1
|
Fernández-Fuente L, Herrero-Ruiz S, Echeverría-García B, García-Martínez J, Borbujo J. Diagnosis of Onychomycosis: Utility of an Immunochromatography Strip Test Compared with Conventional Culture. ACTAS DERMO-SIFILIOGRAFICAS 2024:S0001-7310(24)00423-X. [PMID: 38777225 DOI: 10.1016/j.ad.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/16/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Ringworm is highly prevalent in our setting and is frequently observed in our routine clinical practice. Diagnostic confirmation depends on techniques that are not always accessible (PCR), with highly variable sensitivity depending on the observer (direct microscopy) or delayed results (culture, histopathology). Recently, an immunochromatography-based rapid test (Diafactory®) for the antigenic detection of dermatophytes has been developed. This diagnostic tool can help diagnose ringworm, allowing early initiation of treatment and fewer consultation visits. OBJECTIVE To determine the sensitivity and specificity of the rapid antigen detection test compared to conventional culture. MATERIAL AND METHODS For a full year, 333 nail samples were collected from patients with suspected onychomycosis. The rapid test and the conventional culture were simultaneously performed on each sample. Those with a positive antigenic test result began treatment early. The remaining patients had appointments for serial cultures and subsequent medical consultation to evaluate the results. RESULTS Compared to conventional culture, the sensitivity and specificity rates of the rapid antigen detection test are 97.2% and 80.7%, respectively. CONCLUSION The effectiveness of the rapid antigen detection test is similar to that of conventional culture for the detection of dermatophytes in nail samples. It is a quick and simple diagnostic technique that reduces the number of patient visits to the hospital, and allows early treatment start.
Collapse
Affiliation(s)
- L Fernández-Fuente
- Servicio de Dermatología, Hospital Universitario de Fuenlabrada, Madrid, España.
| | - S Herrero-Ruiz
- Servicio de Dermatología, Hospital Universitario de Fuenlabrada, Madrid, España
| | - B Echeverría-García
- Servicio de Dermatología, Hospital Universitario de Fuenlabrada, Madrid, España
| | - J García-Martínez
- Área de Microbiología, Servicio de Laboratorio Clínico, Hospital Universitario de Fuenlabrada, Madrid, España
| | - J Borbujo
- Servicio de Dermatología, Hospital Universitario de Fuenlabrada, Madrid, España
| |
Collapse
|
2
|
Giménez-López R, Barrios-Pitarque C. Cross-sectional study of the prevalence of hyperextension of the first metatarsophalangeal joint and its relationship to onycholysis in women with hallux valgus. BMC Musculoskelet Disord 2024; 25:111. [PMID: 38317173 PMCID: PMC10840269 DOI: 10.1186/s12891-024-07219-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/20/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Hallux Valgus (HV) deformity is associated with misalignment in the sagittal plane that affects the first toe. However, the repercussions of the first toe hyperextension in HV have been scarcely considered. The purpose of this study was to provide evidence of the association between first-toe hyperextension and the risk of first toenail onycholysis in HV. METHODS A total of 248 HV from 129 females were included. The extension of 1st MTP joint was measured while the patient was in the neutral position of the hallux using a two-branch goniometer. The classification of the HV severity stage was determined by the Manchester visual scale, and the height of the first toe in the standing position was measured using a digital meter. An interview and clinical examination were performed to collect information on the presence of onycholysis of the first toe. RESULTS Of the 248 HV studied, 100 (40.3%) had onycholysis. A neutral extension > 30 degrees was noted in 110 (44.3%) HV. The incidence of onycholysis was higher in HV type C than in type B (p = 0.044). The probability of suffering onycholysis in the right foot was 2.3 times greater when the neutral position was higher than 30 degrees (OR = 2.3; p = 0.004). However, this was not observed in the left foot (p = 0.171). Onycholysis was more frequent in HV with more than 2 cm height of the first toe (p < 0.001). For both feet, the probability of suffering onycholysis was greater for each unit increase in hallux height (right foot OR = 9.0402, p = 0.005; left foot OR = 7.6633, p = 0.010). CONCLUSIONS The incidence of onycholysis appears to be significantly associated with HV showing more than 30º extension, and more than 2 cm height of the first toe. Height and hyperextension of the first toe together with first toenail pathology should be mandatory in the evaluation of HV.
Collapse
Affiliation(s)
- Rosana Giménez-López
- School of Doctorate, Catholic University of Valencia "Saint Vincent Martyr", Plaza de San Agustín, 3 Esc. A, Entresuelo, 46001, Valencia, Spain.
| | - Carlos Barrios-Pitarque
- Institute for Research On Musculoskeletal Disorders, Catholic University of Valencia "Saint Vincent Martyr", Quevedo 2, 46001, Valencia, Spain
| |
Collapse
|
3
|
Haghani I, Hedayati MT, Shokohi T, Kermani F, Ghazanfari M, Javidnia J, Khojasteh S, Roohi B, Badali H, Fathi M, Amirizad K, Yahyazadeh Z, Abastabar M, Al-Hatmi AMS. Onychomycosis due to Fusarium species in different continents, literature review on diagnosis and treatment. Mycoses 2024; 67:e13652. [PMID: 37605217 DOI: 10.1111/myc.13652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/23/2023]
Abstract
Fusarium species are an emerging cause of onychomycosis, and the number of cases has dramatically increased in recent decades worldwide. This review presents an overview of the onychomycosis cases caused by Fusarium species and diagnosis and treatment that have been reported in the literature. The most common causative agent of onychomycosis is F. solani species complex, which accounts for 11.68% of the cases of Fusarium onychomycosis, followed by the F. oxysporum species complex (164 out of 1669), which is accounted for 9.83% of the total. F. fujikuroi species complex (42 out of 1669) and F. dimerum species complex (7 out of 1669) are responsible for 2.52% and 0.42 cases, respectively. Fusarium nail infections were reported in patients aged range 1-98, accounting for 5.55% (1669 out of 30082) of all cases. Asia has the highest species diversity of Fusarium onychomycosis (31.51%). South America accounts for 21.09%, and the most common causative agent is F. solani (19.32%), followed by F. oxysporum species complex (15.63%). Europe accounts for 4.90% of cases caused by F. oxysporum, followed by F. solani. Africa accounts for 23.87% of the cases due to the F. solani species complex, followed by F. oxysporum and F. fujikuroi. Distal and lateral subungual onychomycosis was the most common clinical symptom accounting for 58.7% (135 out of 230) of the cases. Data analysis relieved that terbinafine and itraconazole are active treatments for Fusarium onychomycosis. For a definitive diagnosis, combining of direct examination, culture and sequencing of the elongation factor of translation 1α are recommended. Accurate identification of the causative agents of onychomycosis due to Fusarium species and antifungal susceptibility testing is essential in patient management.
Collapse
Affiliation(s)
- Iman Haghani
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Taghi Hedayati
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Tahereh Shokohi
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Firoozeh Kermani
- Department of Medical Mycology and Parasitology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mona Ghazanfari
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Javad Javidnia
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shaghayegh Khojasteh
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Behrad Roohi
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamid Badali
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Fungus Testing Laboratory & Molecular Diagnostics Laboratory, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Maryam Fathi
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Kazem Amirizad
- Department of Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Yahyazadeh
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Abastabar
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abdullah M S Al-Hatmi
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
- Department of Biological Sciences & Chemistry, College of Arts and Sciences, University of Nizwa, Nizwa, Oman
- Center of Expertise in Mycology, Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Aboul-Ella H, Sayed RH, Abo-Elyazeed HS. Development, preparation, and evaluation of a novel dotted lateral flow immunochromatographic kit for rapid diagnosis of dermatophytosis. Sci Rep 2023; 13:248. [PMID: 36604481 PMCID: PMC9816107 DOI: 10.1038/s41598-023-27443-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023] Open
Abstract
Dermatophytosis is a widely spread contagious zoonotic disease, affecting both man (tinea) and animals (ringworm). This disease is caused by a group of closely related keratinophilic fungi known collectively as the dermatophytes group. Although the wide distribution of dermatophytosis cases throughout the whole world and its adverse clinical effect on human health, economical effect on productive animals, and pet animal welfare, there is no rapid accurate diagnostic tool for such disease. The current conducted study tries to accomplish the difficult equation by achieving an accurate, sensitive, specific, user-friendly, rapid, robust, device-less, deliverable to end-users, and economic cost for the development and production of diagnostic kits. Through the development of a rapid diagnostic kit based on immunochromatographic assay with three major affordable reproducible production stages; preliminary stage, developmental and standardization stage, and evaluation stage. Obtaining dermatophytes-specific polyclonal antibodies against criteria-based selected dermatophytes strains associating proper gold nanoparticle preparation, characterization, and conjugation, with proper loading of the different bio-reactants on the efficiently laminated and fabricated lateral flow strips were the main challenge and control points through the whole process. Also, as a result of examining 100 animal samples using the new kit, the κ coefficients of the kit with the direct microscopy while the kit with the culture were 0.44 and 0.76, respectively. Therefore, the newly designated and developed kit showed a very promising competitive diagnostic result within 5-7 min through easy-to-be-performed three steps.
Collapse
Affiliation(s)
- Hassan Aboul-Ella
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Rafik Hamed Sayed
- grid.418376.f0000 0004 1800 7673Department of Microbiology, Central Laboratory for Evaluation of Veterinary Biologics (CLEVB), Agricultural Research Center (ARC), Cairo, Egypt
| | - Heidy Shawky Abo-Elyazeed
- grid.7776.10000 0004 0639 9286Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
5
|
Gupta AK, Hall DC, Cooper EA, Ghannoum MA. Diagnosing Onychomycosis: What's New? J Fungi (Basel) 2022; 8:464. [PMID: 35628720 PMCID: PMC9146047 DOI: 10.3390/jof8050464] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/05/2023] Open
Abstract
An overview of the long-established methods of diagnosing onychomycosis (potassium hydroxide testing, fungal culture, and histopathological examination) is provided followed by an outline of other diagnostic methods currently in use or under development. These methods generally use one of two diagnostic techniques: visual identification of infection (fungal elements or onychomycosis signs) or organism identification (typing of fungal genus/species). Visual diagnosis (dermoscopy, optical coherence tomography, confocal microscopy, UV fluorescence excitation) provides clinical evidence of infection, but may be limited by lack of organism information when treatment decisions are needed. The organism identification methods (lateral flow techniques, polymerase chain reaction, MALDI-TOF mass spectroscopy and Raman spectroscopy) seek to provide faster and more reliable identification than standard fungal culture methods. Additionally, artificial intelligence methods are being applied to assist with visual identification, with good success. Despite being considered the 'gold standard' for diagnosis, clinicians are generally well aware that the established methods have many limitations for diagnosis. The new techniques seek to augment established methods, but also have advantages and disadvantages relative to their diagnostic use. It remains to be seen which of the newer methods will become more widely used for diagnosis of onychomycosis. Clinicians need to be aware of the limitations of diagnostic utility calculations as well, and look beyond the numbers to assess which techniques will provide the best options for patient assessment and management.
Collapse
Affiliation(s)
- Aditya K. Gupta
- Department of Medicine, Division of Dermatology, University of Toronto School of Medicine, Toronto, ON M5S 3H2, Canada
- Mediprobe Research Inc., London, ON N5X 2P1, Canada; (D.C.H.); (E.A.C.)
| | - Deanna C. Hall
- Mediprobe Research Inc., London, ON N5X 2P1, Canada; (D.C.H.); (E.A.C.)
| | | | - Mahmoud A. Ghannoum
- Center for Medical Mycology, Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA;
- Department of Dermatology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|