1
|
Qian Y, Liu Y, Wang T, Wang S, Chen J, Li F, Zhang M, Hu X, Wang J, Li Y, James A, Hou R, Cai K. Effects of Cryptorchidism on the Semen Quality of Giant Pandas from the Perspective of Seminal Plasma Proteomics. Genes (Basel) 2024; 15:1288. [PMID: 39457412 PMCID: PMC11507308 DOI: 10.3390/genes15101288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/16/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Giant pandas are an endangered species with low reproductive rates. Cryptorchidism, which can negatively affect reproduction, is also often found in pandas. Seminal plasma plays a crucial role in sperm-environment interactions, and its properties are closely linked to conception potential in both natural and assisted reproduction. The research sought to identify seminal fluid protein content variations between normal and cryptorchid giant pandas. Methods: Using a label-free MS-based method, the semen proteomes of one panda with cryptorchidism and three normal pandas were studied, and the identified proteins were compared and functionally analyzed. Results: Mass spectrometry identified 2059 seminal plasma proteins, with 361 differentially expressed proteins (DEPs). Gene ontology (GO) analysis revealed that these DEPs are mainly involved in the phosphate-containing compound metabolic, hydrolase activity, and kinase activity areas (p ≤ 0.05). The KEGG functional enrichment analysis revealed that the top 20 pathways were notably concentrated in the adipocyte lipolysis and insulin metabolism pathway, with a significance level of p ≤ 0.05. Further analysis through a protein-protein interaction (PPI) network identified nine key proteins that may play crucial roles, including D2GXH8 (hexokinase Fragment), D2HSQ6 (protein tyrosine phosphatase), and G1LHZ6 (Calmodulin 2). Conclusions: We suspect that the high abundance of D2HSQ6 in cryptorchid individuals is associated with metabolic pathways, especially the insulin signal pathway, as a typical proteomic feature related to its pathological features. These findings offer insight into the ex situ breeding conditions of this threatened species.
Collapse
Affiliation(s)
- Yicheng Qian
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China; (Y.Q.); (T.W.)
| | - Yuliang Liu
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Y.L.); (S.W.); (J.C.); (F.L.); (M.Z.); (X.H.); (J.W.); (Y.L.); (A.J.); (R.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
| | - Tao Wang
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China; (Y.Q.); (T.W.)
| | - Shenfei Wang
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Y.L.); (S.W.); (J.C.); (F.L.); (M.Z.); (X.H.); (J.W.); (Y.L.); (A.J.); (R.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
| | - Jiasong Chen
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Y.L.); (S.W.); (J.C.); (F.L.); (M.Z.); (X.H.); (J.W.); (Y.L.); (A.J.); (R.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
| | - Feiping Li
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Y.L.); (S.W.); (J.C.); (F.L.); (M.Z.); (X.H.); (J.W.); (Y.L.); (A.J.); (R.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
| | - Mengshi Zhang
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Y.L.); (S.W.); (J.C.); (F.L.); (M.Z.); (X.H.); (J.W.); (Y.L.); (A.J.); (R.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
| | - Xianbiao Hu
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Y.L.); (S.W.); (J.C.); (F.L.); (M.Z.); (X.H.); (J.W.); (Y.L.); (A.J.); (R.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
| | - Juan Wang
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Y.L.); (S.W.); (J.C.); (F.L.); (M.Z.); (X.H.); (J.W.); (Y.L.); (A.J.); (R.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
| | - Yan Li
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Y.L.); (S.W.); (J.C.); (F.L.); (M.Z.); (X.H.); (J.W.); (Y.L.); (A.J.); (R.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
| | - Ayala James
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Y.L.); (S.W.); (J.C.); (F.L.); (M.Z.); (X.H.); (J.W.); (Y.L.); (A.J.); (R.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
| | - Rong Hou
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Y.L.); (S.W.); (J.C.); (F.L.); (M.Z.); (X.H.); (J.W.); (Y.L.); (A.J.); (R.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
| | - Kailai Cai
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Y.L.); (S.W.); (J.C.); (F.L.); (M.Z.); (X.H.); (J.W.); (Y.L.); (A.J.); (R.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
| |
Collapse
|
2
|
Lv C, Larbi A, Li C, Liang J, Wu G, Shao Q, Quan Q. Decoding the influence of semen collection processes on goat sperm quality from a perspective of seminal plasma proteomics. J Proteomics 2024; 298:105141. [PMID: 38408605 DOI: 10.1016/j.jprot.2024.105141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
This study aims to assess the impact of semen collection methods on goat semen quality and seminal plasma (SP) proteomes. Semen was collected by artificial vagina (AV) or electro-ejaculator (EE) and semen parameters were evaluated. Tandem mass tag coupled with liquid chromatography-tandem mass spectrometry was used to screen SP differentially abundant proteins (DAPs) between EE and AV. PRM was used to confirm the reliability of the data. In contrast to EE, a lower volume, higher progressive motility and concentration were observed in AV. No differences were found in total motility, membrane integrity, acrosome integrity, and ROS production between EE and AV. In total, 1692 proteins were identified in SP, including 210 DAPs. Among them, 120 and 90 proteins were down-regulated and up-regulated in AV compared to EE, respectively. The GO annotation showed that DAPs are mainly localized in the membrane, involved in deference responses to bacterium, RNA processing, and related to oxidoreductase activity. KEGG demonstrated tight associations of DAPs with specific amino acids, carbon metabolism, citrate cycle, and propanoate metabolism. In conclusion, this study provides valuable insights into the effects of semen collection on goat semen quality and explores the potential action mechanism based on the modification of SP proteomes. SIGNIFICANCE OF THE STUDY: The quality of fresh semen directly influences the results of artificial insemination and semen cryopreservation in livestock. This study represents the first attempt to evaluate the impact of semen collection methods including electroejaculation and artificial vagina on sperm quality and seminal plasma proteomes in goat. The results of this study demonstrated that semen collection methods directly impacted the quality of goat semen. Then, the proteomic strategy was used to explore the potential action mechanism of semen collection methods on sperm. Some differentially abundant proteins that potentially influence semen quality were identified. Furthermore, this study suggests the possibility of utilizing specific proteins as predictive markers for goat semen quality.
Collapse
Affiliation(s)
- Chunrong Lv
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Engineering Research Center of Animal Genetic Resource Conservation and Germplasm Enhancement, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Panlong District, Kunming City, Yunnan Province, China
| | - Allai Larbi
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming City, Yunnan Province, China; Laboratory of Sustainable Agriculture Management, Higher School of Technology Sidi Bennour, Chouaib Doukkali University El Jadida, Morocco
| | - Chunyan Li
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Engineering Research Center of Animal Genetic Resource Conservation and Germplasm Enhancement, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Panlong District, Kunming City, Yunnan Province, China
| | - Jiangchong Liang
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Engineering Research Center of Animal Genetic Resource Conservation and Germplasm Enhancement, Panlong District, Kunming City, Yunnan Province, China
| | - Guoquan Wu
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Engineering Research Center of Animal Genetic Resource Conservation and Germplasm Enhancement, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Panlong District, Kunming City, Yunnan Province, China
| | - Qingyong Shao
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Panlong District, Kunming City, Yunnan Province, China
| | - Quobo Quan
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Engineering Research Center of Animal Genetic Resource Conservation and Germplasm Enhancement, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Panlong District, Kunming City, Yunnan Province, China.
| |
Collapse
|
3
|
Viana Neto AM, Guerreiro DD, Martins JAM, Vasconcelos FÁR, Melo RÉBF, Velho ALMCS, Neila-Montero M, Montes-Garrido R, Nagano CS, Araújo AA, Moura AA. Sperm traits and seminal plasma proteome of locally adapted hairy rams subjected to intermittent scrotal insulation. Anim Reprod Sci 2024; 263:107439. [PMID: 38447240 DOI: 10.1016/j.anireprosci.2024.107439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/16/2024] [Indexed: 03/08/2024]
Abstract
The present study evaluated the effects of heat stress on reproductive parameters of hairy rams. Six animals were subjected to scrotal insulation during four consecutive nights (6 PM - 6 AM). Day (D) 0 was the first day of insulation. Scrotal circumference increased from 30.5 ± 0.3 cm (at pre-insulation) to 31.8 ± 0.4 cm on D4, decreased 3.9 cm on D28, returning to 30.6 ± 0.6 cm on D57. Sperm concentration decreased from 3.7 ± 0.12 ×109 sperm/mL before insulation to 2.6 ± 0.1 ×109 on D23, returning to normal on D57. Sperm motility averaged 75 ± 2.9% before insulation, was undetectable on D23, and became normal on D77. Sperm with normal morphology reached 5.9 ± 2.6% on D35 but recovered (86.8 ± 2.1%) on D91. Sperm DNA integrity decreased from 86.5 ± 4.7% before insulation to 11.1 ± 3.7% on D63, returning to pre-insulation values on D120. Sperm BSP immunostaining was reduced after scrotal insulation. Variations in seminal protein abundances coincided with changes in sperm parameters. Seminal plasma superoxide dismutase, carboxypeptidase Q-precursor and NPC intracellular cholesterol transporter 2 decreased on D18, returning to normal after D28. Albumin, inhibitor of carbonic anhydrase precursor, EGF-like repeat and discoid I-like domain-containing protein 3 and polymeric immunoglobulin receptor increased after insulation. In summary, intermittent scrotal insulation drastically altered ram sperm attributes and seminal proteins, especially those associated with oxidative stress. Knowledge of animal´s response to thermal stress is vital in the scenario of climate changes.
Collapse
Affiliation(s)
| | - Denise D Guerreiro
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| | - Jorge A M Martins
- School of Veterinary Medicine, Federal University of Cariri, Juazeiro do Norte, Brazil
| | | | - R Évila B F Melo
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| | | | - Marta Neila-Montero
- Itra-ULE, Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery and Anatomy, University of León, León, Spain
| | - Rafael Montes-Garrido
- Itra-ULE, Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery and Anatomy, University of León, León, Spain
| | - Celso S Nagano
- Department of Fisheries Engineering, Federal University of Ceará, Fortaleza, Brazil
| | - Airton A Araújo
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil; School of Veterinary Medicine, Ceará State University, Fortaleza, Brazil
| | - Arlindo A Moura
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil.
| |
Collapse
|
4
|
Lucca MS, Bustamante-Filho IC, Ulguim RR, Gianluppi RDF, Evaristo JAM, Nogueira FCS, Timmers LFSM, Mellagi APG, Wentz I, Bortolozzo FP. Proteomic analysis of boar seminal plasma: Putative markers for fertility based on capacity of semen preservation at 17°C. Mol Reprod Dev 2024; 91:e23735. [PMID: 38282317 DOI: 10.1002/mrd.23735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/20/2023] [Accepted: 01/13/2024] [Indexed: 01/30/2024]
Abstract
Boar seminal plasma (SP) proteins were associated with differences on sperm resistance to cooling at 17°C. However, information about seminal plasma proteins in boars classified by capacity of semen preservation and in vivo fertility remains lacking. Thus, the objective was to evaluate the SP proteome in boars classified by capacity of semen preservation and putative biomarkers for fertility. The ejaculates from high-preservation (HP) showed higher progressive motility during all 5 days than the low-preservation (LP) boars. There was no difference for farrowing rate between ejaculates from LP (89.7%) and HP boars (88.4%). The LP boars presented lower total piglets born (14.0 ± 0.2) than HP (14.8 ± 0.2; p < 0.01). A total of 257 proteins were identified, where 184 were present in both classes of boar, and 41 and 32 were identified only in LP and HP boars, respectively. Nine proteins were differently expressed: five were more abundant in HP (SPMI, ZPBP1, FN1, HPX, and C3) and four in LP boars (B2M, COL1A1, NKX3-2, and MPZL1). The HP boars had an increased abundance of SP proteins related to sperm resistance and fecundation process which explains the better TPB. LP boars had a higher abundance of SP proteins associated with impaired spermatogenesis.
Collapse
Affiliation(s)
- Matheus S Lucca
- Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul-UFRGS, Setor de Suínos, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Rafael R Ulguim
- Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul-UFRGS, Setor de Suínos, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rafael D F Gianluppi
- Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul-UFRGS, Setor de Suínos, Porto Alegre, Rio Grande do Sul, Brazil
| | - Joseph A M Evaristo
- Laboratory of Proteomics, LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fábio C S Nogueira
- Laboratory of Proteomics, LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Proteomics Unit, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luís F S M Timmers
- Laboratório de Biotecnologia, Universidade do Vale do Taquari-Univates, Lajeado, Brazil
| | - Ana P G Mellagi
- Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul-UFRGS, Setor de Suínos, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ivo Wentz
- Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul-UFRGS, Setor de Suínos, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernando P Bortolozzo
- Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul-UFRGS, Setor de Suínos, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
5
|
Ramírez-López CJ, Barros E, Vidigal PM, Okano DS, Gomes LL, Carvalho RPR, de Castro AG, Baracat-Pereira MC, Guimarães SEF, Guimarães JD. Oxidative stress associated with proteomic and fatty acid profiles of sperm from Nellore bulls at rest†. Biol Reprod 2023; 109:878-891. [PMID: 37702320 DOI: 10.1093/biolre/ioad121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Sexual rest is a transient condition, which compromises conception rates, characterized by large volumes of ejaculate with high percentages of dead sperm observed in bulls. The biochemical mechanisms leading to this ejaculate pattern are not fully understood. Six adult resting Nellore bulls were submitted to Breeding Soundness Evaluation by four consecutive semen collections through the electroejaculation method during a 30 min period. Each ejaculate had its semen phenotypic parameters; morphology and physical aspects were evaluated. To assess enzymatic activity (superoxide dismutase, catalase, and glutathione S-transferase), lipid peroxidation (concentrations of malondialdehyde and nitric oxide), fatty acid, and proteomic profile aliquots of spermatozoa from the first and fourth ejaculates were used. All sperm parameters differed between the first and fourth ejaculates. Spermatozoa from the first ejaculate showed lower enzymatic activity and a higher concentration of lipid peroxidation markers. Among the 19 identified fatty acids, 52.7% are polyunsaturated. Relative abundance analysis showed that C12:0 and C18:0 fatty acids differed between the first and fourth ejaculates, being the fourth ejaculate richer in spermatozoa. The proteomics analysis identified a total of 974 proteins in both sample groups (first and fourth ejaculates). The majority of identified proteins are related to cellular processes and signaling. Quantitative proteomics showed 36 differentially abundant proteins, 6 up-regulated proteins in the first ejaculate, and 30 up-regulated proteins in the fourth ejaculate. Spermatozoa from bulls at sexual rest have less antioxidant capacity, causing changes in their fatty acid composition and protein profile, which generates the observed sperm pattern and lower fertilization capacity.
Collapse
Affiliation(s)
- Camilo José Ramírez-López
- Animal Reproduction Laboratory, Department of Veterinary Medicine, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Structural Biology Laboratory, Department of Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerai, Brazil
| | - Edvaldo Barros
- Nucleus for Analysis of Biomolecules, Universidade Federal de Viçosa, Brazil
| | | | - Denise Silva Okano
- Animal Reproduction Laboratory, Department of Veterinary Medicine, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Lidiany Lopes Gomes
- Animal Reproduction Laboratory, Department of Veterinary Medicine, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Alex Gazolla de Castro
- Biotechnology and Biodiversity for the Environment Laboratory, Department of Microbiology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Maria Cristina Baracat-Pereira
- Proteomics and Protein Biochemistry Laboratory, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Simone Eliza Facioni Guimarães
- LABTEC-Animal Biotechnology Laboratory, Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - José Domingos Guimarães
- Animal Reproduction Laboratory, Department of Veterinary Medicine, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
6
|
Rosyada ZNA, Pardede BP, Kaiin EM, Gunawan M, Maulana T, Said S, Tumbelaka LITA, Solihin DD, Ulum MF, Purwantara B. A proteomic approach to identifying spermatozoa proteins in Indonesian native Madura bulls. Front Vet Sci 2023; 10:1287676. [PMID: 38111731 PMCID: PMC10725959 DOI: 10.3389/fvets.2023.1287676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/06/2023] [Indexed: 12/20/2023] Open
Abstract
Proteins assist sperm mature, transit the female reproductive tract, and recognise sperm oocytes. Indigenous Indonesian bulls, Madura bulls, have not been studied for reproductive proteomics. As local Indonesian beef livestock, Madura cattle assist in achieving food security; hence, their number must be improved. Thus, the identification of molecular proteomics-based bull fertility biomarkers is needed. This study aimed to characterise the sperm fertility function of the superior Madura bull (Bos indicus × Bos Javanicus) spermatozoa proteome. Frozen semen from eight Madura superior bulls (Bos indicus × Bos javanicus) aged 4-8 years was obtained from the artificial insemination centre (AIC) in Singosari and Lembang. Madura superior bulls are those that have passed the bull breeding soundness evaluation. Frozen sperm were thawed and centrifuged at 3000 × g for 30 min. Proteins in sperm were characterised through proteomic analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The resulting gene symbols for each protein were then subjected to bioinformatics tools, including UniProt, DAVID, and STRING databases. Regarding sperm fertility, the analysis revealed that 15 proteins were identified in the sperm of Madura bulls. Amongst the identified proteins, the superior Madura bull sperm contained several motilities, energy-related proteins, and chaperone proteins. A substantial portion of characterised proteins are linked to metabolic pathways and the tricarboxylic acid (TCA) cycle, contributing to sperm energy production. In conclusion, the first in-depth proteome identification of sperm related to sperm quality and bull fertility of a unique indigenous Madura breed of Indonesia was performed using the LC-MS/MS proteomic method. These findings may serve as a reference point for further studies related to the functions of bovine sperm and biomarkers of fertility and sperm quality.
Collapse
Affiliation(s)
- Zulfi Nur Amrina Rosyada
- Division of Reproduction and Obstetrics, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
- Research Center for Applied Zoology, National Research and Innovation Agency (BRIN), Bogor, Indonesia
- Division of Veterinary Anatomy, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Berlin Pandapotan Pardede
- Division of Reproduction and Obstetrics, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
- Research Center for Applied Zoology, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Ekayanti Mulyawati Kaiin
- Research Center for Applied Zoology, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Muhammad Gunawan
- Research Center for Applied Zoology, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Tulus Maulana
- Research Center for Applied Zoology, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Syahruddin Said
- Research Center for Applied Zoology, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Ligaya I. T. A Tumbelaka
- Division of Reproduction and Obstetrics, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | | | - Mokhamad Fakhrul Ulum
- Division of Reproduction and Obstetrics, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Bambang Purwantara
- Division of Reproduction and Obstetrics, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| |
Collapse
|
7
|
Ramírez-López CJ, Barros E, Vidigal PMP, Silva Okano D, Duarte Rodrigues JN, Lopes Gomes L, Montes-Vergara JC, Petro Hernandez VG, Baracat-Pereira MC, Guimarães SEF, Guimarães JD. Relative Abundance of Spermadhesin-1 in the Seminal Plasma of Young Nellore Bulls Is in Agreement with Reproductive Parameters. Vet Sci 2023; 10:610. [PMID: 37888562 PMCID: PMC10611397 DOI: 10.3390/vetsci10100610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 10/28/2023] Open
Abstract
This study aimed to evaluate the proteomic profile of seminal plasma from young Nellore bulls. We used 20 bulls aged between 19.8 and 22.7 months, divided into two groups according to the results of the Breeding Soundness Evaluation (BSE): approved (FIT n = 10) and not approved (UNFIT n = 10). The scrotal perimeter was measured and a semen collection was performed through electroejaculation. The percentage of sperm motility, mass motility, and sperm vigor were calculated using conventional microscopy, and the percentage of sperm abnormalities was calculated using phase-contrast microscopy of all ejaculates. Seminal plasma was separated from spermatozoa using centrifugation and processed for proteomic analysis by LC-MS/MS. Seminal plasma proteins were identified using MASCOT Daemon software v.2.4.0 and label-free quantification analysis was carried out by SCAFFOLD Q+ software v.4.0 using the Exponentially Modified Protein Abundance Index (emPAI) method. Functional classification of proteins was performed based on their genetic ontology terms using KOG. Functional cluster analysis was performed on DAVID. There were no differences in scrotal perimeter and physical semen characteristics between FIT and UNFIT groups of bulls. The percentage of sperm abnormalities was higher (p < 0.05) in the UNFIT group of bulls. A total of 297 proteins were identified for the two groups. There were a total of 11 differentially abundant proteins (p < 0.05), two of them more abundant in FIT bulls (Spermadhesin-1 and Ig gamma-1 chain C region) and nine in UNFIT bulls (Vasoactive intestinal peptide, Metalloproteinase inhibitor 2, Ig lambda-1 chain C regions, Protein FAM3C, Hemoglobin beta, Seminal ribonuclease, Spermadhesin 2, Seminal plasma protein BSP-30kDa, and Spermadhesin Z13). Spermadhesin-1 was the protein with the highest relative abundance (36.7%) in the seminal plasma among all bulls, corresponding to 47.7% for the FIT bulls and 25,7% for the UNFIT bulls. Posttranslational modification, protein turnover, and chaperones were the functional categories with the highest number of classified proteins. Protein functional annotation clusters were related to Phospholipid efflux, ATP binding, and chaperonin-containing T-complex. The differentially abundant proteins in the group of FIT bulls were related to sperm capacitation and protection against reactive species of oxygen. In contrast, differentially expressed proteins in the group of UNFIT bulls were related to motility inhibition, intramembrane cholesterol removal and oxidative stress. In conclusion, the proteomic profile of the seminal plasma of FIT bulls presents proteins with participation in several biological processes favorable to fertilization, while the proteins of the seminal plasma of UNFIT bulls indicate a series of alterations that can compromise the fertilizing capacity of the spermatozoa. In addition, the relative abundance of spermadhesin-1 found in the seminal plasma of young Nellore bulls could be studied as a reproductive parameter for selection.
Collapse
Affiliation(s)
- Camilo José Ramírez-López
- Laboratory of Animal Reproduction, Department of Veterinary Medicine, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (D.S.O.); (J.N.D.R.); (L.L.G.); (J.D.G.)
- Department of Animal Science, Universidad de Córdoba, Monteria 230002, Colombia;
- Laboratory of Proteomics and Protein Biochemistry, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil;
| | - Edvaldo Barros
- Nucleus for Analysis of Biomolecules, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (E.B.); (P.M.P.V.)
| | - Pedro Marcus Pereira Vidigal
- Nucleus for Analysis of Biomolecules, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (E.B.); (P.M.P.V.)
| | - Denise Silva Okano
- Laboratory of Animal Reproduction, Department of Veterinary Medicine, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (D.S.O.); (J.N.D.R.); (L.L.G.); (J.D.G.)
| | - Juliana Nascimento Duarte Rodrigues
- Laboratory of Animal Reproduction, Department of Veterinary Medicine, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (D.S.O.); (J.N.D.R.); (L.L.G.); (J.D.G.)
| | - Lidiany Lopes Gomes
- Laboratory of Animal Reproduction, Department of Veterinary Medicine, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (D.S.O.); (J.N.D.R.); (L.L.G.); (J.D.G.)
| | | | | | - Maria Cristina Baracat-Pereira
- Laboratory of Proteomics and Protein Biochemistry, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil;
| | - Simone Eliza Facioni Guimarães
- Laboratory of Animal Biotechnology, Department of Animal Science, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil;
| | - José Domingos Guimarães
- Laboratory of Animal Reproduction, Department of Veterinary Medicine, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (D.S.O.); (J.N.D.R.); (L.L.G.); (J.D.G.)
| |
Collapse
|
8
|
Chacón LJ, Yepes GD, Cardozo J, Rueda F, Castillo V, Torres A, Martins J, Ardila A. Seminal Plasma Proteins Associated with The Fertility of Brahman Bulls in The Colombian Low Tropics. Trop Life Sci Res 2023; 34:259-277. [PMID: 37860088 PMCID: PMC10583850 DOI: 10.21315/tlsr2023.34.3.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/10/2023] [Indexed: 10/21/2023] Open
Abstract
The sperm interacts with seminal plasma proteins during its transport through the female reproductive tract to reach the oocyte. Seminal plasma proteins have been associated as biomarkers of fertility in bovine males, while two-dimensional electrophoresis in polyacrylamide gels under denaturing conditions (2D-PAGE) is a useful technique for their separation, allowing their subsequent analysis with the aid of specialised software. Brahman bulls are known for their tolerance to tropical conditions such as low-quality pastures, high temperatures, and relative humidity as well as moderate resistance to infestations by parasites and insects. The present study describes the two-dimensional electrophoretic profiles of the seminal plasma proteins in the rainy and dry seasons, associating them with the fertility of Brahman bulls in the Colombian Orinoquía in a 90-days breeding season and a single-sire mating system (1 bull per 50 Brahman cows) with 60 consecutive days of rest. The fertility-related seminal plasma protein spots increased in the dry season. Likewise, a meaningful relationship was found between the protein spots that possibly coincide with the Binder of Sperm Proteins. It was also found that bulls with the highest percentages of pregnancy also had similarities in their 2D seminal plasma maps. We conclude that the seminal plasma protein profile of Brahman bulls raised in the Colombian low tropic changes between rainy and dry seasons, and such changes may influence the reproductive performance of those animals.
Collapse
Affiliation(s)
- Liliana J. Chacón
- Faculty of Agricultural Science, University of La Salle, Bogota, Colombia
| | - Germán D. Yepes
- Faculty of Agricultural Science, University of La Salle, Bogota, Colombia
| | - Jaime Cardozo
- Colombian Agricultural Research Corporation (AGROSAVIA), Tropical Reproduction Group. Kilometer 14 Via Bogotá-Mosquera, Cundinamarca, Colombia
| | - Fabian Rueda
- Colombian Agricultural Research Corporation (AGROSAVIA), Tropical Reproduction Group. Kilometer 14 Via Bogotá-Mosquera, Cundinamarca, Colombia
| | - Viviana Castillo
- Colombian Agricultural Research Corporation (AGROSAVIA), Tropical Reproduction Group. Kilometer 14 Via Bogotá-Mosquera, Cundinamarca, Colombia
| | - Andrés Torres
- Faculty of Agricultural Science, University of La Salle, Bogota, Colombia
| | - Jorge Martins
- Centre for Agricultural Sciences and Biodiversity, Federal University of Cariri, Rua Icaro de Sousa Moreira, 126, Crato, Ceará, Brazil
| | - Ariosto Ardila
- Faculty of Agricultural Science, University of La Salle, Bogota, Colombia
| |
Collapse
|
9
|
Ashwitha A, Ramesha KP, Ramesh P, Kootimole CN, Devadasan MJ, Ammankallu S, Jeyakumar S, Kumaresan A, Veerappa VG, Das DN, Prasad TSK. Quantitative proteomics profiling of spermatozoa and seminal plasma reveals proteins associated with semen quality in Bos indicus bulls. J Proteomics 2023; 273:104794. [PMID: 36535621 DOI: 10.1016/j.jprot.2022.104794] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
Cattle breeding approaches are an evolving field of research in veterinary science. Certain factors such as Ejaculate Rejection Rate (ERR) pose a limitation to such approaches. In this regard, we sought to investigate the spermatozoa and seminal plasma proteome of Hallikar bulls with low (n = 3) and high (n = 3) ERR. Through the Tandem mass spectrometry approach, we identified a total of 2409 proteins, in which 828 proteins were common in both the semen components, whereas 375 and 378 proteins were unique to spermatozoa and seminal plasma respectively. Tandem mass tags (TMT) based protein quantification resulted in 75 spermatozoal, and 42 seminal plasma proteins being differentially regulated between high and low ERR bulls. Proteins such as SPADH2, TIMP-2, and PLA2G7 which are negative regulators of motility were upregulated in the seminal plasma of high ERR bulls. Proteins such as OAZ3, GPx4, and GSTM3 whose upregulation leads to reduced motility were upregulated in the spermatozoa of high ERR bulls. Caltrin and ADM proteins that enhance sperm motility were downregulated in the seminal plasma of high ERR bulls. The regulation of ACE, a negative regulator of sperm motility was upregulated in both the spermatozoa and seminal plasma of high ERR bulls. SIGNIFICANCE: The saying "Bull is more than half of the herd" signifies the importance of bull in the genetic improvement of the herd. Traditionally used semen quality tests will provide limited information about the potential fertility of bulls. The proteomics approach is a promising omics technology to understand the factors involved in male fertility. The present study identified the spermatozoal and seminal plasma proteins that are differentially regulated between high and low ERR bulls. Sperm motility-associated proteins are differentially regulated. This study if improved further, can be used to develop markers associated with semen quality which is useful for the selection of bulls.
Collapse
Affiliation(s)
- A Ashwitha
- Southern Regional Station, ICAR- National Dairy Research Institute, Banglore 560030, India
| | - Kerekoppa P Ramesha
- Southern Regional Station, ICAR- National Dairy Research Institute, Banglore 560030, India.
| | - Poornima Ramesh
- Centre for System Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Chinmaya Narayana Kootimole
- Centre for System Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - M Joel Devadasan
- Southern Regional Station, ICAR- National Dairy Research Institute, Banglore 560030, India
| | - Shruthi Ammankallu
- Centre for System Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Sakthivel Jeyakumar
- Southern Regional Station, ICAR- National Dairy Research Institute, Banglore 560030, India
| | - Arumugam Kumaresan
- Southern Regional Station, ICAR- National Dairy Research Institute, Banglore 560030, India
| | | | - D N Das
- Southern Regional Station, ICAR- National Dairy Research Institute, Banglore 560030, India
| | | |
Collapse
|
10
|
Warr S, Pini T, de Graaf SP, Rickard JP. Molecular insights to the sperm-cervix interaction and the consequences for cryopreserved sperm. Biol Reprod 2023; 108:183-196. [PMID: 36191077 DOI: 10.1093/biolre/ioac188] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Cryopreserved ram spermatozoa are limited in their capacity to traverse the ovine cervix and achieve fertilization. This altered interaction may be related to modified molecular communication between frozen-thawed ram spermatozoa, seminal plasma, and the female tract. As such, this review aims to identify the biological processes which underpin sperm maturation and transport throughout the female reproductive tract to elucidate factors which may alter this natural process in cryopreserved ram spermatozoa. We also assess critical barriers to ram spermatozoa specific to the ovine cervix and the role of seminal plasma in mitigating these barriers. Transcriptomics is explored as a new approach to understand the sperm-cervix interaction. Recent studies have demonstrated that both spermatozoa and seminal plasma contain a complex profile of coding and non-coding RNAs. These molecular species have clear links with functional fertility, and mounting evidence suggests they may be altered by cryopreservation. Emerging in vitro cell culture models are also investigated as a "next step" in studying this interaction, utilizing transcriptomics to identify subtle changes in female tract gene expression in response to spermatozoa. The application of such models is proposed as an exciting opportunity to investigate the unique challenges faced by cryopreserved spermatozoa traversing the ovine cervix prior to fertilization.
Collapse
Affiliation(s)
- Sophie Warr
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Taylor Pini
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Simon P de Graaf
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Jessica P Rickard
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
11
|
Iskandar H, Andersson G, Sonjaya H, Arifiantini RI, Said S, Hasbi H, Maulana T, Baharun A. Protein Identification of Seminal Plasma in Bali Bull ( Bos javanicus). Animals (Basel) 2023; 13:514. [PMID: 36766403 PMCID: PMC9913395 DOI: 10.3390/ani13030514] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
The purpose of this study was to identify seminal plasma proteins in Bali bull and their potential as biomarkers of fertility. Semen was collected from 10 bulls aged 5-10 years using an artificial vagina. Fresh semen was then centrifuged (3000× g for 30 min). The supernatant was put into straws and stored in liquid nitrogen. The semen plasma protein concentration was determined using the Bradford method, and the protein was characterized using 1D-SDS-PAGE. Coomassie Brilliant Blue (CBB) was used to color the gel, and the molecular weight of the protein was determined using PM2700. A total of 94 proteins were identified in the seminal plasma of Bali bulls analyzed using LC-MS/MS (liquid chromatography-mass spectrometry). Proteins spermadhesin 1 (SPADH1), C-type natriuretic peptide (NPPC), clusterin (CLU), apoliprotein A-II (APOA2), inositol-3-phosphate synthase 1 (ISYNA1), and sulfhydryl oxidase 1 (QSOX1) were identified as important for fertility in Bos javanicus. These proteins may prove to be important biomarkers of fertility in Bali bulls. These proteins are important for reproductive function, which includes spermatozoa motility, capacitation, and acrosome reactions. This study provides new information about the protein content in seminal plasma in Bali bulls. The LC-MS/MS-based proteome approach that we applied in this study obtained 94 proteins. The identification of these seminal plasma proteins of Bali bulls and their potential as fertility biomarkers may have an impact on the success of future artificial insemination (AI).
Collapse
Affiliation(s)
- Hikmayani Iskandar
- Agricultural Science Study Program, Graduate School Hasanuddin University, Makassar 90245, Indonesia;
- Animal Repronomics Research Group, Research Center for Applied Zoology, National Research and Innovation Agency, Bogor 16914, Indonesia; (S.S.); (T.M.)
| | - Göran Andersson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden;
| | - Herry Sonjaya
- Department of Animal Production, Faculty of Animal Science, Hasanuddin University, Makassar 90245, Indonesia;
| | - Raden Iis Arifiantini
- Department of Veterinary Clinic, Reproduction and Pathology, Faculty of Veterinary Medicine, IPB University, Bogor 16680, Indonesia;
| | - Syahruddin Said
- Animal Repronomics Research Group, Research Center for Applied Zoology, National Research and Innovation Agency, Bogor 16914, Indonesia; (S.S.); (T.M.)
| | - Hasbi Hasbi
- Department of Animal Production, Faculty of Animal Science, Hasanuddin University, Makassar 90245, Indonesia;
| | - Tulus Maulana
- Animal Repronomics Research Group, Research Center for Applied Zoology, National Research and Innovation Agency, Bogor 16914, Indonesia; (S.S.); (T.M.)
| | - Abdullah Baharun
- Animal Science Program, Faculty of Agriculture, Djuanda University, Bogor 16720, Indonesia;
| |
Collapse
|
12
|
Yu K, Xiao K, Sun QQ, Liu RF, Huang LF, Zhang PF, Xu HY, Lu YQ, Fu Q. Comparative proteomic analysis of seminal plasma exosomes in buffalo with high and low sperm motility. BMC Genomics 2023; 24:8. [PMID: 36624393 PMCID: PMC9830767 DOI: 10.1186/s12864-022-09106-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Exosomes are nanosized membranous vesicles secreted by various types of cells, which facilitate intercellular communication by transporting bioactive compounds. Exosomes are abundant in biological fluids including semen, and their protein composition and the potential of seminal plasma exosomes (SPEs) as fertility biomarkers were elucidated in humans, however, little information is available regarding buffalo (Bubalus bubalis). Here, we examined protein correlation between spermatozoa, seminal plasma (SP), and SPEs, and we compared and analyzed protein differences between high-motility (H-motility) and low-motility (L-motility) SPEs in buffalo. RESULTS SPEs were concentrated and purified by ultracentrifugation combined with sucrose density gradient centrifugation, followed by verification using western blotting, nanoparticle tracking analysis, and transmission electron microscopy. Protein composition in spermatozoa, SP and SPEs, and protein difference in H- and L-motility SPEs were identified by LC-MS/MS proteomic analysis and were functionally analyzed through comprehensive bioinformatics. Many SPEs proteins originated from spermatozoa and SP, and nearly one third were also present in spermatozoa and SP. A series of proteins associated with reproductive processes including sperm capacitation, spermatid differentiation, fertilization, sperm-egg recognition, membrane fusion, and acrosome reaction were integrated in a functional network. Comparative proteomic analyses showed 119 down-regulated and 41 up-regulated proteins in L-motility SPEs, compared with H-motility SPEs. Gene Ontology (GO) enrichment of differentially expressed proteins (DEPs) showed that most differential proteins were located in sperm and vesicles, with activities of hydrolase and metalloproteinase, and were involved in sperm-egg recognition, fertilization, single fertilization, and sperm-zona pellucida binding processes, etc. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that differential proteins were mainly involved in the PPRP signaling pathway, calcium signaling pathway, and cAMP signaling pathway, among others. Furthermore, 6 proteins associated with reproduction were validated by parallel reaction monitoring analysis. CONCLUSION This study provides a comprehensive description of the seminal plasma exosome proteome and may be of use for further screening of biomarkers associated with male infertility.
Collapse
Affiliation(s)
- Kai Yu
- grid.256609.e0000 0001 2254 5798State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004 China ,grid.256609.e0000 0001 2254 5798College of Animal Science and Technology, Guangxi University, Nanning, 530004 China
| | - Kai Xiao
- grid.256609.e0000 0001 2254 5798State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004 China ,grid.256609.e0000 0001 2254 5798College of Animal Science and Technology, Guangxi University, Nanning, 530004 China
| | - Qin-qiang Sun
- grid.256609.e0000 0001 2254 5798State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004 China ,grid.256609.e0000 0001 2254 5798College of Animal Science and Technology, Guangxi University, Nanning, 530004 China
| | - Run-feng Liu
- grid.256609.e0000 0001 2254 5798State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004 China ,grid.256609.e0000 0001 2254 5798College of Animal Science and Technology, Guangxi University, Nanning, 530004 China
| | - Liang-feng Huang
- grid.256609.e0000 0001 2254 5798State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004 China ,grid.256609.e0000 0001 2254 5798College of Animal Science and Technology, Guangxi University, Nanning, 530004 China
| | - Peng-fei Zhang
- grid.256609.e0000 0001 2254 5798State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004 China ,grid.256609.e0000 0001 2254 5798College of Animal Science and Technology, Guangxi University, Nanning, 530004 China
| | - Hui-yan Xu
- grid.256609.e0000 0001 2254 5798State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004 China ,grid.256609.e0000 0001 2254 5798College of Animal Science and Technology, Guangxi University, Nanning, 530004 China
| | - Yang-qing Lu
- grid.256609.e0000 0001 2254 5798State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004 China ,grid.256609.e0000 0001 2254 5798College of Animal Science and Technology, Guangxi University, Nanning, 530004 China
| | - Qiang Fu
- grid.256609.e0000 0001 2254 5798State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004 China
| |
Collapse
|
13
|
Gouletsou PG, Tsangaris GT, Katsarou EI, Bourganou MV, Barbagianni MS, Venianaki AP, Bouroutzika E, Anagnostopoulos AK, Fthenakis GC, Katsafadou AI. Proteomics Evaluation of Semen of Clinically Healthy Beagle-Breed Dogs. Vet Sci 2022; 9:vetsci9120697. [PMID: 36548858 PMCID: PMC9785154 DOI: 10.3390/vetsci9120697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The objectives of the present work were to evaluate the semen of dogs by means of proteomics methods and to compare with proteomics results of the blood of the animals, in order to increase available knowledge on the topic and present relevant reference values for semen samples. Semen samples were collected from five Beagle-breed dogs. Reproductive assessment of the animals by means of clinical, ultrasonographic and seminological examinations confirmed their reproductive health. The sperm-rich fraction and the prostatic fraction of semen were processed for proteomics evaluation. LC-MS/MS analysis was performed by means of a LTQ Orbitrap Elite system. The technology combines high separation capacity and strong qualitative ability of proteins in biological samples that require deep proteome coverage. Protein classification was performed based on their functional annotations using Gene Ontology (GO). In blood plasma, semen sperm-rich fraction, and semen prostatic fraction, 59, 42 and 43 proteins, respectively, were detected. Two proteins were identified simultaneously in plasma and the semen sperm-rich fraction, 11 proteins in plasma and the semen prostatic fraction, and three proteins in the semen sperm-rich and prostatic fractions. In semen samples, most proteins were related to cell organization and biogenesis, metabolic processes or transport of ions and molecules. Most proteins were located in the cell membrane, the cytosol or the nucleus. Finally, most proteins performed functions related to binding or enzyme regulation. There were no differences between the semen sperm-rich fraction and prostatic fractions in terms of the clustering of proteins. In conclusion, a baseline reference for proteins in the semen of Beagle-breed dogs is provided. These proteins are involved mostly in supporting spermatozoan maturation, survival and motility, enhancing the reproductive performance of male animals. There appears potential for the proteomics examination of semen to become a tool in semen evaluation. This analysis may potentially identify biomarkers for reproductive disorders. This can be particularly useful in stud animals, also given its advantage as a non-invasive method.
Collapse
Affiliation(s)
| | - George Th. Tsangaris
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | | | - Maria V. Bourganou
- Faculty of Public and One Health, University of Thessaly, 43100 Karditsa, Greece
| | | | | | - Efterpi Bouroutzika
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | | | | | - Angeliki I. Katsafadou
- Faculty of Public and One Health, University of Thessaly, 43100 Karditsa, Greece
- Correspondence:
| |
Collapse
|
14
|
Liang J, Lv C, Xiang D, Zhang Y, Zhang B, Raza SHA, Wu G, Quan G. The establishment of goat semen protein profile using a tandem mass tag-based proteomics approach. Res Vet Sci 2022; 150:22-32. [DOI: 10.1016/j.rvsc.2022.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/15/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022]
|
15
|
Madani J, Aghebati-Maleki L, Gharibeh N, Pourakbari R, Yousefi M. Fetus, as an allograft, evades the maternal immunity. Transpl Immunol 2022; 75:101728. [DOI: 10.1016/j.trim.2022.101728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/09/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022]
|
16
|
Zinc-binding proteins in stallion seminal plasma as potential sperm function regulators. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Sperm functions may be influenced by seminal plasma (SP) proteins with affinity to zinc ions. The aim of the study was to isolate and characterise zinc-binding proteins (ZnBPs) from stallion SP using proteomic tools. Zinc-binding proteins were isolated from the SP of eight stallions by zinc-affinity chromatography. They were analysed in the SDS-PAGE system, and peptide extracts were prepared. Samples of ZnBPs isolated from stallion SP were injected onto the nLC-1000 nanoflow HPLC system coupled via a nano-electrospray ion source to the Orbitrap Elite FTMS mass spectrometer (Thermo Fisher Scientific). Raw MS data were analysed using MaxQuant software with label-free quantification (LFQ). Protein sequences were obtained from the UniProt database. Forty-seven proteins in ZnBPs were annotated in a gene ontology (GO) analysis. The LFQ intensity analysis of individual proteins revealed that ZnBPs comprised mainly clusterin (CLU, 27%), serin protease inhibitor F1 (SERPINF1, 13%), actin, cytoplasmic 1 (ACTB, 9%), nucleobindin 2 (NUCB2, 8%) and polymeric immunoglobulin receptor (PIGR, 6%). This is the first proteomic study to analyse ZnBPs in stallion SP. The present findings show that ZnBPs in stallion SP could play an important role in the regulation of sperm function.
Collapse
|
17
|
Ugur MR, Guerreiro DD, Moura AA, Memili E. Identification of biomarkers for bull fertility using functional genomics. Anim Reprod 2022; 19:e20220004. [PMID: 35573862 PMCID: PMC9083437 DOI: 10.1590/1984-3143-ar2022-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/28/2022] [Indexed: 09/21/2023] Open
Abstract
Prediction of bull fertility is critical for the sustainability of both dairy and beef cattle production. Even though bulls produce ample amounts of sperm with normal parameters, some bulls may still suffer from subpar fertility. This causes major economic losses in the cattle industry because using artificial insemination, semen from one single bull can be used to inseminate hundreds of thousands of cows. Although there are several traditional methods to estimate bull fertility, such methods are not sufficient to explain and accurately predict the subfertility of individual bulls. Since fertility is a complex trait influenced by a number of factors including genetics, epigenetics, and environment, there is an urgent need for a comprehensive methodological approach to clarify uncertainty in male subfertility. The present review focuses on molecular and functional signatures of bull sperm associated with fertility. Potential roles of functional genomics (proteome, small noncoding RNAs, lipidome, metabolome) on determining male fertility and its potential as a fertility biomarker are discussed. This review provides a better understanding of the molecular signatures of viable and fertile sperm cells and their potential to be used as fertility biomarkers. This information will help uncover the underlying reasons for idiopathic subfertility.
Collapse
Affiliation(s)
| | | | - Arlindo A. Moura
- Universidade Federal do Ceará, Brasil; Universidade Federal do Ceará, Brasil
| | - Erdogan Memili
- Mississippi State University, USA; Prairie View A&M University, USA
| |
Collapse
|
18
|
Fuentes-Albero MC, González-Brusi L, Cots P, Luongo C, Abril-Sánchez S, Ros-Santaella JL, Pintus E, Ruiz-Díaz S, Barros-García C, Sánchez-Calabuig MJ, García-Párraga D, Avilés M, Izquierdo Rico MJ, García-Vázquez FA. Protein Identification of Spermatozoa and Seminal Plasma in Bottlenose Dolphin ( Tursiops truncatus). Front Cell Dev Biol 2021; 9:673961. [PMID: 34336830 PMCID: PMC8323341 DOI: 10.3389/fcell.2021.673961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/28/2021] [Indexed: 01/04/2023] Open
Abstract
Proteins play an important role in many reproductive functions such as sperm maturation, sperm transit in the female genital tract or sperm-oocyte interaction. However, in general, little information concerning reproductive features is available in the case of aquatic animals. The present study aims to characterize the proteome of both spermatozoa and seminal plasma of bottlenose dolphins (Tursiops truncatus) as a model organism for cetaceans. Ejaculate samples were obtained from two trained dolphins housed in an aquarium. Spermatozoa and seminal plasma were analyzed by means of proteomic analyses using an LC-MS/MS, and a list with the gene symbols corresponding to each protein was submitted to the DAVID database. Of the 419 proteins identified in spermatozoa and 303 in seminal plasma, 111 proteins were shared by both. Furthermore, 70 proteins were identified as involved in reproductive processes, 39 in spermatozoa, and 31 in seminal plasma. The five most abundant proteins were also identified in these samples: AKAP3, ODF2, TUBB, GSTM3, ROPN1 for spermatozoa and CST11, LTF, ALB, HSP90B1, PIGR for seminal plasma. In conclusion, this study provides the first characterization of the proteome in cetacean sperm and seminal plasma, opening the way to future research into new biomarkers, the analysis of conservation capacity or possible additional applications in the field of assisted reproductive technologies.
Collapse
Affiliation(s)
- Mari-Carmen Fuentes-Albero
- Department of Biology, Avanqua-Oceanogràfic S.L, Valencia, Spain.,Department of Physiology, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| | - Leopoldo González-Brusi
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Paula Cots
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Chiara Luongo
- Department of Physiology, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| | - Silvia Abril-Sánchez
- Department of Physiology, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| | - José Luis Ros-Santaella
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Eliana Pintus
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Sara Ruiz-Díaz
- Department of Animal Reproduction, National Agricultural and Food Research and Technology Institute (INIA), Madrid, Spain
| | | | - María-Jesús Sánchez-Calabuig
- Department of Animal Reproduction, National Agricultural and Food Research and Technology Institute (INIA), Madrid, Spain.,Department of Medicine and Surgery, Faculty of Veterinary Science, Madrid, Spain
| | - Daniel García-Párraga
- Department of Biology, Avanqua-Oceanogràfic S.L, Valencia, Spain.,Research Department, Fundación Oceanogràfic, Valencia, Spain
| | - Manuel Avilés
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Mᵃ José Izquierdo Rico
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | | |
Collapse
|
19
|
Comparative Proteomic Analysis of Young and Adult Bull ( Bos taurus) Cryopreserved Semen. Animals (Basel) 2021; 11:ani11072013. [PMID: 34359141 PMCID: PMC8300238 DOI: 10.3390/ani11072013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022] Open
Abstract
The age of the bull is widely accepted to influence the production of sperm, affecting the amount and quality of produced semen, which in turn impacts the results of cryopreservation. However, the exact influence of the maturation process on cryopreserved sperm, as well as the underlying molecular mechanisms of this process, are not fully understood. The goal of this study was to evaluate changes in the proteome of thawed semen (spermatozoa and supernatant) collected from young and adult bulls (n = 6) using the 2D-DIGE approach. The quality of semen was assessed using a CASA system and flow cytometry. We found no significant age-related variation in semen quality, with the exception of the average path velocity of sperm movement, which was higher in adult bulls. Proteomic analysis indicated 15 spermatozoa proteins and 10 supernatant proteins with significant age-related changes. Our results suggest that semen from adult bulls is better equipped with proteins related to energy production, protection of spermatozoa against oxidative stress and fertilizing ability. Proteins increased in abundance in young bull spermatozoa were connected to the cytoskeleton and its development, which strongly suggests that developmental processes are still in progress. In conclusion, our results provide novel insight into the mechanism of the development of the male reproductive system of cattle.
Collapse
|
20
|
Vieira LA, Matás C, Torrecillas A, Saez F, Gadea J. Seminal plasma components from fertile stallions involved in the epididymal sperm freezability. Andrology 2020; 9:728-743. [PMID: 33185013 DOI: 10.1111/andr.12944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Seminal plasma (SP) plays a crucial role in sperm protection and functionality. However, the effect of SP on the sperm cryopreservation is dependent on the stallion and SP composition. The use of epididymal spermatozoa incubated in the presence of SP could help the identification of the components of SP that are able to confer protection upon the spermatozoa during freezing. OBJECTIVE The aims of this study were (i) to identify SP components involved in the potential protection of epididymal spermatozoa during the freeze-thawing process and (ii) to identify and evaluate the proteins likely related to sperm freezability, using two-dimensional difference gel electrophoresis (2D-DIGE). MATERIALS AND METHODS Epididymal spermatozoa from 4 stallions were incubated with SP (80%, v/v) or without SP (control) before freezing. Sperm parameters were evaluated after thawing (viability, chromatin condensation, acrosomal integrity, reactive oxygen species [ROS]) and SP composition: total antioxidant capacity (TAC), fatty acid composition, total protein concentration, and protein components by 2D-DIGE. RESULTS After thawing, the proportions of viable and acrosome-intact spermatozoa were higher than control when SP from two stallions was used (F and O). The SP of all stallions reduced ROS production in comparison with the control. After analyzing the SP components, it was found that total protein concentration, TAC, polyunsaturated fatty acids (PUFA), and eight specific proteins identified by 2D-DIGE were different between stallions. DISCUSSION These studies allow the identification of SP components that could be involved in sperm protection or cryotolerance. Use of this information could help in the selection of stallions according to their semen freezing capacity. CONCLUSION The composition of the SP probably contributes to semen cryotolerance capacity. Total protein, TAC, PUFA, and some proteins such as cysteine-rich secreted protein 3 could be used as biomarkers for the selection for sperm cryotolerance.
Collapse
Affiliation(s)
- Luis Alberto Vieira
- Department of Physiology, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), University of Murcia, Murcia, Spain.,Institute for Biomedical Research of Murcia IMIB-Arrixaca, Murcia, Spain
| | - Carmen Matás
- Department of Physiology, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), University of Murcia, Murcia, Spain.,Institute for Biomedical Research of Murcia IMIB-Arrixaca, Murcia, Spain
| | | | - Fara Saez
- Research Support Service, University of Murcia, Murcia, Spain
| | - Joaquín Gadea
- Department of Physiology, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), University of Murcia, Murcia, Spain.,Institute for Biomedical Research of Murcia IMIB-Arrixaca, Murcia, Spain
| |
Collapse
|
21
|
van Tilburg M, Sousa S, Lobo MDP, Monteiro-Azevedo ACOM, Azevedo RA, Araújo AA, Moura AA. Mapping the major proteome of reproductive fluids and sperm membranes of rams: From the cauda epididymis to ejaculation. Theriogenology 2020; 159:98-107. [PMID: 33126182 DOI: 10.1016/j.theriogenology.2020.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/07/2020] [Accepted: 10/03/2020] [Indexed: 12/31/2022]
Abstract
The present study evaluated the major proteome of ram seminal plasma and the main secretions that contribute to its formation, such as the cauda epididymal and accessory sex gland fluids. The study also investigated sperm membrane protein profiles before and after ejaculation. First, semen was collected from six rams (using artificial vagina) to obtain seminal plasma and ejaculated sperm. Then, rams were vasectomized for collection of accessory sex gland fluid (using artificial vagina). Next, rams were slaughtered and cauda epididymal fluid (CEF), seminal vesicle fluid, bulbourethral gland fluid and cauda epididymal sperm were properly collected. Proteins from reproductive fluids and sperm membranes were analyzed by 2-D SDS-PAGE, tandem mass spectrometry and bioinformatics. There we 386 proteins and 256 isoforms identified in all samples. The most abundant seminal plasma proteins were BSP1, BSP5 and spermadhesins (bodhesin-2 and spermadhesin Z13-like). These proteins were present in similar patterns in maps of accessory sexgland fluid, with very low quantities in the CEF and absent in the bulbourethral gland secretion. Thus, practically all BSPs and spermadhesins come from seminal vesicles. Bulbourethral gland fluid brought bactericidal/permeability-increasing protein-containing Family A member 1 isoforms, superoxide dismutase [Cu-Zn] and betamicroseminoprotein to seminal plasma. CEF was the major provider of clusterin, epididymal-specific lipocalin-5-like isoform, epididymal secretory gluthathione peroxidase, epididymal secretory protein E1 and prostaglandin-H2 D-isomerase to seminal plasma. Albumin came from all reproductive fluids. BSPs and spermadhesins were present in 2-D maps of ejaculated sperm but absent in cauda epididymal sperm. These proteins come from the seminal vesicles and bind to sperm at the moment of ejaculation. Other proteins of ejaculated and epididymal sperm membranes were mostly associated to energy production, cell adhesion and proteolytic activity (ATP synthases, disintegrin, metalloproteinase domain-containing protein 32, carboxypeptidase Q and cytosol aminopeptidase). In conclusion, there is a well-orchestrated sequence of events to form the major seminal plasma proteome, with specific contributions from cauda epididymis, seminal vesicles and bulbourethral glands. The present data contribute to a better understanding of male reproductive biology and how sperm functions are affected by the noncellularmicro environment of semen.
Collapse
Affiliation(s)
- Mauricio van Tilburg
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró, Brazil
| | - Solange Sousa
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| | - Marina D P Lobo
- Experimental Biology Centre (NUBEX), University of Fortaleza, Fortaleza, Brazil
| | | | - Renato A Azevedo
- Experimental Biology Centre (NUBEX), University of Fortaleza, Fortaleza, Brazil
| | - Airton A Araújo
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil; The School of Veterinary Medicine, Ceará State University, Fortaleza, Brazil
| | - Arlindo A Moura
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil.
| |
Collapse
|
22
|
Gomes FP, Park R, Viana AG, Fernandez-Costa C, Topper E, Kaya A, Memili E, Yates JR, Moura AA. Protein signatures of seminal plasma from bulls with contrasting frozen-thawed sperm viability. Sci Rep 2020; 10:14661. [PMID: 32887897 PMCID: PMC7474054 DOI: 10.1038/s41598-020-71015-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
The present study investigated the seminal plasma proteome of Holstein bulls with low (LF; n = 6) and high (HF; n = 8) sperm freezability. The percentage of viable frozen-thawed sperm (%ViableSperm) determined by flow cytometry varied from -2.2 in LF to + 7.8 in HF bulls, as compared to the average %ViableSperm (54.7%) measured in an 860-sire population. Seminal proteins were analyzed by label free mass spectrometry, with the support of statistical and bioinformatics analyses. This approach identified 1,445 proteins, associated with protein folding, cell-cell adhesion, NADH dehydrogenase activity, ATP-binding, proteasome complex, among other processes. There were 338 seminal proteins differentially expressed (p < 0.05) in LF and HF bulls. Based on multivariate analysis, BSP5 and seminal ribonuclease defined the HF phenotype, while spermadhesin-1, gelsolin, tubulins, glyceraldehyde-3-phosphate dehydrogenase, calmodulin, ATP synthase, sperm equatorial segment protein 1, peroxiredoxin-5, secretoglobin family 1D and glucose-6-phosphate isomerase characterized the LF phenotype. Regression models indicated that %ViableSperm of bulls was related to seminal plasma peroxiredoxin-5, spermadhesin-1 and the spermadhesin-1 × BSP5 interaction (R2 = 0.84 and 0.79; p < 0.05). This report is the largest dataset of bovine seminal plasma proteins. Specific proteins of the non-cellular microenvironment of semen are potential markers of sperm cryotolerance.
Collapse
Affiliation(s)
| | - Robin Park
- The Scripps Research Institute, La Jolla, CA, USA
| | | | | | | | | | | | - John R Yates
- The Scripps Research Institute, La Jolla, CA, USA.
| | | |
Collapse
|
23
|
Assessment of binder of sperm protein 1 (BSP1) and heparin effects on in vitro capacitation and fertilization of bovine ejaculated and epididymal sperm. ZYGOTE 2020; 28:489-494. [PMID: 32772933 DOI: 10.1017/s0967199420000374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The present study evaluated the effect of binder of sperm protein 1 (BSP1) and/or heparin on in vitro bovine capacitation and fertilization rates using epididymal and ejaculated bovine sperm. Frozen-thawed sperm were selected and used in the following treatments. Control group: Fert-TALP medium without heparin; heparin (HEP) group: Fert-TALP with heparin (10 UI/ml); BSP1 group: Fert-TALP medium with BSP1 (10 µg/ml for ejaculated sperm; 40 µg/ml for epididymal sperm); HEP + BSP1 group: Fert-TALP medium with heparin (5 UI/ml) and BSP1 (5 µg/ml for ejaculated sperm; 20 µg/ml for epididymal sperm) and determined in vitro capacitation rates in different interval times (0, 15, 30 and 60 min) using the chlortetracycline fluorescence (CTC) method. Also, we evaluated the development rates of oocytes fertilized with ejaculated or epididymal sperm into the same treatments. Capacitation was greater and faster when ejaculated sperm were treated for 60 min with heparin compared with other treatments. However, developmental rates were similar in all treatments. For epididymal sperm, the treatments with BSP1 presented higher capacitation and fertilization rates compared with heparin (P < 0.05). The effects of heparin + BSP1 on capacitation and developmental rates did not cause any increase in capacitation or blastocyst rates compared with other groups for ejaculated or epididymal sperm. In conclusion, this study confirmed that either BSP1 and heparin can be used as capacitator agents for bovine ejaculated sperm during IVF. However, BSP1 seems to be more efficient compared with heparin for epididymal sperm. Furthermore, BSP1 and heparin have no synergic effects on sperm capacitation.
Collapse
|
24
|
Guasti PN, Souza FF, Scott C, Papa PM, Camargo LS, Schmith RA, Monteiro GA, Hartwig FP, Papa FO. Equine seminal plasma and sperm membrane: Functional proteomic assessment. Theriogenology 2020; 156:70-81. [PMID: 32679458 DOI: 10.1016/j.theriogenology.2020.06.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/06/2020] [Accepted: 06/13/2020] [Indexed: 10/24/2022]
Abstract
During ejaculation, a large amount of seminal plasma proteins interact with the sperm membrane, leading to a series of biochemical and structural changes implicated in sperm function and gamete interaction. However, the roles of the majority of these proteins remain unknown. This study aimed to investigate the proteome and functionality of the major equine proteins of seminal plasma and the sperm membrane. Seminal plasma and enriched-membrane proteins (150 μg) were separated by two-dimensional gel electrophoresis, and the respective maps were analyzed. Protein identification was performed by in-gel digestion and tandem mass spectrometry (GeLC-MS/MS). Samples were also submitted to in-solution digestion (complex protein mixture) and identified by shotgun analysis by LC-MS/MS; bioinformatic tools were used to investigate protein functions. Seminal plasma and sperm membrane extract maps contained 91.0 ± 8.2 spots and 245.3 ± 11.3 spots, respectively, within the 3-10 pH range. In total, the most abundant proteins identified in 2D maps and in complex protein mixtures included 24 proteins for seminal plasma and 33 for sperm membrane extract, with a high degree of confidence (P < 0.05). Of these, HSP1, CRISP3 and KLK1E2 were the most abundant in seminal plasma; HSP1 was highly abundant in sperm membrane extract, in many isoforms, which is related to membrane destabilization and may compromise sperm preservation. HSP1-polybromo-1 interactions suggested a role in DNA stabilization. Prosaposin was identified in seminal plasma and may play a role in the fertilization process. IZUMO4, a member of the IgSF family involved in the prefertilization stages, was identified in 2D gel and MS/MS analysis of sperm membrane extract. Ten proteins of seminal plasma were found to interact with the sperm membrane and were related to binding and catalytic activities (clusterin, CRISP3, epididymal sperm-binding protein 1, kallikrein1E2, seminal plasma protein A3, and HSP1). Additionally, other identified proteins were associated with DNA integrity, capacitation and recognition of pregnancy. These findings indicate that the binding of specific proteins to the plasma membrane during ejaculation may influence sperm survival after cryopreservation and may play a role in decreasing the quality in stallions with toxic seminal plasma. Elucidation of these interactions is an important step in understanding the biological processes related to equine fertility and facilitates future investigations on the selection and application of low freezability semen strategies.
Collapse
Affiliation(s)
- P N Guasti
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, FMVZ, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - F F Souza
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, FMVZ, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - C Scott
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, FMVZ, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - P M Papa
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, FMVZ, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - L S Camargo
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, FMVZ, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - R A Schmith
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, FMVZ, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - G A Monteiro
- Department of Veterinary Clinic and Surgery, School of Veterinary Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - F P Hartwig
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, FMVZ, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - F O Papa
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, FMVZ, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
25
|
Ramesha KP, Mol P, Kannegundla U, Thota LN, Gopalakrishnan L, Rana E, Azharuddin N, Mangalaparthi KK, Kumar M, Dey G, Patil A, Saravanan K, Behera SK, Jeyakumar S, Kumaresan A, Kataktalware MA, Prasad TSK. Deep Proteome Profiling of Semen of Indian Indigenous Malnad Gidda (Bos indicus) Cattle. J Proteome Res 2020; 19:3364-3376. [DOI: 10.1021/acs.jproteome.0c00237] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kerekoppa P. Ramesha
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore 560030, India
| | - Praseeda Mol
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala 690525, India
| | - Uday Kannegundla
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore 560030, India
| | | | - Lathika Gopalakrishnan
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
- Manipal Academy of Higher Education, Madhav Nagar, Manipal 576104, India
| | - Ekta Rana
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore 560030, India
| | - Nizamuddin Azharuddin
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore 560030, India
| | - Kiran K Mangalaparthi
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala 690525, India
| | - Manish Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
| | - Gourav Dey
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
| | - Arun Patil
- Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Kumar Saravanan
- Proteomics Facility, Thermo Fisher Scientific India Pvt. Ltd., Bangalore 560066, India
| | - Santosh Kumar Behera
- Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Sakthivel Jeyakumar
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore 560030, India
| | - Arumugam Kumaresan
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore 560030, India
| | - Mukund A. Kataktalware
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore 560030, India
| | | |
Collapse
|
26
|
Pereira GR, de Lazari FL, Dalberto PF, Bizarro CV, Sontag ER, Koetz Junior C, Menegassi SRO, Barcellos JOJ, Bustamante-Filho IC. Effect of scrotal insulation on sperm quality and seminal plasma proteome of Brangus bulls. Theriogenology 2020; 144:194-203. [DOI: 10.1016/j.theriogenology.2020.01.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/13/2022]
|
27
|
Boe-Hansen GB, Rêgo JPA, Satake N, Venus B, Sadowski P, Nouwens A, Li Y, McGowan M. Effects of increased scrotal temperature on semen quality and seminal plasma proteins in Brahman bulls. Mol Reprod Dev 2020; 87:574-597. [PMID: 32083367 DOI: 10.1002/mrd.23328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/03/2020] [Indexed: 12/15/2022]
Abstract
Environmental temperature has effects on sperm quality with differences in susceptibility between cattle subspecies and breeds, but very little is known about the seminal plasma protein (SPP) changes resulting from testicular heat stress. Scrotal insulation (SI) for 48 hr was applied to Brahman (Bos indicus) bulls. Semen was collected at 3-day intervals from before, until 74 days post-SI. The changes in sperm morphology and motility following SI were comparable to previously reported and differences were detected in measures of sperm chromatin conformation as early as 8 days post-SI. New proteins spots, in the SPP two-dimensional (2-D) gels, were apparent when comparing pre-SI with 74 days post-SI, and SPP identified as associated with mechanisms of cellular repair and protection. Similar trends between 2-D gel and Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH-MS) data was observed, with SWATH-MS able to quantify individual SPP that otherwise were not resolved on 2-D gel. The SPP assessment at peak sperm damage (21-24 days) showed a significant difference in 29 SPP (adjusted p < .05), and identified six proteins with change in abundance in the SI group. In conclusion both spermatozoa and SPP composition of bulls are susceptible to temperature change incurred by SI, and SPP markers for testicular heat insults may be detected.
Collapse
Affiliation(s)
- Gry Brandt Boe-Hansen
- School of Veterinary Science, The University of Queensland, Brisbane, QLD, Australia
| | - João Paulo A Rêgo
- Federal Institute of Education, Science and Technology of Ceará, Boa Viagem Campus, Fortaleza, Brazil
| | - Nana Satake
- School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Bronwyn Venus
- Agri-Science Department of Agriculture, Fisheries and Forestry, Brisbane, QLD, Australia
| | - Pawel Sadowski
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD, Australia
| | - Amanda Nouwens
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Yutao Li
- CSIRO Agriculture and Food, St. Lucia, QLD, Australia
| | - Michael McGowan
- School of Veterinary Science, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
28
|
Abstract
Seminal fluid is often assumed to have just one function in mammalian reproduction, delivering sperm to fertilize oocytes. But seminal fluid also transmits signaling agents that interact with female reproductive tissues to facilitate conception and .pregnancy. Upon seminal fluid contact, female tissues initiate a controlled inflammatory response that affects several aspects of reproductive function to ultimately maximize the chances of a male producing healthy offspring. This effect is best characterized in mice, where the female response involves several steps. Initially, seminal fluid factors cause leukocytes to infiltrate the female reproductive tract, and to selectively target and eliminate excess sperm. Other signals stimulate ovulation, induce an altered transcriptional program in female tract tissues that modulates embryo developmental programming, and initiate immune adaptations to promote receptivity to implantation and placental development. A key result is expansion of the pool of regulatory T cells that assist implantation by suppressing inflammation, mediating tolerance to male transplantation antigens, and promoting uterine vascular adaptation and placental development. Principal signaling agents in seminal fluid include prostaglandins and transforming growth factor-β. The balance of male signals affects the nature of the female response, providing a mechanism of ‟cryptic female choiceˮ that influences female reproductive investment. Male-female seminal fluid signaling is evident in all mammalian species investigated including human, and effects of seminal fluid in invertebrates indicate evolutionarily conserved mechanisms. Understanding the female response to seminal fluid will shed new light on infertility and pregnancy disorders and is critical to defining how events at conception influence offspring health.
Collapse
Affiliation(s)
- John E Schjenken
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Sarah A Robertson
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, Australia
| |
Collapse
|
29
|
Codognoto VM, Yamada PH, Schmith RA, Rydygier de Ruediger F, de Paula Freitas-Dell'Aqua C, de Souza FF, Brochine S, do Carmo LM, Vieira AF, Oba E. Cross comparison of seminal plasma proteins from cattle and buffalo (Bubalus bubalis). Reprod Domest Anim 2019; 55:81-92. [PMID: 31733131 DOI: 10.1111/rda.13589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/25/2019] [Accepted: 11/13/2019] [Indexed: 11/27/2022]
Abstract
The objective of this study was to evaluate seminal plasma proteins from cattle and buffalo (Bubalus bubalis), to identify differences between related species. Sixteen buffaloes and 16 cattle between 30 and 60 months of age were used. Semen collection was performed by electroejaculation, followed by macroscopic and microscopic subjective analyses. After analysis, the samples were centrifuged at 800 g for 10 min, and the supernatant (seminal plasma) was recentrifuged at 10,000 g for 30 min at 4°C. The total protein concentration was determined by the Bradford method, and the proteins were digested in solution for mass spectrometry (nLC-MS/MS). Multivariate statistical analysis was used to evaluate the proteomics results by non-hierarchical clustering the considering exponentially modified protein abundance index (emPAI). Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were used for clustering. Proteomics identified 78 proteins, and multivariate analysis showed 4 that were over-expressed in buffaloes (cystatin C, prosaposin, peptide YY and keratin type II cytoskeletal 5) and 9 in cattle (spermadhesin-1, seminal plasma protein PDC-109, ribonuclease 4, metalloproteinase inhibitor 2, acrosin inhibitor 1, seminal ribonuclease, C-type natriuretic peptide, angiogenin-1 and osteopontin). Among the proteins identified in seminal plasma, the C-type natriuretic peptide and metalloproteinase inhibitors were described for the first time in buffaloes. Some protease inhibitors were found over-expressed in buffaloes, and important proteins in seminal plasma of cattle were not identified or were found at lower expression levels in buffaloes, which can contribute to reproductive performance in this species.
Collapse
Affiliation(s)
- Viviane Maria Codognoto
- Department of Animal Reproduction and Veterinary Radiology, School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, Brazil
| | - Paulo Henrique Yamada
- Department of Animal Reproduction and Veterinary Radiology, School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, Brazil
| | - Rúbia Alves Schmith
- Department of Animal Reproduction and Veterinary Radiology, School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, Brazil
| | - Felipe Rydygier de Ruediger
- Department of Animal Reproduction and Veterinary Radiology, School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, Brazil
| | - Camila de Paula Freitas-Dell'Aqua
- Department of Animal Reproduction and Veterinary Radiology, School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, Brazil
| | - Fabiana Ferreira de Souza
- Department of Animal Reproduction and Veterinary Radiology, School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, Brazil
| | - Suzane Brochine
- Department of Animal Reproduction and Veterinary Radiology, School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, Brazil
| | - Lucas Monteiro do Carmo
- Department of Animal Reproduction and Veterinary Radiology, School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, Brazil
| | - Andressa Filaz Vieira
- Department of Animal Reproduction and Veterinary Radiology, School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, Brazil
| | - Eunice Oba
- Department of Animal Reproduction and Veterinary Radiology, School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, Brazil
| |
Collapse
|
30
|
De Lazari FL, Sontag ER, Schneider A, Araripe Moura AA, Vasconcelos FR, Nagano CS, Dalberto PF, Bizarro CV, Mattos RC, Mascarenhas Jobim MI, Bustamante-Filho IC. Proteomic identification of boar seminal plasma proteins related to sperm resistance to cooling at 17 °C. Theriogenology 2019; 147:135-145. [PMID: 31780059 DOI: 10.1016/j.theriogenology.2019.11.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 10/25/2022]
Abstract
The modern pig industry relies on extensive use of artificial insemination with cooled semen. It is important that semen doses maintain their quality during processing, transport and storage before insemination to guarantee maximum fertility rates. However, ejaculates may respond differently to liquid preservation at 17 °C, despite the optimal quality assessed before cooling. Thus, the aim of this study was to identify differences in seminal plasma proteome of ejaculates with a higher or lower seminal resistance to storage at 17 °C. A total of 148 ejaculates from 65 sexually mature healthy boars were classified as: High Resistance to cooling (HR, total motility > 60% at 144h) and Low resistance to cooling (LR, total motility <60 at 72h). To identify differentially expressed seminal plasma proteins between HR and LR ejaculates, ten ejaculates of each group were analyzed by 2D SDS-PAGE and ESI-Q-TOF mass spectrometry. The proteins associated with HR ejaculates were cathepsin B (spot 2803 and 6601, p < 0.01); spermadhesin PSP-I (spots 3101 and 3103, p < 0.05); epididymal secretory protein E1 precursor (spot 2101, p < 0.05) and IgGFc binding protein (spot 1603, p < 0.01). The protein associated with LR group was the Major seminal plasma PSPI (spot 9103, p < 0.01). To our knowledge, this is the first report of the association of boar seminal plasma proteins to semen resistance to cold storage at 17 °C. These results suggest the use of these proteins as biomarkers for semen resistance to preservation at 17 °C.
Collapse
Affiliation(s)
- Franciele Lucca De Lazari
- Laboratório de Biotecnologia, Universidade do Vale do Taquari - Univates, Rua Avelino Tallini, 171, 95914-014, Lajeado, RS, Brazil
| | - Elistone Rafael Sontag
- Laboratório de Biotecnologia, Universidade do Vale do Taquari - Univates, Rua Avelino Tallini, 171, 95914-014, Lajeado, RS, Brazil
| | - Alexander Schneider
- Laboratório de Biotecnologia, Universidade do Vale do Taquari - Univates, Rua Avelino Tallini, 171, 95914-014, Lajeado, RS, Brazil
| | | | - Fábio Roger Vasconcelos
- Laboratório de Fisiologia Animal, Departamento de Zootecnia, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Celso Shiniti Nagano
- Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Pedro Ferrari Dalberto
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Av. Ipiranga 6681 - Prédio 92A Tecnopuc, Porto Alegre, RS, Brazil
| | - Cristiano Valim Bizarro
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Av. Ipiranga 6681 - Prédio 92A Tecnopuc, Porto Alegre, RS, Brazil
| | - Rodrigo Costa Mattos
- REPROLAB, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Ivan Cunha Bustamante-Filho
- Laboratório de Biotecnologia, Universidade do Vale do Taquari - Univates, Rua Avelino Tallini, 171, 95914-014, Lajeado, RS, Brazil.
| |
Collapse
|
31
|
Mogielnicka-Brzozowska M, Prochowska S, Niżański W, Bromke MA, Wiśniewski J, Olejnik B, Kuzborska A, Fraser L, Młynarz P, Kordan W. Proteome of cat semen obtained after urethral catheterization. Theriogenology 2019; 141:68-81. [PMID: 31518731 DOI: 10.1016/j.theriogenology.2019.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 09/03/2019] [Accepted: 09/03/2019] [Indexed: 01/04/2023]
Abstract
The binding of seminal plasma (SP) proteins by spermatozoa plays an important role in the regulation of sperm epididymal maturation, motility gaining in female reproductive tracts and sperm-egg interaction. The aim of the study was to analyze the SP and sperm extracts proteome of cat (Felis catus) semen. The seminal plasma and spermatozoa were obtained by urethra catheterization from 10 male cats. Proteins were extracted using RIPA buffer and separated by electrophoresis (SDS-PAGE). The gels were analyzed using MultiAnalyst software. The proteins were subsequently analyzed using NanoUPLC-Q-TOF/MS. UniProt database-supported identification resulted in 106 proteins identified in the cat SP and 98 proteins in the extracts of spermatozoa. Based on a gene ontology analysis, dominant molecular functions of feline SP proteins were binding, catalytic, and antioxidant activity (56%, 33%, and 11% of cases, respectively). The molecular functions of sperm extracts proteins were mainly involved in catalytic activity (41%) and binding (23%). The proteins present in both, the SP and spermatozoa's extracts, were: serum albumin (ALB), semenogelin 2 (SEMG 2), clusterin (CLU), lactoferrin (LTF), prostatic acid phosphatase (ACPP), prolactin inducible protein (PIP), negative elongation factor E (NELF-E) and ectonucleotide pyrophosphatase (ENPP3). Protein-protein interactions analysis showed significant connection for 12 proteins in the cat semen. The seminal plasma proteins which, with high probability score, participate in important metabolic pathways are: glutathione peroxidases (GPx5 and 6), prostatic acid phosphatase (ACPP), β-hexosaminidase (HEXB), polymeric immunoglobulin receptor (pIgR) and serpin family F member 1 (SERPINF1). For sperm protein extracts it were: pyruvate dehydrogenase (PDHB), succinate-CoA-ligase (SUCLA2), malate dehydrogenase (MDH2), ATP synthase F1 subunit alpha (ATP5F1A) and tubulin beta (TUBB).
Collapse
Affiliation(s)
- Marzena Mogielnicka-Brzozowska
- Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-957, Olsztyn, Poland.
| | - Sylwia Prochowska
- Department of Reproduction and Clinic of Farm Animals, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 49, 50-366, Wrocław, Poland
| | - Wojciech Niżański
- Department of Reproduction and Clinic of Farm Animals, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 49, 50-366, Wrocław, Poland
| | - Mariusz A Bromke
- Department of Medical Biochemistry, Medical University of Wrocław, Chałubińskiego 10, 50-368, Wrocław, Poland
| | - Jerzy Wiśniewski
- Department of Medical Biochemistry, Medical University of Wrocław, Chałubińskiego 10, 50-368, Wrocław, Poland
| | - Beata Olejnik
- Department of Chemistry and Immunochemistry, Medical University of Wrocław, Bujwida 44a, 50-345, Wrocław, Poland
| | - Anna Kuzborska
- Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-957, Olsztyn, Poland
| | - Leyland Fraser
- Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-957, Olsztyn, Poland
| | - Piotr Młynarz
- Department of Chemistry, Wroclaw University of Technology, 50-370, Wrocław, Poland
| | - Władysław Kordan
- Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-957, Olsztyn, Poland
| |
Collapse
|
32
|
Fu Q, Pan L, Huang D, Wang Z, Hou Z, Zhang M. Proteomic profiles of buffalo spermatozoa and seminal plasma. Theriogenology 2019; 134:74-82. [DOI: 10.1016/j.theriogenology.2019.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 05/12/2019] [Accepted: 05/14/2019] [Indexed: 01/05/2023]
|
33
|
Maranesi M, Petrucci L, Leonardi L, Piro F, Rebollar PG, Millán P, Cocci P, Vullo C, Parillo F, Moura A, Mariscal GG, Boiti C, Zerani M. New insights on a NGF-mediated pathway to induce ovulation in rabbits (Oryctolagus cuniculus). Biol Reprod 2019; 98:634-643. [PMID: 29438491 DOI: 10.1093/biolre/ioy041] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 02/07/2018] [Indexed: 12/26/2022] Open
Abstract
To investigate the ovulatory mechanisms triggered by raw semen (RS) in rabbits, we examined the expression of nerve growth factor (NGF)-a supposed ovulation-inducing factor (OIF)-and cognate receptors in anterior pituitary, ovary, and cervix as well as plasma NGF and luteinizing hormone (LH) concentrations. Six does/group were sham-inseminated with sterile saline (PBS), naturally mated (NM), inseminated with RS alone or after lumbar anesthesia (ARS), or treatment with COX inhibitors (CIRS). Immunohistochemistry revealed positive signals for NGF and receptors in all tissues. RT-PCR confirmed the presence of the target transcripts in the same tissues, except NTRK1 in the cervix. Circulating NGF concentrations rose 3- to 6-fold (P < 0.01) 15 min after semen deposition into the genital tract of NM, RS, and ARS rabbits and remained sustained thereafter. Circulating NGF was 4-fold lower (P < 0.01) in CIRS than in RS does indicating that NGF is mainly synthesized by the uterus. A concomitant rise of LH and NGF concentrations was found in 83.3%, 50.0%, and 16.7% of NM, RS, and CIRS does, respectively, but not in ARS (despite high NGF circulating levels). Seminal plasma NGF concentration was 151.9 ± 9.25 μg/mL. The ovulatory responses were 0%, 83.3%, 66.7%, 16.7%, and 0% in PBS, NM, RS, ARS, and CIRS groups, respectively. Present data confirm that, although RS may induce ovulation via endocrine mechanisms through binding to NGF receptors in the ovary, a novel OIF-mediated neural mechanism facilitates ovulation in rabbits.
Collapse
Affiliation(s)
- Margherita Maranesi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Perugia, Italy
| | - Linda Petrucci
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Perugia, Italy
| | - Leonardo Leonardi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Perugia, Italy
| | - Federica Piro
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Perugia, Italy
| | | | - Pilar Millán
- Departamento de Fisiología (Fisiología animal), Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Paolo Cocci
- Scuola di Bioscienze e Medicina Veterinaria, Università degli Studi di Camerino, Matelica, Italy
| | - Cecilia Vullo
- Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università degli Studi di Camerino, Camerino, Italy
| | - Francesco Parillo
- Scuola di Bioscienze e Medicina Veterinaria, Università degli Studi di Camerino, Matelica, Italy
| | - Arlindo Moura
- Departamento de Zootecnia, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Gabriela Gonzalez Mariscal
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Cristiano Boiti
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Perugia, Italy
| | - Massimo Zerani
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Perugia, Italy.,Scuola di Bioscienze e Medicina Veterinaria, Università degli Studi di Camerino, Matelica, Italy
| |
Collapse
|
34
|
Westfalewicz B, Dietrich M, Słowińska M, Judycka S, Ciereszko A. Seasonal changes in the proteome of cryopreserved bull semen supernatant. Theriogenology 2019; 126:295-302. [DOI: 10.1016/j.theriogenology.2018.12.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/30/2018] [Accepted: 12/04/2018] [Indexed: 01/26/2023]
|
35
|
Bezerra MJB, Arruda-Alencar JM, Martins JAM, Viana AGA, Viana Neto AM, Rêgo JPA, Oliveira RV, Lobo M, Moreira ACO, Moreira RA, Moura AA. Major seminal plasma proteome of rabbits and associations with sperm quality. Theriogenology 2019; 128:156-166. [PMID: 30772659 DOI: 10.1016/j.theriogenology.2019.01.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/05/2019] [Accepted: 01/13/2019] [Indexed: 12/12/2022]
Abstract
The present study was conducted to describe the major seminal plasma proteome of rabbits and potential associations between seminal proteins and semen criteria. Semen samples were collected from 18 New Zealand adult rabbits, and seminal plasma proteins were analyzed by 2-D SDS-PAGE and tandem mass spectrometry. Sperm motility, vigor, concentration, morphology and membrane sperm viability were evaluated. Rabbits ejaculated 364 ± 70 million sperm/ml, with 81 ± 6.1% motile cells, 3.8 ± 0.2 vigor and 66.7 ± 2.5% sperm with normal morphology. Based on the viability and acrosome integrity assay, there were 65.8 ± 2.5% live sperm with intact acrosome and most spermatozoa had both intact acrosome and functional membrane. On average, 2-D gels of rabbit seminal plasma had 232 ± 69.5 spots, as determined by PDQuest software (Bio Rad, USA). Mass spectrometry allowed the identification of 137 different proteins. The most abundant proteins in rabbit seminal plasma were hemoglobin subunit zeta-like, annexins, lipocalin, FAM115 protein and albumin. The intensity of the spots associated with these five proteins represented 71.5% of the intensity of all spots detected in the master gel. Multiple regression models were estimated using sperm traits as dependent variables and seminal plasma proteins as independent ones. Also, sperm motility had positive association with beta-nerve growth factor and cysteine-rich secretory protein 1-like and a negative one with galectin-1. The percentage of rabbit sperm with intact membrane was related to seminal plasma protein FAM115 complex and tropomyosin. Then, the population of morphologically normal sperm in rabbit semen was positively linked to carcinoembryonic antigen-related cell adhesion molecule 6-like and down regulated by seminal plasma isocitrate dehydrogenase. Based on another regression model, the variation in the percentage of live sperm with intact acrosome was partially explained by the amount of leukocyte elastase inhibitor and the peptidyl-prolyl cis-trans isomerase A in the rabbit seminal fluid. The current study reports the identification of 137 proteins of rabbit seminal plasma. Major proteins of seminal secretion relate primarily to prevention of damages caused by lipid peroxide radicals and oxidative stress, membrane functionality, transport of lipids to the sperm membrane and temperature regulation. Moreover, finding seminal plasma proteins as indicators of semen parameters will improve assisted reproductive technologies.
Collapse
Affiliation(s)
- M J B Bezerra
- Department of Animal Science, Federal University of Ceará, Fortaleza, CE, Brazil
| | - J M Arruda-Alencar
- Department of Animal Science, Federal University of Ceará, Fortaleza, CE, Brazil
| | - J A M Martins
- Department of Animal Science, Federal University of Ceará, Fortaleza, CE, Brazil
| | - A G A Viana
- Department of Animal Science, Federal University of Ceará, Fortaleza, CE, Brazil
| | - A M Viana Neto
- Department of Animal Science, Federal University of Ceará, Fortaleza, CE, Brazil
| | - J P A Rêgo
- Department of Animal Science, Federal University of Ceará, Fortaleza, CE, Brazil
| | - R V Oliveira
- Department of Animal Science, Federal University of Ceará, Fortaleza, CE, Brazil
| | - M Lobo
- School of Pharmacy, University of Fortaleza, Fortaleza, CE, Brazil
| | - A C O Moreira
- School of Pharmacy, University of Fortaleza, Fortaleza, CE, Brazil
| | - R A Moreira
- School of Pharmacy, University of Fortaleza, Fortaleza, CE, Brazil
| | - A A Moura
- Department of Animal Science, Federal University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
36
|
Proteomic landscape of seminal plasma associated with dairy bull fertility. Sci Rep 2018; 8:16323. [PMID: 30397208 PMCID: PMC6218504 DOI: 10.1038/s41598-018-34152-w] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 09/18/2018] [Indexed: 12/19/2022] Open
Abstract
Male fertility is the ability of sperm to fertilize the egg and sustain embryo development. Several factors determine the fertilizing capacity of mammalian sperm, including those intrinsic to sperm and components of the seminal plasma. The present study analyzed the seminal fluid proteome of Bos taurus and potential associations between proteins and fertility scores. Mass spectrometry coupled with nano HPLC allowed the identification of 1,159 proteins in the dairy bull seminal plasma. There were 50 and 29 seminal proteins more abundant in high (HF) low fertility (LF) bulls, respectively. Based on multivariate analysis, C-type natriuretic peptide, TIMP-2, BSP5 and sulfhydryl oxidase indicated relationship with HF bulls. Clusterin, tissue factor pathway inhibitor 2, galectin-3-binding protein and 5′-nucleotidase were associated with LF bulls. Abundance of NAD(P)(+)-arginine ADP-ribosyltransferase, prosaposin and transmembrane protein 2 proteins had the highest positive correlations with fertility ranking. Quantities of vitamin D-binding protein, nucleotide exchange factor SIL1 and galectin-3-binding protein showed the highest negative correlations with fertility ranking. A fertility ranking score was calculated and the relationship with these proteins was significant (Spearman’s rho = 0.94). The present findings represent a major and novel contribution to the study of bovine seminal proteins. Indicators of fertility can be used to improve reproductive biotechnologies.
Collapse
|
37
|
Nerve Growth Factor-β production in the bull: Gene expression, immunolocalization, seminal plasma constitution, and association with sire conception rates. Anim Reprod Sci 2018; 197:335-342. [DOI: 10.1016/j.anireprosci.2018.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/24/2018] [Accepted: 09/04/2018] [Indexed: 12/13/2022]
|
38
|
Codognoto VM, Yamada PH, Schmith RA, de Ruediger FR, Scott C, de Faria Lainetti P, Brochine S, de Paula Freitas-Dell'Aqua C, de Souza FF, Oba E. Functional insights into the role of seminal plasma proteins on sperm motility of buffalo. Anim Reprod Sci 2018; 195:251-258. [PMID: 29884323 DOI: 10.1016/j.anireprosci.2018.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/24/2018] [Accepted: 06/01/2018] [Indexed: 12/29/2022]
Abstract
The objective of the present study was to describe the proteins from the seminal plasma of buffalo and correlate these proteins with sperm motility. Ejaculates from sixteen Murrah buffalo were used. Semen collection was performed by electroejaculation, and the ejaculate was evaluated by macroscopic (volume) and microscopic analysis (subjective motility and vigor, as well as sperm concentration). After the analysis, the samples were centrifuged (800g for 10 min and 10,000 for 30 min at 4 °C), and the supernatant (seminal plasma) was used to determine total protein concentration by the Bradford method. Based on total protein concentration, an aliquot (50 μg) was taken to conduct protein in-solution digestion for nano-LC-ESI-Q-TOF mass spectrometry analysis. Samples were divided into two groups, minimal (little sperm motility) and greater (typical sperm motility), based on non-hierarchical clustering considering motility and emPAI protein value. The data were analyzed by multivariate statistical analysis using principal component analysis (PCA) and partial analysis of minimum squares discrimination (PLS-DA). Forty-eight proteins were detected in the seminal plasma, and fifteen were common to two groups. There were six proteins that were significantly different between the groups. The main functions of proteins in seminal plasma were catalytic and binding activity. Spermadhesin protein, ribonuclease, 14-3-3 protein zeta/delta and acrosin inhibitor were in greater amounts in seminal plasma from the group with greater sperm motility; prosaposin and peptide YY were in greater amounts in the group with little sperm motility. The proteins detected in the greater motility group were correlated with sperm protection, including protection against oxidative stress, lipid peroxidation, protease inhibition and prevention of premature capacitation and acrosome reaction. In the group with little sperm motility, one of the identified proteins is considered to be an antifertility factor, whereas the function of other identified protein is not definitive. Results from the present study add to the knowledge base about the molecular processes related with sperm motility, and these findings can be used for determining potential markers of semen quality.
Collapse
Affiliation(s)
- Viviane Maria Codognoto
- São Paulo State University (UNESP), School of Veterinary Medicine and Animal Science, Department of Animal Reproduction and Veterinary Radiology, Botucatu, Brazil.
| | - Paulo Henrique Yamada
- São Paulo State University (UNESP), School of Veterinary Medicine and Animal Science, Department of Animal Reproduction and Veterinary Radiology, Botucatu, Brazil
| | - Rúbia Alves Schmith
- São Paulo State University (UNESP), School of Veterinary Medicine and Animal Science, Department of Animal Reproduction and Veterinary Radiology, Botucatu, Brazil
| | - Felipe Rydygier de Ruediger
- São Paulo State University (UNESP), School of Veterinary Medicine and Animal Science, Department of Animal Reproduction and Veterinary Radiology, Botucatu, Brazil
| | - Caroline Scott
- São Paulo State University (UNESP), School of Veterinary Medicine and Animal Science, Department of Animal Reproduction and Veterinary Radiology, Botucatu, Brazil
| | - Patrícia de Faria Lainetti
- São Paulo State University (UNESP), School of Veterinary Medicine and Animal Science, Department of Animal Reproduction and Veterinary Radiology, Botucatu, Brazil
| | - Suzane Brochine
- São Paulo State University (UNESP), School of Veterinary Medicine and Animal Science, Department of Animal Reproduction and Veterinary Radiology, Botucatu, Brazil
| | - Camila de Paula Freitas-Dell'Aqua
- São Paulo State University (UNESP), School of Veterinary Medicine and Animal Science, Department of Animal Reproduction and Veterinary Radiology, Botucatu, Brazil
| | - Fabiana Ferreira de Souza
- São Paulo State University (UNESP), School of Veterinary Medicine and Animal Science, Department of Animal Reproduction and Veterinary Radiology, Botucatu, Brazil
| | - Eunice Oba
- São Paulo State University (UNESP), School of Veterinary Medicine and Animal Science, Department of Animal Reproduction and Veterinary Radiology, Botucatu, Brazil
| |
Collapse
|
39
|
Druart X, de Graaf S. Seminal plasma proteomes and sperm fertility. Anim Reprod Sci 2018; 194:33-40. [PMID: 29657075 DOI: 10.1016/j.anireprosci.2018.04.061] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/19/2018] [Accepted: 04/08/2018] [Indexed: 02/07/2023]
Abstract
During ejaculation, the spermatozoa are transported by the seminal plasma, a fluid resulting from secretions originating mainly from the prostate and the seminal vesicles in mammals. The interaction of the seminal plasma with spermatozoa induces binding of seminal proteins onto the sperm surface and membrane remodeling potentially impacting the sperm transport, survival and fertilizing ability in the female genital tract. The seminal plasma also contains peptides and proteins involved in the inflammatory and immune response of the female tract. Therefore the seminal plasma proteome has been investigated in a large range of taxa, including mammals, birds, fishes and insect species. The association of the seminal plasma with semen preservation or fertility identified proteic markers of seminal plasma function in domestic species. This review summarizes the current knowledge in seminal plasma proteomes and proteic markers of sperm preservation in animal species.
Collapse
Affiliation(s)
- Xavier Druart
- Physiologie de la Reproduction et du Comportement, INRA, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France.
| | - Simon de Graaf
- RMC Gunn Building (B19), Faculty of Veterinary Science, The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
40
|
Velho ALC, Menezes E, Dinh T, Kaya A, Topper E, Moura AA, Memili E. Metabolomic markers of fertility in bull seminal plasma. PLoS One 2018; 13:e0195279. [PMID: 29634739 PMCID: PMC5892889 DOI: 10.1371/journal.pone.0195279] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 03/19/2018] [Indexed: 12/27/2022] Open
Abstract
Metabolites play essential roles in biological systems, but detailed identities and significance of the seminal plasma metabolome related to bull fertility are still unknown. The objectives of this study were to determine the comprehensive metabolome of seminal plasma from Holstein bulls and to ascertain the potential of metabolites as biomarkers of bull fertility. The seminal plasma metabolome from 16 Holstein bulls with two fertility rates were determined by gas chromatography-mass spectrometry (GC-MS). Multivariate and univariate analyses of the data were performed, and the pathways associated with the seminal plasma metabolome were identified using bioinformatics approaches. Sixty-three metabolites were identified in the seminal plasma of all bulls. Fructose was the most abundant metabolite in the seminal fluid, followed for citric acid, lactic acid, urea and phosphoric acid. Androstenedione, 4-ketoglucose, D-xylofuranose, 2-oxoglutaric acid and erythronic acid represented the least predominant metabolites. Partial-Least Squares Discriminant Analysis (PLSDA) revealed a distinct separation between high and low fertility bulls. The metabolites with the greatest Variable Importance in Projection score (VIP > 2) were 2-oxoglutaric acid and fructose. Heat-map analysis, based on VIP score, and univariate analysis indicated that 2-oxoglutaric acid was less (P = 0.02); whereas fructose was greater (P = 0.02) in high fertility than in low fertility bulls. The current study is the first to describe the metabolome of bull seminal plasma using GC-MS and presented metabolites such as 2-oxoglutaric acid and fructose as potential biomarkers of bull fertility.
Collapse
Affiliation(s)
- Ana Luiza Cazaux Velho
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, United States of America
- Department of Animal Sciences, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Erika Menezes
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, United States of America
| | - Thu Dinh
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, United States of America
| | - Abdullah Kaya
- Alta Genetic Inc., Watertown, WI, United States of America
- Department of Reproduction and Artificial Insemination, Selcuk University, Konya, Turkey
| | - Einko Topper
- Alta Genetic Inc., Watertown, WI, United States of America
| | - Arlindo Alencar Moura
- Department of Animal Sciences, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Erdogan Memili
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, United States of America
| |
Collapse
|
41
|
Silva HVR, Rodriguez-Villamil P, Magalhães FFD, Nunes TGP, Freitas LAD, Ribeiro LR, Silva AR, Moura AA, Silva LDMD. Seminal plasma and sperm proteome of ring-tailed coatis (Nasua nasua, Linnaeus, 1766). Theriogenology 2018; 111:34-42. [PMID: 29427806 DOI: 10.1016/j.theriogenology.2017.12.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/11/2017] [Accepted: 12/19/2017] [Indexed: 12/24/2022]
Abstract
Ring-tailed coati is listed as a species of least concern in the International Union for Conservation of Nature (IUCN) Red List, however, there has been a sharp decline in their population. The present study was conducted to evaluate the major proteins of both seminal plasma and sperm in ring-tailed coatis. Semen sample was collected from three adult coatis and evaluated for their morphological characteristics. Further, the sample was centrifuged to separate spermatozoa from seminal plasma, and then stored in liquid nitrogen. The seminal plasma and sperm proteins were subjected to one-dimensional (1-D) sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and identified by mass spectrometry. Gene ontology and protein networks were analyzed using bioinformatics tools. Based on sperm concentration and average protein content of the semen, the concentration of protein/spermatozoon was found to be 104.69 ± 44.43 μg. The analysis of SDS-PAGE gels showed 20.3 ± 3.1 and 17 ± 2 protein bands/lane for seminal plasma and sperm, respectively. In-gel protein digestion and peptide analysis by mass spectrometry revealed 238 and 246 proteins in the seminal plasma and sperm, respectively. The gene ontology analysis revealed that the proteins of seminal plasma mainly participated in cellular (35%) and regulatory (21%) processes. According to their cellular localization, seminal plasma proteins were categorized as structural (18%), extracellular (17%), and nuclear (14%) proteins with molecular functions, such as catalytic activity (43%) and binding (43%). The sperm proteins were also involved in cellular (38%) and regulatory (23%) processes, and mainly categorized as extracellular (17%), nuclear (13%), and cytoplasmic (10%) proteins. The major molecular functions of the sperm proteins were catalytic activity (44%) and binding (42%). These results indicated that the seminal plasma of ring-tailed coati has an array of proteins that can potentially modulate several sperm functions, from sperm protection to oocyte binding. However, further studies are necessary to interpret the roles of these major seminal plasma proteins in coatis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Alexandre Rodrigues Silva
- Laboratory of Animal Germplasm Conservation, Federal University of the Semi-Arid, Mossoró, RN, Brazil
| | - Arlindo A Moura
- Department of Animal Science, Federal University of Ceará, Fortaleza, CE, Brazil
| | | |
Collapse
|
42
|
Ferreira CER, Haas CS, Goularte KL, Rovani MT, Cardoso FF, Schneider A, Gasperin BG, Lucia T. Expression of paraoxonase types 1, 2 and 3 in reproductive tissues and activity of paraoxonase type 1 in the serum and seminal plasma of bulls. Andrologia 2017; 50. [PMID: 29143963 DOI: 10.1111/and.12923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2017] [Indexed: 11/28/2022] Open
Abstract
The paraoxonases types 1, 2 and 3 (PON1, PON2 and PON3, respectively) are enzymes that degrade lipid peroxides, preventing oxidative damages relevant for male reproductive function. This study determined the expression of those three paraoxonases in reproductive tissues of bulls and evaluated correlations among the activity of PON1 in the serum and seminal plasma with breeding soundness parameters in bulls. The expression of PON1, PON2 and PON3 was characterised by RT-PCR in samples of testicular parenchyma, vesicular glands and epididymis collected from three slaughtered bulls. All three paraoxonases were expressed in the testicular parenchyma, PON2 and PON3 were both expressed in the epididymis head and PON3 was also expressed in the epididymis tail. The PON1 activity was determined in samples of serum and seminal plasma from 110 bulls submitted to breeding soundness evaluation. There was a strong correlation (r = .90) between the activity of the PON1 in both serum and seminal plasma (p < .0001). The PON1 activity in the seminal plasma was positively correlated with ejaculate's colour, sperm mass activity (p = .04), motility, vigour and viability (all p < .01). Thus, PON1 may be a potential marker for sperm motility and viability in bulls.
Collapse
Affiliation(s)
- C E R Ferreira
- ReproPEl, Universidade Federal de Pelotas, Pelotas-RS, Brazil.,Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas-RS, Brazil
| | - C S Haas
- ReproPEl, Universidade Federal de Pelotas, Pelotas-RS, Brazil.,Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas-RS, Brazil
| | - K L Goularte
- ReproPEl, Universidade Federal de Pelotas, Pelotas-RS, Brazil.,Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas-RS, Brazil
| | - M T Rovani
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas-RS, Brazil
| | | | - A Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas-RS, Brazil
| | - B G Gasperin
- ReproPEl, Universidade Federal de Pelotas, Pelotas-RS, Brazil.,Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas-RS, Brazil
| | - T Lucia
- ReproPEl, Universidade Federal de Pelotas, Pelotas-RS, Brazil.,Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas-RS, Brazil
| |
Collapse
|
43
|
Menezes TP, Hill E, de Alencar Moura A, Lobo MDP, Monteiro-Moreira ACO, Breton S, Machado-Neves M. Pattern of protein expression in the epididymis of Oligoryzomys nigripes (Cricetidae, Sigmodontinae). Cell Tissue Res 2017; 372:135-147. [PMID: 29119327 DOI: 10.1007/s00441-017-2714-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 10/10/2017] [Indexed: 11/24/2022]
Abstract
In the epididymis, epithelial cells work in a concerted manner to create a luminal environment for sperm maturation, transport, and storage. However, the cell functions may be affected by anthropogenic factors, causing negative impacts on male fertility. In our study, we describe the pattern of protein expression in the epithelium and luminal fluid from epididymis of Oligoryzomys nigripes, a South American sigmodontine rodent whose reproductive biology has been little studied. Nine animals were captured from a preserved area of Atlantic Forest, where the exposure to anthropogenic influences is minimal. Epididymides were processed for histological analysis under light and epifluorescence microscopy, in which we used cell-specific markers aquaporin 9 (AQP9), vacuolar H+-ATPase (V-ATPase), and cytokeratin 5 (KRT5). Other samples were assessed for protein expression using shotgun proteomics. Similar to laboratory rodents, principal cells expressed AQP9 in their stereocilia. Basal cells, identified by KRT5 labeling, presented lateral body projections and a few axiopodia going toward the lumen. Clear cells expressed V-ATPase in their sub-apical vesicles and microplicae, and showed different shapes along the duct. Shotgun proteomics detected 51 proteins from epididymal supernatant. Most of them have been previously described in other species, indicating that they are well conserved. Twenty-three proteins detected in O. nigripes have not been described in epididymis from other South American sigmodontine rodents, confirming that the secretion pattern is species-specific. Our findings in O. nigripes from a protected area may help to create a baseline for studies investigating the effects of anthropogenic factors on functionality of the epididymal epithelium.
Collapse
Affiliation(s)
- Tatiana Prata Menezes
- Department of General Biology, Federal University of Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Eric Hill
- Center for Systems Biology/Program in Membrane Biology/Nephrology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.,Micro Video Instruments, Inc, Avon, MA, 02322, USA
| | | | - Marina D P Lobo
- Laboratory of Proteomics, School of Pharmacy, University of Fortaleza, Ceará, CE, 60811-905, Brazil
| | | | - Sylvie Breton
- Center for Systems Biology/Program in Membrane Biology/Nephrology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Mariana Machado-Neves
- Department of General Biology, Federal University of Viçosa, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|
44
|
Menezes EB, de Oliveira RV, van Tilburg MF, Barbosa EA, Nascimento NV, Velho ALMCS, Moreno FB, Moreira RA, Monteiro-Moreira ACO, Carvalho GMC, Ramos AF, Memili E, Moura AA. Proteomic analysis of seminal plasma from locally-adapted "Curraleiro Pé-Duro bulls" (Bos taurus): identifying biomarkers involved in sperm physiology in endangered animals for conservation of biodiversity. Anim Reprod Sci 2017. [PMID: 28625714 DOI: 10.1016/j.anireprosci.2017.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The present study was aimed at evaluating the seminal plasma proteins and sperm parameters of Curraleiro Pé-Duro bulls. Semen was collected from 10 bulls by electroejaculation, and sperm parameters were evaluated in fresh and frozen-thawed semen. Seminal plasma proteins were analyzed by 2-D SDS-PAGE and mass spectrophotometry. Tools in computational biology were used to generate bioinformatic knowledge and evaluate gene ontology, protein-protein interactions, phylogenetic trees and multiple sequence alignments. Sperm motility in fresh and frozen-thawed semen was 78.8±1.8% and 21.2±1.6%, respectively. Pearson's correlations were evaluated (p<0.05). Sperm motility and vigor in fresh semen were correlated with clusterin, TIMP2 and cathepsin S (r=0.64-0.71) and sperm defects were related to inhibitor of carbonic anhydrase and BSP 5 (r=0.78-0.80). Clusterin, BSP 5, alpha-enolase, creatine kinase M-type, glyceraldehyde-3-phosphate dehydrogenase, BSP 3, albumin, and 5'-nucleotidase and legumain were correlated with acrosome intact live sperm (r=0.80-0.64). Associations were detected between sperm vigor and spermadhesin 1 (r=-0.89), and between sperm defects in fresh semen and spermadhesin 1 and clusterin (r=-0.81). Sperm motility in frozen-thawed semen was associated with BSP 1, spermadhesin 1, clusterin and spermadhesin Z13 (r=0.64-0.85). The percent of motile sperm after freeze-thawing was negatively correlated (r=-0.64) with the amount of spermadhesin 1 in the seminal plasma. Based on in silico analysis, TIMP2 interacted with BSP1, BSP3, BSP5 and metalloproteinases. Molecular functions of proteins associated with sperm parameters were binding, catalytic activity and enzymatic regulation. Amino acid sequences of spermadhesin 1 and BSP 1 from Bos taurus, and other domestic species were similar. Phylogenetic tree analysis demonstrated that clusterin from Bos taurus was related to Ovis aries and domains of clusterin, spermadhesin 1, BSP 1 and inhibitor of carbonic anhydrase were conserved as well. In summary, specific seminal proteins are associated with sperm parameters of locally-adapted bulls. Use of the endangered mammalian as a model may assist in understanding aspects of evolutionary adaptations and could improve assisted reproductive biotechnologies.
Collapse
Affiliation(s)
- E B Menezes
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA; Department of Animal Science, Federal University of Ceara, Fortaleza, Ceara, 60455760, Brazil
| | - R V de Oliveira
- Department of Animal Production - Animal Science Institute, Federal Rural University of Rio de Janeiro, Seropedica, Rio de Janeiro, 23890000, Brazil
| | - M F van Tilburg
- Department of Biology, State University of Ceara, Fortaleza, Ceara, 60714-903, Brazil
| | - E A Barbosa
- Embrapa Genetic Resources and Biotechnology, Brasilia, Brazilian Federal District, 70770901, Brazil
| | - N V Nascimento
- Embrapa Genetic Resources and Biotechnology, Brasilia, Brazilian Federal District, 70770901, Brazil
| | - A L M C S Velho
- Department of Animal Science, Federal University of Ceara, Fortaleza, Ceara, 60455760, Brazil
| | - F B Moreno
- School of Pharmacy, The University of Fortaleza, Fortaleza, Ceara, Brazil, 60811905
| | - R A Moreira
- School of Pharmacy, The University of Fortaleza, Fortaleza, Ceara, Brazil, 60811905
| | | | | | - A F Ramos
- Embrapa Genetic Resources and Biotechnology, Brasilia, Brazilian Federal District, 70770901, Brazil
| | - E Memili
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - A A Moura
- Department of Animal Science, Federal University of Ceara, Fortaleza, Ceara, 60455760, Brazil.
| |
Collapse
|
45
|
Aquino-Cortez A, Pinheiro BQ, Lima DBC, Silva HVR, Mota-Filho AC, Martins JAM, Rodriguez-Villamil P, Moura AA, Silva LDM. Proteomic characterization of canine seminal plasma. Theriogenology 2017; 95:178-186. [PMID: 28460673 DOI: 10.1016/j.theriogenology.2017.03.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 03/16/2017] [Accepted: 03/18/2017] [Indexed: 12/31/2022]
Abstract
The present study was conducted to identify the major proteome of the sperm-rich fraction and prostatic fraction of canine seminal plasma. Three semen samples from four healthy dogs were obtained by digital manipulation. The pre-sperm fraction, sperm-rich fraction and prostatic fraction were separated from each ejaculate. Immediately after sperm analysis, a protease inhibitor was added to the sperm-rich fraction and prostatic fraction, and the fractions were separately centrifuged and frozen at -80 °C. The samples were thawed, re-centrifuged, and the total protein concentration was determined. Samples were subjected to 1D SDS-PAGE and Coomassie-blue stained gels, were analyzed by Quantity One 1D Analysis Software. Bands detected in the gels were excised and proteins subjected to digestion with trypsin. Proteins were identified by nano-HPLC-MS and tools of bioinformatics. Tandem mass spectrometry allowed the detection of 268 proteins in the gels of sperm-rich fraction and prostatic fraction of canine ejaculate. A total of 251 proteins were common to the sperm-rich and prostatic fractions, while 17 proteins were present in the sperm-rich fraction and absent in the prostatic fraction. The intensity of the bands detected in range 1 and 2 represented 46.5% of all of the band intensities detected in the 1D gels for proteins of the sperm-rich fraction and 53.0% of all bands in the prostatic fraction. Arginine esterase and lactotransferrin precursor were the protein with the highest intensity observed in the both fractions. Among the proteins present only in the sperm-rich fraction, the proteins UPF0764 protein C16orf89 homolog and epididymal-specific lipocalin-9 were the most abundant. In conclusion, canine sperm-rich fraction and prostatic fraction express a very diverse set of proteins, with unique biochemical properties and functions. Moreover, although most proteins are common to both sperm-rich fraction and prostatic fraction, there are some exclusive proteins in sperm-rich fraction.
Collapse
Affiliation(s)
- Annice Aquino-Cortez
- Laboratory of Carnivores Reproduction, State University of Ceara, Fortaleza, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Campanholi SP, Monteiro FM, Ribeiro Dias EA, Mercadante MEZ, de Paz CCP, Dell'Aqua Junior JA, Papa FO, Dell'Aqua CDPF, Vantini R, Garcia JM. Effect of seminal plasma removal before cryopreservation of bovine semen obtained by electroejaculation on semen quality and in vitro fertility. Theriogenology 2017; 89:114-121. [DOI: 10.1016/j.theriogenology.2016.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 10/03/2016] [Accepted: 10/09/2016] [Indexed: 02/06/2023]
|
47
|
Westfalewicz B, Dietrich MA, Mostek A, Partyka A, Bielas W, Niżański W, Ciereszko A. Analysis of bull (Bos taurus) seminal vesicle fluid proteome in relation to seminal plasma proteome. J Dairy Sci 2016; 100:2282-2298. [PMID: 28041731 DOI: 10.3168/jds.2016-11866] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/04/2016] [Indexed: 02/03/2023]
Abstract
The existing knowledge on the bull seminal vesicle proteome, a major seminal plasma constituent, and its relationship with seminal plasma is limited. This knowledge is prerequisite for a better understanding of seminal plasma variability, which is linked to semen quality. The objective of this study was to characterize the proteomes of seminal vesicle fluid and seminal plasma and to compare them to better understand the origin of seminal plasma proteins. We collected ejaculates and seminal vesicle fluid postmortem from 6 mature Holstein Friesian bulls. We performed the analysis and identification of proteins using 2-dimensional electrophoresis coupled with matrix-assisted laser desorption/ionization mass spectrometry. We identified 105 proteins in bull seminal vesicle fluid and 88 proteins in seminal plasma. For both seminal vesicles and seminal plasma proteins described in our study, top biological functions were cellular movement, cell death and survival, and cellular growth and proliferation. Additionally, seminal vesicle fluid proteins were involved in protein degradation and synthesis. Seminal plasma proteins were also involved in cellular assembly and organization and cell-to-cell signaling and interactions. Proteins of both fluids were involved in the following canonical pathways: glycolysis, gluconeogenesis, liver X receptor/farnesoid X receptor, and farnesoid X receptor/retinoid X receptor activation. Additionally, seminal vesicle fluid proteins appeared to be involved in oxidative stress response mediated by nuclear factor E2-related factor 2. Our results described the bull seminal vesicle fluid proteome for the first time and allowed for significant expansion of the current knowledge on the bull seminal plasma proteome. Moreover, analysis indicated that both bull seminal vesicle fluid and seminal plasma proteomes contained interconnected protein groups related to protective functions, glycolysis, and the morphology and physiology of the spermatozoa. These proteins and their interactions could be targeted in future research.
Collapse
Affiliation(s)
- B Westfalewicz
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| | - M A Dietrich
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - A Mostek
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - A Partyka
- Department of Reproduction and Clinic of Farm Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 49, 50-366 Wrocław, Poland
| | - W Bielas
- Department of Reproduction and Clinic of Farm Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 49, 50-366 Wrocław, Poland
| | - W Niżański
- Department of Reproduction and Clinic of Farm Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 49, 50-366 Wrocław, Poland
| | - A Ciereszko
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| |
Collapse
|
48
|
Rego JPA, Martins JM, Wolf CA, van Tilburg M, Moreno F, Monteiro-Moreira AC, Moreira RA, Santos DO, Moura AA. Proteomic analysis of seminal plasma and sperm cells and their associations with semen freezability in Guzerat bulls1. J Anim Sci 2016; 94:5308-5320. [DOI: 10.2527/jas.2016-0811] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
49
|
van Tilburg MF, Sousa SD, Ferreira de Melo RB, Moreno FB, Monteiro-Moreira AC, Moreira RA, de Alencar Moura A. Proteome of the rete testis fluid from tropically-adapted Morada Nova rams. Anim Reprod Sci 2016; 176:20-31. [PMID: 27908670 DOI: 10.1016/j.anireprosci.2016.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 11/06/2016] [Accepted: 11/17/2016] [Indexed: 01/25/2023]
Abstract
The rete testis has a close relationship with sperm development and may have other functions besides serving as an intercalated channel. The aim of this study was to identify and characterize the proteins of rete testis fluid (RTF) from tropically-adapted Morada Nova rams. Testicles obtained from six Morada Nova rams were dissected and the head of the epididymis was separated to access the efferent ducts. Rete testis fluid was obtained by gentle massage of the testis. The fluid was centrifuged to remove cell debris and sperm. RTF samples (containing 400μg protein) were separated by 2-D SDS-PAGE and gels, analyzed using PDQuest software (Bio Rad, USA). Proteins were identified using tandem mass spectrometry. Gene ontology and protein network were analyzed using the software tool for searching annotations of proteins (STRAP) and STRING database. Gels had, on average, 227±13.5 spots and 51% of the proteins were found above 40kDa, corresponding to 65% of the intensity of all spots detected. Based on gene ontology analysis, the most common biological processes associated with RTF proteins were regulation (24.3%) and cellular process (23.3%). Binding (27.3%) and catalytic activity (19.3%) corresponded to the most frequent molecular functions. Albumin, clusterin, serotransferrin, immunoglobulin gamma-1 chain and alpha-2-HS-glycoprotein were the most abundant proteins in the ram rete testis fluid. In conclusion, proteins identified in the ram rete testis fluid are linked to several physiological processes associated with sperm protection and spermatogenesis.
Collapse
Affiliation(s)
| | | | | | - Frederico B Moreno
- Department of Pharmacy, The University of Fortaleza, Fortaleza, Ceará, Brazil
| | | | - Renato A Moreira
- Department of Pharmacy, The University of Fortaleza, Fortaleza, Ceará, Brazil
| | | |
Collapse
|
50
|
Leveraging Comparative Genomics to Identify and Functionally Characterize Genes Associated with Sperm Phenotypes in Python bivittatus (Burmese Python). GENETICS RESEARCH INTERNATIONAL 2016; 2016:7505268. [PMID: 27200191 PMCID: PMC4855019 DOI: 10.1155/2016/7505268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/30/2016] [Accepted: 02/18/2016] [Indexed: 11/22/2022]
Abstract
Comparative genomics approaches provide a means of leveraging functional genomics information from a highly annotated model organism's genome (such as the mouse genome) in order to make physiological inferences about the role of genes and proteins in a less characterized organism's genome (such as the Burmese python). We employed a comparative genomics approach to produce the functional annotation of Python bivittatus genes encoding proteins associated with sperm phenotypes. We identify 129 gene-phenotype relationships in the python which are implicated in 10 specific sperm phenotypes. Results obtained through our systematic analysis identified subsets of python genes exhibiting associations with gene ontology annotation terms. Functional annotation data was represented in a semantic scatter plot. Together, these newly annotated Python bivittatus genome resources provide a high resolution framework from which the biology relating to reptile spermatogenesis, fertility, and reproduction can be further investigated. Applications of our research include (1) production of genetic diagnostics for assessing fertility in domestic and wild reptiles; (2) enhanced assisted reproduction technology for endangered and captive reptiles; and (3) novel molecular targets for biotechnology-based approaches aimed at reducing fertility and reproduction of invasive reptiles. Additional enhancements to reptile genomic resources will further enhance their value.
Collapse
|