁZ, Czeglédi L. Embryonic Leucine Promotes Early Postnatal Growth via mTOR Signalling in Japanese Quails. Animals (Basel) 2024; 14:2596. [PMID: 39272381 PMCID: PMC11394045 DOI: 10.3390/ani14172596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Nutritional cues during embryonic development can alter developmental trajectories and affect postnatal growth. However, the specific mechanisms by which nutrients influence avian growth remain largely unknown. Amino acids can directly interact with the nutrient-sensing pathways, such as the insulin-like growth factor 1 (IGF-1)/mechanistic target of rapamycin (mTOR) pathways, which are known to regulate growth. We examined the effects of embryonic leucine on gene expression and phenotypic growth in Japanese quails by injecting 2.5 mg leucine or saline (control) into Japanese quail eggs on the tenth day of incubation and incubating them under standard conditions. The treatment groups had similar hatching success and size at hatching. However, between 3 and 7 days post-hatching, quails treated with embryonic leucine showed increased growth in body mass and wing, tarsus, head, and intestinal lengths, lasting up to 21 days. The hepatic expression of IGF1, IGF1R, mTOR, and RPS6K1 was upregulated in leucine-treated quails, while the expression of FOXO1 remained unaffected. In conclusion, a subtle increase in embryonic leucine may induce developmental programming effects in Japanese quail by interacting with the IGF-1/mTOR nutrient-sensing pathway to promote growth. This study highlights the role of embryonic amino acids as crucial nutrients for enhancing growth. It provides valuable insight into nutrient intervention strategies during embryonic development to potentially improve poultry growth performance.
Collapse
Affiliation(s)
- Sawadi F Ndunguru
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Animal Science, University of Debrecen, 4032 Debrecen, Hungary
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Gebrehaweria K Reda
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Animal Science, University of Debrecen, 4032 Debrecen, Hungary
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Brigitta Csernus
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Renáta Knop
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary
| | - James K Lugata
- Doctoral School of Animal Science, University of Debrecen, 4032 Debrecen, Hungary
- Department of Animal Nutrition and Physiology, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary
| | - Csaba Szabó
- Department of Animal Nutrition and Physiology, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary
| | - Ádám Z Lendvai
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Levente Czeglédi
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
3
|
Li H, Zhang X, Wang X, Wu Q, Zheng W, Liu C, Wei S, Zuo X, Xiao W, Ye H, Wang W, Yang L, Zhu Y. The developmental pattern related to fatty acid uptake and oxidation in the yolk sac membrane and jejunum during embryogenesis in Muscovy duck. Poult Sci 2024; 103:103929. [PMID: 38943802 PMCID: PMC11261488 DOI: 10.1016/j.psj.2024.103929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/14/2024] [Accepted: 05/29/2024] [Indexed: 07/01/2024] Open
Abstract
This study aimed to investigate the developmental change of body growth and gene expression related to fatty acid uptake and oxidation in the yolk sac membrane (YSM) and jejunum during embryogenesis in Muscovy ducks. The weights of embryos and yolk sac (YS) (5 embryos per replicate, n = 6) were recorded on embryonic days (E)16, E19, E22, E25, E28, E31, and the day of hatch (DOH). The fat and fatty acid contents in YSM, jejunal histology, and gene expression related to fatty acid metabolism in YSM and jejunum were determined in each sampling time. Among the nonlinear models, the maximum growth is estimated at 2.83 (E22.5), 2.67 (E22.1), and 2.60 (E21.3) g/d using logistic, Gompertz, and Von Bertalanffy models, respectively. The weight of YS, and ether extract-free YS as well as the amounts of fat and fatty acids in YS decreased (P < 0.05) linearly, whereas the villus height, crypt depth, villus height/crypt depth, and musculature thickness in jejunum increased (P < 0.05) linearly during embryogenesis. The mRNA expression of CD36, SLC27A4, and FABP1 related to fatty acid uptake as well as the mRNA and protein expressions of PPARα and CPT1 related to fatty acid oxidation increased in a quadratic manner (P < 0.05) in both YS and jejunum, and the maximum values were achieved during E25 to E28. In conclusion, the maximum growth rate of Muscovy duck embryos was estimated at 2.60 to 2.83 g/d on E21.3 to E23.5, while the accumulations of lipid and fatty acid in YS were decreased in association with the increased absorptive area of morphological structures in jejunum. The gene and protein expression involved in fatty acid metabolism displayed a similar enhancement pattern between YSM and jejunum during E25 to E28, suggesting that fatty acid utilization could be strengthened to meet the energy demand for embryonic development.
Collapse
Affiliation(s)
- Hao Li
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000 China
| | - Xiufen Zhang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000 China
| | - Xiaowen Wang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000 China
| | - Qilin Wu
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000 China
| | - Wenxuan Zheng
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000 China
| | - Chuang Liu
- Wen's Food Group Co., Ltd, Yunfu 527400, China
| | - Shi Wei
- Wen's Food Group Co., Ltd, Yunfu 527400, China
| | - Xin Zuo
- Wen's Food Group Co., Ltd, Yunfu 527400, China
| | | | - Hui Ye
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000 China
| | - Wence Wang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000 China
| | - Lin Yang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000 China
| | - Yongwen Zhu
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000 China; Woman Biotechnology Co, Ltd, Guangzhou, 510000 China.
| |
Collapse
|
4
|
Lugata JK, Ndunguru SF, Reda GK, Gulyás G, Knop R, Oláh J, Czeglédi L, Szabó C. In ovo feeding of methionine affects antioxidant status and growth-related gene expression of TETRA SL and Hungarian indigenous chicks. Sci Rep 2024; 14:4387. [PMID: 38388769 PMCID: PMC10884004 DOI: 10.1038/s41598-024-54891-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 02/18/2024] [Indexed: 02/24/2024] Open
Abstract
Methionine (Met) plays a substantial role in poultry due to its involvement in several pathways, including enhancing antioxidant status and improving growth performance and health status. This study examined how in ovo feeding of Met affects hatching performance, antioxidant status, and hepatic gene expression related to growth and immunity in the TETRA-SL LL hybrid (TSL) commercial layer and Hungarian partridge colored hen (HPC) indigenous genotypes. The eggs were injected with saline, DL-Met, and L-Met on 17.5 days of embryonic development. The results showed that the in ovo feeding of DL-Met significantly increased the hatching weight and ferric reducing the ability of the plasma (FRAP) compared with L-Met. The in ovo feeding of either Met source enhanced the liver health and function and hepatic antioxidant status of the chicks. The genotype's differences were significant; the TSL genotype had better hatching weight, an antioxidant defense system, and downregulated growth-related gene expression than the HPC genotype. In ovo feeding of either Met source enhanced the chicks' health status and antioxidant status, and DL-Met improved the hatching weight of the chicks more than L-Met. Genotype differences were significantly evident in the responses of growth performance, antioxidant status, blood biochemical parameters, and gene expression to Met sources.
Collapse
Affiliation(s)
- James K Lugata
- Department of Animal Nutrition and Physiology, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032, Debrecen, Hungary.
- Doctoral School of Animal Science, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032, Debrecen, Hungary.
| | - Sawadi F Ndunguru
- Department of Animal Husbandry, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032, Debrecen, Hungary
- Doctoral School of Animal Science, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032, Debrecen, Hungary
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Faculty of Science and Technology, Egyetem Street 1, 4032, Debrecen, Hungary
| | - Gebrehaweria K Reda
- Department of Animal Husbandry, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032, Debrecen, Hungary
- Doctoral School of Animal Science, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032, Debrecen, Hungary
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Faculty of Science and Technology, Egyetem Street 1, 4032, Debrecen, Hungary
| | - Gabriella Gulyás
- Department of Animal Husbandry, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032, Debrecen, Hungary
| | - Renáta Knop
- Department of Animal Husbandry, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032, Debrecen, Hungary
| | - János Oláh
- Institutes for Agricultural Research and Educational Farm, University of Debrecen, Böszörményi Street 138, 4032, Debrecen, Hungary
| | - Levente Czeglédi
- Department of Animal Husbandry, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032, Debrecen, Hungary
| | - Csaba Szabó
- Department of Animal Nutrition and Physiology, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032, Debrecen, Hungary
| |
Collapse
|