1
|
Switzer WM, Shankar A, Jia H, Knyazev S, Ambrosio F, Kelly R, Zheng H, Campbell EM, Cintron R, Pan Y, Saduvala N, Panneer N, Richman R, Singh MB, Thoroughman DA, Blau EF, Khalil GM, Lyss S, Heneine W. High HIV diversity, recombination, and superinfection revealed in a large outbreak among persons who inject drugs in Kentucky and Ohio, USA. Virus Evol 2024; 10:veae015. [PMID: 38510920 PMCID: PMC10953796 DOI: 10.1093/ve/veae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 03/22/2024] Open
Abstract
We investigated transmission dynamics of a large human immunodeficiency virus (HIV) outbreak among persons who inject drugs (PWID) in KY and OH during 2017-20 by using detailed phylogenetic, network, recombination, and cluster dating analyses. Using polymerase (pol) sequences from 193 people associated with the investigation, we document high HIV-1 diversity, including Subtype B (44.6 per cent); numerous circulating recombinant forms (CRFs) including CRF02_AG (2.5 per cent) and CRF02_AG-like (21.8 per cent); and many unique recombinant forms composed of CRFs with major subtypes and sub-subtypes [CRF02_AG/B (24.3 per cent), B/CRF02_AG/B (0.5 per cent), and A6/D/B (6.4 per cent)]. Cluster analysis of sequences using a 1.5 per cent genetic distance identified thirteen clusters, including a seventy-five-member cluster composed of CRF02_AG-like and CRF02_AG/B, an eighteen-member CRF02_AG/B cluster, Subtype B clusters of sizes ranging from two to twenty-three, and a nine-member A6/D and A6/D/B cluster. Recombination and phylogenetic analyses identified CRF02_AG/B variants with ten unique breakpoints likely originating from Subtype B and CRF02_AG-like viruses in the largest clusters. The addition of contact tracing results from OH to the genetic networks identified linkage between persons with Subtype B, CRF02_AG, and CRF02_AG/B sequences in the clusters supporting de novo recombinant generation. Superinfection prevalence was 13.3 per cent (8/60) in persons with multiple specimens and included infection with B and CRF02_AG; B and CRF02_AG/B; or B and A6/D/B. In addition to the presence of multiple, distinct molecular clusters associated with this outbreak, cluster dating inferred transmission associated with the largest molecular cluster occurred as early as 2006, with high transmission rates during 2017-8 in certain other molecular clusters. This outbreak among PWID in KY and OH was likely driven by rapid transmission of multiple HIV-1 variants including de novo viral recombinants from circulating viruses within the community. Our findings documenting the high HIV-1 transmission rate and clustering through partner services and molecular clusters emphasize the importance of leveraging multiple different data sources and analyses, including those from disease intervention specialist investigations, to better understand outbreak dynamics and interrupt HIV spread.
Collapse
Affiliation(s)
- William M Switzer
- Division of HIV Prevention, CDC, 1600 Clifton Rd, Atlanta, GA 30329, USA
| | - Anupama Shankar
- Division of HIV Prevention, CDC, 1600 Clifton Rd, Atlanta, GA 30329, USA
| | - Hongwei Jia
- Division of HIV Prevention, CDC, 1600 Clifton Rd, Atlanta, GA 30329, USA
| | - Sergey Knyazev
- Division of HIV Prevention, CDC, 1600 Clifton Rd, Atlanta, GA 30329, USA
- Oak Ridge Institute for Science and Education, 1299 Bethel Valley Rd, Oak Ridge, TN 37830, USA
| | - Frank Ambrosio
- Division of HIV Prevention, CDC, 1600 Clifton Rd, Atlanta, GA 30329, USA
| | - Reagan Kelly
- Division of HIV Prevention, CDC, 1600 Clifton Rd, Atlanta, GA 30329, USA
- General Dynamics Information Technology, 3150 Fairview Park Dr, Falls Church, VA 22042, USA
| | - HaoQiang Zheng
- Division of HIV Prevention, CDC, 1600 Clifton Rd, Atlanta, GA 30329, USA
| | | | - Roxana Cintron
- Division of HIV Prevention, CDC, 1600 Clifton Rd, Atlanta, GA 30329, USA
| | - Yi Pan
- Division of HIV Prevention, CDC, 1600 Clifton Rd, Atlanta, GA 30329, USA
| | | | - Nivedha Panneer
- Division of HIV Prevention, CDC, 1600 Clifton Rd, Atlanta, GA 30329, USA
| | - Rhiannon Richman
- HIV Surveillance Program, Bureau of HIV/STI/Viral Hepatitis, Ohio Department of Health, 246 North High Street, Colombus, OH 43215, USA
| | - Manny B Singh
- Division of Epidemiology and Health Planning, Kentucky Department for Public Health, Frankfort, KY 40621, USA
| | - Douglas A Thoroughman
- Division of Epidemiology and Health Planning, Kentucky Department for Public Health, Frankfort, KY 40621, USA
- ORR/Division of State and Local Readiness/Field Services Branch/CEFO Program, CDC, 1600 Clifton Rd, Atlanta, GA 30329, USA
| | - Erin F Blau
- Division of Epidemiology and Health Planning, Kentucky Department for Public Health, Frankfort, KY 40621, USA
- Epidemic Intelligence Service, CDC, 1600 Clifton Rd, Atlanta, GA 30329, USA
| | - George M Khalil
- Division of HIV Prevention, CDC, 1600 Clifton Rd, Atlanta, GA 30329, USA
| | - Sheryl Lyss
- Division of HIV Prevention, CDC, 1600 Clifton Rd, Atlanta, GA 30329, USA
- HIV Surveillance Program, Bureau of HIV/STI/Viral Hepatitis, Ohio Department of Health, 246 North High Street, Colombus, OH 43215, USA
- Division of Epidemiology and Health Planning, Kentucky Department for Public Health, Frankfort, KY 40621, USA
- Hamilton County Public Health, 250 William Howard Taft Rd, Cincinnati, OH 45219, USA
- Northern Kentucky Health Department, 8001 Veterans Memorial Drive, Florence, KY 41042, USA
| | - Walid Heneine
- Division of HIV Prevention, CDC, 1600 Clifton Rd, Atlanta, GA 30329, USA
| |
Collapse
|
2
|
A public health approach to monitoring HIV with resistance to HIV pre-exposure prophylaxis. PLoS One 2022; 17:e0272958. [PMID: 36037154 PMCID: PMC9423671 DOI: 10.1371/journal.pone.0272958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 07/31/2022] [Indexed: 11/29/2022] Open
Abstract
Background The risk of HIV pre-exposure prophylaxis (PrEP) failure with sufficient medication adherence is extremely low but has occurred due to transmission of a viral strain with mutations conferring resistance to PrEP components tenofovir (TDF) and emtricitabine (FTC). The extent to which such strains are circulating in the population is unknown. Methods We used HIV surveillance data to describe primary and overall TDF/FTC resistance and concurrent viremia among people living with HIV (PLWH). HIV genotypes conducted for clinical purposes are reported as part of HIV surveillance. We examined the prevalence of HIV strains with mutations conferring intermediate to high level resistance to TDF/FTC, defining primary resistance (predominantly K65R and M184I/V mutations) among sequences reported within 3 months of HIV diagnosis and total resistance for sequences reported at any time. We examined trends in primary resistance during 2010–2019 and total resistance among all PLWH in 2019. We also monitored resistance with viremia (≥1,000 copies/mL) at the end of 2019 among PLWH. Results Between 2010 and 2019, 2,172 King County residents were diagnosed with HIV; 1,557 (72%) had a genotypic resistance test within three months; three (0.2%) had primary TDF/FTC resistance with both K65R and M184I/V mutations. Adding isolated resistance for each drug resulted in 0.3% with primary TDF resistance and 0.8% with primary FTC resistance. Of 7,056 PLWH in 2019, 4,032 (57%) had genotype results, 241 (6%) had TDF/FTC resistance and 15 (0.4% of those with a genotype result) had viremia and TDF/FTC resistance. Conclusions Primary resistance and viremia combined with TDF/FTC resistance are uncommon in King County. Monitoring trends in TDF/FTC resistance coupled with interventions to help ensure PLWH achieve and maintain viral suppression may help ensure that PrEP failure remains rare.
Collapse
|
3
|
Rehman A, R. Khan M, Sarwar Z, Noreen S, Aftab T, M. Azeem G, Bin Abdul Malik MH, Kanwal R, Sadiqa A. Standard of Living of HIV Positive Individuals Visiting HIV Clinic Services Hospital, Lahore. PAKISTAN BIOMEDICAL JOURNAL 2021; 4. [DOI: 10.54393/pbmj.v4i2.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
HIV is caused by the Human Immunodeficiency Virus and leads to immunosuppression, thus making an individual easily susceptible to infections.This research was conducted in the HIV Clinic at Services Hospital Lahore to assess the living standards of HIV-positive patients visiting HIV Clinic. Therefore, the main objective of this study was to assess the standard of life in HIV-positive patients visiting the HIV Clinic of Services Hospital Lahore.Methods: It was a case-series study, conducted in the HIV clinic at Services Hospital Lahore. Data was collected from patients suffering from HIV-AIDS with the help of structured questionnaires. SPSS 23 software was used to enter, compile, and analyze the data.Results: Result of this study showed that 50% of patients visiting HIV clinic Services Hospital Lahore are in the age group of 31-45 years. Male and married patients are predominant. The questionnaire had 35 questions which are transformed into 11 dimensions. Cronbach's α co-efficient were calculated for all multi-item scales and four out of eight scale.Cronbach's α for perceived health is 0.72, physical functioning is 0.79, health distress is 0.78, and cognitive function is 0.70. The total mean summary scores were also calculated. The dimensions affecting physical and mental health were added together under the summary score of physical and mental health. The added mean summary score ± SD for mental health is 55.4±11.8 and for physical health is 41.5±11.3.Conclusions: The data indicates that patients with HIV/AIDS have an overall high standard of living. The stigma is that the patients consider themselves a bit exclusive, as AIDS is considered taboo in the Pakistani Muslim community. The research shows that patients with AIDS have excellent mental health, but their physical health is a bit worse depending on the burden of disease (virus). Thus, a conclusion can be made that HIV affects a person's physical health more than their mental health.
Collapse
|
4
|
O'Keefe KJ, Pipkin S, Fatch R, Scheer S, Liegler T, McFarland W, Grant RM, Truong HHM. Non-B variants of HIV-1 in San Francisco, California. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 90:104677. [PMID: 33321227 PMCID: PMC10686190 DOI: 10.1016/j.meegid.2020.104677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 11/26/2022]
Abstract
The HIV-1 epidemic in the US has historically been dominated by subtype B. HIV subtype diversity has not been extensively examined in most US cities to determine whether non-B variants have become established, as has been observed in many other global regions. We describe the diversity of non-B variants and present evidence of local transmission of non-B HIV in San Francisco. Viral sequences collected from patients between 2000 and 2016 were matched to the San Francisco HIV/AIDS case registry. HIV subtype was determined using COMET. Phylogenies were reconstructed using the pol region of subtypes A, C, D, G, CRF01_AE, CRF02_AG, and CRF07_BC, with reference sequences from the LANL HIV database. Associations of non-B subtypes and circulating recombinant forms (CRFs) with patient characteristics were assessed using multivariable logistic regression. Out of 11,381 sequences, 10,669 were from 7235 registry cases, of which 141 (2%) had non-B subtypes and CRFs and 72 (1%) had unique recombinant forms. CRF01_AE (0.8%) and subtype C (0.5%) were the most prevalent non-B forms. The frequency of non-B subtypes and CRFs increased in San Francisco during years 2000-2016. Out of 146 transmission events involving non-B study sequences, 18% indicated local transmission within the study population and 74% appeared to be inward migration of the virus. Compared to 7016 cases with only subtype B, 141 cases with non-B sequences were more likely to be of non-US country of birth (aOR = 11.02; p < 0.001), of Asian/Pacific-Islander race/ethnicity (aOR = 3.17; p < 0.001), and diagnosed after 2009 (aOR = 4.81; p < 0.001). Results suggest that most non-B infections were likely acquired outside the US and that local transmission of non-B forms has occurred but so far has not produced extensive transmission networks. Thus, non-B variants were not widely established in San Francisco, an observation that differs from cities worldwide with more diverse epidemics.
Collapse
Affiliation(s)
- Kara J O'Keefe
- Department of Medicine, University of California, San Francisco, CA 94158, USA.
| | - Sharon Pipkin
- Department of Public Health, San Francisco, CA 94102, USA.
| | - Robin Fatch
- Department of Epidemiology and Biostatistics, University of California, San Francisco 94158, USA.
| | - Susan Scheer
- Department of Public Health, San Francisco, CA 94102, USA.
| | - Teri Liegler
- Department of Medicine, University of California, San Francisco, CA 94158, USA
| | - Willi McFarland
- Department of Public Health, San Francisco, CA 94102, USA; Department of Epidemiology and Biostatistics, University of California, San Francisco 94158, USA.
| | - Robert M Grant
- Department of Medicine, University of California, San Francisco, CA 94158, USA.
| | - Hong-Ha M Truong
- Department of Medicine, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
5
|
Chen Y, Shen Z, Feng Y, Ruan Y, Li J, Tang S, Tang K, Liang S, Pang X, McNeil EB, Xing H, Chongsuvivatwong V, Lin M, Lan G. HIV-1 subtype diversity and transmission strain source among men who have sex with men in Guangxi, China. Sci Rep 2021; 11:8319. [PMID: 33859273 PMCID: PMC8050077 DOI: 10.1038/s41598-021-87745-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 03/30/2021] [Indexed: 11/08/2022] Open
Abstract
With the rapid increase in HIV prevalence of men who have sex with men (MSM) in recent years and common human migration and travelling across different provinces in China, MSM are now finding it easier to meet each other, which might contribute to local HIV epidemics as well as fueling cross-province transmission. We performed a cross-sectional survey in 2018-2019 to investigate the current HIV subtype diversity and inferred HIV strain transmission origin among MSM in Guangxi province, China based on a phylogenetic analysis. Based on 238 samples, we found that the HIV-1 subtype diversity was more complicated than before, except for three major HIV subtypes/circulating recombinant forms (CRFs): CRF07_BC, CRF01_AE, CRF55_01B, five other subtypes/CRFs (CRF59_01B, B, CRF08_BC, CRF67_01B, CRF68_01B) and five unique recombinant forms (URFs) were detected. In total, 76.8% (169/220) of samples were infected with HIV from local circulating strains, while others originated from other provinces, predominantly Guangdong and Shanghai. The high diversity of HIV recombinants and complicated HIV transmission sources in Guangxi MSM indicates that there has been an active sexual network between HIV positive MSM both within and outside Guangxi without any effective prevention. Inter-province collaboration must be enforced to provide tailored HIV prevention and control services to MSM in China.
Collapse
Affiliation(s)
- Yi Chen
- Institute of HIV/AIDS Prevention and Control, Guangxi Center of Disease Control and Prevention, Nanning, 530028, China
| | - Zhiyong Shen
- Institute of HIV/AIDS Prevention and Control, Guangxi Center of Disease Control and Prevention, Nanning, 530028, China
| | - Yi Feng
- Institute of HIV/AIDS Prevention and Control, Guangxi Center of Disease Control and Prevention, Nanning, 530028, China
- State Key Laboratory of Infectious Disease Prevention and Control (SKLID), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, 102206, China
| | - Yuhua Ruan
- Institute of HIV/AIDS Prevention and Control, Guangxi Center of Disease Control and Prevention, Nanning, 530028, China
- State Key Laboratory of Infectious Disease Prevention and Control (SKLID), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, 102206, China
| | - Jianjun Li
- Institute of HIV/AIDS Prevention and Control, Guangxi Center of Disease Control and Prevention, Nanning, 530028, China
| | - Shuai Tang
- Institute of HIV/AIDS Prevention and Control, Guangxi Center of Disease Control and Prevention, Nanning, 530028, China
| | - Kailing Tang
- Institute of HIV/AIDS Prevention and Control, Guangxi Center of Disease Control and Prevention, Nanning, 530028, China
| | - Shujia Liang
- Institute of HIV/AIDS Prevention and Control, Guangxi Center of Disease Control and Prevention, Nanning, 530028, China
| | - Xianwu Pang
- Institute of HIV/AIDS Prevention and Control, Guangxi Center of Disease Control and Prevention, Nanning, 530028, China
| | - Edward B McNeil
- Epidemiology Unit, Faculty of Medicine, Prince of Songkla University, Hat Yai, 90110, Thailand
| | - Hui Xing
- Institute of HIV/AIDS Prevention and Control, Guangxi Center of Disease Control and Prevention, Nanning, 530028, China
- State Key Laboratory of Infectious Disease Prevention and Control (SKLID), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, 102206, China
| | | | - Mei Lin
- Institute of HIV/AIDS Prevention and Control, Guangxi Center of Disease Control and Prevention, Nanning, 530028, China.
| | - Guanghua Lan
- Institute of HIV/AIDS Prevention and Control, Guangxi Center of Disease Control and Prevention, Nanning, 530028, China.
| |
Collapse
|
6
|
Di Giallonardo F, Pinto AN, Keen P, Shaik A, Carrera A, Salem H, Selvey C, Nigro SJ, Fraser N, Price K, Holden J, Lee FJ, Dwyer DE, Bavinton BR, Grulich AE, Kelleher AD, On Behalf Of The Nsw Hiv Prevention Partnership Project. Increased HIV Subtype Diversity Reflecting Demographic Changes in the HIV Epidemic in New South Wales, Australia. Viruses 2020; 12:E1402. [PMID: 33291330 PMCID: PMC7762219 DOI: 10.3390/v12121402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 12/24/2022] Open
Abstract
Changes over time in HIV-1 subtype diversity within a population reflect changes in factors influencing the development of local epidemics. Here we report on the genetic diversity of 2364 reverse transcriptase sequences from people living with HIV-1 in New South Wales (NSW) notified between 2004 and 2018. These data represent >70% of all new HIV-1 notifications in the state over this period. Phylogenetic analysis was performed to identify subtype-specific transmission clusters. Subtype B and non-B infections differed across all demographics analysed (p < 0.001). We found a strong positive association for infections among females, individuals not born in Australia or reporting heterosexual transmission being of non-B origin. Further, we found an overall increase in non-B infections among men who have sex with men from 50 to 79% in the last 10 years. However, we also found differences between non-B subtypes; heterosexual transmission was positively associated with subtype C only. In addition, the majority of subtype B infections were associated with clusters, while the majority of non-B infections were singletons. However, we found seven non-B clusters (≥5 sequences) indicative of local ongoing transmission. In conclusion, we present how the HIV-1 epidemic has changed over time in NSW, becoming more heterogeneous with distinct subtype-specific demographic associations.
Collapse
Affiliation(s)
| | - Angie N Pinto
- The Kirby Institute, The University of New South Wales, Sydney 2052, Australia
- Royal Prince Alfred Hospital, Sydney 2050, Australia
| | - Phillip Keen
- The Kirby Institute, The University of New South Wales, Sydney 2052, Australia
| | - Ansari Shaik
- The Kirby Institute, The University of New South Wales, Sydney 2052, Australia
| | - Alex Carrera
- HIV Reference Laboratory, Sydney 2010, Australia
| | - Hanan Salem
- New South Wales Health Pathology-RPA, Royal Prince Alfred Hospital, Camperdown 2050, Australia
| | | | | | - Neil Fraser
- Positive Life New South Wales, Sydney 2010, Australia
| | - Karen Price
- AIDS Council of NSW (ACON), Sydney 2010, Australia
| | | | - Frederick J Lee
- New South Wales Health Pathology-RPA, Royal Prince Alfred Hospital, Camperdown 2050, Australia
- Sydney Medical School, University of Sydney, Sydney 2050, Australia
| | - Dominic E Dwyer
- New South Wales Health Pathology-ICPMR, Westmead Hospital, Westmead 2145, Australia
| | - Benjamin R Bavinton
- The Kirby Institute, The University of New South Wales, Sydney 2052, Australia
| | - Andrew E Grulich
- The Kirby Institute, The University of New South Wales, Sydney 2052, Australia
| | - Anthony D Kelleher
- The Kirby Institute, The University of New South Wales, Sydney 2052, Australia
| | | |
Collapse
|
7
|
Ikeuchi K, Adachi E, Sasaki T, Suzuki M, Lim LA, Saito M, Koga M, Tsutsumi T, Kido Y, Uehara Y, Yotsuyanagi H. An Outbreak of USA300 Methicillin-Resistant Staphylococcus aureus Among People With HIV in Japan. J Infect Dis 2020; 223:610-620. [PMID: 33057717 DOI: 10.1093/infdis/jiaa651] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/09/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND USA300 produces Panton-Valentin leucocidin (PVL) and is known as a predominant community-associated methicillin-resistant Staphylococcus aureus (MRSA) strain in the United States, but it was extremely rare in Japan. We report here an outbreak of USA300 in people with HIV (PWH) in Tokyo, Japan. METHODS We analyzed the cases of PVL-MRSA infection between 2010 and 2020 and screened for nasal colonization of PVL-MRSA in PWH who visited an HIV/AIDS referral hospital from December 2019 to March 2020. Whole-genome sequencing-based single nucleotide polymorphism (SNP) analysis was performed on these isolates. RESULTS During the study period, a total of 21 PVL-MRSA infections in 14 patients were identified after 2014. The carriage prevalence was 4.3% (12/277) and PVL-MRSA carriers were more likely to have sexually transmitted infections (STIs) within a year compared with patients who had neither a history of PVL-MRSA infection nor colonization (33.3% [4/12] vs 10.1% [26/258]; P = .03). SNP analysis showed that all 26 isolates were ST8-SCCmecIVa-USA300. Twenty-four isolates were closely related (≤100 SNP differences) and had the nonsynonymous SNPs associated with carbohydrate metabolism and antimicrobial tolerance. CONCLUSIONS An outbreak of USA300 has been occurring among PWH in Tokyo and a history of STI was a risk of colonization.
Collapse
Affiliation(s)
- Kazuhiko Ikeuchi
- IMSUT Hospital, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Eisuke Adachi
- IMSUT Hospital, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Takashi Sasaki
- Animal Research Center, Sapporo Medical University School of Medicine, Sapporo City, Hokkaido, Japan
| | - Masato Suzuki
- IMSUT Hospital, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Lay Ahyoung Lim
- IMSUT Hospital, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Makoto Saito
- IMSUT Hospital, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Michiko Koga
- IMSUT Hospital, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Takeya Tsutsumi
- IMSUT Hospital, The University of Tokyo, Minato-ku, Tokyo, Japan
| | | | - Yuki Uehara
- St Luke's International Hospital, Chuo-ku, Tokyo, Japan
| | | |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW To provide a summary of the current data on the global HIV subtype diversity and distribution by region. HIV is one of the most genetically diverse pathogens due to its high-mutation and recombination rates, large population size and rapid replication rate. This rapid evolutionary process has resulted in several HIV subtypes that are heterogeneously globally distributed. RECENT FINDINGS Subtype A remains the most prevalent strain in parts of East Africa, Russia and former Soviet Union countries; subtype B in Europe, Americas and Oceania; subtype C in Southern Africa and India; CRF01_AE in Asia and CRF02_AG in Western Africa. Recent studies based on near full-length genome sequencing highlighted the growing importance of recombinant variants and subtype C viruses. SUMMARY The dynamic change in HIV subtype distribution presents future challenges for diagnosis, treatment and vaccine design and development. An increase in recombinant viruses suggests that coinfection and superinfection by divergent HIV strains has become more common necessitating continuous surveillance to keep track of the viral diversity. Cheaper near full-length genome sequencing approaches are critical in improving HIV subtype estimations. However, missing subtype data and low sequence sampling levels are still a challenge in some geographical regions. VIDEO ABSTRACT: http://links.lww.com/COHA/A14.
Collapse
|
9
|
HIV-1 Latency and Latency Reversal: Does Subtype Matter? Viruses 2019; 11:v11121104. [PMID: 31795223 PMCID: PMC6950696 DOI: 10.3390/v11121104] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 02/06/2023] Open
Abstract
Cells that are latently infected with HIV-1 preclude an HIV-1 cure, as antiretroviral therapy does not target this latent population. HIV-1 is highly genetically diverse, with over 10 subtypes and numerous recombinant forms circulating worldwide. In spite of this vast diversity, much of our understanding of latency and latency reversal is largely based on subtype B viruses. As such, most of the development of cure strategies targeting HIV-1 are solely based on subtype B. It is currently assumed that subtype does not influence the establishment or reactivation of latent viruses. However, this has not been conclusively proven one way or the other. A better understanding of the factors that influence HIV-1 latency in all viral subtypes will help develop therapeutic strategies that can be applied worldwide. Here, we review the latest literature on subtype-specific factors that affect viral replication, pathogenesis, and, most importantly, latency and its reversal.
Collapse
|
10
|
Weber J, Volkova I, Sahoo MK, Tzou PL, Shafer RW, Pinsky BA. Prospective Evaluation of the Vela Diagnostics Next-Generation Sequencing Platform for HIV-1 Genotypic Resistance Testing. J Mol Diagn 2019; 21:961-970. [PMID: 31382033 PMCID: PMC7152740 DOI: 10.1016/j.jmoldx.2019.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/16/2019] [Accepted: 06/05/2019] [Indexed: 11/30/2022] Open
Abstract
Genotypic antiretroviral drug resistance testing is a critical component of the global efforts to control the HIV-1 epidemic. This study investigates the semiautomated, next-generation sequencing (NGS)-based Vela Diagnostics Sentosa SQ HIV-1 Genotyping Assay in a prospective cohort of HIV-1-infected patients. Two-hundred sixty-nine samples were successfully sequenced by both NGS and Sanger sequencing. Among the 261 protease/reverse transcriptase (PR/RT) sequences, a mean of 0.37 drug resistance mutations were identified by both Sanger and NGS, 0.08 by NGS alone, and 0.03 by Sanger alone. Among the 50 integrase sequences, a mean of 0.3 drug resistance mutations were detected by both Sanger and NGS, and 0.08 by NGS alone. NGS estimated higher levels of drug resistance to one or more antiretroviral drugs for 6.5% of PR/RT sequences and 4.0% of integrase sequences, whereas Sanger estimated higher levels of drug resistance for 3.8% of PR/RT sequences. Although the samples successfully sequenced by the Sentosa SQ HIV Genotyping Assay demonstrated similar predicted resistance compared with Sanger, 44% of Sentosa runs failed quality control requiring 17 additional runs. This semi-automated NGS-based assay may aid in HIV-1 genotypic drug resistance testing, though numerous quality control issues were observed when this platform was used in a clinical laboratory setting. With additional refinement, the Sentosa SQ HIV-1 Genotyping Assay may contribute to the global efforts to control HIV-1.
Collapse
Affiliation(s)
- Jenna Weber
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Ilona Volkova
- Clinical Virology Laboratory, Stanford Health Care, Stanford, California
| | - Malaya K Sahoo
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Philip L Tzou
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Robert W Shafer
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Benjamin A Pinsky
- Department of Pathology, Stanford University School of Medicine, Stanford, California; Clinical Virology Laboratory, Stanford Health Care, Stanford, California; Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
11
|
Mazzuti L, Melengu T, Falasca F, Calabretto M, Cella E, Ciccozzi M, Mezzaroma I, Iaiani G, Spaziante M, d'Ettorre G, Fimiani C, Vullo V, Antonelli G, Turriziani O. Transmitted drug resistance mutations and trends of HIV-1 subtypes in treatment-naïve patients: A single-centre experience. J Glob Antimicrob Resist 2019; 20:298-303. [PMID: 31518723 DOI: 10.1016/j.jgar.2019.08.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 07/12/2019] [Accepted: 08/28/2019] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES Transmitted drug resistance (TDR) and HIV-1 genetic diversity may affect treatment efficacy and clinical outcomes. Here we describe the circulating viral subtypes and estimate the prevalence of drug resistance among antiretroviral therapy (ART)-naïve patients attending Sapienza University Hospital (Rome, Italy) from 2006-2017. METHODS Genotypic resistance testing (GRT) was performed on 668 ART-naïve patients for integrase (n = 52), protease and reverse transcriptase (n = 668) sequences. RESULTS Twenty-one different HIV-1 subtypes and circulating recombinant forms (CRFs) were identified. Subtype B was the most common (67.1%), followed by CRF02_AG (8.4%), and subtypes C and F (both 6.0%). A significantly increase in the proportion of non-B strains (P < 0.001) and the rate of non-Italian patients was observed over time. The overall prevalence of TDR was 9.4% (NRTI, 4.2%; NNRTI, 5.8%; and PI, 1.0%) and was higher in subtype B strains. Transmitted INSTI mutations (Q148H and G140S) responsible for high-level resistance to raltegravir and elvitegravir and intermediate resistance to dolutegravir and bictegravir were found, for the first time, in two individuals. Minor or accessory INSTI mutations were detected in 17.3% of patients. No significant decrease in the prevalence of TDR was documented over time. CONCLUSION The significant increase in non-B subtypes suggests that the molecular epidemiology of HIV-1 is changing. Detection of a major INSTI mutation in two ART-naïve patients highlights the importance of performing GRT before commencing treatment. This finding and the lack of a significant reduction in TDRs underline the importance of continuous surveillance of resistance mutations.
Collapse
Affiliation(s)
- Laura Mazzuti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Taulant Melengu
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Francesca Falasca
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Eleonora Cella
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, Rome, Italy
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, Rome, Italy
| | - Ivano Mezzaroma
- Department of Translational and Precision Medicine, Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | | | - Martina Spaziante
- Department of Public Health and Infectious Diseases, 'Sapienza' University of Rome, Rome, Italy
| | - Gabriella d'Ettorre
- Department of Public Health and Infectious Diseases, 'Sapienza' University of Rome, Rome, Italy
| | | | - Vincenzo Vullo
- Department of Public Health and Infectious Diseases, 'Sapienza' University of Rome, Rome, Italy
| | - Guido Antonelli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
12
|
An Evolutionary Model-Based Approach To Quantify the Genetic Barrier to Drug Resistance in Fast-Evolving Viruses and Its Application to HIV-1 Subtypes and Integrase Inhibitors. Antimicrob Agents Chemother 2019; 63:AAC.00539-19. [PMID: 31109980 DOI: 10.1128/aac.00539-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/15/2019] [Indexed: 12/19/2022] Open
Abstract
Viral pathogens causing global disease burdens are often characterized by high rates of evolutionary changes. The extensive viral diversity at baseline can shorten the time to escape from therapeutic or immune selective pressure and alter mutational pathways. The impact of genotypic background on the barrier to resistance can be difficult to capture, particularly for agents in experimental stages or that are recently approved or expanded into new patient populations. We developed an evolutionary model-based counting method to quickly quantify the population genetic potential to resistance and assess population differences. We demonstrate its applicability to HIV-1 integrase inhibitors, as their increasing use globally contrasts with limited availability of non-B subtype resistant sequence data and corresponding knowledge gap. A large sequence data set encompassing most prevailing HIV-1 subtypes and resistance-associated mutations of currently approved integrase inhibitors was investigated. A complex interplay between codon predominance, polymorphisms, and associated evolutionary costs resulted in a subtype-dependent varied genetic potential for 15 resistance mutations against integrase inhibitors. While we confirm the lower genetic barrier of subtype B for G140S, we convincingly discard a similar effect previously suggested for G140C. A supplementary analysis for HIV-1 reverse transcriptase inhibitors identified a lower genetic barrier for K65R in subtype C through differential codon usage not reported before. To aid evolutionary interpretations of genomic differences for antiviral strategies, we advanced existing counting methods with increased sensitivity to identify subtype dependencies of resistance emergence. Future applications include novel HIV-1 drug classes or vaccines, as well as other viral pathogens.
Collapse
|
13
|
Rhee SY, Magalis BR, Hurley L, Silverberg MJ, Marcus JL, Slome S, Kosakovsky Pond SL, Shafer RW. National and International Dimensions of Human Immunodeficiency Virus-1 Sequence Clusters in a Northern California Clinical Cohort. Open Forum Infect Dis 2019; 6:ofz135. [PMID: 31041344 PMCID: PMC6483754 DOI: 10.1093/ofid/ofz135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 03/12/2019] [Indexed: 11/14/2022] Open
Abstract
Background Recent advances in high-throughput molecular epidemiology are transforming the analysis of viral infections. Methods Human immunodeficiency virus (HIV)-1 pol sequences from a Northern Californian cohort (NCC) of 4553 antiretroviral-naive individuals sampled between 1998 and 2016 were analyzed together with 140 000 previously published global pol sequences. The HIV-TRAnsmission Cluster Engine (HIV-TRACE) was used to infer a transmission network comprising links between NCC and previously published sequences having a genetic distance ≤1.5%. Results Twenty-five percent of NCC sequences were included in 264 clusters linked to a published sequence, and approximately one third of these (8.0% of the total) were linked to 1 or more non-US sequences. The largest cluster, containing 512 NCC sequences (11.2% of the total), comprised the subtype B lineage that traced its origin to the earliest North American sequences. Approximately 5 percent of NCC sequences belonged to a non-B subtype, and these were more likely to cluster with a non-US sequence. Twenty-two NCC sequences belonged to 1 of 4 large clusters containing sequences from rapidly growing regional epidemics: CRF07_BC (East Asia), subtype A6 (former Soviet Union), a Japanese subtype B lineage, and an East/Southeast Asian CRF01_AE lineage. Bayesian phylogenetics suggested that most non-B sequences resulted from separate introductions but that local spread within the largest CRF01_AE cluster occurred twice. Conclusions The NCC contains national and international links to previously published sequences including many to the subtype B strain that originated in North America and several to rapidly growing Asian epidemics. Despite their rapid regional growth, the Asian epidemic strains demonstrated limited NCC spread.
Collapse
Affiliation(s)
- Soo-Yon Rhee
- Division of Infectious Diseases, Department of Medicine, Stanford University, California
| | | | - Leo Hurley
- Division of Research, Kaiser Permanente Northern California, Oakland
| | | | - Julia L Marcus
- Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts
| | - Sally Slome
- Department of Infectious Diseases, Kaiser Permanente Northern California, Oakland
| | | | - Robert W Shafer
- Division of Infectious Diseases, Department of Medicine, Stanford University, California
| |
Collapse
|
14
|
Kline RL, Saduvala N, Zhang T, Oster AM. Diversity and characterization of HIV-1 subtypes in the United States, 2008-2016. Ann Epidemiol 2019; 33:84-88. [PMID: 30961993 DOI: 10.1016/j.annepidem.2019.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/05/2019] [Accepted: 02/28/2019] [Indexed: 11/27/2022]
Abstract
PURPOSE This article describes subtype diversity among diagnosed HIV-1 infections in the United States during 2008-2016 by demographic or risk group and over time. METHODS HIV-1 polymerase sequences reported to the National HIV Surveillance System for persons in 17 U.S. states with HIV infection diagnosed during 2008-2016 were subtyped using COMET, an automated subtyping tool, and National HIV Surveillance System demographic data were analyzed. RESULTS Subtype B was identified in 93.6% of 121,793 reported sequences. The most common non-B subtypes and circulating recombinant forms (CRFs) were C, CRF02_AG, A, CRF01_AE, and G. Elevated percentages of non-B subtypes or CRFs were found in persons who were female, aged less than 13 years at diagnosis, Asian, or had transmission attributable to heterosexual contact (females only) or perinatal exposure. Foreign-born persons had a higher percentage of non-B subtypes. The prevalence of non-B subtypes and CRFs increased from 5.0% in 2008 to 8.5% in 2016; among specific subtypes and CRFs, subtype G and CRF01_AE increased. CONCLUSIONS Subtype B remains the predominant strain in the United States. Non-B subtypes and CRFs were not widespread, but diversity and numbers increased from 2008 through 2016, which could have consequences for clinical management, diagnostic testing, and vaccine development.
Collapse
Affiliation(s)
- Richard L Kline
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, GA
| | | | | | - Alexandra M Oster
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, GA.
| |
Collapse
|
15
|
Yamaguchi J, Olivo A, Laeyendecker O, Forberg K, Ndembi N, Mbanya D, Kaptue L, Quinn TC, Cloherty GA, Rodgers MA, Berg MG. Universal Target Capture of HIV Sequences From NGS Libraries. Front Microbiol 2018; 9:2150. [PMID: 30271393 PMCID: PMC6146096 DOI: 10.3389/fmicb.2018.02150] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/22/2018] [Indexed: 11/13/2022] Open
Abstract
Background: Global surveillance of viral sequence diversity is needed to keep pace with the constant evolution of HIV. Recent next generation sequencing (NGS) methods have realized the goal of sequencing circulating virus directly from patient specimens. Yet, a simple, universal approach that maximizes sensitivity and sequencing capacity remains elusive. Here we present a novel HIV enrichment strategy to yield near complete genomes from low viral load specimens. Methodology: A non-redundant biotin-labeled probe set (HIV-xGen; n = 652) was synthesized to tile all HIV-1 (groups M, N, O, and P) and HIV-2 (A and B) strains. Illumina Nextera barcoded libraries of either gene-specific or randomly primed cDNA derived from infected plasma were hybridized to probes in a single pool and unbound sequences were washed away. Captured viral cDNA was amplified by Illumina adaptor primers, sequenced on a MiSeq, and NGS reads were demultiplexed for alignment with CLC Bio software. Results: HIV-xGen probes selectively captured and amplified reads spanning the entirety of the HIV phylogenetic tree. HIV sequences clearly present in unenriched libraries of specimens but previously not observed due to high host background levels, insufficient sequencing depth or the extent of multiplexing, were now enriched by >1,000-fold. Thus, xGen selection not only substantially increased the depth of existing sequence, but also extended overall genome coverage by an average of 40%. We characterized 50 new, diverse HIV strains from clinical specimens and demonstrated a viral load cutoff of approximately log 3.5 copies/ml for full length coverage. Genome coverage was <20% for 5/10 samples with viral loads <log 3.5 copies/ml and >90% for 35/40 samples with higher viral loads. Conclusions: Characterization of >20 complete genomes at a time is now possible from a single probe hybridization and MiSeq run. With the versatility to capture all HIV strains and the sensitivity to detect low titer specimens, HIV-xGen will serve as an important tool for monitoring HIV sequence diversity.
Collapse
Affiliation(s)
- Julie Yamaguchi
- Infectious Diseases Research, Abbott Diagnostics, Chicago, IL, United States
| | - Ana Olivo
- Infectious Diseases Research, Abbott Diagnostics, Chicago, IL, United States
| | - Oliver Laeyendecker
- National Institute of Allergy and Infectious Diseases, NIH, Baltimore, MD, United States
| | - Kenn Forberg
- Infectious Diseases Research, Abbott Diagnostics, Chicago, IL, United States
| | | | - Dora Mbanya
- Université de Yaoundé 1, Yaoundé, Cameroon.,University of Bamenda, Bamenda, Cameroon
| | | | - Thomas C Quinn
- National Institute of Allergy and Infectious Diseases, NIH, Baltimore, MD, United States
| | - Gavin A Cloherty
- Infectious Diseases Research, Abbott Diagnostics, Chicago, IL, United States
| | - Mary A Rodgers
- Infectious Diseases Research, Abbott Diagnostics, Chicago, IL, United States
| | - Michael G Berg
- Infectious Diseases Research, Abbott Diagnostics, Chicago, IL, United States
| |
Collapse
|
16
|
Villabona Arenas CJ, Vidal N, Ahuka Mundeke S, Muwonga J, Serrano L, Muyembe JJ, Boillot F, Delaporte E, Peeters M. Divergent HIV-1 strains (CRF92_C2U and CRF93_cpx) co-circulating in the Democratic Republic of the Congo: Phylogenetic insights on the early evolutionary history of subtype C. Virus Evol 2017; 3:vex032. [PMID: 29250430 PMCID: PMC5724398 DOI: 10.1093/ve/vex032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Molecular epidemiological studies revealed that the epicenter of the HIV pandemic was Kinshasa, the capital city of the Democratic Republic of the Congo (DRC) in Central Africa. All known subtypes and numerous complex recombinant strains co-circulate in the DRC. Moreover, high intra-subtype diversity has been also documented. During two previous surveys on HIV-1 antiretroviral drug resistance in the DRC, we identified two divergent subtype C lineages in the protease and partial reverse transcriptase gene regions. We sequenced eight near full-length genomes and classified them using bootscanning and likelihood-based phylogenetic analyses. Four strains are more closely related to subtype C although within the range of inter sub-subtype distances. However, these strains also have small unclassified fragments and thus were named CRF92_C2U. Another strain is a unique recombinant of CRF92_C2U with an additional small unclassified fragment and a small divergent subtype A fragment. The three remaining strains represent a complex mosaic named CRF93_cpx. CRF93_cpx have two fragments of divergent subtype C sequences, which are not conventional subtype C nor the above described C2, and multiple divergent subtype A-like fragments. We then inferred the time-scaled evolutionary history of subtype C following a Bayesian approach and a partitioned analysis using major genomic regions. CRF92_C2U and CRF93_cpx had the most recent common ancestor with conventional subtype C around 1932 and 1928, respectively. A Bayesian demographic reconstruction corroborated that the subtype C transition to a faster phase of exponential growth occurred during the 1950s. Our analysis showed considerable differences between the newly discovered early-divergent strains and the conventional subtype C and therefore suggested that this virus has been diverging in humans for several decades before the HIV/M diversity boom in the 1950s.
Collapse
Affiliation(s)
- C J Villabona Arenas
- Unité Mixte Internationale 233, Institut de Recherche pour le Développement, INSERM U1175, Université de Montpellier, 911 Avenue Agropolis, Montpellier, 34394, France
| | - N Vidal
- Unité Mixte Internationale 233, Institut de Recherche pour le Développement, INSERM U1175, Université de Montpellier, 911 Avenue Agropolis, Montpellier, 34394, France
| | - S Ahuka Mundeke
- Unité Mixte Internationale 233, Institut de Recherche pour le Développement, INSERM U1175, Université de Montpellier, 911 Avenue Agropolis, Montpellier, 34394, France.,Institut National de Recherche Biomédicale, Av. De la Démocratie 5345, Kinshasa, Democratic Republic of the Congo.,Cliniques Universitaires de Kinshasa, Route de Kimwenza, Kinshasa, Congo, Democratic Republic of Congo
| | - J Muwonga
- Cliniques Universitaires de Kinshasa, Route de Kimwenza, Kinshasa, Congo, Democratic Republic of Congo.,Laboratoire National de Référence du SIDA, Kinshasa, Democratic Republic of Congo
| | - L Serrano
- Unité Mixte Internationale 233, Institut de Recherche pour le Développement, INSERM U1175, Université de Montpellier, 911 Avenue Agropolis, Montpellier, 34394, France
| | - J J Muyembe
- Institut National de Recherche Biomédicale, Av. De la Démocratie 5345, Kinshasa, Democratic Republic of the Congo.,Cliniques Universitaires de Kinshasa, Route de Kimwenza, Kinshasa, Congo, Democratic Republic of Congo
| | - F Boillot
- Alter-Santé Internationale and Développement, Montpellier, 34090, France
| | - E Delaporte
- Unité Mixte Internationale 233, Institut de Recherche pour le Développement, INSERM U1175, Université de Montpellier, 911 Avenue Agropolis, Montpellier, 34394, France
| | - M Peeters
- Unité Mixte Internationale 233, Institut de Recherche pour le Développement, INSERM U1175, Université de Montpellier, 911 Avenue Agropolis, Montpellier, 34394, France
| |
Collapse
|
17
|
Pérez-Losada M, Castel AD, Lewis B, Kharfen M, Cartwright CP, Huang B, Maxwell T, Greenberg AE, Crandall KA. Characterization of HIV diversity, phylodynamics and drug resistance in Washington, DC. PLoS One 2017; 12:e0185644. [PMID: 28961263 PMCID: PMC5621693 DOI: 10.1371/journal.pone.0185644] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/16/2017] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Washington DC has a high burden of HIV with a 2.0% HIV prevalence. The city is a national and international hub potentially containing a broad diversity of HIV variants; yet few sequences from DC are available on GenBank to assess the evolutionary history of HIV in the US capital. Towards this general goal, here we analyze extensive sequence data and investigate HIV diversity, phylodynamics, and drug resistant mutations (DRM) in DC. METHODS Molecular HIV-1 sequences were collected from participants infected through 2015 as part of the DC Cohort, a longitudinal observational study of HIV+ patients receiving care at 13 DC clinics. Sequences were paired with Cohort demographic, risk, and clinical data and analyzed using maximum likelihood, Bayesian and coalescent approaches of phylogenetic, network and population genetic inference. We analyzed 601 sequences from 223 participants for int (~864 bp) and 2,810 sequences from 1,659 participants for PR/RT (~1497 bp). RESULTS Ninety-nine and 94% of the int and PR/RT sequences, respectively, were identified as subtype B, with 14 non-B subtypes also detected. Phylodynamic analyses of US born infected individuals showed that HIV population size varied little over time with no significant decline in diversity. Phylogenetic analyses grouped 13.5% of the int sequences into 14 clusters of 2 or 3 sequences, and 39.0% of the PR/RT sequences into 203 clusters of 2-32 sequences. Network analyses grouped 3.6% of the int sequences into 4 clusters of 2 sequences, and 10.6% of the PR/RT sequences into 76 clusters of 2-7 sequences. All network clusters were detected in our phylogenetic analyses. Higher proportions of clustered sequences were found in zip codes where HIV prevalence is highest (r = 0.607; P<0.00001). We detected a high prevalence of DRM for both int (17.1%) and PR/RT (39.1%), but only 8 int and 12 PR/RT amino acids were identified as under adaptive selection. We observed a significant (P<0.0001) association between main risk factors (men who have sex with men and heterosexuals) and genotypes in the five well-supported clusters with sufficient sample size for testing. DISCUSSION Pairing molecular data with clinical and demographic data provided novel insights into HIV population dynamics in Washington, DC. Identification of populations and geographic locations where clustering occurs can inform and complement active surveillance efforts to interrupt HIV transmission.
Collapse
Affiliation(s)
- Marcos Pérez-Losada
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Ashburn, VA, United States of America
- CIBIO-InBIO, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
- Milken Institute School of Public Health, Department of Epidemiology and Biostatistics, The George Washington University, Washington, DC, United States of America
| | - Amanda D. Castel
- Milken Institute School of Public Health, Department of Epidemiology and Biostatistics, The George Washington University, Washington, DC, United States of America
| | - Brittany Lewis
- Milken Institute School of Public Health, Department of Epidemiology and Biostatistics, The George Washington University, Washington, DC, United States of America
| | - Michael Kharfen
- District of Columbia Department of Health, Washington, DC, United States of America
| | | | - Bruce Huang
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Ashburn, VA, United States of America
| | - Taylor Maxwell
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Ashburn, VA, United States of America
| | - Alan E. Greenberg
- Milken Institute School of Public Health, Department of Epidemiology and Biostatistics, The George Washington University, Washington, DC, United States of America
| | - Keith A. Crandall
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Ashburn, VA, United States of America
| | | |
Collapse
|
18
|
Hakre S, Jagodzinski LL, Liu Y, Pham PT, Kijak GH, Tovanabutra S, McCutchan FE, Scoville SL, Cersovsky SB, Michael NL, Scott PT, Peel SA. Characteristics of HIV-infected U.S. Army soldiers linked in molecular transmission clusters, 2001-2012. PLoS One 2017; 12:e0182376. [PMID: 28759645 PMCID: PMC5536263 DOI: 10.1371/journal.pone.0182376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/17/2017] [Indexed: 11/18/2022] Open
Abstract
Objective Recent surveillance data suggests the United States (U.S.) Army HIV epidemic is concentrated among men who have sex with men. To identify potential targets for HIV prevention strategies, the relationship between demographic and clinical factors and membership within transmission clusters based on baseline pol sequences of HIV-infected Soldiers from 2001 through 2012 were analyzed. Methods We conducted a retrospective analysis of baseline partial pol sequences, demographic and clinical characteristics available for all Soldiers in active service and newly-diagnosed with HIV-1 infection from January 1, 2001 through December 31, 2012. HIV-1 subtype designations and transmission clusters were identified from phylogenetic analysis of sequences. Univariate and multivariate logistic regression models were used to evaluate and adjust for the association between characteristics and cluster membership. Results Among 518 of 995 HIV-infected Soldiers with available partial pol sequences, 29% were members of a transmission cluster. Assignment to a southern U.S. region at diagnosis and year of diagnosis were independently associated with cluster membership after adjustment for other significant characteristics (p<0.10) of age, race, year of diagnosis, region of duty assignment, sexually transmitted infections, last negative HIV test, antiretroviral therapy, and transmitted drug resistance. Subtyping of the pol fragment indicated HIV-1 subtype B infection predominated (94%) among HIV-infected Soldiers. Conclusion These findings identify areas to explore as HIV prevention targets in the U.S. Army. An increased frequency of current force testing may be justified, especially among Soldiers assigned to duty in installations with high local HIV prevalence such as southern U.S. states.
Collapse
Affiliation(s)
- Shilpa Hakre
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
- * E-mail:
| | - Linda L. Jagodzinski
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Ying Liu
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Peter T. Pham
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Gustavo H. Kijak
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Francine E. McCutchan
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Stephanie L. Scoville
- U.S. Army Public Health Center, Aberdeen Proving Ground, Maryland, United States of America
| | - Steven B. Cersovsky
- U.S. Army Public Health Center, Aberdeen Proving Ground, Maryland, United States of America
| | - Nelson L. Michael
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Paul T. Scott
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Sheila A. Peel
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| |
Collapse
|