1
|
Liu Q, He Q, Tao X, Yu P, Liu S, Xie Y, Zhu W. Resveratrol inhibits rabies virus infection in N2a cells by activating the SIRT1/Nrf2/HO-1 pathway. Heliyon 2024; 10:e36494. [PMID: 39281556 PMCID: PMC11399676 DOI: 10.1016/j.heliyon.2024.e36494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/12/2024] [Accepted: 08/16/2024] [Indexed: 09/18/2024] Open
Abstract
Rabies is a highly lethal infectious disease with no existing treatment available, thus investigating effective antiviral compounds to control rabies virus (RABV) infection is of utmost importance. Resveratrol is a natural phenolic compound that, as a phytoalexin, exhibits several biological activities, including antiviral activity. In this study, we evaluated the inhibitory effect of resveratrol on RABV infection and investigated its molecular antiviral mechanism. We found that resveratrol significantly inhibited RABV infection, including the phases of adsorption, replication, and release, and also directly inactivated RABV and inhibited its infectivity. However, resveratrol had no significant effect on RABV internalization. Resveratrol also reduced RABV-induced oxidative stress, specifically reactive oxygen species and malondialdehyde levels. Western blotting analysis revealed that resveratrol enhanced antioxidant signaling via the SIRT1/Nrf2/HO-1 pathway and inhibited viral replication. Viral infection was enhanced after SIRT1 knockdown, which inhibited the SIRT1/Nrf2/HO-1 antioxidant signaling pathway, suggesting that this pathway plays an important role in RABV replication. Overall, resveratrol prevented the adsorption, replication, and release of RABV and directly inactivated RABV, but failed to inhibit RABV internalization. Furthermore, resveratrol activated the SIRT1/Nrf2/HO-1 pathway to inhibit RABV replication and suppressed RABV-induced oxidative stress. These findings highlight the therapeutic potential of resveratrol for fighting RABV infections.
Collapse
Affiliation(s)
- Qian Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Qing He
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Xiaoyan Tao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Pengcheng Yu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Shuqing Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yuan Xie
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Wuyang Zhu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| |
Collapse
|
2
|
Lu F, Wang J, Song M, Dai X. The Inhibitory Effect of Resveratrol from Reynoutria japonica on MNV-1, a Human Norovirus Surrogate. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:241-252. [PMID: 38570420 DOI: 10.1007/s12560-024-09592-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/20/2024] [Indexed: 04/05/2024]
Abstract
As a natural nonflavonoid polyphenol compound, resveratrol is the main functional component of Reynoutria japonica and has anti-inflammatory, antioxidant, antiviral, and other physiological activities. In this study, the effect of resveratrol on the viability of RAW264.7 cells was examined, and murine norovirus (MNV-1) was used as a surrogate for human norovirus to evaluate the inhibitory effect of resveratrol. The concentrations of resveratrol resulting in 50% cytotoxicity (CC50) for RAW264.7 cells were 21.32 and 24.97 μg/mL after 24 and 48 h of incubation, respectively, and resveratrol at a concentration lower than the half-effective inhibitory concentration (EC50) could not damage cell DNA. The EC50 of resveratrol on MNV-1 in infected RAW264.7 cells was determined to equal 5.496 μg/mL. After RAW264.7 cells, virus, and a fresh mixture of virus and RAW264.7 cells were treated with resveratrol solution for 1 h (denoted cell pre-treatment, virus pre-treatment, and mixture coprocessing), the RAW264.7 cells obtained after cell pre-treatment exhibited lower virus infection, and MNV-1 obtained after virus pre-treatment and mixture coprocessing showed a decreased infectious capacity. The inhibition ratio of resveratrol on MNV-1 did not significantly differ between the treatments at 4 and 25 °C or among the various pH values except for the lower acidic condition (pH 2). TEM revealed significant changes in the morphology of MNV-1 after treatment with resveratrol, and molecular docking indicated that resveratrol strongly binds to the viral capsid protein of MNV-1. In addition, resveratrol regulated the expression of cytokine that protects against MNV-1 infection. Therefore, at a lower concentration, resveratrol, a natural component from Reynoutria japonica, exerts an inhibitory effect on MNV-1 growth and could be used as a safe additive in food products to improve the nutritional status and control norovirus.
Collapse
Affiliation(s)
- Fangyuan Lu
- School of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Jianfeng Wang
- Hangzhou Original Seed Farm, Hangzhou, 310045, China
| | - Meie Song
- Rural Revitalization Promotion Center of Zhejiang Province, Hangzhou, 310029, China
| | - Xianjun Dai
- School of Life Sciences, China Jiliang University, Hangzhou, 310018, China.
| |
Collapse
|
3
|
Guo L, Zhang X, Lv N, Wang L, Gan J, Jiang X, Wang Y. Therapeutic Role and Potential Mechanism of Resveratrol in Atherosclerosis: TLR4/NF- κB/HIF-1 α. Mediators Inflamm 2023; 2023:1097706. [PMID: 37292256 PMCID: PMC10247328 DOI: 10.1155/2023/1097706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
Atherosclerosis, the main pathological basis of cardiovascular disease, is a chronic inflammatory disease that severely affects the quality of human life. Resveratrol (Res) is a natural polyphenol that is a major component of many herbs and foods. The present study analyzed resveratrol from the perspective of visualization and bibliometric analysis and found that resveratrol is closely related to the inflammatory response in cardiovascular diseases (associated with atherosclerosis). To explore the specific molecular mechanism of resveratrol, network pharmacology and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used, in which HIF-1α signaling may be a key pathway in the treatment of AS. Furthermore, we induced the polarization of macrophage RAW264.7 to M1 type to generate inflammatory response by the combination of lipopolysaccharide (LPS) (200 ng/mL) + interferon-γ (IFN-γ) (2.5 ng/mL). LPS and IFN-γ increased the inflammatory factor levels of IL-1β, TNF-α, and IL-6 in RAW264.7, and the proportion of M1-type macrophages also increased, but the expression of inflammatory factors decreased after resveratrol administration, which confirmed the anti-inflammatory effect of resveratrol in AS. In addition, we found that resveratrol downregulated the protein expression of toll-like receptor 4 (TLR4)/NF-κB/hypoxia inducible factor-1 alpha (HIF-1α). In conclusion, resveratrol has a significant anti-inflammatory effect, alleviates HIF-1α-mediated angiogenesis, and prevents the progression of AS through the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Lin Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Xiaolu Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Nuan Lv
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Luming Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Jiali Gan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Yijing Wang
- School of Nursing, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District Tianjin 301617, China
| |
Collapse
|
4
|
Ponticelli M, Bellone ML, Parisi V, Iannuzzi A, Braca A, de Tommasi N, Russo D, Sileo A, Quaranta P, Freer G, Pistello M, Milella L. Specialized metabolites from plants as a source of new multi-target antiviral drugs: a systematic review. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2023; 22:1-79. [PMID: 37359711 PMCID: PMC10008214 DOI: 10.1007/s11101-023-09855-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/30/2023] [Indexed: 06/28/2023]
Abstract
Viral infections have always been the main global health challenge, as several potentially lethal viruses, including the hepatitis virus, herpes virus, and influenza virus, have affected human health for decades. Unfortunately, most licensed antiviral drugs are characterized by many adverse reactions and, in the long-term therapy, also develop viral resistance; for these reasons, researchers have focused their attention on investigating potential antiviral molecules from plants. Natural resources indeed offer a variety of specialized therapeutic metabolites that have been demonstrated to inhibit viral entry into the host cells and replication through the regulation of viral absorption, cell receptor binding, and competition for the activation of intracellular signaling pathways. Many active phytochemicals, including flavonoids, lignans, terpenoids, coumarins, saponins, alkaloids, etc., have been identified as potential candidates for preventing and treating viral infections. Using a systematic approach, this review summarises the knowledge obtained to date on the in vivo antiviral activity of specialized metabolites extracted from plant matrices by focusing on their mechanism of action.
Collapse
Affiliation(s)
- Maria Ponticelli
- Department of Science, University of Basilicata, Viale Dell’ateneo Lucano 10, 85100 Potenza, Italy
| | - Maria Laura Bellone
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
- Ph.D. Program in Drug Discovery and Development, Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Valentina Parisi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
- Ph.D. Program in Drug Discovery and Development, Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Annamaria Iannuzzi
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
- Retrovirus Center, Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Alessandra Braca
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
- Retrovirus Center, Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Nunziatina de Tommasi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Daniela Russo
- Department of Science, University of Basilicata, Viale Dell’ateneo Lucano 10, 85100 Potenza, Italy
| | - Annalisa Sileo
- Department of Science, University of Basilicata, Viale Dell’ateneo Lucano 10, 85100 Potenza, Italy
| | | | - Giulia Freer
- Virology Unit, Pisa University Hospital, Pisa, Italy
| | | | - Luigi Milella
- Department of Science, University of Basilicata, Viale Dell’ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
5
|
Jug U, Naumoska K, Malovrh T. Japanese Knotweed Rhizome Bark Extract Inhibits Live SARS-CoV-2 In Vitro. Bioengineering (Basel) 2022; 9:bioengineering9090429. [PMID: 36134975 PMCID: PMC9495978 DOI: 10.3390/bioengineering9090429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/12/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), a viral infectious respiratory disease, is caused by highly contagious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is responsible for the ongoing COVID-19 pandemic. Since very few drugs are known to be effective against SARS-CoV-2, there is a general need for new therapeutics, including plant-based drugs, for the prophylaxis and treatment of infections. In the current study, the activity of a 70% ethanolic(aq) extract of the rhizome bark of Japanese knotweed, an invasive alien plant species, was tested for the first time against the wild-type SARS-CoV-2 virus using a specific and robust virus neutralization test (VNT) on Vero-E6 cells, which best mimics the mechanism of real virus−host interaction. A statistically significant antiviral effect against SARS-CoV-2 (p-value < 0.05) was observed for the 50.8 µg mL−1 extract solution in cell medium. A suitable extract preparation was described to avoid loss of polyphenols throughout filtration of the extract, which was dissolved in cell medium containing fetal bovine serum (FBS). The significance of the differences between the sums of the test and control groups in the incidence of cytopathic effects (CPE) was determined using the one-way ANOVA test. A dose−response relationship was observed, with the cytotoxic effect occurring at higher concentrations of the extract (≥101.6 µg mL−1). The obtained results suggest possible use of this plant material for the production of various products (e.g., packaging, hygiene products, biodisinfectants, etc.) that would be useful against the spread of and for self-protection against COVID-19.
Collapse
Affiliation(s)
- Urška Jug
- Laboratory for Food Chemistry, Department of Analytical Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- Correspondence: (U.J.); (K.N.); (T.M.); Tel.: +386-1-4760-521 (U.J. & K.N.); +386-1-4779-824 (T.M.)
| | - Katerina Naumoska
- Laboratory for Food Chemistry, Department of Analytical Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- Correspondence: (U.J.); (K.N.); (T.M.); Tel.: +386-1-4760-521 (U.J. & K.N.); +386-1-4779-824 (T.M.)
| | - Tadej Malovrh
- Veterinary Faculty, University of Ljubljana, Gerbičeva ulica 60, 1000 Ljubljana, Slovenia
- Correspondence: (U.J.); (K.N.); (T.M.); Tel.: +386-1-4760-521 (U.J. & K.N.); +386-1-4779-824 (T.M.)
| |
Collapse
|
6
|
Baranwal M, Gupta Y, Dey P, Majaw S. Antiinflammatory phytochemicals against virus-induced hyperinflammatory responses: Scope, rationale, application, and limitations. Phytother Res 2021; 35:6148-6169. [PMID: 34816512 DOI: 10.1002/ptr.7222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/26/2021] [Accepted: 07/03/2021] [Indexed: 12/11/2022]
Abstract
Uncontrolled inflammatory responses or cytokine storm associated with viral infections results in deleterious consequences such as vascular leakage, severe hemorrhage, shock, immune paralysis, multi-organ failure, and even death. With the emerging new viral infections and lack of effective prophylactic vaccines, evidence-based complementary strategies that limit viral infection-mediated hyperinflammatory responses could be a promising approach to limit host tissue injury. The present review emphasizes the potentials of antiinflammatory phytochemicals in limiting hyperinflammatory injury caused by viral infections. The predominant phytochemicals along with their mechanism in limiting hyperimmune and pro-inflammatory responses under viral infection have been reviewed comprehensively. How certain phytochemicals can be effective in limiting hyper-inflammatory response indirectly by favorably modulating gut microbiota and maintaining a functional intestinal barrier has also been presented. Finally, we have discussed improved systemic bioavailability of phytochemicals, efficient delivery strategies, and safety measures for effective antiinflammatory phytotherapies, in addition to emphasizing the requirement of tightly controlled clinical studies to establish the antiinflammatory efficacy of the phytochemicals. Collectively, the review provides a scooping overview on the potentials of bioactive phytochemicals to mitigate pro-inflammatory injury associated with viral infections.
Collapse
Affiliation(s)
- Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| | - Yogita Gupta
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| | - Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| | - Suktilang Majaw
- Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong, India
| |
Collapse
|
7
|
Ruchawapol C, Yuan M, Wang SM, Fu WW, Xu HX. Natural Products and Their Derivatives against Human Herpesvirus Infection. Molecules 2021; 26:6290. [PMID: 34684870 PMCID: PMC8541008 DOI: 10.3390/molecules26206290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 02/06/2023] Open
Abstract
Herpesviruses establish long-term latent infection for the life of the host and are known to cause numerous diseases. The prevalence of viral infection is significantly increased and causes a worldwide challenge in terms of health issues due to drug resistance. Prolonged treatment with conventional antiviral drugs is more likely to develop drug-resistant strains due to mutations of thymidine nucleoside kinase or DNA polymerase. Hence, the development of alternative treatments is clearly required. Natural products and their derivatives have played a significant role in treating herpesvirus infection rather than nucleoside analogs in drug-resistant strains with minimal undesirable effects and different mechanisms of action. Numerous plants, animals, fungi, and bacteria-derived compounds have been proved to be efficient and safe for treating human herpesvirus infection. This review covers the natural antiherpetic agents with the chemical structural class of alkaloids, flavonoids, terpenoids, polyphenols, anthraquinones, anthracyclines, and miscellaneous compounds, and their antiviral mechanisms have been summarized. This review would be helpful to get a better grasp of anti-herpesvirus activity of natural products and their derivatives, and to evaluate the feasibility of natural compounds as an alternative therapy against herpesvirus infections in humans.
Collapse
Affiliation(s)
- Chattarin Ruchawapol
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Lu 1200, Shanghai 201203, China; (C.R.); (M.Y.); (S.-M.W.)
- Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Man Yuan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Lu 1200, Shanghai 201203, China; (C.R.); (M.Y.); (S.-M.W.)
- Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Si-Min Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Lu 1200, Shanghai 201203, China; (C.R.); (M.Y.); (S.-M.W.)
| | - Wen-Wei Fu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Lu 1200, Shanghai 201203, China; (C.R.); (M.Y.); (S.-M.W.)
- Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Hong-Xi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Lu 1200, Shanghai 201203, China; (C.R.); (M.Y.); (S.-M.W.)
- Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| |
Collapse
|
8
|
Hamada H, Hamada H, Shimoda K, Kuboki A, Iwaki T, Kiriake Y, Ishihara K. Resveratrol Oligosaccharides (Gluco-Oligosaccharides) Effectively Inhibit SARS-CoV-2 Infection: Glycoside (Polysaccharide) Approach for Treatment of COVID-19. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211012903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
To examine the anti-SARS-CoV-2 effects of resveratrol oligosaccharides, human MRC5 lung cells, which had been infected with SARS-CoV-2, were incubated with different concentrations of resveratrol oligosaccharides. These suppressed the cell death induced by SARS-CoV-2 infection, more efficiently, at 0.1% concentration, than resveratrol itself. Resveratrol oligosaccharides effectively inhibited SARS-CoV-2 infection in the 5% to 10% concentration range, which indicates that these compounds could be useful anti-SARS-CoV-2 agents.
Collapse
Affiliation(s)
- Hiroki Hamada
- Department of Life Science, Okayama University of Science, Kita-ku, Okayama, Japan
| | - Hatsuyuki Hamada
- Department of Life Science, Okayama University of Science, Kita-ku, Okayama, Japan
| | - Kei Shimoda
- Department of Biomedical Chemistry, Faculty of Medicine, Oita University, Hasama-machi, Oita, Japan
| | - Atsuhito Kuboki
- Department of Biochemistry, Okayama University of Science, Kita-ku, Okayama, Japan
| | - Takafumi Iwaki
- Department of Biophysics, Oita University, Hasama-machi, Oita, Japan
| | - Yuya Kiriake
- Faculty of Medicine and Health Sciences, Yamaguchi University, Minamikogushi, Ube-shi, Japan
| | - Kohji Ishihara
- Department of Life Science, Okayama University of Science, Kita-ku, Okayama, Japan
| |
Collapse
|
9
|
Šikuten I, Štambuk P, Andabaka Ž, Tomaz I, Marković Z, Stupić D, Maletić E, Kontić JK, Preiner D. Grapevine as a Rich Source of Polyphenolic Compounds. Molecules 2020; 25:E5604. [PMID: 33260583 PMCID: PMC7731206 DOI: 10.3390/molecules25235604] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 12/26/2022] Open
Abstract
Grapes are rich in primary and secondary metabolites. Among the secondary metabolites, polyphenolic compounds are the most abundant in grape berries. Besides their important impacts on grape and wine quality, this class of compounds has beneficial effects on human health. Due to their antioxidant activity, polyphenols and phenolic acids can act as anti-inflammatory and anticancerogenic agents, and can modulate the immune system. In grape berries, polyphenols and phenolic acids can be located in the pericarp and seeds, but distribution differs considerably among these tissues. Although some classes of polyphenols and phenolic acids are under strict genetic control, the final content is highly influenced by environmental factors, such as climate, soil, vineyard, and management. This review aims to present the main classes of polyphenolic compounds and phenolic acids in different berry tissues and grape varieties and special emphasis on their beneficial effect on human health.
Collapse
Affiliation(s)
- Iva Šikuten
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Petra Štambuk
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Željko Andabaka
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
| | - Ivana Tomaz
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Zvjezdana Marković
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Domagoj Stupić
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
| | - Edi Maletić
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Jasminka Karoglan Kontić
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Darko Preiner
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
10
|
Song D, Cao X, Huang W, Ke S. Design, Synthesis and Biological Evaluation of Stilbene Derivatives Containing a 1,3‐Benzodioxole Moiety. ChemistrySelect 2020. [DOI: 10.1002/slct.202003860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Di Song
- College of Science Huazhong Agricultural University Wuhan 430070 China
| | - Xiufang Cao
- College of Science Huazhong Agricultural University Wuhan 430070 China
| | - Wenbo Huang
- National Biopesticide Engineering Research Center Hubei Biopesticide Engineering Research Center Hubei Academy of Agricultural Science Wuhan 430064 China
| | - Shaoyong Ke
- National Biopesticide Engineering Research Center Hubei Biopesticide Engineering Research Center Hubei Academy of Agricultural Science Wuhan 430064 China
| |
Collapse
|
11
|
Wang SY, Zhang J, Xu XG, Su HL, Xing WM, Zhang ZS, Jin WH, Dai JH, Wang YZ, He XY, Sun C, Yan J, Mao GX. Inhibitory effects of piceatannol on human cytomegalovirus (hCMV) in vitro. J Microbiol 2020; 58:716-723. [PMID: 32524342 DOI: 10.1007/s12275-020-9528-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/20/2020] [Accepted: 05/06/2020] [Indexed: 12/31/2022]
Abstract
Human cytomegalovirus (hCMV) is a ubiquitous herpesvirus, which results in the establishment of a latent infection that persists throughout the life of the host and can be reactivated when the immunity is low. Currently, there is no vaccine for hCMV infection, and the licensed antiviral drugs mainly target the viral enzymes and have obvious adverse reactions. Thus, it is important to search for compounds with anti-hCMV properties. The present study aimed to investigate the suppressive effects of piceatannol on hCMV Towne strain infection and the putative underlying mechanisms using human diploid fibroblast WI-38 cells. Piceatannol supplementation prevented the lytic changes induced by hCMV infection in WI-38 cells. Furthermore, piceatannol suppressed the expression of hCMV immediate-early (IE) and early (E) proteins as well as the replication of hCMV DNA in a dose-dependent manner. Moreover, hCMV-induced cellular senescence was suppressed by piceatannol, as shown by a decline in the senescence-associated β-galactosidase (SA-β-Gal) activity and decreased production of intracellular reactive oxygen species (ROS). p16INK4a, a major senescence-associated molecule, was dramatically elevated by current hCMV infection that was attenuated by pre-incubation with piceatannol in a dose-dependent manner. These results demonstrated that piceatannol suppressed the hCMV infection via inhibition of the activation of p16INK4a and cellular senescence induced by hCMV. Together, these findings indicate piceatannol as a novel and potent anti-hCMV agent with the potential to be developed as an effective treatment for chronic hCMV infection.
Collapse
Affiliation(s)
- San-Ying Wang
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310030, P. R. China
| | - Jing Zhang
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310030, P. R. China
| | - Xiao-Gang Xu
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310030, P. R. China
| | - Hui-Li Su
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310030, P. R. China
| | - Wen-Min Xing
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310030, P. R. China
| | - Zhong-Shan Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, 313000, P. R. China
- Huzhou Central Hospital, Huzhou University, Huzhou, 313000, P. R. China
| | - Wei-Hua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Ji-Huan Dai
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310030, P. R. China
| | - Ya-Zhen Wang
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310030, P. R. China
| | - Xin-Yue He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Chuan Sun
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310030, P. R. China
| | - Jing Yan
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310030, P. R. China.
| | - Gen-Xiang Mao
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310030, P. R. China.
| |
Collapse
|
12
|
Blaylock RL. Accelerated cancer aggressiveness by viral oncomodulation: New targets and newer natural treatments for cancer control and treatment. Surg Neurol Int 2019; 10:199. [PMID: 31768279 PMCID: PMC6826277 DOI: 10.25259/sni_361_2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 12/12/2022] Open
Abstract
An infectious etiology for a number of cancers has been entertained for over 100 years and modern studies have confirmed that a number of viruses are linked to cancer induction. While a large number of viruses have been demonstrated in a number of types of cancers, most such findings have been dismissed in the past as opportunistic infections, especially with persistent viruses with high rates of infectivity of the world’s populations. More recent studies have clearly shown that while not definitely causing these cancers, these viruses appear capable of affecting the biology of these tumors in such a way as to make them more aggressive and more resistant to conventional treatments. The term oncomodulatory viruses has been used to describe this phenomenon. A number of recent studies have shown a growing number of ways these oncomodulatory viruses can alter the pathology of these tumors by affecting cell-signaling, cell metabolism, apoptosis mechanisms, cell-cell communication, inflammation, antitumor immunity suppression, and angiogenesis. We are also learning that much of the behavior of tumors depends on cancer stem cells and stromal cells within the tumor microenvironment, which participate in extensive, dynamic crosstalk known to affect tumor behavior. Cancer stem cells have been found to be particularly susceptible to infection by human cytomegalovirus. In a number of studies, it has been shown that while only a select number of cells are actually infected with the virus, numerous viral proteins are released into cancer and stromal cells in the microenvironment and these viral proteins are known to affect tumor behavior and aggressiveness.
Collapse
|
13
|
Mohd A, Zainal N, Tan KK, AbuBakar S. Resveratrol affects Zika virus replication in vitro. Sci Rep 2019; 9:14336. [PMID: 31586088 PMCID: PMC6778103 DOI: 10.1038/s41598-019-50674-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/16/2019] [Indexed: 02/08/2023] Open
Abstract
Zika virus (ZIKV) infection is a serious public health concern. ZIKV infection has been associated with increased occurrences of microcephaly among newborns and incidences of Guillain-Barré syndrome among adults. No specific therapeutics or vaccines are currently available to treat and protect against ZIKV infection. Here, a plant-secreted phytoalexin, resveratrol (RES), was investigated for its ability to inhibit ZIKV replication in vitro. Several RES treatment regimens were used. The ZIKV titers of mock- and RES-treated infected cell cultures were determined using the focus-forming assay and the Zika mRNA copy number as determined using qRT-PCR. Our results suggested that RES treatment reduced ZIKV titers in a dose-dependent manner. A reduction of >90% of virus titer and ZIKV mRNA copy number was achieved when infected cells were treated with 80 µM of RES post-infection. Pre-incubation of the virus with 80 µM RES showed >30% reduction in ZIKV titers and ZIKV mRNA copy number, implying potential direct virucidal effects of RES against the virus. The RES treatment reduced >70% virus titer in the anti-adsorption assay, suggesting the possibility that RES also interferes with ZIKV binding. However, there was no significant decrease in ZIKV titer when a short-period of RES treatment was applied to cells before ZIKV infection (pre-infection) and after the virus bound to the cells (virus internalization inhibition), implying that RES acts through its continuous presence in the cell cultures after virus infection. Overall, our results suggested that RES exhibited direct virucidal activity against ZIKV and possessed anti-ZIKV replication properties, highlighting the need for further exploration of RES as a potential antiviral molecule against ZIKV infection.
Collapse
Affiliation(s)
- Azirah Mohd
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, Kuala Lumpur, Malaysia.,Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nurhafiza Zainal
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, Kuala Lumpur, Malaysia.,Department of Medical Microbiology, University of Malaya, Kuala Lumpur, Malaysia.,Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kim-Kee Tan
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, Kuala Lumpur, Malaysia.,Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sazaly AbuBakar
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, Kuala Lumpur, Malaysia. .,Department of Medical Microbiology, University of Malaya, Kuala Lumpur, Malaysia. .,Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
14
|
Amini SM. Preparation of antimicrobial metallic nanoparticles with bioactive compounds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109809. [PMID: 31349497 DOI: 10.1016/j.msec.2019.109809] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/08/2019] [Accepted: 05/27/2019] [Indexed: 01/25/2023]
Abstract
Despite the all recent advancements in medicine, infectious diseases continue to be major causes of death worldwide. Developing nanomaterials as preventive and therapeutic agents against infectious diseases has been one of the research priorities in medicine. However, the application of metal nanoparticles as antimicrobial agents is hampered due to environmental and safety concerns. Using green chemistry, researchers can produce biocompatible nanoparticles that have fewer detrimental effects on human health and the environment. Although chemical compounds have been considered as traditional sources for producing nanomaterials, a wide variety of biocompatible plant-derived secondary metabolites have recently been introduced that can be used to synthesize and stabilize metal nanoparticles. These metabolites have shown potent antibacterial effects making them suitable substitutes for the chemical agents in nanoparticle synthesis. This review has focused on the antimicrobial properties of metal nanoparticles synthesized using plant-derived secondary metabolites instead of crude extract. The mechanisms of metal nanoparticles synthesis and antimicrobial activity are also discussed for different phytochemicals and metal nanoparticles. Finally, the evaluation of the toxicity and safety of phytochemicals coated metal nanoparticles has been conducted. I believe that this is the first review on the antimicrobial and other biological properties of metal nanoparticles synthesized or coated utilizing specific plant-derived secondary metabolites.
Collapse
Affiliation(s)
- Seyed Mohammad Amini
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Other Forms of Immunosuppression. KIDNEY TRANSPLANTATION - PRINCIPLES AND PRACTICE 2019. [PMCID: PMC7152196 DOI: 10.1016/b978-0-323-53186-3.00020-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Asai D, Nakashima H. Pathogenic Viruses Commonly Present in the Oral Cavity and Relevant Antiviral Compounds Derived from Natural Products. MEDICINES 2018; 5:medicines5040120. [PMID: 30424484 PMCID: PMC6313515 DOI: 10.3390/medicines5040120] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 12/18/2022]
Abstract
Many viruses, such as human herpesviruses, may be present in the human oral cavity, but most are usually asymptomatic. However, if individuals become immunocompromised by age, illness, or as a side effect of therapy, these dormant viruses can be activated and produce a variety of pathological changes in the oral mucosa. Unfortunately, available treatments for viral infectious diseases are limited, because (1) there are diseases for which no treatment is available; (2) drug-resistant strains of virus may appear; (3) incomplete eradication of virus may lead to recurrence. Rational design strategies are widely used to optimize the potency and selectivity of drug candidates, but discovery of leads for new antiviral agents, especially leads with novel structures, still relies mostly on large-scale screening programs, and many hits are found among natural products, such as extracts of marine sponges, sea algae, plants, and arthropods. Here, we review representative viruses found in the human oral cavity and their effects, together with relevant antiviral compounds derived from natural products. We also highlight some recent emerging pharmaceutical technologies with potential to deliver antivirals more effectively for disease prevention and therapy.
Collapse
Affiliation(s)
- Daisuke Asai
- Department of Microbiology, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan
| | - Hideki Nakashima
- Department of Microbiology, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan.
| |
Collapse
|
17
|
Harmalkar DS, Lu Q, Lee K. Total Synthesis of Gramistilbenoids A, B, and C. JOURNAL OF NATURAL PRODUCTS 2018; 81:798-805. [PMID: 29613790 DOI: 10.1021/acs.jnatprod.7b00865] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Stilbenes are biologically active metabolites of plants that have the potential to attenuate a broad range of human diseases. Gramistilbenoids are a class of natural products with a stilbene skeleton, isolated from the bamboo orchid ( Arundina graminifolia), and with significant cytotoxicity against cancer cell lines (NB4, A549, SHSY5Y, PC3, and MCF7). These are the first identified naturally occurring diphenylethylenes to possess a hydroxyethyl unit. However, some of these compounds are not abundant in nature, and thus, their synthesis is advantageous. This paper reports the first synthesis of gramistilbenoids A (1), B (2), and C (3), with overall yields of 10, 2, and 8% respectively. These natural products were synthesized using key reactions, such as Horner-Wadsworth-Emmons olefination, Stille coupling, and hydroboration-oxidation.
Collapse
Affiliation(s)
- Dipesh S Harmalkar
- College of Pharmacy , Dongguk University-Seoul , Goyang , 10326 , Republic of Korea
| | - Qili Lu
- College of Pharmacy , Dongguk University-Seoul , Goyang , 10326 , Republic of Korea
| | - Kyeong Lee
- College of Pharmacy , Dongguk University-Seoul , Goyang , 10326 , Republic of Korea
| |
Collapse
|
18
|
Zhao X, Xu J, Song X, Jia R, Yin Z, Cheng A, Jia R, Zou Y, Li L, Yin L, Yue G, Lv C, Jing B. Antiviral effect of resveratrol in ducklings infected with virulent duck enteritis virus. Antiviral Res 2016; 130:93-100. [DOI: 10.1016/j.antiviral.2016.03.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/16/2016] [Accepted: 03/29/2016] [Indexed: 12/14/2022]
|
19
|
Mao G, Li H, Ding X, Meng X, Wang G, Leng SX. Suppressive effects of sirtinol on human cytomegalovirus (hCMV) infection and hCMV-induced activation of molecular mechanisms of senescence and production of reactive oxygen species. Mech Ageing Dev 2016; 158:62-9. [PMID: 26763147 DOI: 10.1016/j.mad.2015.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/28/2015] [Accepted: 12/30/2015] [Indexed: 11/19/2022]
Abstract
Substantial evidence suggests that chronic human cytomegalovirus (hCMV) infection contributes significantly to T-cell immunosenescence and adverse health outcomes in older adults. As such, it is important to search for compounds with anti-hCMV properties. Studies have shown that resveratrol, a sirtuin activator, suppresses hCMV infection. Here we report suppressive effects of sirtinol, a sirtuin antagonist, on hCMV infection and its cellular and molecular consequences. Human diploid fibroblast WI-38 cells were infected by hCMV Towne strain in the absence or presence of sirtinol. hCMV replication was measured using qPCR. Senescent phenotype was determined by senescence-associated β galactosidase (SA-β-Gal) activity. Expression of hCMV immediate early (IE) and early (E) proteins and senescence-associated proteins (pRb and Rb, p16(INK4), and p53) and production of reactive oxygen species (ROS) were assessed using standard laboratory assays. The results demonstrated that sirtinol suppressed hCMV infection as well as hCMV-induced activation of molecular mechanisms of senescence and ROS production. While underlying molecular mechanisms remain to be elucidated, these findings indicate sirtinol as a novel and potent anti-hCMV agent with the potential to be developed as an effective treatment for chronic hCMV infection and its cellular and molecular consequences that are important to ageing and health of older adults.
Collapse
Affiliation(s)
- Genxiang Mao
- Zhejiang Provincial Key Laboratory of Geriatrics & Geriatrics Institute of Zhejiang Province, Zhejiang Hospital, 12 Lingyin Road, Hangzhou, Zhejiang Province 310013, China
| | - Huifen Li
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA
| | - Xiang Ding
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA
| | - Xin Meng
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA
| | - Guofu Wang
- Zhejiang Provincial Key Laboratory of Geriatrics & Geriatrics Institute of Zhejiang Province, Zhejiang Hospital, 12 Lingyin Road, Hangzhou, Zhejiang Province 310013, China.
| | - Sean X Leng
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA.
| |
Collapse
|
20
|
Lee S, Yoon KD, Lee M, Cho Y, Choi G, Jang H, Kim B, Jung D, Oh J, Kim G, Oh J, Jeong Y, Kwon HJ, Bae SK, Min D, Windisch MP, Heo T, Lee C. Identification of a resveratrol tetramer as a potent inhibitor of hepatitis C virus helicase. Br J Pharmacol 2016; 173:191-211. [PMID: 26445091 PMCID: PMC4813382 DOI: 10.1111/bph.13358] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 09/16/2015] [Accepted: 10/02/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND PURPOSE Hepatitis C virus (HCV) infection is responsible for various chronic inflammatory liver diseases. Here, we have identified a naturally occurring compound with anti-HCV activity and have elucidated its mode of antiviral action. EXPERIMENTAL APPROACH Luciferase reporter and real-time RT-PCR assays were used to measure HCV replication. Western blot, fluorescence-labelled HCV replicons and infectious clones were employed to quantitate expression levels of viral proteins. Resistant HCV mutant mapping, in vitro NS3 protease, helicase, NS5B polymerase and drug affinity responsive target stability assays were also used to study the antiviral mechanism. KEY RESULTS A resveratrol tetramer, vitisin B from grapevine root extract showed high potency against HCV replication (EC50 = 6 nM) with relatively low cytotoxicity (EC50 >10 μM). Combined treatment of vitisin B with an NS5B polymerase inhibitor (sofosbuvir) exhibited a synergistic or at least additive antiviral activity. Analysis of a number of vitisin B-resistant HCV variants suggested an NS3 helicase as its potential target. We confirmed a direct binding between vitisin B and a purified NS3 helicase in vitro. Vitisin B was a potent inhibitor of a HCV NS3 helicase (IC50 = 3 nM). In vivo, Finally, we observed a preferred tissue distribution of vitisin B in the liver after i.p. injection in rats, at clinically attainable concentrations. Conclusion and Implications Vitisin B is one of the most potent HCV helicase inhibitors identified so far. Vitisin B is thus a prime candidate to be developed as the first HCV drug derived from natural products.
Collapse
Affiliation(s)
- Sungjin Lee
- College of PharmacyDongguk UniversityGoyangKorea
| | - Kee Dong Yoon
- College of Pharmacy and Integrated Research Institute of Pharmaceutical SciencesThe Catholic University of KoreaBucheonKorea
| | - Myungeun Lee
- Hepatitis Research LaboratoryInstitut Pasteur KoreaSeongnamKorea
| | - Yoojin Cho
- Hepatitis Research LaboratoryInstitut Pasteur KoreaSeongnamKorea
| | - Gahee Choi
- Hepatitis Research LaboratoryInstitut Pasteur KoreaSeongnamKorea
| | - Hongje Jang
- Department of ChemistrySeoul National UniversitySeoulKorea
| | - BeomSeok Kim
- Translational Research Center for Protein Function Control, Department of Biotechnology, College of Life Science and BiotechnologyYonsei UniversitySeoulKorea
| | - Da‐Hee Jung
- Department of Bio and Nano ChemistryKookmin UniversitySeoulKorea
| | - Jin‐Gyo Oh
- College of Pharmacy and Integrated Research Institute of Pharmaceutical SciencesThe Catholic University of KoreaBucheonKorea
| | - Geon‐Woo Kim
- Department of BiotechnologyYonsei UniversitySeoulKorea
| | - Jong‐Won Oh
- Department of BiotechnologyYonsei UniversitySeoulKorea
| | - Yong‐Joo Jeong
- Department of Bio and Nano ChemistryKookmin UniversitySeoulKorea
| | - Ho Jeong Kwon
- Translational Research Center for Protein Function Control, Department of Biotechnology, College of Life Science and BiotechnologyYonsei UniversitySeoulKorea
| | - Soo Kyung Bae
- College of Pharmacy and Integrated Research Institute of Pharmaceutical SciencesThe Catholic University of KoreaBucheonKorea
| | - Dal‐Hee Min
- Department of ChemistrySeoul National UniversitySeoulKorea
| | - Marc P Windisch
- Hepatitis Research LaboratoryInstitut Pasteur KoreaSeongnamKorea
| | - Tae‐Hwe Heo
- College of Pharmacy and Integrated Research Institute of Pharmaceutical SciencesThe Catholic University of KoreaBucheonKorea
| | - Choongho Lee
- College of PharmacyDongguk UniversityGoyangKorea
| |
Collapse
|
21
|
Antiviral Activity of Resveratrol against Human and Animal Viruses. Adv Virol 2015; 2015:184241. [PMID: 26693226 PMCID: PMC4676993 DOI: 10.1155/2015/184241] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/15/2015] [Indexed: 12/14/2022] Open
Abstract
Resveratrol is a potent polyphenolic compound that is being extensively studied in the amelioration of viral infections both in vitro and in vivo. Its antioxidant effect is mainly elicited through inhibition of important gene pathways like the NF-κβ pathway, while its antiviral effects are associated with inhibitions of viral replication, protein synthesis, gene expression, and nucleic acid synthesis. Although the beneficial roles of resveratrol in several viral diseases have been well documented, a few adverse effects have been reported as well. This review highlights the antiviral mechanisms of resveratrol in human and animal viral infections and how some of these effects are associated with the antioxidant properties of the compound.
Collapse
|
22
|
Yang T, Li S, Zhang X, Pang X, Lin Q, Cao J. Resveratrol, sirtuins, and viruses. Rev Med Virol 2015; 25:431-45. [DOI: 10.1002/rmv.1858] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 09/19/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Tao Yang
- College of Food Science and Technology; Central South University of Forestry and Technology; Changsha Hunan Province China
| | - Shugang Li
- Construction Corps Key Laboratory of Deep Processing on Featured Agricultural Products in South Xinjiang; Tarim University; Alar Xinjiang China
| | - Xuming Zhang
- Department of Microbiology and Immunology; University of Arkansas for Medical Sciences; Little Rock AR USA
| | - Xiaowu Pang
- Departments of Oral Pathology, College of Dentistry; Howard University; Washington DC USA
| | - Qinlu Lin
- College of Food Science and Technology; Central South University of Forestry and Technology; Changsha Hunan Province China
| | - Jianzhong Cao
- College of Food Science and Technology; Central South University of Forestry and Technology; Changsha Hunan Province China
| |
Collapse
|
23
|
Resveratrol inhibits rhinovirus replication and expression of inflammatory mediators in nasal epithelia. Antiviral Res 2015; 123:15-21. [PMID: 26296578 DOI: 10.1016/j.antiviral.2015.08.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/31/2015] [Accepted: 08/17/2015] [Indexed: 11/23/2022]
Abstract
Human rhinoviruses (HRV), the cause of common colds, are the most frequent precipitants of acute exacerbation of asthma and chronic obstructive pulmonary disease, as well as causes of other serious respiratory diseases. No vaccine or antiviral agents are available for the prevention or treatment of HRV infection. Resveratrol exerts antiviral effect against different DNA and RNA viruses. The antiviral effect of a new resveratrol formulation containing carboxymethylated glucan was analyzed in H1HeLa cell monolayers and ex vivo nasal epithelia infected with HRV-16. Virus yield was evaluated by plaque assay and expression of viral capsid proteins by Western blot. IL-10, IFN-β, IL-6, IL-8 and RANTES levels were evaluated by ELISA assay. ICAM-1 was assessed by Western blot and immunofluorescence. Resveratrol exerted a high, dose-dependent, antiviral activity against HRV-16 replication and reduced virus-induced secretion of IL-6, IL-8 and RANTES to levels similar to that of uninfected nasal epithelia. Basal levels of IL-6 and RANTES were also significantly reduced in uninfected epithelia confirming an anti-inflammatory effect of the compound. HRV-induced expression of ICAM-1 was reversed by resveratrol. Resveratrol may be useful for a therapeutic approach to reduce HRV replication and virus-induced cytokine/chemokine production.
Collapse
|
24
|
Resveratrol inhibits enterovirus 71 replication and pro-inflammatory cytokine secretion in rhabdosarcoma cells through blocking IKKs/NF-κB signaling pathway. PLoS One 2015; 10:e0116879. [PMID: 25692777 PMCID: PMC4333343 DOI: 10.1371/journal.pone.0116879] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 12/16/2014] [Indexed: 11/19/2022] Open
Abstract
Polydatin and resveratrol, as major active components in Polygonum cuspidatum, have anti-inflammatory, antioxidant and antitumor functions. However, the effect and mechanism of polydatin and resveratrol on enterovirus 71 (EV71) have not been reported. In this study, resveratrol revealed strong antiviral activity on EV71, while polydatin had weak effect. Neither polydatin nor resveratrol exhibited influence on viral attachment. Resveratrol could effectively inhibit the synthesis of EV71/VP1 and the phosphorylation of IKKα, IKKβ, IKKγ, IKBα, NF-κB p50 and NF-κB p65, respectively. Meanwhile, the remarkably increased secretion of IL-6 and TNF-α in EV71-infected rhabdosarcoma (RD) cells could be blocked by resveratrol. These results demonstrated that resveratrol inhibited EV71 replication and cytokine secretion in EV71-infected RD cells through blocking IKKs/NF-κB signaling pathway. Thus, resveratrol may have potent antiviral effect on EV71 infection.
Collapse
|
25
|
Komaravelli N, Kelley JP, Garofalo MP, Wu H, Casola A, Kolli D. Role of dietary antioxidants in human metapneumovirus infection. Virus Res 2015; 200:19-23. [PMID: 25645280 DOI: 10.1016/j.virusres.2015.01.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 12/20/2022]
Abstract
Human metapneumovirus (hMPV) is a major cause of respiratory tract infections in children, elderly and immunocompromised hosts, for which no vaccine or treatment are currently available. Oxidative stress and inflammatory responses represent important pathogenic mechanism(s) of hMPV infection. Here, we explored the potential protective role of dietary antioxidants in hMPV infection. Treatment of airway epithelial cells with resveratrol and quercetin during hMPV infection significantly reduced cellular oxidative damage, inflammatory mediator secretion and viral replication, without affecting viral gene transcription and protein synthesis, indicating that inhibition of viral replication occurred at the level of viral assembly and/or release. Modulation of proinflammatory mediator expression occurred through the inhibition of transcription factor nuclear factor (NF)-κB and interferon regulatory factor (IRF)-3 binding to their cognate site of endogenous gene promoters. Our results indicate the use of dietary antioxidants as an effective treatment approach for modulating hMPV induced lung oxidative damage and inflammation.
Collapse
Affiliation(s)
- Narayana Komaravelli
- Departments of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
| | - John P Kelley
- Departments of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Matteo P Garofalo
- Departments of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Haotian Wu
- Departments of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Antonella Casola
- Departments of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; Sealy Center for Molecular Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Deepthi Kolli
- Departments of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| |
Collapse
|
26
|
Abstract
The seven human sirtuins are a family of ubiquitously expressed and evolutionarily conserved NAD+-dependent deacylases/mono-ADP ribosyltransferases that regulate numerous cellular and organismal functions, including metabolism, cell cycle, and longevity. Here, we report the discovery that all seven sirtuins have broad-range antiviral properties. We demonstrate that small interfering RNA (siRNA)-mediated knockdown of individual sirtuins and drug-mediated inhibition of sirtuin enzymatic activity increase the production of virus progeny in infected human cells. This impact on virus growth is observed for both DNA and RNA viruses. Importantly, sirtuin-activating drugs inhibit the replication of diverse viruses, as we demonstrate for human cytomegalovirus, a slowly replicating DNA virus, and influenza A (H1N1) virus, an RNA virus that multiplies rapidly. Furthermore, sirtuin defense functions are evolutionarily conserved, since CobB, the sirtuin homologue in Escherichia coli, protects against bacteriophages. Altogether, our findings establish sirtuins as broad-spectrum and evolutionarily conserved components of the immune defense system, providing a framework for elucidating a new set of host cell defense mechanisms and developing sirtuin modulators with antiviral activity. We live in a sea of viruses, some of which are human pathogens. These pathogenic viruses exhibit numerous differences: DNA or RNA genomes, enveloped or naked virions, nuclear or cytoplasmic replication, diverse disease symptoms, etc. Most antiviral drugs target specific viral proteins. Consequently, they often work for only one virus, and their efficacy can be compromised by the rapid evolution of resistant variants. There is a need for the identification of host proteins with broad-spectrum antiviral functions, which provide effective targets for therapeutic treatments that limit the evolution of viral resistance. Here, we report that sirtuins present such an opportunity for the development of broad-spectrum antiviral treatments, since our findings highlight these enzymes as ancient defense factors that protect against a variety of viral pathogens.
Collapse
|
27
|
|
28
|
Cho HJ, Jeong SG, Park JE, Han JA, Kang HR, Lee D, Song MJ. Antiviral activity of angelicin against gammaherpesviruses. Antiviral Res 2013; 100:75-83. [PMID: 23892155 DOI: 10.1016/j.antiviral.2013.07.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 07/13/2013] [Accepted: 07/15/2013] [Indexed: 12/29/2022]
Abstract
Human gammaherpesviruses including Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are important pathogens as they persist in the host and cause various malignancies. However, few antiviral drugs are available to efficiently control gammaherpesvirus replication. Here we identified the antiviral activity of angelicin against murine gammaherpesvirus 68 (MHV-68), genetically and biologically related to human gammaherpesviruses. Angelicin, a furocoumarin naturally occurring tricyclic aromatic compound, efficiently inhibited lytic replication of MHV-68 in a dose-dependent manner following the virus entry. The IC50 of angelicin antiviral activity was estimated to be 28.95μM, while the CC50 of angelicin was higher than 2600μM. Furthermore, incubation with angelicin efficiently inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced lytic replication of human gammaherpresviruses in both EBV- and KSHV-infected cells. Taken together, these results suggest that MHV-68 can be a useful tool to screen novel antiviral agents against human gammaherepsviruses and that angelicin may provide a lead structure for the development of antiviral drug against gammaherpesviruses.
Collapse
Affiliation(s)
- Hye-Jeong Cho
- Department of Biosystems and Biotechnology, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
29
|
Xu J, Yin Z, Li L, Cheng A, Jia R, Song X, Lu H, Dai S, Lv C, Liang X, He C, Zhao L, Su G, Ye G, Shi F. Inhibitory effect of resveratrol against duck enteritis virus in vitro. PLoS One 2013; 8:e65213. [PMID: 23776451 PMCID: PMC3679110 DOI: 10.1371/journal.pone.0065213] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 04/24/2013] [Indexed: 12/12/2022] Open
Abstract
Duck viral enteritis (DVE) is an acute, contagious herpesvirus infection of ducks, geese, and swans of all ages and species. This disease has been responsible for significant economic losses in domestic and wild waterfowl as a result of mortality, and decreased egg production. Resveratrol is a naturally occurring phytoalexin in specific plants and exhibits inhibitory activity against many kinds of virus. In this paper, resveratrol was found to inhibit duck enteritis virus (DEV) replication in a dose-dependent manner, with a 50% inhibition concentration of 3.85 μg/mL. The inhibition in virus multiplication in the presence of resveratrol was not attributed to direct inactivation or inhibition of virus attachment to the host cells, but to the inhibition of viral multiplication in host cells. The assay of the time of addition limited the drug effect during the first 8 h of infection. This conclusion was supported by the ultrastructure images of the early stage of DEV infection, which showed that the replication of virus nucleic acid and the formation of the capsid in the cell nucleus were suppressed. In the indirect immunofluorescence assay, proteins expression in DEV infected duck embryo fibroblasts (DEFs) within 24 h post-infection (p.i.) was also effectively suppressed by resveratrol. In summary, the resveratrol has a good activity against DEV infection in vitro, which could be attributed to that fact that several essential immediate early viral proteins for virus replication were impacted by resveratrol.
Collapse
Affiliation(s)
- Jiao Xu
- College of Veterinary Medicine, Sichuan Agricutural University, Ya'an, China
| | - Zhongqiong Yin
- College of Veterinary Medicine, Sichuan Agricutural University, Ya'an, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricutural University, Chengdu, China
| | - Li Li
- College of Veterinary Medicine, Sichuan Agricutural University, Ya'an, China
| | - Anchun Cheng
- College of Veterinary Medicine, Sichuan Agricutural University, Ya'an, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricutural University, Chengdu, China
| | - Renyong Jia
- College of Veterinary Medicine, Sichuan Agricutural University, Ya'an, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricutural University, Chengdu, China
| | - Xu Song
- College of Veterinary Medicine, Sichuan Agricutural University, Ya'an, China
| | - Hongke Lu
- College of Veterinary Medicine, Sichuan Agricutural University, Ya'an, China
| | - Shujun Dai
- College of Veterinary Medicine, Sichuan Agricutural University, Ya'an, China
| | - Cheng Lv
- College of Veterinary Medicine, Sichuan Agricutural University, Ya'an, China
| | - Xiaoxia Liang
- College of Veterinary Medicine, Sichuan Agricutural University, Ya'an, China
| | - Changliang He
- College of Veterinary Medicine, Sichuan Agricutural University, Ya'an, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricutural University, Ya'an, China
| | - Gang Su
- College of Veterinary Medicine, Sichuan Agricutural University, Ya'an, China
| | - Gang Ye
- College of Veterinary Medicine, Sichuan Agricutural University, Ya'an, China
| | - Fei Shi
- College of Veterinary Medicine, Sichuan Agricutural University, Ya'an, China
| |
Collapse
|
30
|
Xie XH, Zang N, Li SM, Wang LJ, Deng Y, He Y, Yang XQ, Liu EM. Resveratrol Inhibits respiratory syncytial virus-induced IL-6 production, decreases viral replication, and downregulates TRIF expression in airway epithelial cells. Inflammation 2013; 35:1392-401. [PMID: 22391746 DOI: 10.1007/s10753-012-9452-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Respiratory syncytial virus (RSV) is the most common pathogen responsible for lower respiratory diseases in children. So far, there is no effective treatment or preventative vaccine available for RSV infection, although ribavirin and dexamethasone are commonly prescribed. Resveratrol has been shown to inhibit the replication of several other viruses, thus the effect of resveratrol on RSV-induced inflammatory mediators in 9HTEo cell cultures was evaluated, and possible mechanisms of action were explored and compared with dexamethasone and ribavirin. Incubation with resveratrol resulted in decreased IL-6 production and partial inhibition of RSV replication. Resveratrol treatment also inhibited virus-induced TIR-domain-containing adapter-inducing interferon-β (TRIF) and TANK binding kinase 1 (TBK1) protein expression. These data demonstrate the ability of resveratrol to inhibit cytokine production by RSV in airway epithelial cells, indicating that it might be a therapeutic agent with both anti-inflammatory and antiviral potential for the treatment of RSV infection.
Collapse
Affiliation(s)
- Xiao-Hong Xie
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Yu JW, Sun LJ, Zhao YH, Kang P, Yan BZ. Inhibition of silent information regulator 1 induces glucose metabolism disorders of hepatocytes and enhances hepatitis C virus replication. Hepatol Int 2013. [DOI: 10.1007/s12072-013-9420-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
32
|
Venugopal R, Liu RH. Phytochemicals in diets for breast cancer prevention: The importance of resveratrol and ursolic acid. FOOD SCIENCE AND HUMAN WELLNESS 2012. [DOI: 10.1016/j.fshw.2012.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
33
|
Kumar D, Kumar S, Gupta J, Arya R, Gupta A. A review on chemical and biological properties of Cayratia trifolia Linn. (Vitaceae). Pharmacogn Rev 2012; 5:184-8. [PMID: 22279376 PMCID: PMC3263053 DOI: 10.4103/0973-7847.91117] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Revised: 07/18/2011] [Accepted: 12/23/2011] [Indexed: 01/20/2023] Open
Abstract
Cayratia trifolia Linn. Domin Syn. Vitis trifolia (Family: Vitaceae) is commonly known as Fox grape in English; Amlabel, Ramchana in Hindi and Amlavetash in Sanskrit. It is native to India, Asia and Australia. It is a perennial climber having trifoliated leaves with 2-3 cm long petioles and ovate to oblong-ovate leaflets. Flowers are small greenish white and brown in color. Fruits are fleshy, juicy, dark purple or black, nearly spherical, about 1 cm in diameter. It is found throughout the hills in India. This perennial climber is also found in the hotter part of India from Jammu and Rajasthan to Assam extending into the peninusular India upto 600 m height. Whole plant of Cayratia trifolia has been reported to contain yellow waxy oil, steroids/terpenoids, flavonoids, tannins upon preliminary phytochemical screening. Leaves contain stilbenes (piceid, reveratrol, viniferin, ampelopsin). Stem, leaves, roots are reported to possess hydrocyanic acid, delphinidin and several flavonoids such as cyanidin is reported in the leaves. This plant also contains kaempferol, myricetin, quercetin, triterpenes and epifriedelanol. Infusion of seeds along with extract of tubers is traditionally given orally to diabetic patients to check sugar level of blood. Paste of tuberous is applied on the affected part in the treatment of snake bite. Whole plant is used as diuretic, in tumors, neuralgia and splenopathy. Its climbers wrapped around the neck of frantic bullock and poultice of leaves are used to yoke sores of bullock. The bark extract shows the antiviral, antibacterial, antiprotozoal, hypoglycemic, anticancer and diuretic activity. This article focuses on the upgraded review on chemical and biological properties of Cayratia trifolia Linn. and triggers further investigation on this plant.
Collapse
Affiliation(s)
- Dinesh Kumar
- Division of Pharmacognsoy and Phytochemistry, Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, India
| | | | | | | | | |
Collapse
|
34
|
Aqeel Y, Iqbal J, Siddiqui R, Gilani AH, Khan NA. Anti-Acanthamoebic properties of resveratrol and demethoxycurcumin. Exp Parasitol 2012; 132:519-23. [PMID: 23010569 DOI: 10.1016/j.exppara.2012.09.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 04/16/2012] [Accepted: 09/12/2012] [Indexed: 12/24/2022]
Abstract
Acanthamoeba is an opportunist protist pathogen that is known to infect the cornea to produce eye keratitis and the central nervous system to produce fatal granulomatous encephalitis. Early diagnosis, followed by aggressive treatment using a combination of drugs is a prerequisite in successful treatment but even then, prognosis remains poor due to lack of effective drugs. The overall aim of the present study was to determine the anti-Acanthamoebic potential of natural compounds, resveratrol and curcuminoids. Adhesion and cytotoxicity assays were performed using primary human brain microvascular endothelial cells, which constitute the blood-brain barrier. Pre-exposure of organisms to 100 μg resveratrol and demethoxy curcumin prevented amoeba binding by 57% and 73%, respectively, while cytotoxicity of host cells was inhibited by 86%. In an assay for viability of amoebae in the absence of host cells, resveratrol and de-methoxy curcumin exhibited significant amoebicidal effects (23% and 25%, respectively) at 100 μg concentrations (P<0.01). Neither resveratrol nor demethoxycurcumin had any effect on the proteolytic activities of Acanthamoeba castellanii. Of both compounds, resveratrol is of most interest for further investigation, because of the selective toxicity of resveratrol on A. castellanii but not the human brain microvascular endothelial cells.
Collapse
Affiliation(s)
- Yousuf Aqeel
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | | | | | | | | |
Collapse
|
35
|
Resveratrol inhibits Epstein Barr Virus lytic cycle in Burkitt's lymphoma cells by affecting multiple molecular targets. Antiviral Res 2012; 96:196-202. [PMID: 22985630 DOI: 10.1016/j.antiviral.2012.09.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/04/2012] [Accepted: 09/05/2012] [Indexed: 12/12/2022]
Abstract
Resveratrol (RV), a polyphenolic natural product present in many plants and fruits, exhibits anti-inflammatory, cardio-protective and anti-proliferative properties. Moreover, RV affects a wide variety of viruses including members of the Herpesviridae family, retroviruses, influenza A virus and polyomavirus by altering cellular pathways that affect viral replication itself. Epstein Barr Virus (EBV), the causative agent of infectious mononucleosis, is associated with different proliferative diseases in which it establishes a latent and/or a lytic infection. In this study, we examined the antiviral activity of RV against the EBV replicative cycle and investigated the molecular targets possibly involved. In a cellular context that allows in vitro EBV activation and lytic cycle progression through mechanisms closely resembling those that in vivo initiate and enable productive infection, we found that RV inhibited EBV lytic genes expression and the production of viral particles in a dose-dependent manner. We demonstrated that RV inhibited protein synthesis, decreased reactive oxygen species (ROS) levels, and suppressed the EBV-induced activation of the redox-sensitive transcription factors NF-kB and AP-1. Further insights into the signaling pathways and molecular targets modulated by RV may provide the basis for exploiting the antiviral activity of this natural product on EBV replication.
Collapse
|
36
|
Catalgol B, Batirel S, Taga Y, Ozer NK. Resveratrol: French paradox revisited. Front Pharmacol 2012; 3:141. [PMID: 22822401 PMCID: PMC3398412 DOI: 10.3389/fphar.2012.00141] [Citation(s) in RCA: 286] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 06/27/2012] [Indexed: 12/12/2022] Open
Abstract
Resveratrol is a polyphenol that plays a potentially important role in many disorders and has been studied in different diseases. The research on this chemical started through the “French paradox,” which describes improved cardiovascular outcomes despite a high-fat diet in French people. Since then, resveratrol has been broadly studied and shown to have antioxidant, anti-inflammatory, anti-proliferative, and anti-angiogenic effects, with those on oxidative stress possibly being most important and underlying some of the others, but many signaling pathways are among the molecular targets of resveratrol. In concert they may be beneficial in many disorders, particularly in diseases where oxidative stress plays an important role. The main focus of this review will be the pathways affected by resveratrol. Based on these mechanistic considerations, the involvement of resveratrol especially in cardiovascular diseases, cancer, neurodegenerative diseases, and possibly in longevity will be is addressed.
Collapse
Affiliation(s)
- Betul Catalgol
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research Center, Marmara University Istanbul, Turkey
| | | | | | | |
Collapse
|
37
|
Resveratrol-mediated gamma interferon reduction prevents airway inflammation and airway hyperresponsiveness in respiratory syncytial virus-infected immunocompromised mice. J Virol 2011; 85:13061-8. [PMID: 21937650 DOI: 10.1128/jvi.05869-11] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Respiratory syncytial virus (RSV) is the most important cause of severe, lower respiratory tract infections in infants, and RSV infections have been associated with chronic wheezing and asthma during childhood. However, the mechanism of RSV-induced airway inflammation and airway hyperresponsiveness (AHR) is poorly understood. Furthermore, there are presently neither effective vaccines nor drugs available for the prevention or treatment of RSV infections. In this study, we investigated the effect of the plant extract resveratrol as a means of preventing airway inflammation and attenuating RSV-induced AHR. Our data showed that resveratrol reduced RSV lung titers and the number of infiltrating lymphocytes present in bronchoalveolar lavage fluid (BALF) and reduced inflammation. Furthermore, resveratrol attenuated airway responses to methacholine following RSV infection and significantly decreased gamma interferon (IFN-γ) levels in BALF of RSV-infected mice. Data presented in this report demonstrated that resveratrol controlled Toll-like receptor 3 (TLR3) expression, inhibited the TRIF signaling pathway, and induced M2 receptor expression following RSV infection. These data support a role for the use of resveratrol as a means of reducing IFN-γ levels associated with RSV-mediated airway inflammation and AHR, which may be mediated via TLR3 signaling.
Collapse
|
38
|
Galindo I, Hernáez B, Berná J, Fenoll J, Cenis JL, Escribano JM, Alonso C. Comparative inhibitory activity of the stilbenes resveratrol and oxyresveratrol on African swine fever virus replication. Antiviral Res 2011; 91:57-63. [PMID: 21557969 DOI: 10.1016/j.antiviral.2011.04.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/08/2011] [Accepted: 04/26/2011] [Indexed: 12/18/2022]
Abstract
Stilbenols are polyphenolic phytoalexins produced by plants in response to biotic or abiotic stress. These compounds have received much attention because of their significant biological effects. One of these is their antiviral action, which has previously been documented for two members of this class, namely resveratrol and oxyresveratrol. Here we tested the antiviral effect of these two compounds on African swine fever virus, the only member of the newly created family Asfarviridae and a serious limitation to porcine production worldwide. Our results show a potent, dose-dependent antiviral effect of resveratrol and oxyresveratrol in vitro. Interestingly, this antiviral activity was found for these synthetic compounds and also for oxyresveratrol extracted from new natural sources (mulberry twigs). The antiviral effect of these two drugs was demonstrated at concentrations that do not induce cytotoxicity in cultured cells. Moreover, these antivirals achieved a 98-100% reduction in viral titers. Both compounds allowed early protein synthesis but inhibited viral DNA replication, late viral protein synthesis and viral factory formation.
Collapse
Affiliation(s)
- I Galindo
- Dpt. Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
39
|
Mercorelli B, Lembo D, Palù G, Loregian A. Early inhibitors of human cytomegalovirus: state-of-art and therapeutic perspectives. Pharmacol Ther 2011; 131:309-29. [PMID: 21570424 PMCID: PMC7112563 DOI: 10.1016/j.pharmthera.2011.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 04/05/2011] [Indexed: 12/31/2022]
Abstract
Human cytomegalovirus (HCMV) infection is associated with severe morbidity and mortality in immunocompromised individuals, mainly transplant recipients and AIDS patients, and is the most frequent cause of congenital malformations in newborn children. To date, few drugs are licensed for the treatment of HCMV infections, most of which target the viral DNA polymerase and suffer from many drawbacks, including long-term toxicity, low potency, and poor bioavailability. In addition, the emergence of drug-resistant viral strains is becoming an increasing problem for disease management. Finally, none of the current anti-HCMV drugs have been approved for the treatment of congenital infections. For all these reasons, there is still a strong need for new anti-HCMV drugs with novel mechanisms of action. The first events of the virus replication cycle, including attachment, entry, immediate-early gene expression, and immediate-early functions—in particular that of Immediate-Early 2 protein—represent attractive targets for the development of novel antiviral compounds. Such inhibitors would block not only the expression of viral immediate-early proteins, which play a key role in the pathogenesis of HCMV infection, but also the host immunomodulation and the changes to cell physiology induced by the first events of virus infection. This review describes the current knowledge on the initial phases of HCMV replication, their validation as potential novel antiviral targets, and the development of compounds that block such processes.
Collapse
Affiliation(s)
- Beatrice Mercorelli
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padova, 35121 Padova, Italy
| | | | | | | |
Collapse
|
40
|
Inhibitory effects of resveratrol on the Epstein-Barr virus lytic cycle. Molecules 2010; 15:7115-24. [PMID: 20948499 PMCID: PMC6259417 DOI: 10.3390/molecules15107115] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 10/11/2010] [Accepted: 10/13/2010] [Indexed: 12/21/2022] Open
Abstract
Reactivation of Epstein-Barr virus (EBV) from latency to the lytic cycle is required for the production of viral particles. Here, we examine the capacity of resveratrol to inhibit the EBV lytic cycle. Our results show that resveratrol inhibits the transcription of EBV immediate early genes, the expression of EBV lytic proteins, including Rta, Zta, and EA-D and reduces viron production, suggesting that this compound may be useful for preventing the proliferation of the virus.
Collapse
|
41
|
Wang Y, Romigh T, He X, Orloff MS, Silverman RH, Heston WD, Eng C. Resveratrol regulates the PTEN/AKT pathway through androgen receptor-dependent and -independent mechanisms in prostate cancer cell lines. Hum Mol Genet 2010; 19:4319-29. [PMID: 20729295 PMCID: PMC2957324 DOI: 10.1093/hmg/ddq354] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The tumor suppressor gene PTEN (phosphatase and tensin homolog deleted on chromosome 10) and the androgen receptor (AR) play important roles in tumor development and progression in prostate carcinogenesis. Among many functions, PTEN negatively regulates the cytoplasmic phosphatidylinositol-3-kinase/AKT anti-apoptotic pathway; and nuclear PTEN affects the cell cycle by also negatively regulating the MAPK pathway via cyclin D. Decreased PTEN expression is correlated with prostate cancer progression. Over-expression of AR and upregulation of AR transcriptional activity are often observed in the later stages of prostate cancer. Recent studies indicate that PTEN regulates AR activity and stability. However, the mechanism of how AR regulates PTEN has never been studied. Furthermore, resveratrol, a phytoalexin enriched in red grapes, strawberries and peanuts, has been shown to inhibit AR transcriptional activity in prostate cancer cells. In this study, we use prostate cancer cell lines to test the hypothesis that resveratrol inhibits cellular proliferation in both AR-dependent and -independent mechanisms. We show that resveratrol inhibits AR transcriptional activity in both androgen-dependent and -independent prostate cancer cells. Additionally, resveratrol stimulates PTEN expression through AR inhibition. In contrast, resveratrol directly binds epidermal growth factor receptor (EGFR) rapidly inhibiting EGFR phosphorylation, resulting in decreased AKT phosphorylation, in an AR-independent manner. Thus, resveratrol may act as potential adjunctive treatment for late-stage hormone refractory prostate cancer. More importantly, for the first time, our study demonstrates the mechanism by which AR regulates PTEN expression at the transcription level, indicating the direct link between a nuclear receptor and the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Yu Wang
- Genomic Medicine Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Matias AA, Serra AT, Silva AC, Perdigão R, Ferreira TB, Marcelino I, Silva S, Coelho AV, Alves PM, Duarte CMM. Portuguese winemaking residues as a potential source of natural anti-adenoviral agents. Int J Food Sci Nutr 2010; 61:357-68. [PMID: 20109126 DOI: 10.3109/09637480903430990] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
To date there are no licensed systemic or topical treatments in Europe or the USA for adenovirus infections. In the present paper, we evaluate the effect of a polyphenol-based grape extract (NE) obtained from Portuguese white-winemaking by-products, and Resveratrol in pure form, on adenovirus type 5 infection. For this purpose, recombinant adenovirus vectors (Ad-5) and a human-derived cell line (293) were used as models. The NE and Resveratrol at the used concentrations do not induce cell cytotoxicity or direct virucidal activity; however, they reduce 4.5 and 6.5 log (TCID(50)/ml) on total infectious Ad-5 production, respectively. The capacity of Ad-5 replication upon removal of NE and Resveratrol after 24 h post infection was also evaluated. In contrast to Resveratrol, the highest evaluated NE concentration inhibits irreversibly the Ad-5 replication. These results provide useful information for the use of NE and Resveratrol as potential sources of promising natural antiviral agents on Ad-5 infection.
Collapse
Affiliation(s)
- Ana A Matias
- Instituto de Biologia Experimental e Tecnológica, Avenida da República, Quinta do Marquês, Estação Agronómica Nacional, Oeiras, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Resveratrol is a natural compound produced by certain plants on various stimuli. In recent years, extensive research on resveratrol has been carried out, demonstrating its capacity to prevent a wide variety of conditions, including cardiovascular diseases and cancer, and to control fungal, bacterial and viral infections. In the present review, we summarize the current knowledge of the activity of resveratrol against viral infection and describe the possible molecular pathways through which resveratrol exerts its antiviral activity.
Collapse
|
44
|
Nakamura M, Saito H, Ikeda M, Hokari R, Kato N, Hibi T, Miura S. An antioxidant resveratrol significantly enhanced replication of hepatitis C virus. World J Gastroenterol 2010; 16:184-92. [PMID: 20066737 PMCID: PMC2806556 DOI: 10.3748/wjg.v16.i2.184] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To elucidate the effect of antioxidants, resveratrol (RVT) and astaxanthin (AXN), on hepatitis C virus (HCV) replication.
METHODS: We investigated the effect of recent popular antioxidant supplements on replication of the HCV replicon system OR6. RVT is a strong antioxidant and a kind of polyphenol that inhibits replication of various viruses. AXN is also a strong antioxidant. The replication of HCV RNA was assessed by the luciferase reporter assay. An additive effect of antioxidants on antiviral effects of interferon (IFN) and ribavirin (RBV) was investigated.
RESULTS: This is the first report to investigate the effect of RVT and AXN on HCV replication. In contrast to other reported viruses, RVT significantly enhanced HCV RNA replication. Vitamin E also enhanced HCV RNA replication as reported previously, although AXN didnot affect replication. IFN and RBV significantly reduced HCV RNA replication, but these effects were dose-dependently hampered and attenuated by the addition of RVT. AXN didnot affect antiviral effects of IFN or RBV.
CONCLUSION: These results suggested that RVT is not suitable as an antioxidant therapy for chronic hepatitis C.
Collapse
|
45
|
Drago L, Nicola L, Ossola F, De Vecchi E. In vitro antiviral activity of resveratrol against respiratory viruses. J Chemother 2008; 20:393-4. [PMID: 18606601 DOI: 10.1179/joc.2008.20.3.393] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
46
|
Rocha-González HI, Ambriz-Tututi M, Granados-Soto V. Resveratrol: a natural compound with pharmacological potential in neurodegenerative diseases. CNS Neurosci Ther 2008; 14:234-47. [PMID: 18684235 DOI: 10.1111/j.1755-5949.2008.00045.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Resveratrol is a phytoalexin structurally related to stilbenes, which is synthesized in considerable amounts in the skin of grapes, raspberries, mulberries, pistachios and peanuts, and by at least 72 medicinal and edible plant species in response to stress conditions. It was isolated in 1940 and did not maintain much interest for around five decades until its role in treatment of cardiovascular diseases was suggested. To date, resveratrol has been identified as an agent that may be useful to treat cancer, pain, inflammation, tissue injury, and other diseases. However, currently the attention is being focused in analyzing its properties against neurodegenerative diseases and as antiaging compound. It has been reported that resveratrol shows effects in in vitro models of epilepsy, Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and nerve injury. However, evidences in vivo as well as in human beings are still lacking. Thus, further investigations on the pharmacological effects of resveratrol in vivo are necessary before any conclusions on its effects on neurodegenerative diseases can be obtained.
Collapse
Affiliation(s)
- Héctor I Rocha-González
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados, Sede Sur, México, D.F., Mexico
| | | | | |
Collapse
|
47
|
Xiao K, Zhang HJ, Xuan LJ, Zhang J, Xu YM, Bai DL. Stilbenoids: Chemistry and bioactivities. BIOACTIVE NATURAL PRODUCTS (PART N) 2008. [DOI: 10.1016/s1572-5995(08)80032-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
48
|
Nowakowska Z. Reactions of (E)-4-Stilbenethiole with Dibromoalkanes. PHOSPHORUS SULFUR 2006. [DOI: 10.1080/10426500500536671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
49
|
Docherty JJ, Sweet TJ, Bailey E, Faith SA, Booth T. Resveratrol inhibition of varicella-zoster virus replication in vitro. Antiviral Res 2006; 72:171-7. [PMID: 16899306 DOI: 10.1016/j.antiviral.2006.07.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Revised: 07/06/2006] [Accepted: 07/10/2006] [Indexed: 01/21/2023]
Abstract
Resveratrol was found to inhibit varicella-zoster virus (VZV) replication in a dose-dependent and reversible manner. This decrease in virus production in the presence of resveratrol was not caused by direct inactivation of VZV or inhibition of virus attachment to MRC-5 cells. The drug effectively limited VZV replication if added during the first 30 h of infection. Western blot analysis and real-time RT-PCR studies demonstrated that protein and mRNA levels of IE62, an essential immediate early viral protein, were reduced when compared to controls. These results demonstrate that VZV replication is adversely affected by resveratrol which is negatively impacting IE62 synthesis.
Collapse
Affiliation(s)
- John J Docherty
- Northeastern Ohio Universities College of Medicine, P.O. Box 95, Rootstown, OH 44272, USA.
| | | | | | | | | |
Collapse
|
50
|
Faith SA, Sweet TJ, Bailey E, Booth T, Docherty JJ. Resveratrol suppresses nuclear factor-kappaB in herpes simplex virus infected cells. Antiviral Res 2006; 72:242-51. [PMID: 16876885 DOI: 10.1016/j.antiviral.2006.06.011] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 06/22/2006] [Accepted: 06/23/2006] [Indexed: 02/04/2023]
Abstract
Resveratrol inhibits herpes simplex virus (HSV) replication by an unknown mechanism. Previously it was suggested that this inhibition may be mediated through a cellular factor essential for HSV replication [Docherty, J.J., Fu, M.M., Stiffler, B.S., Limperos, R.J., Pokabla, C.M., DeLucia, A.L., 1999. Resveratrol inhibition of herpes simplex virus replication. Antivir. Res. 43, 145-155]. After examining numerous cellular factors, we report that resveratrol suppresses NF-kappaB (NF-kappaB) activation in HSV infected cells. Reports have indicated that HSV activates NF-kappaB during productive infection and this may be an essential aspect of its replication scheme [Patel, A., Hanson, J., McLean, T.I., Olgiate, J., Hilton, M., Miller, W.E., Bachenheimer, S.L., 1998. Herpes simplex type 1 induction of persistent NF-kappa B nuclear translocation increases the efficiency of virus replication. Virology 247, 212-222; Gregory, D., Hargett, D., Holmes, D., Money, E., Bachenheimer, S.L., 2004. Efficient replication by herpes simplex virus type 1 involves activation of the IkappaB kinase-IkappaB-RelA/p65 pathway. J. Virol. 78, 13582-13590]. Electromobility shift assays determined that resveratrol, in a dose dependent and reversible manner, suppressed activation of NF-kappaB in Vero cells infected with HSV-1, HSV-2 and acyclovir resistant HSV-1. Furthermore, resveratrol did not protect IkappaBalpha, a cytoplasmic NF-kappaB inhibitor, from degradation in HSV-1 infected cells. Immunohistochemical studies demonstrated that RelA/p65, a component of the dimeric NF-kappaB complex, translocated to the nucleus of HSV-1 infected cells in the presence of resveratrol. Finally, direct effects on viral transcription and DNA synthesis were evaluated. Real-time RT-PCR analysis showed that resveratrol treatment of infected cells resulted in reductions of mRNA for ICP0, ICP4, ICP8 and HSV-1 DNA polymerase by 2.1-, 3.3-, 3.8- and 3.1-fold, respectively. Plus, mRNA for glycoprotein C, an HSV late gene, was completely absent in the presence of resveratrol. Lastly, quantitative PCR showed that resveratrol significantly blocked HSV DNA synthesis. Cumulatively, these data indicate that resveratrol (i) suppresses HSV induced activation of NF-kappaB within the nucleus and (ii) impairs expression of essential immediate-early, early and late HSV genes and synthesis of viral DNA.
Collapse
MESH Headings
- Animals
- Antiviral Agents/pharmacology
- Cell Nucleus/chemistry
- Chlorocebus aethiops
- Cytoplasm/chemistry
- DNA, Viral/biosynthesis
- Electrophoretic Mobility Shift Assay
- Herpesvirus 1, Human/drug effects
- Herpesvirus 1, Human/genetics
- Herpesvirus 1, Human/physiology
- Herpesvirus 2, Human/drug effects
- Herpesvirus 2, Human/genetics
- Herpesvirus 2, Human/growth & development
- I-kappa B Proteins/metabolism
- Microscopy, Fluorescence
- NF-KappaB Inhibitor alpha
- NF-kappa B/metabolism
- Polymerase Chain Reaction
- RNA, Messenger/biosynthesis
- RNA, Viral/biosynthesis
- Resveratrol
- Reverse Transcriptase Polymerase Chain Reaction
- Stilbenes/pharmacology
- Transcription Factor RelA/metabolism
- Vero Cells
- Virus Replication/drug effects
Collapse
Affiliation(s)
- Seth A Faith
- Department of Microbiology, Immunology and Biochemistry, Northeastern Ohio Universities College of Medicine, Rootstown, OH 44272, USA
| | | | | | | | | |
Collapse
|