1
|
Damyanova KB, Nixon B, Johnston SD, Gambini A, Benitez PP, Lord T. Spermatogonial stem cell technologies: applications from human medicine to wildlife conservation†. Biol Reprod 2024; 111:757-779. [PMID: 38993049 PMCID: PMC11473898 DOI: 10.1093/biolre/ioae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/13/2024] Open
Abstract
Spermatogonial stem cell (SSC) technologies that are currently under clinical development to reverse human infertility hold the potential to be adapted and applied for the conservation of endangered and vulnerable wildlife species. The biobanking of testis tissue containing SSCs from wildlife species, aligned with that occurring in pediatric human patients, could facilitate strategies to improve the genetic diversity and fitness of endangered populations. Approaches to utilize these SSCs could include spermatogonial transplantation or testis tissue grafting into a donor animal of the same or a closely related species, or in vitro spermatogenesis paired with assisted reproduction approaches. The primary roadblock to progress in this field is a lack of fundamental knowledge of SSC biology in non-model species. Herein, we review the current understanding of molecular mechanisms controlling SSC function in laboratory rodents and humans, and given our particular interest in the conservation of Australian marsupials, use a subset of these species as a case-study to demonstrate gaps-in-knowledge that are common to wildlife. Additionally, we review progress in the development and application of SSC technologies in fertility clinics and consider the translation potential of these techniques for species conservation pipelines.
Collapse
Affiliation(s)
- Katerina B Damyanova
- Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
- Infertility and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Brett Nixon
- Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
- Infertility and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Stephen D Johnston
- School of Environment, The University of Queensland, Gatton, QLD 4343, Australia
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Andrés Gambini
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
- School of Agriculture and Food Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Patricio P Benitez
- School of Agriculture and Food Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Tessa Lord
- Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
- Infertility and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
2
|
Gomes FDR, Ñaupas LVS, Palomino GJQ, Celiz RHY, Sá NAR, Novaes MAS, Ferreira ACA, Brito DCC, Freitas VJF, Costa BN, Lucci CM, Fernandes CCL, Rondina D, Figueiredo JR, Tetaping GM, Rodrigues APR. Definition of protocols for cryopreservation and three-dimensional in vitro culture of prepubertal goat testicular tissue after histomorphological, ultrastructural, and functional analysis. Theriogenology 2023; 211:151-160. [PMID: 37639997 DOI: 10.1016/j.theriogenology.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/27/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023]
Abstract
This study aims to define the best method (slow freezing or vitrification) and fragment size (1, 5, or 9 mm³) for prepubertal goat testis cryopreservation, as well as to evaluate testicular morphological integrity after cryopreservation and in vitro culture (IVC). Initially (experiment I), 1, 5, or 9 mm³ testis fragments were cryopreserved by slow freezing using a Mr. Frosty container with 20% Dimethylsulfoxide (DMSO) or vitrified using the Ovarian Tissue Cryosystem (OTC) device, (Equilibration solution - ES: 10% DMSO and 10% ethylene glycol - EG; Vitrification solution - VS: 20% DMSO and 20% EG) and then subjected to morphological analysis, type I and III collagen quantification and gene expression (Oct4, C-kit, Bax, and Bcl-2). Subsequently, (experiment II), fresh or cryopreserved by slow freezing testis fragments were cultured in vitro and submitted to morphological analysis by scanning electron microscopy. The data from the experiment I revealed fewer morphological alterations in 1 and 5 mm³ fragments after vitrification and slow freezing, respectively. The percentage of type I collagen fibers in 5 and 9 mm³ frozen was higher than in fresh or vitrified fragments. For type III collagen, fresh or frozen fragments of 1 and 5 mm3 showed a higher percentage than fragments of 9 mm3. Gene expression for Oct4 and C-kit after slow freezing or vitrification in the 5 mm3 fragments was lower than that observed in the fresh fragments. The Bax:Bcl-2 ratio in the 1 and 9 mm³ fragments was lower than in the 5 mm³ fragments for fresh fragments or after freezing. In experiment II, fragments cultured in vitro, previously frozen or not, showed more morphological alterations than fresh or frozen fragments. We concluded that slow freezing of 5 mm³ fragments was the best protocol for cryopreserving prepubertal goat testis and although the results of IVC are encouraging, it still needs improvement to restore testicular function after cryopreservation.
Collapse
Affiliation(s)
- F D R Gomes
- Laboratory of Manipulation of Oocytes and Ovarian Pre-Antral Follicles (LAMOFOPA), Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, CE, Brazil
| | - L V S Ñaupas
- Laboratory of Manipulation of Oocytes and Ovarian Pre-Antral Follicles (LAMOFOPA), Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, CE, Brazil
| | - G J Q Palomino
- Laboratory of Manipulation of Oocytes and Ovarian Pre-Antral Follicles (LAMOFOPA), Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, CE, Brazil
| | - R H Y Celiz
- Laboratory of Manipulation of Oocytes and Ovarian Pre-Antral Follicles (LAMOFOPA), Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, CE, Brazil
| | - N A R Sá
- Laboratory of Manipulation of Oocytes and Ovarian Pre-Antral Follicles (LAMOFOPA), Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, CE, Brazil
| | - M A S Novaes
- Laboratory of Manipulation of Oocytes and Ovarian Pre-Antral Follicles (LAMOFOPA), Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, CE, Brazil
| | - A C A Ferreira
- Laboratory of Manipulation of Oocytes and Ovarian Pre-Antral Follicles (LAMOFOPA), Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, CE, Brazil
| | - D C C Brito
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - V J F Freitas
- Laboratory of Physiology and Control of Reproduction (LFCR), Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, CE, Brazil
| | - B N Costa
- Laboratory of Animal Reproduction, Department of Physiological Sciences, Institute of Biological Sciences, Darcy Ribeiro University Campus, Brasília, DF, Brazil
| | - C M Lucci
- Laboratory of Animal Reproduction, Department of Physiological Sciences, Institute of Biological Sciences, Darcy Ribeiro University Campus, Brasília, DF, Brazil
| | - C C L Fernandes
- College of Health Sciences, University of Fortaleza, Fortaleza, CE, Brazil
| | - D Rondina
- Laboratory of Nutrition and Production of Ruminants (LANUPRUMI), Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, CE, Brazil
| | - J R Figueiredo
- Laboratory of Manipulation of Oocytes and Ovarian Pre-Antral Follicles (LAMOFOPA), Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, CE, Brazil
| | - G M Tetaping
- Laboratory of Manipulation of Oocytes and Ovarian Pre-Antral Follicles (LAMOFOPA), Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, CE, Brazil
| | - A P R Rodrigues
- Laboratory of Manipulation of Oocytes and Ovarian Pre-Antral Follicles (LAMOFOPA), Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
3
|
Ciccarelli M, Oatley JM. Perspectives: Approaches for Studying Livestock Spermatogonia. Methods Mol Biol 2023; 2656:325-339. [PMID: 37249879 DOI: 10.1007/978-1-0716-3139-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
At present, the knowledge base on characteristics and biology of spermatogonia in livestock is limited in comparison to rodents, yet the importance of studying these cells for comparative species analysis and enhancing reproductive capacity in food animals is high. Previous studies have established that although many core attributes of organ physiology and mechanisms governing essential cellular functions are conserved across eutherians, significant differences exist between mice and higher order mammals. In this chapter, we briefly discuss distinguishing aspects of testicular anatomy and the spermatogenic lineage in livestock and critical considerations for studying spermatogonial stem cell biology in these species.
Collapse
Affiliation(s)
- Michela Ciccarelli
- Center for Reproductive Biology, Washington State University, Pullman, WA, USA
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Jon M Oatley
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
4
|
Pang B, Wang H, Huang H, Liao L, Wang Y, Wang M, Du G, Kang Z. Enzymatic Production of Low-Molecular-Weight Hyaluronan and Its Oligosaccharides: A Review and Prospects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14129-14139. [PMID: 36300844 DOI: 10.1021/acs.jafc.2c05709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hyaluronic acid (HA) is a nonsulfated linear glycosaminoglycan with a negative charge. Different from the high-molecular-weight HAs, the low-molecular-weight HAs (LMW-HAs, 4-120 kDa) and hyaluronan oligosaccharides (O-HAs, <4 kDa) exhibit certain unique biological properties, owing to which these have a wide range of applications in the field of medicine. However, the chemical synthesis of high-purity LMW-HAs and O-HAs requires complex procedures, which renders this process difficult to achieve. The degradation of HA is achieved under the catalysis of hyaluronidases. In recent years, various hyaluronidase genes have been identified, and their enzymatic properties have been analyzed. In this context, the present review summarizes the hyaluronidases from different sources, which have been characterized. The review focuses on the crystal structure and the catalytic mechanism underlying the biological properties of hyaluronidases. In addition, the molecular weight distributions and the preparation approaches of the enzymatic products LMW-HAs and O-HAs are described. The general orientation of the research on hyaluronidases was speculated based on the existing literature. Accordingly, the efficient large-scale production of LMW-HAs and O-HAs using the green enzymatic approach was anticipated.
Collapse
Affiliation(s)
- Bo Pang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Hao Wang
- Bloomage Biotechnology Corp., Ltd., 678 Tianchen Avenue, Jinan 250010, China
| | - Hao Huang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Lizhi Liao
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yang Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Miao Wang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Zhen Kang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| |
Collapse
|
5
|
Nabulindo NW, Nguhiu-Mwangi J, Kipyegon AN, Ogugo M, Muteti C, Christian T, Oatley MJ, Oatley JM, Kemp S. Culture of Kenyan Goat (Capra hircus) Undifferentiated Spermatogonia in Feeder-Free Conditions. Front Vet Sci 2022; 9:894075. [PMID: 35928111 PMCID: PMC9343694 DOI: 10.3389/fvets.2022.894075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022] Open
Abstract
The undifferentiated spermatogonial population in mammalian testes contains a spermatogonial stem cell (SSC) population that can regenerate continual spermatogenesis following transplantation. This capacity has the potential to be exploited as a surrogate sires breeding tool to achieve widespread dissemination of desirable genetics in livestock production. Because SSCs are relatively rare in testicular tissue, the ability to expand a population in vitro would be advantageous to provide large numbers for transplantation into surrogate recipient males. Here, we evaluated conditions that would support long-term in-vitro maintenance of undifferentiated spermatogonia from a goat breed that is endemic to Kenyan livestock production. Single-cell suspensions enriched for undifferentiated spermatogonia from pre-pubertal bucks were seeded on laminin-coated tissue culture plates and maintained in a commercial media based on serum-free composition. The serum-free media was conditioned on goat fetal fibroblasts and supplemented with a growth factor cocktail that included glial cell line-derived neurotrophic factor (GDNF), leukemia inhibitory factor (LIF), stromal cell-derived factor (SDF), and fibroblast growth factor (FGF) before use. Over 45 days, the primary cultures developed a cluster morphology indicative of in-vitro grown undifferentiated spermatogonia from other species and expressed the germ cell marker VASA, as well as the previously defined spermatogonial marker such as promyelocytic leukemia zinc finger (PLZF). Taken together, these findings provide a methodology for isolating the SSC containing undifferentiated spermatogonial population from goat testes and long-term maintenance in defined culture conditions.
Collapse
Affiliation(s)
- Nakami Wilkister Nabulindo
- Centre for Tropical Livestock Genetics and Health Laboratory, International Livestock Research Institute, Nairobi, Kenya
- Department of Clinical Studies, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
- *Correspondence: Nakami Wilkister Nabulindo ;
| | - James Nguhiu-Mwangi
- Department of Clinical Studies, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - Ambrose Ng'eno Kipyegon
- Department of Clinical Studies, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - Moses Ogugo
- Centre for Tropical Livestock Genetics and Health Laboratory, International Livestock Research Institute, Nairobi, Kenya
| | - Charity Muteti
- Centre for Tropical Livestock Genetics and Health Laboratory, International Livestock Research Institute, Nairobi, Kenya
| | - Tiambo Christian
- Centre for Tropical Livestock Genetics and Health Laboratory, International Livestock Research Institute, Nairobi, Kenya
| | - Melissa J. Oatley
- Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| | - Jon M. Oatley
- Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| | - Stephen Kemp
- Centre for Tropical Livestock Genetics and Health Laboratory, International Livestock Research Institute, Nairobi, Kenya
| |
Collapse
|
6
|
Wang H, Yuan L, Song J, Wang Q, Zhang Y. Distribution of extracellular matrix related proteins in normal and cryptorchid ziwuling black goat testes. Anim Reprod 2022; 19:e20220005. [PMID: 35712443 PMCID: PMC9170007 DOI: 10.1590/1984-3143-ar2022-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/12/2022] [Indexed: 11/23/2022] Open
Abstract
The Ziwuling black goat is an indigenously in China, their offspring are frequently affected by congenital cryptorchidism. The extracellular matrix (ECM) contains cytokines and growth factors that regulate the development of the testis, and component changes often result in pathological changes. Cryptorchidism is closely related to structural changes in ECM. In this study, the histochemical staining, immunohistochemical, immunofluorescence and Western blot combined with semi-quantitative analysis was used to describe the distribution of the important ECM components Collagen type IV (Col IV), laminin (LN)and heparan sulfate proteoglycans (HSPG) in the normal and cryptorchid testes of Ziwuling black goats. Results showed that: The histochemical staining showed that the dysplasia of seminiferous tubules and decreased number of Sertoli cells in cryptorchidism, as well as sparse collagen fiber. Meanwhile, the distribution of reticular fibers is relatively rich. Furthermore, the PAS and AB staining in the interstitial vessels and lamina propria of seminiferous tubules is weak. The immunohistochemical and immunofluorescence revealed that Col IV, LN was strongly expressed in Leydig, Sertoli cells of normal testes and moderately positive in the spermatogonia and spermatids, but HSPG was not expressed in the spermatogonia. However, cryptorchidism, the expression of Col IV, LN and HPSG in Leydig, Sertoli cells significantly decreased, as well as the expression of Col IV and LN in capillary endothelial cells, but HSPG was moderately expressed in spermatogonia. Based on these data, the underdevelopment of spermatogenic epithelium, decreased synthesis function of collagen fibers and Leydig cells develop usually in the cryptorchidism were shown to be closely related to the abnormal metabolism of Col IV and LN. The positive expressed of HSPG in the spermatogonia of cryptorchid testes is related to the compensatory development of spermatogonia.
Collapse
Affiliation(s)
- Hua Wang
- Gansu Agricultural University, China
| | | | | | | | | |
Collapse
|
7
|
Nakami W, Kipyegon AN, Nguhiu-Mwangi J, Tiambo C, Kemp S. Culture of spermatogonial stem cells and use of surrogate sires as a breeding technology to propagate superior genetics in livestock production: A systematic review. Vet World 2021; 14:3235-3248. [PMID: 35153418 PMCID: PMC8829400 DOI: 10.14202/vetworld.2021.3235-3248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Spermatogonial stem cells (SSCs) have previously been isolated from animals’ testes, cultured in vitro, and successfully transplanted into compatible recipients. The SSC unique characteristic has potential for exploitation as a reproductive tool and this can be achieved through SSC intratesticular transplantation to surrogate sires. Here, we aimed at comprehensively analyzing published data on in vitro maintenance of SSC isolated from the testes of livestock animals and their applications. Materials and Methods: The literature search was performed in PubMed, Science Direct, and Google Scholar electronic databases. Data screening was conducted using Rayyan Intelligent Systematic Review software (https://www.rayyan.ai/). Duplicate papers were excluded from the study. Abstracts were read and relevant full papers were reviewed for data extraction. Results: From a total of 4786 full papers screened, data were extracted from 93 relevant papers. Of these, eight papers reported on long-term culture conditions (>1 month) for SSC in different livestock species, 22 papers on short-term cultures (5-15 days), 10 papers on transfection protocols, 18 papers on transplantation using different methods of preparation of livestock recipients, and five papers on donor-derived spermatogenesis. Conclusion: Optimization of SSC long-term culture systems has renewed the possibilities of utilization of these cells in gene-editing technologies to develop transgenic animals. Further, the development of genetically deficient recipients in the endogenous germline layer lends to a future possibility for the utilization of germ cell transplantation in livestock systems.
Collapse
Affiliation(s)
- Wilkister Nakami
- Department of Clinical Studies, Faculty of Veterinary Medicine, University of Nairobi, 29053-00625 Nairobi, Kenya; Livestock Genetics Program International Livestock Research Institute, 30709-00100, Nairobi, Kenya; Centre for Tropical Livestock Genetics and Health (CTLGH)-ILRI, 30709-00100, Nairobi, Kenya
| | - Ambrose Ng'eno Kipyegon
- Department of Clinical Studies, Faculty of Veterinary Medicine, University of Nairobi, 29053-00625 Nairobi, Kenya
| | - James Nguhiu-Mwangi
- Department of Clinical Studies, Faculty of Veterinary Medicine, University of Nairobi, 29053-00625 Nairobi, Kenya
| | - Christian Tiambo
- Livestock Genetics Program International Livestock Research Institute, 30709-00100, Nairobi, Kenya; Centre for Tropical Livestock Genetics and Health (CTLGH)-ILRI, 30709-00100, Nairobi, Kenya
| | - Stephen Kemp
- Livestock Genetics Program International Livestock Research Institute, 30709-00100, Nairobi, Kenya; Centre for Tropical Livestock Genetics and Health (CTLGH)-ILRI, 30709-00100, Nairobi, Kenya
| |
Collapse
|
8
|
Binsila B, Selvaraju S, Ranjithkumaran R, Archana SS, Krishnappa B, Ghosh SK, Kumar H, Subbarao RB, Arangasamy A, Bhatta R. Current scenario and challenges ahead in application of spermatogonial stem cell technology in livestock. J Assist Reprod Genet 2021; 38:3155-3173. [PMID: 34661801 DOI: 10.1007/s10815-021-02334-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 09/27/2021] [Indexed: 11/28/2022] Open
Abstract
PURPOSE Spermatogonial stem cells (SSCs) are the source for the mature male gamete. SSC technology in humans is mainly focusing on preserving fertility in cancer patients. Whereas in livestock, it is used for mining the factors associated with male fertility. The review discusses the present status of SSC biology, methodologies developed for in vitro culture, and challenges ahead in establishing SSC technology for the propagation of superior germplasm with special reference to livestock. METHOD Published literatures from PubMed and Google Scholar on topics of SSCs isolation, purification, characterization, short and long-term culture of SSCs, stemness maintenance, epigenetic modifications of SSCs, growth factors, and SSC cryopreservation and transplantation were used for the study. RESULT The fine-tuning of SSC isolation and culture conditions with special reference to feeder cells, growth factors, and additives need to be refined for livestock. An insight into the molecular mechanisms involved in maintaining stemness and proliferation of SSCs could facilitate the dissemination of superior germplasm through transplantation and transgenesis. The epigenetic influence on the composition and expression of the biomolecules during in vitro differentiation of cultured cells is essential for sustaining fertility. The development of surrogate males through gene-editing will be historic achievement for the foothold of the SSCs technology. CONCLUSION Detailed studies on the species-specific factors regulating the stemness and differentiation of the SSCs are required for the development of a long-term culture system and in vitro spermatogenesis in livestock. Epigenetic changes in the SSCs during in vitro culture have to be elucidated for the successful application of SSCs for improving the productivity of the animals.
Collapse
Affiliation(s)
- Balakrishnan Binsila
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India.
| | - Sellappan Selvaraju
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - Rajan Ranjithkumaran
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - Santhanahalli Siddalingappa Archana
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - Balaganur Krishnappa
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - Subrata Kumar Ghosh
- Animal Reproduction Division, Indian Council of Agricultural Research-Indian Veterinary Research Institute, Izatnagar, 243 122, India
| | - Harendra Kumar
- Animal Reproduction Division, Indian Council of Agricultural Research-Indian Veterinary Research Institute, Izatnagar, 243 122, India
| | - Raghavendra B Subbarao
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - Arunachalam Arangasamy
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - Raghavendra Bhatta
- Indian council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| |
Collapse
|
9
|
Emamdoust F, Aminafshar M, Zandi M, Sanjabi MR. The role of Rho-associated kinase inhibitor, Y-27632 on primary culture of ovine spermatogonial stem cells. Anim Reprod 2021; 18:e20200257. [PMID: 35035539 PMCID: PMC8747935 DOI: 10.1590/1984-3143-ar2020-0257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 11/19/2021] [Indexed: 12/02/2022] Open
Abstract
The access to sufficient numbers of spermatogonial stem cells (SSCs) is a prerequisite for the study of their regulation and further biomanipulation. Rho kinase (ROCK) belongs to a family of serine/threonine kinases and involves in a wide range of fundamental cellular functions. The aim of the present study was to study the effect of ROCK inhibitor, Y-27632 (0.1-40 µM), during the primary culture of ovine SSCs. SSCs were collected from 3-5-month-old’s lamb testes. The viability of SSCs, the apoptosis assay of SSCs, the intracellular reactive oxygen species (ROS) analysis, and the SSCs markers and apoptosis-related gene expressions were detected by MTT reduction assay, Annexin V–FITC/ Propidium Iodide (PI) dual staining, flow cytometry and real-time-PCR studies, respectively. Morphological analyses indicated that the 5-10 µM Y-27632 had an optimal effect on the number of presumptive SSCs colonies and the area covered by them after a 10 days culture. The cell viability, apoptosis and necrosis of SSCs after 10 days’ culture were not affected in comparison with the control group, and the 20 µM of Y-27632 resulted in significantly decreased cell viability (P<0.05) and an increased necrosis of cells. On day 10 after culture, the expression of P53 was decreased with an increase from 0 to 10 µM in the Y-27632 dose. In the 20 µM Y-27632 group, the expressions of P53 and Bax were higher and the Bcl-2 was lower than other groups and these values were significantly different from 5 and 10 µM Y-27632 groups (P<0.05). The level of intracellular ROS was decreased with an increase in the Y-27632 dose from 5 to 20 µM in comparison with the control group. In conclusion, the present study demonstrated that Y-27632 at a concentration of 5-10 µM provided optimal culture conditions for the primary culture of ovine SSCs.
Collapse
Affiliation(s)
| | | | - Mohammad Zandi
- Iranian Research Organization for Science and Technology, Iran
| | | |
Collapse
|
10
|
Binsila BK, Selvaraju S, Ghosh SK, Ramya L, Arangasamy A, Ranjithkumaran R, Bhatta R. EGF, GDNF, and IGF-1 influence the proliferation and stemness of ovine spermatogonial stem cells in vitro. J Assist Reprod Genet 2020; 37:2615-2630. [PMID: 32821972 DOI: 10.1007/s10815-020-01912-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 08/03/2020] [Indexed: 11/25/2022] Open
Abstract
PURPOSE The objective of the present study was to purify sheep spermatogonial stem cells (SSCs) from testicular isolate using combined enrichment methods and to study the effect of growth factors on SSC stemness during culture. METHODS The testicular cells from prepubertal male sheep were isolated, and SSCs were purified using Ficoll gradients (10 and 12%) followed by differential plating (laminin with BSA). SSCs were cultured with StemPro®-34 SFM, additives, and FBS for 7 days. The various doses (ng/ml) of growth factors, EGF at 10, 15, and 20, GDNF at 40, 70, and 100 and IGF-1 at 50, 100, and 150 were tested for the proliferation and stemness of SSCs in vitro. The stemness in cultured cells was assessed using SSC markers PLZF, ITGA6, and GFRα1. RESULTS Ficoll density gradient separation significantly (p < 0.05) increased the percentage of SSCs in 12% fraction (35.1 ± 3.8 vs 11.2 ± 3.7). Subsequently, purification using laminin with BSA plating further enriched SSCs to 61.7 ± 4.7%. GDNF at 40 ng/ml, EGF at 15 and 20 ng/ml and IGF1 at 100 and 150 ng/ml significantly (p < 0.05) improved proliferation and stemness of SSCs up to 7 days in culture. GDNF at 40 ng/ml outperformed other growth factors tested and could maintain the ovine SSCs proliferation and stemness for 36 days. CONCLUSIONS The combined enrichment method employing density gradient centrifugation and laminin with BSA plating improves the purification efficiency of ovine SSCs. GDNF at 40 ng/ml is essential for optimal proliferation and sustenance of stemness of ovine SSCs in vitro.
Collapse
Affiliation(s)
- B K Binsila
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India.
| | - S Selvaraju
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - S K Ghosh
- Animal Reproduction Division, Indian Council of Agricultural Research-Indian Veterinary Research Institute, Izatnagar, 243 122, India
| | - L Ramya
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - A Arangasamy
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - R Ranjithkumaran
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - R Bhatta
- Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| |
Collapse
|
11
|
Han JY, Cho HY, Kim YM, Park KJ, Jung KM, Park JS. Production of quail (Coturnix japonica) germline chimeras by transfer of Ficoll-enriched spermatogonial stem cells. Theriogenology 2020; 154:223-231. [PMID: 32679354 DOI: 10.1016/j.theriogenology.2020.05.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 05/16/2020] [Accepted: 05/27/2020] [Indexed: 12/22/2022]
Abstract
Due to the absence of long-term in vitro germline competent stem cell maintenance systems and efficient methods for germline transmission, efforts to develop an effective transgenic system in quail has remained limited. To overcome this limitation, here we produced germline chimeric quails through transplantation of spermatogonial stem cells (SSCs) enriched by density gradient methods utilizing Ficoll-Paque PLUS (Ficoll), Percoll and sucrose solution as a practical strategy for germline transmission in quail. For all gradient methods, testicular cells were separated as two fractions, and the expression levels of SSC-specific genes (GFRA1, ITGA6, ITGB1) and pluripotency genes (NANOG, POUV) were examined. As a result, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and RNA probe hybridization analysis revealed that the upper fraction that was separated by Ficoll showed the highest expression of SSC-specific and pluripotency genes among all fractions. Cells in the upper Ficoll gradient fraction also displayed reduced heterochromatin distribution, as observed in differentiated spermatogonia using transmission electron microscopy (TEM). These results indicate that SSCs were enriched in the upper fraction by Ficoll density gradient centrifugation. Subsequent transplantation experiments revealed that the efficiency of germline transmission to donor-derived gametes in the germline chimeras with transplanted SSCs and whole testicular cells was 0-13.2% and 0-4.4%, respectively. Collectively, these results demonstrate that quail SSCs were easily enriched with a density gradient method and that this method is a feasible and practical way to preserve the germplasm of quail. Furthermore, we can expect to apply this method in research examining the production of transgenic quail and preservation of avian species.
Collapse
Affiliation(s)
- Jae Yong Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Ho Yeon Cho
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Min Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyung Je Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyung Min Jung
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin Se Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
12
|
Zhu H, Zheng L, Wang L, Tang F, Arisha AH, Zhou H, Hua J. p53 inhibits the proliferation of male germline stem cells from dairy goat cultured on poly-L-lysine. Reprod Domest Anim 2020; 55:405-417. [PMID: 31985843 DOI: 10.1111/rda.13645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 12/13/2019] [Accepted: 12/19/2019] [Indexed: 12/20/2022]
Abstract
Male germline stem cells (mGSCs) can transmit genetic materials to the next generation and dedifferentiate into pluripotent stem cells. However, in livestock, mGSC lines are difficult to establish, because of the factors that affect their isolation and culture. The extracellular matrix serves as a substrate for attachment and affects the fate of these stem cells. Poly-L-lysine (PL), an extracellular matrix of choice, inhibits and/or kills cancer cells, and promotes the attachment of stem cells in culture. However, how it affects the characteristics and potentials of these stem cells in culture needs to be elucidated. Here, we isolated, enriched and cultured dairy goat mGSCs on five types of extracellular matrices. To explore the best extracellular matrix to use for culturing them, the characteristics and proliferation ability of the cells were determined. Results showed that the cells shared several characteristics with previously reported mGSCs, including the poor effect of PL on their proliferative and colony-forming abilities. Further examination showed upregulation of p53 expression in these cells, which could be inhibiting their proliferation. When a p53 inhibitor was included in the culture medium, it was confirmed to be responsible for the inhibition of proliferation in mGSCs. Optimal concentration of the inhibitor in the culture of these cells was 5 µM. Furthermore, addition of the p53 inhibitor increased the expression of the markers of self-renewal and cell cycle in goat mGSCs. In summary, suppressing p53 is beneficial for the proliferation of dairy goat mGSCs, cultured on PL.
Collapse
Affiliation(s)
- Haijing Zhu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China.,Shaanxi Province Engineering and Technology Research Center of Cashmere Goat, Research Center of Life Science in Yulin University, Yulin, China
| | - Liming Zheng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Long Wang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Furong Tang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Ahmed H Arisha
- Department of physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Hongchao Zhou
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
13
|
Savvulidi F, Ptacek M, Savvulidi Vargova K, Stadnik L. Manipulation of spermatogonial stem cells in livestock species. J Anim Sci Biotechnol 2019; 10:46. [PMID: 31205688 PMCID: PMC6560896 DOI: 10.1186/s40104-019-0355-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/17/2019] [Indexed: 12/12/2022] Open
Abstract
We are entering an exciting epoch in livestock biotechnology during which the fundamental approaches (such as transgenesis, spermatozoa cryopreservation and artificial insemination) will be enhanced based on the modern understanding of the biology of spermatogonial stem cells (SSCs) combined with the outstanding recent advances in genomic editing technologies and in vitro cell culture systems. The general aim of this review is to outline comprehensively the promising applications of SSC manipulation that could in the nearest future find practical application in livestock breeding. Here, we will focus on 1) the basics of mammalian SSC biology; 2) the approaches for SSC isolation and purification; 3) the available in vitro systems for the stable expansion of isolated SSCs; 4) a discussion of how the manipulation of SSCs can accelerate livestock transgenesis; 5) a thorough overview of the techniques of SSC transplantation in livestock species (including the preparation of recipients for SSC transplantation, the ultrasonographic-guided SSC transplantation technique in large farm animals, and the perspectives to improve further the SSC transplantation efficiency), and finally, 6) why SSC transplantation is valuable to extend the techniques of spermatozoa cryopreservation and/or artificial insemination. For situations where no reliable data have yet been obtained for a particular livestock species, we will rely on the data obtained from studies conducted in rodents because the knowledge gained from rodent research is translatable to livestock species to a great extent. On the other hand, we will draw special attention to situations where such translation is not possible.
Collapse
Affiliation(s)
- Filipp Savvulidi
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Suchdol Czech Republic
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, U Nemocnice 5, 128 53 Prague, Czech Republic
| | - Martin Ptacek
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Suchdol Czech Republic
| | - Karina Savvulidi Vargova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, U Nemocnice 5, 128 53 Prague, Czech Republic
| | - Ludek Stadnik
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Suchdol Czech Republic
| |
Collapse
|