1
|
Zi Y, Qin Y, Ma C, Qiao Y, Xu X, Yang Y, He Q, Li M, Liu Y, Gao F. Transcriptome analysis reveals hepatic disordered lipid metabolism, lipotoxic injury, and abnormal development in IUGR sheep fetuses due to maternal undernutrition during late pregnancy. Theriogenology 2024; 226:350-362. [PMID: 38968678 DOI: 10.1016/j.theriogenology.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 06/19/2024] [Accepted: 06/23/2024] [Indexed: 07/07/2024]
Abstract
Although lipid metabolism in fetal livers under intrauterine growth restriction (IUGR) conditions has been widely studied, the implications of maternal undernutrition on fetal hepatic lipid metabolism, lipotoxic injury, and abnormal development remain largely unknown. Therefore, this study investigated the effects of maternal undernutrition on disordered hepatic lipid metabolism, lipotoxic injury, and abnormal development in IUGR sheep fetuses using transcriptome analysis. Seventeen singleton ewes were randomly divided into three groups on day 90 of pregnancy: a control group (CG; 0.63 MJ metabolic energy/body weight (ME/BW)0.75/day, n = 5), maternal undernutrition group 1 (MU1; 0.33 MJ ME/BW0.75/day, n = 6), and maternal undernutrition group 2 (MU2; 0.20 MJ ME/BW0.75/day, n = 6). The fetuses were euthanized and recovered on day 130 of pregnancy. The levels of free fatty acids (FFA) in maternal blood (P < 0.01), fetal blood (P < 0.01), and fetal livers (P < 0.05) were increased in the MU1 and MU2 groups, but fetal hepatic triglyceride (TG) levels in the MU2 group (P < 0.01) and β-hydroxybutyrate levels in the MU1 and MU2 groups (P < 0.01) were decreased compared to the CG. Severe inflammatory cell infiltration and increased non-alcoholic fatty liver disease activity scores were observed in MU1 and MU2 fetuses (P < 0.01). Progressive deposition of fetal hepatic reticular fibers and collagen fibers in the fetal livers of the MU1 and MU2 groups and significant hepatic fibrosis were observed in the MU2 fetuses (P < 0.05). Gene set enrichment analysis showed that genes involved in lipid accumulation and FFA beta oxidation were downregulated in both MU groups compared to those in the controls. The fetal liver mRNA expression of the β-oxidation regulator, acetyl-CoA acetyltransferase 1, and the TCA regulator, isocitrate dehydrogenase were reduced in MU1 (P < 0.05) and MU2 (P < 0.01) fetuses, and downregulated mRNA expression of long chain fatty acid CoA ligase 1 (P < 0.05) and glycerol-3-phosphate acyltransferase (P < 0.01) was observed in MU2 fetuses. Differentially expressed genes (DEGs) in MU1 versus CG (360 DEGs) and MU2 versus CG (746 DEGs) were identified using RNA sequencing. Bioinformatics analyses of the 231 intersecting DEGs between MU1 versus CG and MU2 versus CG indicated that neutrophil extracellular traps (NETs) were induced and played a central role in fetal hepatic injury in IUGR sheep. Increased maternal blood myeloperoxidase (MPO) levels (P < 0.01), NE (Elane)-positive areas in fetal liver sections (P < 0.05), and fetal liver MPO protein expression (P < 0.01) were found in the MU1 and MU2 groups; however, MPO levels were reduced in the fetal membrane (P < 0.01) and fetal blood (P < 0.05) in the MU1 group, and in the maternal-fetal placenta and fetal blood in the MU2 group (P < 0.01). Analysis of gene expression trends in the intersecting DEGs between MU1 versus CG (129 DEGs) and MU2 versus CG (515 DEGs) further revealed that 30 hub genes were essential regulators of the G2/M cell cycle, all of which were associated with hepatocellular carcinoma. G0/G1 phase cells of the fetal liver were reduced in the MU1 (P < 0.05) and MU2 (P < 0.01) groups, whereas G2/M phase cells were elevated in the MU1 and MU2 groups (P < 0.01). The representatives of upregulated hub genes and fetal liver protein expression of maternal embryonic leucine zipper kinase and protein regulator of cytokinesis 1 were progressively enhanced in the MU1 and MU2 groups (P < 0.01), and topoisomerase II alpha protein expression in the MU2 group (P < 0.05), as expected. These results indicate that FFA overload, severe lipotoxic injury, and NETs were induced, and disease-promoting regulators of the G2/M cell cycle were upregulated in the fetal liver of IUGR sheep. These findings provide new insights into the pathogenesis of impaired hepatic lipid metabolism and abnormal development and the molecular origin of post-natal liver disease in IUGR due to maternal undernutrition. This information can support the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Yang Zi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China; Shenzheng Institute of Advanced Technology, Chinese Academy of Sciences, Shenzheng, China
| | - Yulong Qin
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Chi Ma
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Yina Qiao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Xiaoyi Xu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Yilin Yang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Qiuyue He
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Mingyue Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Yingchun Liu
- College of Life Science, Inner Mongolia Key Laboratory of Biomanufacturing, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Feng Gao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China.
| |
Collapse
|
2
|
Corrales-Hlinka F, Pérez-Clariget R, Ungerfeld R, Freitas-de-Melo A. Stress response to social isolation followed by exposure to a novel object in aged ewes born to undernourished mothers. Behav Processes 2024; 220:105069. [PMID: 38897363 DOI: 10.1016/j.beproc.2024.105069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 04/05/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Fetal programming by subnutrition affects offspring's behaviour, metabolism, and sensitivity to stressors in sheep. The objective was to determine the stress response of ewes born to mothers nutritionally restricted during gestation to social isolation followed by exposure to a novel object. Twenty-six-year-old Corriedale ewes born to mothers who grazed high or low pasture allowances (HPA and LPA groups) from 23 days before conception until 122 days of gestation were used. Ewes were individually isolated in a novel place for 10 min, and 5 min after its beginning, an orange ball was dropped into the test pen. The ewes' behaviours were recorded during the test. Blood proteins, glucose and cortisol concentrations, heart and respiratory rates and rectal and surface temperatures were determined. The number of times looking at the ball tended to be greater in HPA ewes than LPA (6.7 ± 1.0 vs 4.7 ± 0.8, P = 0.08). The LPA ewes had greater serum albumin concentration than HPA ewes (3.2 ± 0.1 g/dL vs 3.0 ± 0.1 g/dL, P = 0.02), regardless of the applied stressors. Overall, the nutritional treatments applied to ewes during their intrauterine development did not modify the stress responses to social isolation followed by exposure to a novel object.
Collapse
Affiliation(s)
- Florencia Corrales-Hlinka
- Departamento de Producción Animal y Pasturas, Facultad de Agronomía, Universidad de la República, Uruguay
| | - Raquel Pérez-Clariget
- Departamento de Producción Animal y Pasturas, Facultad de Agronomía, Universidad de la República, Uruguay
| | - Rodolfo Ungerfeld
- Departamento de Biociencias Veterinarias, Facultad de Veterinaria, Universidad de la República, Uruguay
| | - Aline Freitas-de-Melo
- Departamento de Biociencias Veterinarias, Facultad de Veterinaria, Universidad de la República, Uruguay.
| |
Collapse
|
3
|
Lin Y, Sun L, He M, Xu J, Wu C, Gao J, Dai J. Dietary Supplementation with Rumen-Protected Arginine or N-Carbamylglutamate Enhances Fetal Liver Development in Nutrient-Restricted Pregnant Hu Ewes. Animals (Basel) 2024; 14:1988. [PMID: 38998100 PMCID: PMC11240601 DOI: 10.3390/ani14131988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/18/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
This study was conducted in nutrient-restricted pregnant Hu ewes to determine whether rumen-protected arginine (RP-Arg) or N-carbamylglutamate (NCG) supplementation affects fetal liver growth and development. From 35 d to 110 d of gestation, 32 Hu ewes were randomly divided into four groups: a control group (100% of the National Research Council (NRC) requirements), a nutrient-restricted group (50% of the NRC requirements), and two treatment groups (ARG and NCG, 50% of the NRC requirements, supplemented with 20 g/day RP-Arg or 5 g/day NCG, respectively). Fetal body weights, fetal liver growth performance, the capability of antioxidation, and the expression of the mRNA and proteins of apoptosis-related genes in the fetal liver were determined and analyzed at 110 d of gestation. The dry matter, water, fat, protein, and ash components of the fetal livers in the RG group were found to be lower than in the CG group, and these components were significantly higher in the NCG group than in the RG group (p < 0.05). A decrease in DNA, RNA, and protein concentrations and contents, as well as in protein/DNA ratios, was observed in the RG group in comparison to the CG group (p < 0.05). Compared with the RG group, the NCG group had higher concentrations of DNA, RNA, and protein, as well as higher protein/DNA ratios (p < 0.05). The RG group had lower concentrations of cholinesterase, nitric oxide, nitric oxide synthase, superoxide dismutase, alanine aminotransferase, and total protein than the CG group (p < 0.05). The RG group had higher levels of glutathione peroxidase, maleic dialdehyde, and aspartate aminotransferase than the CG group (p < 0.05). In the RG group, the mRNA and protein expression of p53 and Bax was significantly increased (p < 0.05) compared with the CG group, and the gene expression of FasL and Bcl-2, the ratio of Bcl-2 to Bax, and the protein expression of Bcl-2 in the RG group were lower (p < 0.05) than in the CG group. It appears that RP-Arg and NCG supplementation during pregnancy could influence fetal liver growth and development. A nutrition-based therapeutic intervention to alleviate reduced fetal growth can be developed based on this study, which has demonstrated that maternal undernutrition during pregnancy induces the maldevelopment of the fetal liver.
Collapse
Affiliation(s)
- Yuexia Lin
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Lingwei Sun
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Mengqian He
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Jiehuan Xu
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Caifeng Wu
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Jun Gao
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Jianjun Dai
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| |
Collapse
|
4
|
Muroya S, Otomaru K, Oshima K, Oshima I, Ojima K, Gotoh T. DNA Methylation of Genes Participating in Hepatic Metabolisms and Function in Fetal Calf Liver Is Altered by Maternal Undernutrition during Gestation. Int J Mol Sci 2023; 24:10682. [PMID: 37445858 DOI: 10.3390/ijms241310682] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
This study aimed to elucidate the effects of maternal undernutrition (MUN) on epigenetic modification of hepatic genes in Japanese Black fetal calves during gestation. Using a previously established experimental design feeding the dams with 60% (LN) or 120% (HN) of their global nutritional requirements during the 8.5-month gestational period, DNA methylation in the fetal liver was analyzed with reduced representation bisulfite sequencing (RRBS). The promoters and gene bodies in the LN fetuses were hypomethylated compared to HN fetuses. Pathway analysis showed that the genes with DMR in the exon/intron in the LN group were associated with pathways involved in Cushing syndrome, gastric acid secretion, and aldosterone synthesis and secretion. Promoter hypomethylation in the LN group was frequently observed in genes participating in various signaling pathways (thyroid hormone, Ras/Rap1, PIK3-Akt, cAMP), fatty acid metabolism, and cholesterol metabolism. The promoter hypomethylated genes ALPL and GNAS were upregulated in the LN group, whereas the promoter hypermethylated genes GRB10 and POR were downregulated. The intron/exon hypomethylated genes IGF2, IGF2R, ACAD8, TAT, RARB, PINK1, and SOAT2 were downregulated, whereas the hypermethylated genes IGF2BP2, NOS3, and NR2F1 were upregulated. Collectively, MUN alters the promoter and gene body methylation of genes associated with hepatic metabolisms (energy, cholesterol, mitochondria) and function, suggesting an impact of altered gene methylation on the dysregulation of gene expression in the fetal liver.
Collapse
Affiliation(s)
- Susumu Muroya
- Division of Animal Products Research, NARO Institute of Livestock and Grassland Science (NILGS), Tsukuba 305-0901, Ibaraki, Japan
| | - Konosuke Otomaru
- Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-8580, Kagoshima, Japan
| | - Kazunaga Oshima
- Division of Year-Round Grazing Research, NARO Western Region Agricultural Research Center, 60 Yoshinaga, Ohda 694-0013, Shimane, Japan
| | - Ichiro Oshima
- Department of Agricultural Sciences and Natural Resources, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-8580, Kagoshima, Japan
| | - Koichi Ojima
- Division of Animal Products Research, NARO Institute of Livestock and Grassland Science (NILGS), Tsukuba 305-0901, Ibaraki, Japan
| | - Takafumi Gotoh
- Field Science Center for Northern Biosphere, Hokkaido University, N11W10, Kita, Sapporo 060-0811, Hokkaido, Japan
| |
Collapse
|
5
|
Brochine L, Dos Santos FF, Moreira FM, do Valle de Zoppa AL, Leme PR, Tedeschi LO, Gallo SB. The Impact of Fetal Programming in Ewe Nutrition with Chromium Propionate or Calcium Salts of Palm Oil on the Meat Quality and Bone of the Progeny. Biol Trace Elem Res 2023; 201:2331-2340. [PMID: 35761112 DOI: 10.1007/s12011-022-03344-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/21/2022] [Indexed: 11/02/2022]
Abstract
This study aimed to evaluate the inclusion of chromium propionate or calcium salts of palm oil in ewes' diet during the final third of gestation and lactation on progeny performance, carcass characteristics, non-carcass components, and bone density. Forty-three ewe, Santa Inês and Dorper breed, three ± one-year-old, and body weight 57 ± 10 kg were used. The experimental design was in casual blocks in three treatments, CTL treatment (n = 15) with starch from corn; CR (n = 15) diet CTL plus chromium propionate; PF (n = 13) diet CTL plus calcium salts of palm oil. After weaning, 23 male lambs from these ewes were confined in individual stalls, with the same diet for 60 days, slaughtered. The data were analyzed using the SAS program, PROC GLM, and compared the means using Tukey's test at 5% probability. The maternal diet did not alter the dry matter intake, feeding efficiency, and average daily weight gain. Therefore, weights (weaning and slaughter) and carcass yield were higher for CR and PF groups than for CTL (P < 0.05). The treatment did not influence the loin eye area and fat thickness (P > 0.05). The spleen and the respiratory tract were smaller for PF and larger for CTL (P < 0.05). Leg weight was higher for CR. The perimeter and depth of the shank for the CR and PF lambs were higher, indicating an effect of maternal nutrition in this commercial cut. The CR group had a smaller epiphysis measurement and femur length than the CTL group. We concluded that the fetal programming effect in ewes fed with Cr propionate and Ca salts of palm oil benefited the progeny by increasing their body weight, better carcass yield, and a higher proportion of prime cuts.
Collapse
Affiliation(s)
- Luciano Brochine
- Faculty of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, 13635-900, Brazil
| | - Fernanda Ferreira Dos Santos
- Faculty of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, 13635-900, Brazil
| | - Flávia Mallaco Moreira
- Faculty of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, 13635-900, Brazil
| | - André Luis do Valle de Zoppa
- Faculty of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, 13635-900, Brazil
| | - Paulo Roberto Leme
- Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, 13635-900C, Brazil
| | - Luis Orlindo Tedeschi
- Department of Animal Science, Texas A&M University, College Station, Texas, 77843-2471, USA
| | - Sarita Bonagurio Gallo
- Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, 13635-900C, Brazil.
| |
Collapse
|
6
|
Fetal programming in sheep: Effects on pre- and postnatal organs and glands development in lambs. Res Vet Sci 2022; 151:100-109. [PMID: 35878535 DOI: 10.1016/j.rvsc.2022.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/14/2021] [Accepted: 07/18/2022] [Indexed: 11/20/2022]
Abstract
The present systematic review and meta-analysis aim to summarize the effects of maternal undernutrition or overnutrition during pregnancy on the absolute weight and relative weight of the organs (liver, kidneys, heart, spleen, and lung) and glands (adrenal, pancreas, and thyroid) measured during gestation, birth and the postnatal period in lambs. After completing the search, selection, and data extraction steps, the measure of effect was generated by the individual comparison of each variable response compared with the average of the control and treated group (undernutrition or overnutrition) using the DerSimonian and Laird method for random effects. The liver was the organ most affected by maternal undernutrition, as the absolute weight of the liver was reduced during pregnancy, birth, and the postnatal period. The extent of this effect is related to the duration of the intervention. Reductions in the absolute fetal weight of the lungs and spleen have also been observed. No change in organs weight were observed when the results were expressed as relative weight. For overnutrition, the fetal weight of the liver was reduced to both absolute and relative values. In contrast, the relative weight of the kidneys has been increased. For the glands analyzed, no changes in weight were observed in either scenario (absolute or relative weight). Thus, the organs are more likely to suffer weight changes, especially during pregnancy, as a result of maternal nutrition. However, this change in organ weight seems to be closely related to the reduction in body weight of the progeny as a whole.
Collapse
|
7
|
Muroya S, Zhang Y, Otomaru K, Oshima K, Oshima I, Sano M, Roh S, Ojima K, Gotoh T. Maternal Nutrient Restriction Disrupts Gene Expression and Metabolites Associated with Urea Cycle, Steroid Synthesis, Glucose Homeostasis, and Glucuronidation in Fetal Calf Liver. Metabolites 2022; 12:metabo12030203. [PMID: 35323646 PMCID: PMC8949217 DOI: 10.3390/metabo12030203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/23/2022] Open
Abstract
This study aimed to understand the mechanisms underlying the effects of maternal undernutrition (MUN) on liver growth and metabolism in Japanese Black fetal calves (8.5 months in utero) using an approach that integrates metabolomics and transcriptomics. Dams were fed 60% (low-nutrition; LN) or 120% (high-nutrition; HN) of their overall nutritional requirements during gestation. We found that MUN markedly decreased the body and liver weights of the fetuses; metabolomic analysis revealed that aspartate, glycerol, alanine, gluconate 6-phosphate, and ophthalmate levels were decreased, whereas UDP-glucose, UDP-glucuronate, octanoate, and 2-hydroxybutyrate levels were decreased in the LN fetal liver (p ≤ 0.05). According to metabolite set enrichment analysis, the highly different metabolites were associated with metabolisms including the arginine and proline metabolism, nucleotide and sugar metabolism, propanoate metabolism, glutamate metabolism, porphyrin metabolism, and urea cycle. Transcriptomic and qPCR analyses revealed that MUN upregulated QRFPR and downregulated genes associated with the glucose homeostasis (G6PC, PCK1, DPP4), ketogenesis (HMGCS2), glucuronidation (UGT1A1, UGT1A6, UGT2A1), lipid metabolism (ANGPTL4, APOA5, FADS2), cholesterol and steroid homeostasis (FDPS, HSD11B1, HSD17B6), and urea cycle (CPS1, ASS1, ASL, ARG2). These metabolic pathways were extracted as relevant terms in subsequent gene ontology/pathway analyses. Collectively, these results indicate that the citrate cycle was maintained at the expense of activities of the energy metabolism, glucuronidation, steroid hormone homeostasis, and urea cycle in the liver of MUN fetuses.
Collapse
Affiliation(s)
- Susumu Muroya
- Division of Animal Products Research, NARO Institute of Livestock and Grassland Science (NILGS), Ibaraki, Tsukuba 305-0901, Japan;
- Correspondence: (S.M.); (T.G.)
| | - Yi Zhang
- Department of Agricultural Sciences and Natural Resources, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-8580, Japan; (Y.Z.); (I.O.)
| | - Kounosuke Otomaru
- Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-8580, Japan;
| | - Kazunaga Oshima
- Division of Year-Round Grazing Research, NARO Western Region Agricultural Research Center, 60 Yoshinaga, Ohda 694-0013, Shimane, Japan;
| | - Ichiro Oshima
- Department of Agricultural Sciences and Natural Resources, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-8580, Japan; (Y.Z.); (I.O.)
| | - Mitsue Sano
- Faculty of Human Culture, University of Shiga Prefecture, 2500 Hassaka-cho, Hikone 522-8533, Shiga, Japan;
| | - Sanggun Roh
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Miyagi, Japan;
| | - Koichi Ojima
- Division of Animal Products Research, NARO Institute of Livestock and Grassland Science (NILGS), Ibaraki, Tsukuba 305-0901, Japan;
| | - Takafumi Gotoh
- Department of Agricultural Sciences and Natural Resources, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-8580, Japan; (Y.Z.); (I.O.)
- Correspondence: (S.M.); (T.G.)
| |
Collapse
|
8
|
Smith BI, Liefeld A, Vásquez-Hidalgo MA, Vonnahme KA, Grazul-Bilska AT, Swanson KC, Mishra N, Reed SA, Zinn SA, Govoni KE. Mid- to late- gestational maternal nutrient restriction followed by realimentation alters development and lipid composition of liver and skeletal muscles in ovine fetuses. J Anim Sci 2021; 99:6404494. [PMID: 34668541 DOI: 10.1093/jas/skab299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/18/2021] [Indexed: 11/12/2022] Open
Abstract
Maternal nutrient restriction during gestation adversely affects offspring growth and development of liver and skeletal muscle tissues. Realimentation following nutrient restriction may alleviate these negative impacts on development but may alter metabolism and tissue composition. Forty-eight ewes, pregnant with singletons, were fed to meet 100% National Research Council (NRC) recommendations starting at the beginning of gestation. On d 50 of gestation, 7 ewes were euthanized (BASE), and fetal liver, skeletal muscles, and blood samples were collected. The remaining animals were fed either 100% of NRC recommendations (CON) or 60% NRC recommendations (RES), a subset were euthanized at d 90 of gestation (n = 7/treatment), and fetal samples were collected. Remaining ewes were maintained on the current diet (CON-CON, n = 6; RES-RES, n = 7) or switched to the alternate diet (CON-RES, RES-CON; n = 7/treatment). On d 130 of gestation, the remaining ewes were euthanized, and fetal samples were collected. At d 130 of gestation, maternal nutrient restriction during late-gestation (RES-RES and CON-RES) decreased fetal liver weight (P < 0.01) and cross-sectional area in triceps brachii (P = 0.01; TB), longissimus dorsi (P = 0.02; LM), and semitendinosus (P = 0.05; STN) muscles. Maternal nutrient restriction during mid-gestation increased hepatocyte vacuole size at d 130 of gestation. Late-gestational maternal nutrient restriction increased mRNA expression of insulin-like growth factor (IGF) binding protein-1 (P < 0.01), glycogen synthase 2 (P = 0.01; GYS2), and pyruvate dehydrogenase kinase 1 (P < 0.01; PDHK1) in the liver and IGF receptor 1 (P = 0.05) in the LM. Lipid concentration in the LM was decreased by late-gestational nutrient restriction (P = 0.01) and increased by mid-gestational nutrient restriction in STN (P = 0.03) and TB (P < 0.01). Principal component analysis of lipidomics data demonstrated clustering of principal components by day of gestation and elastic net regression identified 50, 44, and 29 lipids that classified the treatments in the fetal liver, LM, and blood, respectively. In conclusion, restricting maternal nutrition impacts fetal liver and muscle morphology, gene expression, and lipid metabolism, whereas realimentation attenuated some of these effects. Therefore, realimentation may be a viable strategy to reduce the impacts of nutrient restriction, but can lead to alterations in lipid metabolism in sheep.
Collapse
Affiliation(s)
- Brandon I Smith
- Department of Animal Science, University of Connecticut, Storrs, CT, USA
| | - Amanda Liefeld
- Department of Animal Science, University of Connecticut, Storrs, CT, USA
| | | | - Kimberly A Vonnahme
- Department of Animal Sciences, North Dakota State University, Fargo, ND, USA
| | | | - Kendall C Swanson
- Department of Animal Sciences, North Dakota State University, Fargo, ND, USA
| | - Neha Mishra
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, USA
| | - Sarah A Reed
- Department of Animal Science, University of Connecticut, Storrs, CT, USA
| | - Steven A Zinn
- Department of Animal Science, University of Connecticut, Storrs, CT, USA
| | - Kristen E Govoni
- Department of Animal Science, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
9
|
García-García RM, Arias-Álvarez M, Rodríguez M, Sánchez-Rodríguez A, Formoso-Rafferty N, Lorenzo PL, Rebollar PG. Effects of feed restriction during pregnancy on maternal reproductive outcome, foetal hepatic IGF gene expression and offspring performance in the rabbit. Animal 2021; 15:100382. [PMID: 34653786 DOI: 10.1016/j.animal.2021.100382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 11/30/2022] Open
Abstract
Primiparous female rabbits have high nutritional requirements and, while it is recommended that they are subjected to an extensive reproductive rhythm, this could lead to overweight, affecting reproductive outcomes. We hypothesised that restricting food intake during the less energetic period of gestation could improve reproductive outcome without impairing offspring viability. This study compares two groups of primiparous rabbit does in an extensive reproductive programme, one in which feed was restricted from Day 0 to Day 21 of gestation (R021), and another in which does were fed ad libitum (control) throughout pregnancy. The mother and offspring variables compared were (1) mother reproductive outcomes at the time points pre-implantation (Day 3 postartificial insemination [AI]), preterm (Day 28 post-AI) and birth; and (2) the prenatal offspring characteristic IGF system gene expression in foetal liver, liver fibrosis and foetus sex ratio, and postnatal factor viability and growth at birth, and survival and growth until weaning. Feed restriction did not affect the conception rate, embryo survival, or the number of morulae and blastocysts recovered at Day 3 post-AI. Preterm placenta size and efficiency were similar in the two groups. However, both implantation rate (P < 0.001) and the number of foetuses (P = 0.05) were higher in the R021 mothers than controls, while there was no difference in foetal viability. Foetal size and weight, the weights of most organs, organ weight/BW ratios and sex ratio were unaffected by feed restriction; these variables were only affected by uterine position (P < 0.05). Conversely, in the R021 does, foetal liver IGBP1 and IGF2 gene expression were dysregulated despite no liver fibrosis and a normal liver structure. No effects of restricted feed intake were produced on maternal fertility, prolificacy, or offspring birth weight, but control females weaned more kits. Litter weight and mortality rate during the lactation period were also unaffected. In conclusion, pre-implantation events and foetal development were unaffected by feed restriction. While some genes of the foetal hepatic IGF system were dysregulated during pregnancy, liver morphology appeared normal, and the growth of foetuses and kits until weaning was unmodified. This strategy of feed restriction in extensive reproductive rhythms seems to have no significant adverse effects on dam reproductive outcome or offspring growth and viability until weaning.
Collapse
Affiliation(s)
- R M García-García
- Department of Physiology, School of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain.
| | - M Arias-Álvarez
- Department of Animal Production, School of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - M Rodríguez
- Department of Agrarian Production, ETSIAAB, Polytechnic University of Madrid, Madrid, Spain
| | - A Sánchez-Rodríguez
- Department of Physiology, School of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - N Formoso-Rafferty
- Department of Agrarian Production, ETSIAAB, Polytechnic University of Madrid, Madrid, Spain
| | - P L Lorenzo
- Department of Physiology, School of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - P G Rebollar
- Department of Agrarian Production, ETSIAAB, Polytechnic University of Madrid, Madrid, Spain
| |
Collapse
|
10
|
Zi Y, Ma C, Li H, Shen S, Liu Y, Li M, Gao F. Effects of intrauterine growth restriction during late pregnancy on the ovine fetal renal function and antioxidant capacity. Anim Sci J 2021; 92:e13613. [PMID: 34374164 DOI: 10.1111/asj.13613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/15/2021] [Accepted: 06/24/2021] [Indexed: 11/26/2022]
Abstract
This study investigated the effects of intrauterine growth restriction during late pregnancy on the ovine fetal renal function and renal antioxidant capacity. Eighteen ewes pregnant were randomly divided into control group (CG, ad libitum, 0.67 MJ ME·BW-0.75 ·day-1 , n = 6), restricted group 1 (RG1, 0.18 MJ ME·BW-0.75 ·day-1 , n = 6), and restricted group 2 (RG2, 0.33 MJ ME·BW-0.75 ·day-1 , n = 6). At 140 days, the fetal blood, allantoic fluid and kidney tissue were collected to determinate fetal renal function and renal antioxidant capacity. The results showed that the fetal weight, kidney weight, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), aquaporin-2 (AQP-2) and aquaporin-3 (AQP-3), and total antioxidant capacity (T-AOC) in RG1 group were decreased compared with the CG (P < 0.05), but the contents of β2-Microglobulin (β 2-MG), cystatin C (Cys-C), filtered sodium excretion fraction (FENa), malondialdehyde (MDA), and hydroxyl radical (OH) in RG1 group were increased (P < 0.05). The impaired ovine fetal renal growth, antioxidant imbalance and dysfunction of glomerulus ultrafiltration, and the renal tubules reabsorption were induced by maternal malnutrition during late pregnancy.
Collapse
Affiliation(s)
- Yang Zi
- College of Animal Science, Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Chi Ma
- College of Animal Science, Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Huimin Li
- College of Animal Science, Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Suting Shen
- College of Animal Science, Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yingchun Liu
- College of Life Science, Inner Mongolia Key Laboratory of Biomanufacturing, Inner Mongolia Agricultural University, Hohhot, China
| | - Ming Li
- College of Animal Science, Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Feng Gao
- College of Animal Science, Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
11
|
Nguyen TMT, Steane SE, Moritz KM, Akison LK. Prenatal alcohol exposure programmes offspring disease: insulin resistance in adult males in a rat model of acute exposure. J Physiol 2019; 597:5619-5637. [PMID: 31595508 DOI: 10.1113/jp278531] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/26/2019] [Indexed: 12/12/2022] Open
Abstract
KEY POINTS Prenatal alcohol exposure has the potential to affect fetal development and programme chronic disease in offspring. Previous preclinical models typically use high, chronic doses of alcohol throughout pregnancy to examine effects on offspring, particularly on the brain and behaviour. In this study we use a rat model of moderate, acute, prenatal alcohol exposure to determine if this can be detrimental to maintenance of glucose homeostasis in adolescent and adult offspring. Although female offspring were relatively unaffected, there was evidence of insulin resistance in 6-month-old male offspring exposed to prenatal alcohol, suggestive of a pre-diabetic state. This result suggests that even a relatively low-dose, acute exposure to alcohol during pregnancy can still programme metabolic dysfunction in a sex-specific manner. ABSTRACT Alcohol consumption is highly prevalent amongst women of reproductive age. Given that approximately 50% of pregnancies are unplanned, alcohol has the potential to affect fetal development and programme chronic disease in offspring. We examined the effect of an acute but moderate prenatal alcohol exposure (PAE) on glucose metabolism, lipid levels and dietary preference in adolescent and/or adult rat offspring. Pregnant Sprague-Dawley rats received an oral gavage of ethanol (1 g kg-1 maternal body weight, n = 9 dams) or an equivalent volume of saline (control, n = 8 dams) at embryonic days 13.5 and 14.5. PAE resulted in a blood alcohol concentration of 0.05-0.06% 1 h post-gavage in dams. Fasting blood glucose concentration was not affected by PAE in offspring at any age, nor were blood glucose levels during a glucose tolerance test (GTT) in 6-month-old offspring (P > 0.5). However, there was evidence of insulin resistance in PAE male offspring at 6 months of age, with significantly elevated fasting plasma insulin (P = 0.001), a tendency for increased first phase insulin secretion during the GTT and impaired glucose clearance following an insulin challenge (P = 0.007). This was accompanied by modest alterations in protein kinase B (AKT) signalling in adipose tissue. PAE also resulted in reduced calorie consumption by offspring compared to controls (P = 0.04). These data suggest that a relatively low-level, acute PAE programmes metabolic dysfunction in offspring in a sex-specific manner. These results highlight that alcohol consumption during pregnancy has the potential to affect the long-term health of offspring.
Collapse
Affiliation(s)
- Tam M T Nguyen
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Sarah E Steane
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Karen M Moritz
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia.,Child Health Research Centre, The University of Queensland, South Brisbane, QLD, Australia
| | - Lisa K Akison
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia.,Child Health Research Centre, The University of Queensland, South Brisbane, QLD, Australia
| |
Collapse
|
12
|
Sun L, Zhang H, Wang Z, Fan Y, Guo Y, Wang F. Dietary rumen-protected arginine and N-carbamylglutamate supplementation enhances fetal growth in underfed ewes. Reprod Fertil Dev 2019; 30:1116-1127. [PMID: 31039923 DOI: 10.1071/rd17164] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 12/29/2017] [Indexed: 01/18/2023] Open
Abstract
The present study was conducted with an ovine intrauterine growth restriction (IUGR) model to test the hypothesis that dietary rumen-protected l-arginine (RP-Arg) or N-carbamylglutamate (NCG) supplementation in underfed ewes is effective in enhancing fetal growth. Between Days 35 and 110 of pregnancy, 32 multiparous ewes carrying two fetuses were randomly assigned to one of four groups: a control (CG) group (n=8; 100% National Research Council (NRC) requirements for pregnant sheep), a nutrient-restricted (RG) group (n=8; fed 50% NRC requirements, and two treatment (ARG and NCG) groups (n=8 in each group; fed 50% NRC requirements supplemented with 20gday-1 RP-Arg or 5gday-1 NCG. All ewes were killed on Day 110 of pregnancy to determine fetal weight and fetal organ weights, and metabolites and hormones in fetal plasma, amino acid concentrations in the fetal liver and longissimus dorsi muscle, and expression of mRNAs in the somatotropic axis. Maternal and fetal bodyweight and the weight of most fetal organs expressed as a percentage of bodyweight increased in response to ARG and NCG compared with values for fetuses from RG ewes. Fetal plasma concentrations of insulin, insulin-like growth factor 1, total amino acids, lactate, thyroxine, and the thyroxine/tri-iodothyronine ratio were lower in fetuses from RG ewes compared with the other treatment groups, but concentrations of growth hormone, non-esterified fatty acids, and total cholesterol were greater in fetuses from RG ewes. Maternal RP-Arg or NCG supplementation increased concentrations of amino acids in fetal tissues and expression of mRNAs for somatotropic axis proteins in fetuses from RG ewes. These findings suggest that maternal RP-Arg and NCG supplementation of underfed ewes decreases fetal IUGR by improving metabolic homeostasis of fetal endocrinology, increasing the availability of amino acids in the fetal liver and longissimus dorsi muscle and affecting the expression of somatotropic axis genes.
Collapse
Affiliation(s)
- Lingwei Sun
- Jiangsu Engineering Technology Research Center of Meat Sheep and Goat Industry, Nanjing Agricultural University, #1, Tongwei Road, Nanjing, Jiangsu Province, 210095, PR China
| | - Hao Zhang
- Jiangsu Engineering Technology Research Center of Meat Sheep and Goat Industry, Nanjing Agricultural University, #1, Tongwei Road, Nanjing, Jiangsu Province, 210095, PR China
| | - Ziyu Wang
- Jiangsu Engineering Technology Research Center of Meat Sheep and Goat Industry, Nanjing Agricultural University, #1, Tongwei Road, Nanjing, Jiangsu Province, 210095, PR China
| | - Yixuan Fan
- Jiangsu Engineering Technology Research Center of Meat Sheep and Goat Industry, Nanjing Agricultural University, #1, Tongwei Road, Nanjing, Jiangsu Province, 210095, PR China
| | - Yixuan Guo
- Jiangsu Engineering Technology Research Center of Meat Sheep and Goat Industry, Nanjing Agricultural University, #1, Tongwei Road, Nanjing, Jiangsu Province, 210095, PR China
| | - Feng Wang
- Jiangsu Engineering Technology Research Center of Meat Sheep and Goat Industry, Nanjing Agricultural University, #1, Tongwei Road, Nanjing, Jiangsu Province, 210095, PR China
| |
Collapse
|
13
|
Chen W, Yan Q, Yang H, Zhou X, Tan Z. Effects of restrictions on maternal feed intake on the immune indexes of umbilical cord blood and liver Toll-like receptor signaling pathways in fetal goats during pregnancy. J Anim Sci Biotechnol 2019; 10:29. [PMID: 31011422 PMCID: PMC6466723 DOI: 10.1186/s40104-019-0336-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/17/2019] [Indexed: 01/16/2023] Open
Abstract
Background Liver has important immune function during fetal development and after birth. However, the effect of maternal malnutrition on immune function of the fetal liver is rarely reported. In this study, twelve pregnant goats (Xiangdong black goat, at d 45 of gestation) were assigned to the control group (fed 100% of nutritional requirements) and the restriction group (fed 60% of the intake of the control group) during gestation from d 55 to 100. Fetal goats were harvested at d 100 of gestation and immune indexes and amino acid profiles of the umbilical cord blood and liver Toll-like receptors (TLRs) signaling pathways were measured. Results Maternal body weight in the restriction group was lower than the control group (P < 0.05). Maternal feed intake restriction decreased (P < 0.05) heart weight, heart index, alkaline phosphatase and serum amyloid protein A in the umbilical cord blood (UCB). Moreover, only histidine was decreased in the restricted group (P = 0.084), and there were no differences in other amino acids contents in the UCB between the two groups (P > 0.05). The TLR2 and TLR4 mRNA expression in the fetal liver in the restriction group was greater (P < 0.05) than that in the control group. Furthermore, the mRNA expression levels of myeloid differentiation primary response 88 (MyD88), TNF receptor associated factor 6, nuclear factor kappa B subunit 1, NFKB inhibitor alpha, IFN-β, TGF-β, TNF-α and IL-1β in the restricted group were upregulated (P < 0.05), and the expression of TLR3 (P = 0.099) tended to be higher in the restricted group. However, protein levels of TLR2, TLR4, IκBα, phosphorylated IκBα, phosphorylated IκBα/total IκBα, TRIF and MyD88 were not affected (P > 0.05) by maternal intake restriction. Conclusions These results revealed that the restriction of maternal feed intake influenced the development of heart and hepatic protein synthesis at the acute phase of fetal goats and upregulated the mRNA expression of genes involved in MyD88-dependent signaling pathways and of target cytokines.
Collapse
Affiliation(s)
- Wenxun Chen
- 1CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125 People's Republic of China.,2University of Chinese Academy of Science, Beijing, 100049 People's Republic of China
| | - Qiongxian Yan
- 1CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125 People's Republic of China
| | - Hong Yang
- 1CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125 People's Republic of China.,2University of Chinese Academy of Science, Beijing, 100049 People's Republic of China
| | - Xiaoling Zhou
- 1CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125 People's Republic of China.,2University of Chinese Academy of Science, Beijing, 100049 People's Republic of China.,3College of Animal Science, Tarim University, Alaer, 843300 People's Republic of China
| | - Zhiliang Tan
- 1CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125 People's Republic of China.,Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, Hunan 410128 People's Republic of China.,5Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan People's Republic of China
| |
Collapse
|
14
|
Yang H, Wang Y, Ma C, Sun C, Liu Y, Wu K, Li M, Borjigin G, Gao F. Effects of feed intake restriction during late pregnancy on the function, anti-oxidation capability and acute phase protein synthesis of ovine liver. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2018; 32:217-223. [PMID: 30056659 PMCID: PMC6325388 DOI: 10.5713/ajas.18.0331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/12/2018] [Indexed: 12/17/2022]
Abstract
Objective An experiment was conducted to investigate the effects of feed intake restriction during late pregnancy on the function, anti-oxidation capability and acute phase protein synthesis of ovine liver. Methods Eighteen time-mated ewes with singleton fetuses were allocated to three groups: restricted group 1 (RG1, 0.18 MJ ME/kg W0.75 d, n = 6), restricted group 2 (RG2, 0.33 MJ ME/kg W0.75 d), n = 6) and a control group (CG, ad libitum, 0.67 MJ ME/kg W0.75 d, n = 6). The feed restriction period was from 90 days to 140 days of pregnancy. Results The ewe’s body weight, liver weights, water, and protein content of liver in the restricted groups were reduced compared with the CG group (p<0.05), but the liver fat contents in the RG1 group were higher than those of the CG group (p<0.05). The increased hepatic collagen fibers and reticular fibers were observed in the restricted groups with the reduction of energy intake. The concentrations of nonesterified free fatty acids in the RG1 and RG2 groups were higher than those of the CG group with the reduction of energy intake (p<0.05), but there were decreased concentrations of lipoprotein lipase and hepatic lipase in both restricted groups compared with the CG group (p<0.05). In addition, the increased concentrations of β-hydroxybutyric acid, triglycerides, malondialdehyde, total antioxidant capacity and activities of superoxide dismutase activity and catalase were found in the RG1 group, and the concentrations of cholinesterase in the RG1 group were reduced compared with the CG group (p<0.05). For the concentrations of acute phase proteins, the C-reactive protein (CRP) in the RG1 group were reduced compared with the CG group, but there were no differences in haptoglobin relative to the controls (p>0.05). Conclusion The fat accumulation, increased hepatic fibrosis, antioxidant imbalance and modified synthesis of acute phase proteins were induced in ewe’s liver by maternal malnutrition during late pregnancy, which were detrimental for liver function to accommodate pregnancy.
Collapse
Affiliation(s)
- Huan Yang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Ying Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Chi Ma
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Chuan Sun
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yingchun Liu
- College of Life Science, Inner Mongolia Agricultural University, Hohhot 010018, China.,Inner Mongolia Key Laboratory of Biomanufacturing, Hohhot 010018, China
| | - Kaifeng Wu
- College of Life Science, Inner Mongolia Agricultural University, Hohhot 010018, China.,Inner Mongolia Key Laboratory of Biomanufacturing, Hohhot 010018, China
| | - Ming Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Gerelt Borjigin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Feng Gao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China.,Key Laboratory of Mutton Sheep Genetics and Breeding of Ministry of Agriculture, Hohhot 010018, China
| |
Collapse
|
15
|
Liu Y, Li H, Sha Q, Hai R, Wang Y, Song Y, Gao F. Effects of maternal undernutrition on the growth, development and antioxidant status of ovine placentome subtypes during late pregnancy. Theriogenology 2018; 110:96-102. [DOI: 10.1016/j.theriogenology.2018.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 12/25/2017] [Accepted: 01/02/2018] [Indexed: 11/29/2022]
|
16
|
Li YX, Gong XH, Liu MC, Peng C, Li P, Wang YT. Investigation of Liver Injury of Polygonum multiflorum Thunb. in Rats by Metabolomics and Traditional Approaches. Front Pharmacol 2017; 8:791. [PMID: 29163173 PMCID: PMC5672018 DOI: 10.3389/fphar.2017.00791] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/19/2017] [Indexed: 01/20/2023] Open
Abstract
Liver injury induced by Polygonum multiflorum Thunb. (PM) have been reported since 2006, which aroused widespread concern. However, the toxicity mechanism of PM liver injury remained unclear. In this study, the mechanism of liver injury induced by different doses of PM after long-term administration was investigated in rats by metabolomics and traditional approaches. Rats were randomly divided into control group and PM groups. PM groups were oral administered PM of low (10 g/kg), medium (20 g/kg), high (40 g/kg) dose, while control group was administered distilled water. After 28 days of continuous administration, the serum biochemical indexes in the control and three PM groups were measured and the liver histopathology were analyzed. Also, UPLC-Q-TOF-MS with untargeted metabolomics was performed to identify the possible metabolites and pathway of liver injury caused by PM. Compared with the control group, the serum levels of ALT, AST, ALP, TG, and TBA in middle and high dose PM groups were significantly increased. And the serum contents of T-Bil, D-Bil, TC, TP were significantly decreased. However, there was no significant difference between the low dose group of PM and the control group except serum AST, TG, T-Bil, and D-Bil. Nine biomarkers were identified based on biomarkers analysis. And the pathway analysis indicated that fat metabolism, amino acid metabolism and bile acid metabolism were involved in PM liver injury. Based on the biomarker pathway analysis, PM changed the lipid metabolism, amino acid metabolism and bile acid metabolism and excretion in a dose-dependent manner which was related to the mechanism of liver injury.
Collapse
Affiliation(s)
- Yun-Xia Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao-Hong Gong
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mei-Chen Liu
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yi-Tao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
17
|
Yamane T, Shimura M, Konno R, Iwatsuki K, Oishi Y. Dietary Proteins during Late Pregnancy Affect Hyaluronan Levels, and Modulate <i>Hyaluronan synthase 2</i> and <i>KIAA1199</i> mRNA Expression in the Skin of Newborn Mice. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2017. [DOI: 10.3136/fstr.23.717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Takumi Yamane
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience Tokyo University of Agriculture
| | - Mari Shimura
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience Tokyo University of Agriculture
| | - Ryosuke Konno
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience Tokyo University of Agriculture
| | - Ken Iwatsuki
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience Tokyo University of Agriculture
| | - Yuichi Oishi
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience Tokyo University of Agriculture
| |
Collapse
|
18
|
Barbagianni M, Spanos S, Ioannidi K, Vasileiou N, Katsafadou A, Valasi I, Gouletsou P, Fthenakis G. Increased incidence of peri-parturient problems in ewes with pregnancy toxaemia. Small Rumin Res 2015. [DOI: 10.1016/j.smallrumres.2015.10.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|