1
|
Turan N, Geocadin RG. Cardiac arrest and disorders of consciousness. HANDBOOK OF CLINICAL NEUROLOGY 2025; 207:67-74. [PMID: 39986728 DOI: 10.1016/b978-0-443-13408-1.00015-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2025]
Abstract
As the second most common cause of coma and disorders of consciousness, cardiac arrest is defined as a cessation of cardiac mechanical activity and absence of circulation. Cardiac arrest can happen due to an intrinsic cardiac condition or secondary to noncardiac causes such as respiratory, neurologic, metabolic causes or external causes such as toxic ingestion, asphyxia, drowning, trauma, and other environmental exposures. While cardiac arrest resuscitation research and practice has evolved over decades, the overall survival to hospital discharge remains low across different types of cardiac arrest (about 9%-29%). This chapter focuses on disorders of consciousness after cardiac arrest and how it is different from other etiologies. It also discusses advances and controversies in diagnosis, management, prognostication and research.
Collapse
Affiliation(s)
- Nefize Turan
- Department of Neurology, Anesthesiology-Critical Care and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Romergryko G Geocadin
- Department of Neurology, Anesthesiology-Critical Care and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
2
|
Bonato JM, de Mattos BA, Oliveira DV, Milani H, Prickaerts J, de Oliveira RMW. Blood-Brain Barrier Rescue by Roflumilast After Transient Global Cerebral Ischemia in Rats. Neurotox Res 2023; 41:311-323. [PMID: 36922461 DOI: 10.1007/s12640-023-00639-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023]
Abstract
Phosphodiesterase 4 inhibitors (PDE4-I), which selectively increase cyclic adenosine monophosphate (cAMP) levels, have shown neuroprotective effects after several neurological injuries inducing blood-brain barrier (BBB) damage including local/focal cerebral ischemia. The present investigated whether roflumilast confers BBB neuroprotection in the hippocampus after transient global cerebral ischemia (TGCI) in rats. TGCI resulted in whole BBB disruption as measured by the increase of Evans blue (EB) and IgG extravasation, neurodegeneration, and downregulation of claudin-5 and endothelial nitric oxide synthase (eNOS) levels in the CA1 hippocampal subfield of ischemic rats. Roflumilast attenuated BBB disruption and restored the levels of eNOS in the CA1 hippocampal area. Moreover, roflumilast increased the levels of B2 cell lymphoma (BcL-2) and neuron-glial antigen-2 (NG2) in the CA1 subfield after global ischemia in rats. The protective effects of roflumilast against TGCI-induced BBB breakdown might involve preservation of BBB integrity, vascularization and angiogenesis, and myelin repair.
Collapse
Affiliation(s)
- Jéssica Mendes Bonato
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, CEP, 5790, 87020-900, Maringá, Paraná, Brazil
| | - Bianca Andretto de Mattos
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, CEP, 5790, 87020-900, Maringá, Paraná, Brazil
| | - Daniela Velasquez Oliveira
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, CEP, 5790, 87020-900, Maringá, Paraná, Brazil
| | - Humberto Milani
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, CEP, 5790, 87020-900, Maringá, Paraná, Brazil
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Rúbia Maria Weffort de Oliveira
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, CEP, 5790, 87020-900, Maringá, Paraná, Brazil.
| |
Collapse
|
3
|
Ousta A, Piao L, Fang YH, Vera A, Nallamothu T, Garcia AJ, Sharp WW. Microglial Activation and Neurological Outcomes in a Murine Model of Cardiac Arrest. Neurocrit Care 2022; 36:61-70. [PMID: 34268646 PMCID: PMC8813848 DOI: 10.1007/s12028-021-01253-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 04/08/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Neurological injury following successful resuscitation from sudden cardiac arrest (CA) is common. The pathophysiological basis of this injury remains poorly understood, and treatment options are limited. Microglial activation and neuroinflammation are established contributors to many neuropathologies, such as Alzheimer disease and traumatic brain injury, but their potential role in post-CA injury has only recently been recognized. Here, we hypothesize that microglial activation that occurs following brief asystolic CA is associated with neurological injury and represents a potential therapeutic target. METHODS Adult C57BL/6 male and female mice were randomly assigned to 12-min, KCl-induced asystolic CA, under anesthesia and ventilation, followed by successful cardiopulmonary resuscitation (n = 19) or sham intervention (n = 11). Neurological assessments of mice were performed using standardized neurological scoring, video motion tracking, and sensory/motor testing. Mice were killed at 72 h for histological studies; neuronal degeneration was assessed using Fluoro-Jade C staining. Microglial characteristics were assessed by immunohistochemistry using the marker of ionized calcium binding adaptor molecule 1, followed by ImageJ analyses for cell integrity density and skeletal analyses. RESULTS Neurological injury in post-cardiopulmonary-resuscitation mice vs. sham mice was evident by poorer neurological scores (difference of 3.626 ± 0.4921, 95% confidence interval 2.618-4.634), sensory and motor functions (worsened by sixfold and sevenfold, respectively, compared with baseline), and locomotion (75% slower with a 76% decrease in total distance traveled). Post-CA brains demonstrated evidence of neurodegeneration and neuroinflammatory microglial activation. CONCLUSIONS Extensive microglial activation and neurodegeneration in the CA1 region and the dentate gyrus of the hippocampus are evident following brief asystolic CA and are associated with severe neurological injury.
Collapse
Affiliation(s)
- Alaa Ousta
- Section of Emergency Medicine, Department of Medicine, University of Chicago, 5841 S Maryland Avenue, Chicago, IL, 60637, USA
| | - Lin Piao
- Section of Emergency Medicine, Department of Medicine, University of Chicago, 5841 S Maryland Avenue, Chicago, IL, 60637, USA
| | - Yong Hu Fang
- Section of Emergency Medicine, Department of Medicine, University of Chicago, 5841 S Maryland Avenue, Chicago, IL, 60637, USA
| | - Adrianna Vera
- Section of Emergency Medicine, Department of Medicine, University of Chicago, 5841 S Maryland Avenue, Chicago, IL, 60637, USA
| | - Thara Nallamothu
- Section of Emergency Medicine, Department of Medicine, University of Chicago, 5841 S Maryland Avenue, Chicago, IL, 60637, USA
| | - Alfredo J Garcia
- Section of Emergency Medicine, Department of Medicine, University of Chicago, 5841 S Maryland Avenue, Chicago, IL, 60637, USA
| | - Willard W Sharp
- Section of Emergency Medicine, Department of Medicine, University of Chicago, 5841 S Maryland Avenue, Chicago, IL, 60637, USA.
| |
Collapse
|
4
|
Aguiar RPD, Newman-Tancredi A, Prickaerts J, Oliveira RMWD. The 5-HT 1A receptor as a serotonergic target for neuroprotection in cerebral ischemia. Prog Neuropsychopharmacol Biol Psychiatry 2021; 109:110210. [PMID: 33333136 DOI: 10.1016/j.pnpbp.2020.110210] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/01/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022]
Abstract
Cerebral ischemia due to stroke or cardiac arrest greatly affects daily functioning and the quality of life of patients and has a high socioeconomic impact due to the surge in their prevalence. Advances in the identification of an effective pharmacotherapy to promote neuroprotection and recovery after a cerebral ischemic insult are, however, limited. The serotonin 1A (5-HT1A) receptor has been implicated in the regulation of several brain functions, including mood, emotions, memory, and neuroplasticity, all of which are deleteriously affected by cerebral ischemia. This review focuses on the specific roles and mechanisms of 5-HT1A receptors in neuroprotection in experimental models of cerebral ischemia. We present experimental evidence that 5-HT1A receptor agonists can prevent neuronal damage and promote functional recovery induced by focal and transient global ischemia in rodents. However, indiscriminate activation of pre-and postsynaptic by non-biased 5-HT1A receptor agonists may be a limiting factor in the anti-ischemic clinical efficacy of these compounds since 5-HT1A receptors in different brain regions can mediate diverging or even contradictory responses. Current insights are presented into the 'biased' 5-HT1A post-synaptic heteroreceptor agonist NLX-101 (also known as F15599), a compound that preferentially and potently stimulates postsynaptic cortical pyramidal neurons without inhibiting firing of serotoninergic neurons, as a potential strategy providing neuroprotection in cerebral ischemic conditions.
Collapse
Affiliation(s)
- Rafael Pazinatto de Aguiar
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, CEP 87020-900, Maringá, Paraná, Brazil
| | | | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Rúbia Maria Weffort de Oliveira
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, CEP 87020-900, Maringá, Paraná, Brazil.
| |
Collapse
|
5
|
Nutma S, le Feber J, Hofmeijer J. Neuroprotective Treatment of Postanoxic Encephalopathy: A Review of Clinical Evidence. Front Neurol 2021; 12:614698. [PMID: 33679581 PMCID: PMC7930064 DOI: 10.3389/fneur.2021.614698] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/19/2021] [Indexed: 12/24/2022] Open
Abstract
Postanoxic encephalopathy is the key determinant of death or disability after successful cardiopulmonary resuscitation. Animal studies have provided proof-of-principle evidence of efficacy of divergent classes of neuroprotective treatments to promote brain recovery. However, apart from targeted temperature management (TTM), neuroprotective treatments are not included in current care of patients with postanoxic encephalopathy after cardiac arrest. We aimed to review the clinical evidence of efficacy of neuroprotective strategies to improve recovery of comatose patients after cardiac arrest and to propose future directions. We performed a systematic search of the literature to identify prospective, comparative clinical trials on interventions to improve neurological outcome of comatose patients after cardiac arrest. We included 53 studies on 21 interventions. None showed unequivocal benefit. TTM at 33 or 36°C and adrenaline (epinephrine) are studied most, followed by xenon, erythropoietin, and calcium antagonists. Lack of efficacy is associated with heterogeneity of patient groups and limited specificity of outcome measures. Ongoing and future trials will benefit from systematic collection of measures of baseline encephalopathy and sufficiently powered predefined subgroup analyses. Outcome measurement should include comprehensive neuropsychological follow-up, to show treatment effects that are not detectable by gross measures of functional recovery. To enhance translation from animal models to patients, studies under experimental conditions should adhere to strict methodological and publication guidelines.
Collapse
Affiliation(s)
- Sjoukje Nutma
- Department of Neurology, Medisch Spectrum Twente, Enschede, Netherlands
- Clinical Neurophysiology, University of Twente, Enschede, Netherlands
| | - Joost le Feber
- Clinical Neurophysiology, University of Twente, Enschede, Netherlands
| | - Jeannette Hofmeijer
- Clinical Neurophysiology, University of Twente, Enschede, Netherlands
- Department of Neurology, Rijnstate Hospital Arnhem, Arnhem, Netherlands
| |
Collapse
|
6
|
Gatzoulis KA, Dilaveris P, Antoniou CK, Damelou A, Tousoulis D. Implantable cardioverter - defibrillators in patients with suboptimal neurological status: The brain - heart love and hate relationship. Hellenic J Cardiol 2019; 61:341-343. [PMID: 31765732 DOI: 10.1016/j.hjc.2019.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/03/2019] [Accepted: 11/14/2019] [Indexed: 10/25/2022] Open
Affiliation(s)
- Konstantinos A Gatzoulis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokrateion General Hospital, Athens, Greece.
| | - Polychronis Dilaveris
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokrateion General Hospital, Athens, Greece
| | - Christos-Konstantinos Antoniou
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokrateion General Hospital, Athens, Greece
| | | | - Dimitrios Tousoulis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokrateion General Hospital, Athens, Greece
| |
Collapse
|
7
|
Usefulness of early plasma S-100B protein and Neuron-Specific Enolase measurements to identify cerebrovascular etiology of out-of-hospital cardiac arrest. Resuscitation 2018; 130:61-66. [DOI: 10.1016/j.resuscitation.2018.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 06/21/2018] [Accepted: 07/04/2018] [Indexed: 11/21/2022]
|
8
|
Mongardon N, Kohlhauer M, Lidouren F, Barretto M, Micheau P, Adam C, Dhonneur G, Ghaleh B, Tissier R. Targeted Temperature Management With Total Liquid Ventilation After Ischemic Spinal Cord Injury. Ann Thorac Surg 2018; 106:1797-1803. [PMID: 30120942 DOI: 10.1016/j.athoracsur.2018.06.073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/08/2018] [Accepted: 06/25/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Ischemic spinal cord injury is a devastating condition after aortic surgery. We determined whether ultrafast and short whole-body hypothermia provided by total liquid ventilation (TLV) attenuated lower limb paralysis after aortic cross-clamping with a targeted temperature management at 33°C versus 36°C. METHODS Anesthetized rabbits were submitted to infrarenal aortic cross-clamping during 15 min. A control group (n = 7) was maintained at normothermia (38°C to 38.5°C) with conventional mechanical ventilation. In TLV groups, TLV was started after reperfusion and maintained during 30 min with a target temperature at either 33°C or 36°C (TLV-33°C and TLV-36°C, respectively; n = 7 in each condition). After TLV, animals were resumed to conventional ventilation. Hypothermia was maintained during 120 min, before rewarming and awakening. Hind limb motor function was assessed with modified Tarlov score at day 2 and infarct size in the spinal cord was determined using triphenyltetrazolium chloride staining. RESULTS Target temperature was achieved within 20 minutes in the two TLV groups. At day 2, the modified Tarlov score was significantly lower in the control group, as compared with TLV-33°C and TLV-36°C groups (0.0 ± 0.0 versus 3.1 ± 0.7 and 2.6 ± 0.6, respectively). The infarct size of the spinal cord was also significantly higher in the control group compared with TLV-33°C and TLV-36°C groups (75% ± 10% versus 32% ± 7% and 28% ± 10%, respectively). Neither motor function nor infarct size differed significantly between TLV-33°C and TLV-36°C groups. CONCLUSIONS Ultrafast hypothermic TLV attenuates spinal cord injury when applied after ischemic insult. Neurological outcome was similar with targeted temperature management at either 33°C or 36°C.
Collapse
Affiliation(s)
- Nicolas Mongardon
- Inserm, U955, Equipe 3, Créteil, France; Université Paris Est, UMR_S955, UPEC, DHU A-TVB, Créteil, France; Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France; Service d'Anesthésie-Réanimation, DHU A-TVB, Hôpitaux Universitaires Henri Mondor, Assistance Publique des Hôpitaux de Paris, Créteil, France
| | - Matthias Kohlhauer
- Inserm, U955, Equipe 3, Créteil, France; Université Paris Est, UMR_S955, UPEC, DHU A-TVB, Créteil, France; Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Fanny Lidouren
- Inserm, U955, Equipe 3, Créteil, France; Université Paris Est, UMR_S955, UPEC, DHU A-TVB, Créteil, France; Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Mariana Barretto
- Inserm, U955, Equipe 3, Créteil, France; Université Paris Est, UMR_S955, UPEC, DHU A-TVB, Créteil, France; Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | | | - Clovis Adam
- Service d'Anatomo-pathologie, Hôpital Bicêtre, Assistance Publique des Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Gilles Dhonneur
- Service d'Anesthésie-Réanimation, DHU A-TVB, Hôpitaux Universitaires Henri Mondor, Assistance Publique des Hôpitaux de Paris, Créteil, France
| | - Bijan Ghaleh
- Inserm, U955, Equipe 3, Créteil, France; Université Paris Est, UMR_S955, UPEC, DHU A-TVB, Créteil, France; Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Renaud Tissier
- Inserm, U955, Equipe 3, Créteil, France; Université Paris Est, UMR_S955, UPEC, DHU A-TVB, Créteil, France; Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France.
| |
Collapse
|
9
|
Abstract
Cardiac arrest is a common cause of coma with frequent poor outcomes. Palliative medicine teams are often called upon to discuss the scope of treatment and future care in cases of anoxic brain injury. Understanding prognostic tools in this setting would help medical teams communicate more effectively with patients’ families and caregivers and may promote improved quality of life overall. This article reviews multiple tools that are useful in determining outcomes in the setting of postarrest anoxic brain injury.
Collapse
|
10
|
Delayed-onset MRI findings in acute chorea related to anoxic brain injury. Clin Imaging 2018; 48:22-25. [DOI: 10.1016/j.clinimag.2017.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 09/27/2017] [Accepted: 10/03/2017] [Indexed: 11/22/2022]
|
11
|
Goury A, Poirson F, Chaput U, Voicu S, Garçon P, Beeken T, Malissin I, Kerdjana L, Chelly J, Vodovar D, Oueslati H, Ekherian JM, Marteau P, Vicaut E, Megarbane B, Deye N. Targeted temperature management using the "Esophageal Cooling Device" after cardiac arrest (the COOL study): A feasibility and safety study. Resuscitation 2017; 121:54-61. [PMID: 28951293 DOI: 10.1016/j.resuscitation.2017.09.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/18/2017] [Accepted: 09/22/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND Targeted temperature management (TTM) between 32 and 36°C is recommended after out-of-hospital cardiac arrest (OHCA). We aimed to assess the feasibility and safety of the "Esophageal Cooling Device" (ECD) in performing TTM. PATIENTS AND METHODS This single-centre, prospective, interventional study included 17 comatose OHCA patients. Main exclusion criteria were: delay between OHCA and return of spontaneous circulation (ROSC)>60min, delay between sustained ROSC and inclusion >360min, known oesophageal disease. A TTM between 32 and 34°C was performed using the ECD (Advanced Cooling Therapy, USA) connected to a heat exchanger console (Meditherm III®, Gaymar, France), without cold fluids' use. Primary endpoint was feasibility of inducing, maintaining TTM, and rewarming using the ECD alone. Secondary endpoints were adverse events, focusing on potential digestive damages. Results were expressed as median (interquartiles 25-75). RESULTS Cooling rate to reach the Target Temperature (33°C-TT) was 0.26°C/h [0.19-0.36]. All patients reached the 32-34°C range with a time spent within the range of 26h [21-28] (3 patients did not reach 33°C). Temperature deviation outside the TT during TTM-maintenance was 0.10°C [0.03-0.20]. Time with deviation >1°C was 0h. Rewarming rate was 0.20°C/h [0.18-0.22]. Among the 16 gastrointestinal endoscopy procedures performed, 10 (62.5%) were normal. Minor oeso-gastric injuries (37.5% and 19%, respectively) were similar to usual orogastric tube injuries. One patient experienced severe oesophagitis mimicking peptic lesions, not cooling-related. No patient among the 9 alive at 3-month follow-up had gastrointestinal complains. CONCLUSION ECD seems an interesting, safe, accurate, semi-invasive cooling method in OHCA patients treated with 33°C-TTM, particularly during the maintenance phase.
Collapse
Affiliation(s)
- Antoine Goury
- Réanimation Médicale & Toxicologique, Hôpital Lariboisière, AP-HP, Paris Cedex 10, France
| | - Florent Poirson
- Réanimation Médicale & Toxicologique, Hôpital Lariboisière, AP-HP, Paris Cedex 10, France
| | - Ulriikka Chaput
- Hépato-gastro-entérologie, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Sebastian Voicu
- Réanimation Médicale & Toxicologique, Hôpital Lariboisière, AP-HP, Paris Cedex 10, France
| | - Pierre Garçon
- Réanimation Médicale & Toxicologique, Hôpital Lariboisière, AP-HP, Paris Cedex 10, France
| | - Thomas Beeken
- Réanimation Médicale & Toxicologique, Hôpital Lariboisière, AP-HP, Paris Cedex 10, France
| | - Isabelle Malissin
- Réanimation Médicale & Toxicologique, Hôpital Lariboisière, AP-HP, Paris Cedex 10, France
| | - Lamia Kerdjana
- Réanimation Médicale & Toxicologique, Hôpital Lariboisière, AP-HP, Paris Cedex 10, France
| | - Jonathan Chelly
- Réanimation Médicale & Toxicologique, Hôpital Lariboisière, AP-HP, Paris Cedex 10, France; Clinical Research Unit-Groupe Hospitalier Sud Île de France, 77000 Melun, France
| | - Dominique Vodovar
- Réanimation Médicale & Toxicologique, Hôpital Lariboisière, AP-HP, Paris Cedex 10, France
| | - Haikel Oueslati
- Réanimation Médicale & Toxicologique, Hôpital Lariboisière, AP-HP, Paris Cedex 10, France
| | - Jean Michel Ekherian
- Réanimation Médicale & Toxicologique, Hôpital Lariboisière, AP-HP, Paris Cedex 10, France
| | - Philippe Marteau
- Hépato-gastro-entérologie, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Eric Vicaut
- Unité de Recherche Clinique, Hôpital Fernand Widal, AP-HP, Paris Cedex 10, France
| | - Bruno Megarbane
- Réanimation Médicale & Toxicologique, Hôpital Lariboisière, AP-HP, Paris Cedex 10, France; INSERM UMRS-1144, Paris, France
| | - Nicolas Deye
- Réanimation Médicale & Toxicologique, Hôpital Lariboisière, AP-HP, Paris Cedex 10, France; INSERM U942, Hôpital Lariboisière, Paris, France.
| |
Collapse
|
12
|
Mori MA, Meyer E, Soares LM, Milani H, Guimarães FS, de Oliveira RMW. Cannabidiol reduces neuroinflammation and promotes neuroplasticity and functional recovery after brain ischemia. Prog Neuropsychopharmacol Biol Psychiatry 2017; 75:94-105. [PMID: 27889412 DOI: 10.1016/j.pnpbp.2016.11.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/22/2016] [Indexed: 11/30/2022]
Abstract
This study investigated the effects of cannabidiol (CBD), a non-psychotomimetic phytochemical present in Cannabis sativa, on the cognitive and emotional impairments induced by bilateral common carotid artery occlusion (BCCAO) in mice. Using a multi-tiered behavioral testing battery during 21days, we found that BCCAO mice exhibited long-lasting functional deficits reflected by increase in anxiety-like behavior (day 9), memory impairments (days 12-18) and despair-like behavior (day 21). Short-term CBD 10mg/kg treatment prevented the cognitive and emotional impairments, attenuated hippocampal neurodegeneration and white matter (WM) injury, and reduced glial response that were induced by BCCAO. In addition, ischemic mice treated with CBD exhibited an increase in the hippocampal brain derived neurotrophic factor (BDNF) protein levels. CBD also stimulated neurogenesis and promoted dendritic restructuring in the hippocampus of BCCAO animals. Collectively, the present results demonstrate that short-term CBD treatment results in global functional recovery in ischemic mice and impacts multiple and distinct targets involved in the pathophysiology of brain ischemic injury.
Collapse
Affiliation(s)
- Marco Aurélio Mori
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Erika Meyer
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Ligia Mendes Soares
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Humberto Milani
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Francisco Silveira Guimarães
- Department of Pharmacology, School of Medicine, USP, Av. Bandeirantes, 14015-000 Ribeirão Preto, São Paulo, Brazil
| | - Rúbia Maria Weffort de Oliveira
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil.
| |
Collapse
|
13
|
Vanherpe P, Schrooten M. Minimal EEG montage with high yield for the detection of status epilepticus in the setting of postanoxic brain damage. Acta Neurol Belg 2017; 117:145-152. [PMID: 27369692 DOI: 10.1007/s13760-016-0663-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 06/15/2016] [Indexed: 10/21/2022]
Abstract
For the diagnosis of electrographic seizures or status epilepticus, we reduced the number of EEG-electrodes to make urgent EEG monitoring more feasible. Unlike the current existing research, with mixed results, we studied a specific population with postanoxic brain damage, expecting a higher yield of detection of ictal EEG patterns. In a population treated with therapeutic hypothermia post-cardiac arrest, the initial EEGs were reformatted in a longitudinal, a hairline and an 8-lead montage, and independently reviewed by two investigators. The EEGs were categorized into three categories: one without ictal EEG activity, one with interictal activity and one with probable electrographic seizure(s). Generalized ictal EEG activity was the most frequently observed EEG pattern. The average sensitivity for the detection of probable electrographic seizure(s) was 100 % for the 8-lead montage and 92 % in the hairline montage. In comparison to the routine longitudinal montage, the 8-lead montage proved to be reliable for the detection of electrographic seizure activity in a postanoxic population even with limited training in EEG interpretation. The hairline montage did not suffice with regard to the differential diagnosis of triphasic waves associated with metabolic encephalopathy and generalized nonconvulsive status epilepticus, but nonetheless detected the vast majority of probable electrographic seizure(s). Our results support the use of EEG monitoring with fewer electrodes for the detection of ictal EEG activity in the postanoxic population.
Collapse
|
14
|
Kramer AH, Baht R, Doig CJ. Time trends in organ donation after neurologic determination of death: a cohort study. CMAJ Open 2017; 5:E19-E27. [PMID: 28401114 PMCID: PMC5378522 DOI: 10.9778/cmajo.20160093] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The cause of brain injury may influence the number of organs that can be procured and transplanted with donation following neurologic determination of death. We investigated whether the distribution of causes responsible for neurologic death has changed over time and, if so, whether this has had an impact on organ quality, transplantation rates and recipient outcomes. METHODS We performed a cohort study involving consecutive brain-dead organ donors in southern Alberta between 2003 and 2014. For each donor, we determined last available measures of organ injury and number of organs transplanted, and compared these variables for various causes of neurologic death. We compared trends to national Canadian data for 2000-2013 (2000-2011 for Quebec). RESULTS There were 226 brain-dead organ donors over the study period, of whom 100 (44.2%) had anoxic brain injury, 63 (27.9%) had stroke, and 51 (22.6%) had traumatic brain injury. The relative proportion of donors with traumatic brain injury decreased over time (> 30% in 2003-2005 v. 6%-23% in 2012-2014) (p = 0.004), whereas that with anoxic brain injury increased (14%-37% v. 46%-80%, respectively) (p < 0.001). Nationally, the annual number of brain-dead donors with traumatic brain injury decreased from 4.4 to less than 3 per million population between 2000 and 2013, and that with anoxic brain injury increased from 1.1 to 3.1 per million. Donors with anoxic brain injury had higher concentrations of creatinine, alanine aminotransferase and troponin T, and lower PaO2/FIO2 and urine output than donors with other diagnoses. The average number of organs transplanted per donor was 3.6 with anoxic brain injury versus 4.5 with traumatic brain injury or stroke (p = 0.002). INTERPRETATION Anoxic brain injury has become a leading cause of organ donation after neurologic determination of death in Canada. Organs from donors with anoxic brain injury have a greater degree of injury, and fewer are transplanted. These findings have implications for availability of organs for transplantation in patients with end-stage organ failure.
Collapse
Affiliation(s)
- Andreas H Kramer
- Departments of Critical Care Medicine (Kramer, Doig) and Clinical Neurosciences (Kramer), University of Calgary; Southern Alberta Organ and Tissue Donation Program (Kramer, Baht); Department of Community Health Sciences (Doig), University of Calgary, Calgary, Alta
| | - Ryan Baht
- Departments of Critical Care Medicine (Kramer, Doig) and Clinical Neurosciences (Kramer), University of Calgary; Southern Alberta Organ and Tissue Donation Program (Kramer, Baht); Department of Community Health Sciences (Doig), University of Calgary, Calgary, Alta
| | - Christopher J Doig
- Departments of Critical Care Medicine (Kramer, Doig) and Clinical Neurosciences (Kramer), University of Calgary; Southern Alberta Organ and Tissue Donation Program (Kramer, Baht); Department of Community Health Sciences (Doig), University of Calgary, Calgary, Alta
| |
Collapse
|
15
|
Chen BH, Park JH, Ahn JH, Cho JH, Kim IH, Lee JC, Won MH, Lee CH, Hwang IK, Kim JD, Kang IJ, Cho JH, Shin BN, Kim YH, Lee YL, Park SM. Pretreated quercetin protects gerbil hippocampal CA1 pyramidal neurons from transient cerebral ischemic injury by increasing the expression of antioxidant enzymes. Neural Regen Res 2017; 12:220-227. [PMID: 28400803 PMCID: PMC5361505 DOI: 10.4103/1673-5374.200805] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Quercetin (QE; 3,5,7,3′,4′-pentahydroxyflavone), a well-known flavonoid, has been shown to prevent against neurodegenerative disorders and ischemic insults. However, few studies are reported regarding the neuroprotective mechanisms of QE after ischemic insults. Therefore, in this study, we investigated the effects of QE on ischemic injury and the expression of antioxidant enzymes in the hippocampal CA1 region of gerbils subjected to 5 minutes of transient cerebral ischemia. QE was pre-treated once daily for 15 days before ischemia. Pretreatment with QE protected hippocampal CA1 pyramidal neurons from ischemic injury, which was confirmed by neuronal nuclear antigen immunohistochemistry and Fluoro-Jade B histofluorescence staining. In addition, pretreatment with QE significantly increased the expression levels of endogenous antioxidant enzymes Cu/Zn superoxide dismutase, Mn superoxide dismutase, catalase and glutathione peroxidase in the hippocampal CA1 pyramidal neurons of animals with ischemic injury. These findings demonstrate that pretreated QE displayed strong neuroprotective effects against transient cerebral ischemia by increasing the expression of antioxidant enzymes.
Collapse
Affiliation(s)
- Bai Hui Chen
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Joon Ha Park
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, South Korea
| | - Ji Hyeon Ahn
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, South Korea
| | - Jeong Hwi Cho
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - In Hye Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Jae Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, South Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Jong-Dai Kim
- Division of Food Biotechnology, School of Biotechnology, Kangwon National University, Chuncheon, South Korea
| | - Il Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon, South Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Bich Na Shin
- Department of Physiology, College of Medicine, and Institute of Neurodegeneration and Neuroregeneration, Hallym University, Chuncheon, South Korea
| | - Yang Hee Kim
- Department of Surgery, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Yun Lyul Lee
- Department of Physiology, College of Medicine, and Institute of Neurodegeneration and Neuroregeneration, Hallym University, Chuncheon, South Korea
| | - Seung Min Park
- Department of Emergency Medicine, Sacred Heart Hospital, College of Medicine, Hallym University, Anyang, South Korea
| |
Collapse
|
16
|
Soares LM, Meyer E, Milani H, Steinbusch HWM, Prickaerts J, de Oliveira RMW. The phosphodiesterase type 2 inhibitor BAY 60-7550 reverses functional impairments induced by brain ischemia by decreasing hippocampal neurodegeneration and enhancing hippocampal neuronal plasticity. Eur J Neurosci 2016; 45:510-520. [PMID: 27813297 DOI: 10.1111/ejn.13461] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/26/2016] [Accepted: 10/31/2016] [Indexed: 01/08/2023]
Abstract
Cognitive and affective impairments are the most characterized consequences following cerebral ischemia. BAY 60-7550, a selective phosphodiesterase type 2 inhibitor (PDE2-I), presents memory-enhancing and anxiolytic-like properties. The behavioral effects of BAY 60-7550 have been associated with its ability to prevent hydrolysis of both cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) thereby interfering with neuronal plasticity. Here, we hypothesize that PDE2-I treatment could promote functional recovery after brain ischemia. Mice C57Bl/6 were submitted to bilateral common carotid artery occlusion (BCCAO), an experimental model of transient brain ischemia, for 20 min. During 21 days after reperfusion, the animals were tested in a battery of behavioral tests including the elevated zero maze (EZM), object location task (OLT) and forced swim test (FST). The effects of BAY 60-7550 were evaluated on neuronal nuclei (NeuN), caspase-9, cAMP response element-binding protein (CREB), phosphorylated CREB (pCREB) and brain-derived neurotrophic factor (BDNF) expression in the hippocampus. BCCAO increased anxiety levels, impaired hippocampus-dependent cognitive function and induced despair-like behavior in mice. Hippocampal neurodegeneration was evidenced by a decrease in NeuN and increase incaspase-9 protein levels in BCCAO mice. Ischemic mice also showed low BDNF protein levels in the hippocampus. Repeated treatment with BAY 60-7550 attenuated the behavioral impairments induced by BCCAO in mice. Concomitantly, BAY 60-7550 enhanced expression of pCREB and BDNF protein levels in the hippocampus of ischemic mice. The present findings suggest that chronic inhibition of PDE2 provides functional recovery in BCCAO mice possibly by augmenting hippocampal neuronal plasticity.
Collapse
Affiliation(s)
- Ligia Mendes Soares
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, CEP 87020-900, Maringá, Paraná, Brazil
| | - Erika Meyer
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, CEP 87020-900, Maringá, Paraná, Brazil
| | - Humberto Milani
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, CEP 87020-900, Maringá, Paraná, Brazil
| | - Harry W M Steinbusch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Rúbia M Weffort de Oliveira
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, CEP 87020-900, Maringá, Paraná, Brazil
| |
Collapse
|
17
|
Soares LM, De Vry J, Steinbusch HW, Milani H, Prickaerts J, Weffort de Oliveira RM. Rolipram improves cognition, reduces anxiety- and despair-like behaviors and impacts hippocampal neuroplasticity after transient global cerebral ischemia. Neuroscience 2016; 326:69-83. [DOI: 10.1016/j.neuroscience.2016.03.062] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/28/2016] [Accepted: 03/30/2016] [Indexed: 12/11/2022]
|
18
|
Geri G, Cariou A. Syndrome post-arrêt cardiaque. MEDECINE INTENSIVE REANIMATION 2016. [DOI: 10.1007/s13546-016-1191-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Puybasset L, Stevens RD. 35th Congress of the French association of neuro-anesthesiology and critical care. ACTA ACUST UNITED AC 2014; 33:63-4. [PMID: 24440735 DOI: 10.1016/j.annfar.2013.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- L Puybasset
- Neuro-réanimation chirurgicale Babinski, département d'anesthésie-réanimation, groupe hospitalier Pitié-Salpêtrière, université Pierre-et-Marie-Curie, Paris 6, 47-83, boulevard de l'Hôpital, 75013 Paris, France.
| | - R D Stevens
- Johns Hopkins university school of medicine, division of neuroscience critical care, Meyer 8-140, 600N Wolfe St, MD 21287 Baltimore, United States
| |
Collapse
|