1
|
Pacheco-García JL, Cano-Muñoz M, Loginov DS, Vankova P, Man P, Pey AL. Phosphorylation of cytosolic hPGK1 affects protein stability and ligand binding: implications for its subcellular targeting in cancer. FEBS J 2024; 291:4775-4795. [PMID: 39240559 DOI: 10.1111/febs.17262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/24/2024] [Accepted: 08/21/2024] [Indexed: 09/07/2024]
Abstract
Human phosphoglycerate kinase 1(hPGK1) is a key glycolytic enzyme that regulates the balance between ADP and ATP concentrations inside the cell. Phosphorylation of hPGK1 at S203 and S256 has been associated with enzyme import from the cytosol to the mitochondria and the nucleus respectively. These changes in subcellular locations drive tumorigenesis and are likely associated with site-specific changes in protein stability. In this work, we investigate the effects of site-specific phosphorylation on thermal and kinetic stability and protein structural dynamics by hydrogen-deuterium exchange (HDX) and molecular dynamics (MD) simulations. We also investigate the binding of 3-phosphoglycerate and Mg-ADP using these approaches. We show that the phosphomimetic mutation S256D reduces hPGK1 kinetic stability by 50-fold, with no effect of the mutation S203D. Calorimetric studies of ligand binding show a large decrease in affinity for Mg-ADP in the S256D variant, whereas Mg-ADP binding to the WT and S203D can be accurately investigated using protein kinetic stability and binding thermodynamic models. HDX and MD simulations confirmed the destabilization caused by the mutation S256D (with some long-range effects on stability) and its reduced affinity for Mg-ADP due to the strong destabilization of its binding site (particularly in the apo-state). Our research provides evidence suggesting that modifications in protein stability could potentially enhance the translocation of hPGK1 to the nucleus in cancer. While the structural and energetic basis of its mitochondrial import remain unknown.
Collapse
Affiliation(s)
| | | | - Dmitry S Loginov
- Institute of Microbiology - BioCeV, Academy of Sciences of the Czech Republic, Vestec, Czech Republic
| | - Pavla Vankova
- Institute of Biotechnology - BioCeV, Academy of Sciences of the Czech Republic, Vestec, Czech Republic
| | - Petr Man
- Institute of Microbiology - BioCeV, Academy of Sciences of the Czech Republic, Vestec, Czech Republic
| | - Angel L Pey
- Departamento de Química Física, Unidad de Excelencia en Química Aplicada a Biomedicina y Medioambiente e Instituto de Biotecnología, Universidad de Granada, Spain
| |
Collapse
|
2
|
Abdallah A, Gillon E, Rannou P, Imberty A, Halila S. Microwave-Assisted Synthesis of β- N-Aryl Glycoamphiphiles with Diverse Supramolecular Assemblies and Lectin Accessibility. Bioconjug Chem 2024; 35:1200-1206. [PMID: 38982902 DOI: 10.1021/acs.bioconjchem.4c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Glycoamphiphiles have attracted considerable interest in a broad range of application fields owing to their solution and bulk-state self-assembly abilities. Despite their importance, the straightforward synthesis of glycoamphiphiles consisting of a hydrophilic carbohydrate linked to a hydrophobic aglycone remains one of the major challenges in glycosciences. Here, a rapid, simple, and efficient synthetic access to chemically stable glycoamphiphiles at physiological pH, namely, N-(β-d-glycosyl)-2-alkylbenzamide, is reported. It leverages the nonreductive amination of unprotected carbohydrates with ortho-substituted aniline derivatives which could be readily obtained by reacting commercially available primary alkylamines with isatoic anhydride. This strategy avoids protection and deprotection of sugar hydroxyl groups and the use of reductive agents, which makes it advantageous in terms of atom and step economy. Moreover, in order to circumvent the cons of classical N-aryl glycosylation, we investigate the use of microwave as a heat source that provides fast, clean, and high-yield β-N-arylation of unprotected carbohydrates. Their self-assembly into water led to multiple morphologies of dynamic supramolecular glycoamphiphiles that were characterized to assess their ability to bind to lectins from pathogenic bacteria. Biophysical interactions probed by isothermal titration microcalorimetry revealed micromolar affinities for most of the synthesized glycoamphiphiles.
Collapse
Affiliation(s)
| | | | - Patrice Rannou
- Université Grenoble Alpes, Université Savoie Mont-Blanc, CNRS, Grenoble INP, LEPMI, Grenoble 38000, France
| | - Anne Imberty
- University Grenoble Alpes, Grenoble 38000, France
| | - Sami Halila
- University Grenoble Alpes, Grenoble 38000, France
| |
Collapse
|
3
|
Fang J, Ren H, Xu S, Huang C, Jiang Y, Zhang W, You S, Qin B. Asymmetric Synthesis of β-Hydroxyphosphonates via a Chemoenzymatic Cascade. Org Lett 2024; 26:5458-5462. [PMID: 38899921 DOI: 10.1021/acs.orglett.4c01716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Chiral β-hydroxyphosphonates are essential building blocks for organophosphorus compounds. However, the asymmetric synthesis of these units remains a significant challenge. Herein, we describe a one-pot chemoenzymatic cascade process to access chiral β-hydroxyphosphonates, which combines photo-oxidative chemical reactions and bioreductions. The incorporation of photooxidation in the chemical reaction resulted in up to 92% yield and >99% enantiomeric excess (ee) of β-hydroxyphosphonates in the cascade. In addition, the scale-up of diethyl (S)-(2-hydroxy-2-phenylethyl)phosphonate demonstrates the potential application of this strategy.
Collapse
Affiliation(s)
- Jiali Fang
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China
| | - Hanwen Ren
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China
| | - Shaowu Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China
| | - Chenming Huang
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China
| | - Yingqian Jiang
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China
| | - Wenhe Zhang
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China
| | - Song You
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China
| | - Bin Qin
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China
| |
Collapse
|
4
|
Tang X, Zhou Y, Wang Y, Lin Y, Pan S, Che Q, Sang J, Gao Z, Zhang W, Wang Y, Li G, Gao L, Wang Z, Yang X, Liu A, Wang S, Yu B, Xu P, Wang Z, Zhang Z, Yang P, Xie W, Sun H, Li W. Direct Synthesis of α- and β-2'-Deoxynucleosides with Stereodirecting Phosphine Oxide via Remote Participation. J Am Chem Soc 2024; 146:8768-8779. [PMID: 38483318 DOI: 10.1021/jacs.4c01780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
2'-Deoxynucleosides and analogues play a vital role in drug development, but their preparation remains a significant challenge. Previous studies have focused on β-2'-deoxynucleosides with the natural β-configuration. In fact, their isomeric α-2'-deoxynucleosides also exhibit diverse bioactivities and even better metabolic stability. Herein, we report that both α- and β-2'-deoxynucleosides can be prepared with high yields and stereoselectivity using a remote directing diphenylphosphinoyl (DPP) group. It is particularly efficient to prepare α-2'-deoxynucleosides with an easily accessible 3,5-di-ODPP donor. Instead of acting as a H-bond acceptor on a 2-(diphenylphosphinoyl)acetyl (DPPA) group in our previous studies for syn-facial O-glycosylation, the phosphine oxide moiety here acts as a remote participating group to enable highly antifacial N-glycosylation. This proposed remote participation mechanism is supported by our first characterization of an important 1,5-briged P-heterobicyclic intermediate via variable-temperature NMR spectroscopy. Interestingly, antiproliferative assays led to a α-2'-deoxynucleoside with IC50 values in the low micromole range against central nervous system tumor cell lines SH-SY5Y and LN229, whereas its β-anomer exhibited no inhibition at 100 μM. Furthermore, the DPP group significantly enhanced the antitumor activities by 10 times.
Collapse
Affiliation(s)
- Xintong Tang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Yueer Zhou
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Yingjie Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yetong Lin
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Shuheng Pan
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Qianwei Che
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Jinpeng Sang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Ziming Gao
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Weiting Zhang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Yuanyuan Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Guolong Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Longwei Gao
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Zhimei Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Xudong Yang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Ao Liu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Suyu Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Biao Yu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Peng Xu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhe Wang
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Zhaolun Zhang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Peng Yang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Weijia Xie
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Haopeng Sun
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| |
Collapse
|
5
|
McVicker R, O’Boyle NM. Chirality of New Drug Approvals (2013-2022): Trends and Perspectives. J Med Chem 2024; 67:2305-2320. [PMID: 38344815 PMCID: PMC10895675 DOI: 10.1021/acs.jmedchem.3c02239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/23/2024]
Abstract
Many drugs are chiral with their chirality determining their biological interactions, safety, and efficacy. Since the 1980s, there has been a regulatory preference to bring single enantiomer to market. This perspective discusses trends related to chirality that have developed in the past decade (2013-2022) of new drug approvals. The EMA has not approved a racemate since 2016, while the average for the FDA is one per year from 2013 to 2022. These 10 include drugs which have been previously marketed elsewhere for several decades, analogues of pre-existing drugs, or drugs where the undefined stereocenter does not play a role in therapeutic activity. Two chiral switches were identified which were both combined with drug repurposing. This combination strategy has the potential to produce therapeutically valuable drugs in a faster time frame. Two class III atropisomers displaying axial chirality were approved between 2013 and 2022, one as a racemate and one as a single enantiomer.
Collapse
Affiliation(s)
- Rebecca
U. McVicker
- School
of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences
Institute, Trinity College Dublin, 152−160 Pearse Street, Dublin 2, D02 R590, Ireland
- Gamlen
Tableting Ltd, 3 Stanton
Way, London SE26 5FU, United Kingdom
| | - Niamh M. O’Boyle
- School
of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences
Institute, Trinity College Dublin, 152−160 Pearse Street, Dublin 2, D02 R590, Ireland
| |
Collapse
|
6
|
Martín-Nieves V, Menéndez-Méndez LM, Fàbrega C, Fernández S, Sanghvi YS, Ferrero M, Eritja R. Synthesis of 2'- O-Methyl/2'- O-MOE-L-Nucleoside Derivatives and Their Applications: Preparation of G-Quadruplexes, Their Characterization, and Stability Studies. ACS OMEGA 2023; 8:44893-44904. [PMID: 38046329 PMCID: PMC10688165 DOI: 10.1021/acsomega.3c06231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 12/05/2023]
Abstract
Nucleosides and their analogues constitute an important family of molecules with potential antiviral and antiproliferative activity. The enantiomers of natural nucleosides, l-nucleoside derivatives, which have comparable biological activity but more favorable toxicological properties and greater metabolic stability than d-nucleosides, have emerged as a new class of therapeutic agents. Furthermore, l-nucleosides can be used as a building block to prepare l-oligonucleotides, which have identical physical properties in terms of solubility, hybridization kinetics, and duplex thermal stability as d-oligonucleotides but completely orthogonal in nature. Consequently, they are resistant to nuclease degradation, nontoxic, and immunologically passive, which are desirable properties for biomedical applications. Herein, we describe the synthesis of several 2'-O-methyl/2'-O-MOE-l-nucleoside pyrimidine derivatives and their incorporation into G-rich oligonucleotides. Finally, we evaluated the stability and resistance against nucleases of these new G-quadruplexes, demonstrating the potential of the l-nucleosides described in this work in providing enhanced nuclease resistance with a minimal impact in the nucleic acid structural properties.
Collapse
Affiliation(s)
- Virginia Martín-Nieves
- Departamento
de Química Orgánica e Inorgánica, Universidad de Oviedo, Oviedo (Asturias) 33006, Spain
| | - Luis Miguel Menéndez-Méndez
- Departamento
de Química Orgánica e Inorgánica, Universidad de Oviedo, Oviedo (Asturias) 33006, Spain
- Dpt.
Chemical & Biomolecular Nanotechnology, Institute for Advanced Chemistry of Catalonia (IQAC, CSIC), Barcelona 08034, Spain
- CIBER-BBN
Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona 08034, Spain
| | - Carme Fàbrega
- Dpt.
Chemical & Biomolecular Nanotechnology, Institute for Advanced Chemistry of Catalonia (IQAC, CSIC), Barcelona 08034, Spain
- CIBER-BBN
Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona 08034, Spain
| | - Susana Fernández
- Departamento
de Química Orgánica e Inorgánica, Universidad de Oviedo, Oviedo (Asturias) 33006, Spain
| | - Yogesh S. Sanghvi
- Rasayan
Inc., 2802 Crystal Ridge
Road, Encinitas, California 92024-6615, United
States
| | - Miguel Ferrero
- Departamento
de Química Orgánica e Inorgánica, Universidad de Oviedo, Oviedo (Asturias) 33006, Spain
| | - Ramon Eritja
- Dpt.
Chemical & Biomolecular Nanotechnology, Institute for Advanced Chemistry of Catalonia (IQAC, CSIC), Barcelona 08034, Spain
- CIBER-BBN
Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona 08034, Spain
| |
Collapse
|
7
|
Mohamed BS, Nguyen MC, Wein S, Uttaro JP, Robert X, Violot S, Ballut L, Jugnarain V, Mathé C, Cerdan R, Aghajari N, Peyrottes S. Purine containing carbonucleoside phosphonate analogues as novel chemotype for Plasmodium falciparum Inhibition. Eur J Med Chem 2023; 258:115581. [PMID: 37402342 DOI: 10.1016/j.ejmech.2023.115581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/06/2023] [Accepted: 06/17/2023] [Indexed: 07/06/2023]
Abstract
The nucleotidase ISN1 is a potential therapeutic target of the purine salvage pathway of the malaria parasite Plasmodium falciparum. We identified PfISN1 ligands by in silico screening of a small library of nucleos(t)ide analogues and by thermal shift assays. Starting from a racemic cyclopentyl carbocyclic phosphonate scaffold, we explored the diversity on the nucleobase moiety and also proposed a convenient synthetic pathway to access the pure enantiomers of our initial hit (compound (±)-2). 2,6-Disubstituted purine containing derivatives such as compounds 1, (±)-7e and β-L-(+)-2 showed the most potent inhibition of the parasite in vitro, with low micromolar IC50 values. These results are remarkable considering the anionic nature of nucleotide analogues, which are known to lack activity in cell culture experiments due to their scarce capacity to cross cell membranes. For the first time, we report the antimalarial activity of a carbocyclic methylphosphonate nucleoside with an L-like configuration.
Collapse
Affiliation(s)
- Bemba Sidi Mohamed
- IBMM, Univ Montpellier, CNRS, ENSCM, Pôle Chimie Balard Recherche, 1919, Route de Mende, 34293, Montpellier, France
| | - Minh Chau Nguyen
- Molecular Microbiology and Structural Biochemistry, CNRS-Univ Lyon 1, UMR5086, 7 passage du Vercors, 69367, Lyon, France
| | - Sharon Wein
- LPHI, Univ Montpellier, CNRS, Campus Triolet, Place Eugène Bataillon, 34095, Montpellier, France
| | - Jean-Pierre Uttaro
- IBMM, Univ Montpellier, CNRS, ENSCM, Pôle Chimie Balard Recherche, 1919, Route de Mende, 34293, Montpellier, France
| | - Xavier Robert
- Molecular Microbiology and Structural Biochemistry, CNRS-Univ Lyon 1, UMR5086, 7 passage du Vercors, 69367, Lyon, France
| | - Sébastien Violot
- Molecular Microbiology and Structural Biochemistry, CNRS-Univ Lyon 1, UMR5086, 7 passage du Vercors, 69367, Lyon, France
| | - Lionel Ballut
- Molecular Microbiology and Structural Biochemistry, CNRS-Univ Lyon 1, UMR5086, 7 passage du Vercors, 69367, Lyon, France
| | - Vinesh Jugnarain
- Molecular Microbiology and Structural Biochemistry, CNRS-Univ Lyon 1, UMR5086, 7 passage du Vercors, 69367, Lyon, France
| | - Christophe Mathé
- IBMM, Univ Montpellier, CNRS, ENSCM, Pôle Chimie Balard Recherche, 1919, Route de Mende, 34293, Montpellier, France.
| | - Rachel Cerdan
- LPHI, Univ Montpellier, CNRS, Campus Triolet, Place Eugène Bataillon, 34095, Montpellier, France
| | - Nushin Aghajari
- Molecular Microbiology and Structural Biochemistry, CNRS-Univ Lyon 1, UMR5086, 7 passage du Vercors, 69367, Lyon, France
| | - Suzanne Peyrottes
- IBMM, Univ Montpellier, CNRS, ENSCM, Pôle Chimie Balard Recherche, 1919, Route de Mende, 34293, Montpellier, France.
| |
Collapse
|
8
|
Mikawy NN, Roy HA, Israel E, Hamlow LA, Zhu Y, Berden G, Oomens J, Frieler CE, Rodgers MT. 5-Halogenation of Uridine Suppresses Protonation-Induced Tautomerization and Enhances Glycosidic Bond Stability of Protonated Uridine: Investigations via IRMPD Action Spectroscopy, ER-CID Experiments, and Theoretical Calculations. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:2165-2180. [PMID: 36279168 DOI: 10.1021/jasms.2c00231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Uridine (Urd), a canonical nucleoside of RNA, is the most commonly modified nucleoside among those that occur naturally. Uridine has also been an important target for the development of modified nucleoside analogues for pharmaceutical applications. In this work, the effects of 5-halogenation of uracil on the structures and glycosidic bond stabilities of protonated uridine nucleoside analogues are examined using tandem mass spectrometry and computational methods. Infrared multiple photon dissociation (IRMPD) action spectroscopy experiments and theoretical calculations are performed to probe the structural influences of these modifications. Energy-resolved collision-induced dissociation experiments along with survival yield analyses are performed to probe glycosidic bond stability. The measured IRMPD spectra are compared to linear IR spectra predicted for the stable low-energy conformations of these species computed at the B3LYP/6-311+G(d,p) level of theory to determine the conformations experimentally populated. Spectral signatures in the IR fingerprint and hydrogen-stretching regions allow the 2,4-dihydroxy protonated tautomers (T) and O4- and O2-protonated conformers to be readily differentiated. Comparisons between the measured and predicted spectra indicate that parallel to findings for uridine, both T and O4-protonated conformers of the 5-halouridine nucleoside analogues are populated, whereas O2-protonated conformers are not. Variations in yields of the spectral signatures characteristic of the T and O4-protonated conformers indicate that the extent of protonation-induced tautomerization is suppressed as the size of the halogen substituent increases. Trends in the energy-dependence of the survival yield curves find that 5-halogenation strengthens the glycosidic bond and that the enhancement in stability increases with the size of the halogen substituent.
Collapse
Affiliation(s)
- Neven N Mikawy
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - H A Roy
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - E Israel
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - L A Hamlow
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Y Zhu
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - G Berden
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525ED Nijmegen, The Netherlands
| | - J Oomens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525ED Nijmegen, The Netherlands
| | - C E Frieler
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - M T Rodgers
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
9
|
Geant P, Kaci M, Uttaro J, Périgaud C, Mathé C. Discovery of an L-like Configuration for 3'-Fluoro-5'-norcarbonucleoside Phosphonates as Potent Anti-HIV Agents. ChemMedChem 2022; 17:e202200377. [PMID: 36032023 PMCID: PMC9825896 DOI: 10.1002/cmdc.202200377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/24/2022] [Indexed: 01/11/2023]
Abstract
Recently, we reported the racemic synthesis of 3'-fluoro-5'-norcarbocyclic nucleoside phosphonates bearing adenine as the heterocyclic base. For this study, to evaluate the antiviral activity of each enantiomer, we synthesized both enantiomers, as well as their corresponding bis(POM) prodrugs. Anti-HIV-1 evaluation against the LAI strain and clinically NRTI-resistant HIV-1 strains are presented. The activities against these different strains show that the activities of bis(POM) prodrug (-)-9 are equivalent or even superior to those of (R)-PMPA.
Collapse
Affiliation(s)
- Pierre‐Yves Geant
- Institut des Biomolécules Max Mousseron (IBMM)UMR 5247Université de Montpellier, CNRS, ENSCM1019, route de Mende34293MontpellierFrance
| | - Malika Kaci
- Institut des Biomolécules Max Mousseron (IBMM)UMR 5247Université de Montpellier, CNRS, ENSCM1019, route de Mende34293MontpellierFrance
| | - Jean‐Pierre Uttaro
- Institut des Biomolécules Max Mousseron (IBMM)UMR 5247Université de Montpellier, CNRS, ENSCM1019, route de Mende34293MontpellierFrance
| | - Christian Périgaud
- Institut des Biomolécules Max Mousseron (IBMM)UMR 5247Université de Montpellier, CNRS, ENSCM1019, route de Mende34293MontpellierFrance
| | - Christophe Mathé
- Institut des Biomolécules Max Mousseron (IBMM)UMR 5247Université de Montpellier, CNRS, ENSCM1019, route de Mende34293MontpellierFrance
| |
Collapse
|
10
|
Hsu YH, Chang CC. From a Carbohydrate Raw Material to an Important Building Block: Cost-Efficient Conversion of d-Fructose into 2-Deoxy-l-ribose. J Org Chem 2022; 87:13308-13314. [PMID: 36130920 DOI: 10.1021/acs.joc.2c01162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A straightforward method for the conversion of a low-cost carbohydrate (d-fructose) into an important carbohydrate building block (2-deoxy-l-ribose) is reported. This methodology involves a novel radical cyclization followed by a fragmentation reaction, selective enzymatic hydrolysis using a lipase, and oxidative cleavage of the vicinal diol. This method uses the cheapest starting material and employs the shortest synthetic route (7 steps) for converting a d-sugar into 2-deoxy-l-ribose.
Collapse
Affiliation(s)
- Ya-Han Hsu
- Department of Chemistry, Fu Jen Catholic University, 510 Zhongzheng Road, Xinzhuang District, New Taipei City 24205, Taiwan
| | - Che-Chien Chang
- Department of Chemistry, Fu Jen Catholic University, 510 Zhongzheng Road, Xinzhuang District, New Taipei City 24205, Taiwan
| |
Collapse
|
11
|
Nguyen M, An S, Nguyen Y, Hyun YE, Choi H, Pham L, Kim JA, Noh M, Kim G, Jeong LS. Design, Synthesis, and Biological Activity of l-1′-Homologated Adenosine Derivatives. ACS Med Chem Lett 2022; 13:1131-1136. [DOI: 10.1021/acsmedchemlett.2c00159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Mai Nguyen
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Korea
| | - Seungchan An
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
- Natural Products Research Institute, Seoul National University, Seoul 08826, Korea
| | - Yen Nguyen
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Korea
| | - Young Eum Hyun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Hongseok Choi
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Linh Pham
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Korea
| | - Jung-Ae Kim
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Korea
| | - Minsoo Noh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
- Natural Products Research Institute, Seoul National University, Seoul 08826, Korea
| | - Gyudong Kim
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Korea
| | - Lak Shin Jeong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
12
|
Beerens K, Gevaert O, Desmet T. GDP-Mannose 3,5-Epimerase: A View on Structure, Mechanism, and Industrial Potential. Front Mol Biosci 2022; 8:784142. [PMID: 35087867 PMCID: PMC8787198 DOI: 10.3389/fmolb.2021.784142] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
GDP-mannose 3,5-epimerase (GM35E, GME) belongs to the short-chain dehydrogenase/reductase (SDR) protein superfamily and catalyses the conversion of GDP-d-mannose towards GDP-l-galactose. Although the overall reaction seems relatively simple (a double epimerization), the enzyme needs to orchestrate a complex set of chemical reactions, with no less than 6 catalysis steps (oxidation, 2x deprotonation, 2x protonation and reduction), to perform the double epimerization of GDP-mannose to GDP-l-galactose. The enzyme is involved in the biosynthesis of vitamin C in plants and lipopolysaccharide synthesis in bacteria. In this review, we provide a clear overview of these interesting epimerases, including the latest findings such as the recently characterized bacterial and thermostable GM35E representative and its mechanism revision but also focus on their industrial potential in rare sugar synthesis and glycorandomization.
Collapse
Affiliation(s)
| | | | - Tom Desmet
- *Correspondence: Koen Beerens, ; Tom Desmet,
| |
Collapse
|
13
|
Tremblay T, Alcée JB, Giguère D. Protecting-group-free synthesis of clevudine ( l-FMAU), a treatment of the hepatitis B virus. Org Biomol Chem 2022; 20:8859-8863. [DOI: 10.1039/d2ob01814d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A new strategy for the synthesis of unnatural 2′-deoxy-2′-fluoro-l-nucleoside is described.
Collapse
Affiliation(s)
- Thomas Tremblay
- Département de Chimie, 1045 av. De la Médecine, Université Laval, Québec City, Qc, Canada G1V 0A6
| | - Jessica B. Alcée
- Département de Chimie, 1045 av. De la Médecine, Université Laval, Québec City, Qc, Canada G1V 0A6
| | - Denis Giguère
- Département de Chimie, 1045 av. De la Médecine, Université Laval, Québec City, Qc, Canada G1V 0A6
| |
Collapse
|
14
|
Dantsu Y, Zhang Y, Zhang W. Advances in Therapeutic L-Nucleosides and L-Nucleic Acids with Unusual Handedness. Genes (Basel) 2021; 13:46. [PMID: 35052385 PMCID: PMC8774879 DOI: 10.3390/genes13010046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/19/2022] Open
Abstract
Nucleic-acid-based small molecule and oligonucleotide therapies are attractive topics due to their potential for effective target of disease-related modules and specific control of disease gene expression. As the non-naturally occurring biomolecules, modified DNA/RNA nucleoside and oligonucleotide analogues composed of L-(deoxy)riboses, have been designed and applied as innovative therapeutics with superior plasma stability, weakened cytotoxicity, and inexistent immunogenicity. Although all the chiral centers in the backbone are mirror converted from the natural D-nucleic acids, L-nucleic acids are equipped with the same nucleobases (A, G, C and U or T), which are critical to maintain the programmability and form adaptable tertiary structures for target binding. The types of L-nucleic acid drugs are increasingly varied, from chemically modified nucleoside analogues that interact with pathogenic polymerases to nanoparticles containing hundreds of repeating L-nucleotides that circulate durably in vivo. This article mainly reviews three different aspects of L-nucleic acid therapies, including pharmacological L-nucleosides, Spiegelmers as specific target-binding aptamers, and L-nanostructures as effective drug-delivery devices.
Collapse
Affiliation(s)
- Yuliya Dantsu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (Y.D.); (Y.Z.)
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (Y.D.); (Y.Z.)
| | - Wen Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (Y.D.); (Y.Z.)
- Melvin and Bren Simon Cancer Center, 535 Barnhill Drive, Indianapolis, IN 46202, USA
| |
Collapse
|
15
|
Tesfay MA, Win X, Lin H, Liu Y, Li C, Lin J, Lin J. Efficient L-xylulose production using whole-cell biocatalyst with NAD+ regeneration system through co-expression of xylitol dehydrogenase and NADH oxidase in Escherichia coli. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Zhu CY, Zhu YH, Zhou HP, Xu YY, Gao J, Zhang YW. Cloning, expression, and characterization of an arabitol dehydrogenase and coupled with NADH oxidase for effective production of L-xylulose. Prep Biochem Biotechnol 2021; 52:590-597. [PMID: 34528864 DOI: 10.1080/10826068.2021.1975299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A novel arabitol dehydrogenase (ArDH) gene was cloned from a bacterium named Aspergillus nidulans and expressed heterologously in Escherichia coli. The purified ArDH exhibited the maximal activity in pH 9.5 Tris-HCl buffer at 40 °C, showed Km and Vmax of 1.2 mg/mL and 9.1 U/mg, respectively. The ArDH was used to produce the L-xylulose and coupled with the NADH oxidase (Nox) for the regeneration of NAD+. In further optimization, a high conversion of 84.6% in 8 hours was achieved under the optimal conditions: 20 mM of xylitol, 100 µM NAD+ in pH 9.0 Tris-HCl buffer at 30 °C. The results indicated the coupling system with cofactor regeneration provides a promising approach for L-xylulose production from xylitol.
Collapse
Affiliation(s)
- Chen-Yuan Zhu
- School of Pharmacy, Jiangsu University, Zhenjiang, People's Republic of China
| | - Yi-Hao Zhu
- School of Pharmacy, Jiangsu University, Zhenjiang, People's Republic of China
| | - Hua-Ping Zhou
- School of Pharmacy, Jiangsu University, Zhenjiang, People's Republic of China
| | - Yuan-Yuan Xu
- School of Pharmacy, Jiangsu University, Zhenjiang, People's Republic of China
| | - Jian Gao
- College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou, People's Republic of China
| | - Ye-Wang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, People's Republic of China
| |
Collapse
|
17
|
Tvrdoňová M, Elečko J, Gonda J. A convenient synthesis of branched-chain nucleoside isothiocyanates via aza-Claisen rearrangement. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2021; 40:943-967. [PMID: 34455922 DOI: 10.1080/15257770.2021.1966799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Stereocontrolled introduction of a nitrogen atom at either C-2' or C-3' positions of nucleosides derived from uridine, 4-N-benzoylcytidine and adenosine was investigated. An efficient and rapid procedure was employed for creating new chiral centers at C-2' and C-3' positions using [3,3]-sigmatropic aza-Claisen rearrangement of allyl thiocyanates under conventional and microwave conditions. Structure of isothiocyanate products was confirmed by 1-D and 2-D NMR spectral analyses including selective 1H 1-D-NOE experiments.
Collapse
Affiliation(s)
- Monika Tvrdoňová
- Department of Organic Chemistry, Institute of Chemical Sciences, Faculty of Science, P. J. Šafárik University, Košice, Slovak Republic
| | - Ján Elečko
- Department of Organic Chemistry, Institute of Chemical Sciences, Faculty of Science, P. J. Šafárik University, Košice, Slovak Republic
| | - Jozef Gonda
- Department of Organic Chemistry, Institute of Chemical Sciences, Faculty of Science, P. J. Šafárik University, Košice, Slovak Republic
| |
Collapse
|
18
|
Kuroishikawa T, Yoshihara A, Furuta I, Mochizuki S, Watanabe A, Izumori K, Asada Y. Efficient production of the rare sugar l-gulose using a wheat-bran culture extract of Penicillium sp. KU-1. Biosci Biotechnol Biochem 2021; 85:1915-1918. [PMID: 34124745 DOI: 10.1093/bbb/zbab107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/31/2021] [Indexed: 11/14/2022]
Abstract
We found that l-gulose, a rare sugar, was produced from d-sorbitol efficiently, using a wheat-bran culture extract of the fungus Penicillium sp. KU-1 isolated from soil. The culture extract showed enzyme activity for the oxidation of d-sorbitol to produce l-gulose; a high production yield of approximately 94% was achieved.
Collapse
Affiliation(s)
- Takayuki Kuroishikawa
- The United Graduate School of Agricultural Sciences, Ehime University, Tarumi, Ehime, Japan
| | - Akihide Yoshihara
- Internatioal Institute of Rare Sugar Research and Education, Kagawa University, Miki, Kagawa, Japan
| | - Itsumi Furuta
- Faculty of Agriculture, Kagawa University, Miki, Kagawa, Japan
| | - Susumu Mochizuki
- Internatioal Institute of Rare Sugar Research and Education, Kagawa University, Miki, Kagawa, Japan
| | - Akira Watanabe
- Faculty of Agriculture, Kagawa University, Miki, Kagawa, Japan
| | - Ken Izumori
- Internatioal Institute of Rare Sugar Research and Education, Kagawa University, Miki, Kagawa, Japan
| | - Yasuhiko Asada
- Faculty of Agriculture, Kagawa University, Miki, Kagawa, Japan
| |
Collapse
|
19
|
A review on l-ribose isomerases for the biocatalytic production of l-ribose and l-ribulose. Food Res Int 2021; 145:110409. [PMID: 34112412 DOI: 10.1016/j.foodres.2021.110409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/08/2021] [Accepted: 05/06/2021] [Indexed: 11/21/2022]
Abstract
Presently, because of the extraordinary roles and potential applications, rare sugars turn into a focus point for countless researchers in the field of carbohydrates. l-ribose and l-ribulose are rare sugars and isomers of each other. This aldo and ketopentose are expensive but can be utilized as an antecedent for the manufacturing of various rare sugars and l-nucleoside analogue. The bioconversion approach turns into an excellent alternative method to l-ribulose and l-ribose production, as compared to the complex and lengthy chemical methods. The basic purpose of this research was to describe the importance of rare sugars in various fields and their easy production by using enzymatic methods. l-Ribose isomerase (L-RI) is an enzyme discovered by Tsuyoshi Shimonishi and Ken Izumori in 1996 from Acinetobacter sp. strain DL-28. L-RI structure was cupin-type-β-barrel shaped with a catalytic site between two β-sheets surrounded by metal ions. The crystal structures of the L-RI showed that it contains a homotetramer structure. Current review have concentrated on the sources, characteristics, applications, conclusions and future prospects including the potentials of l-ribose isomerase for the commercial production of l-ribose and l-ribulose. The MmL-RIse and CrL-RIse have the potential to produce the l-ribulose up to 32% and 31%, respectively. The CrL-RIse is highly stable as compared to other L-RIs. The results explained that the L-RIs have great potential in the production of rare sugars especially, l-ribose and l-ribulose, while the immobilization technique can enhance its functionality and properties. The present study precises the applications of L-RIs acquired from various sources for l-ribose and l-ribulose production.
Collapse
|
20
|
Garren MR, Ashcraft M, Qian Y, Douglass M, Brisbois EJ, Handa H. Nitric oxide and viral infection: Recent developments in antiviral therapies and platforms. APPLIED MATERIALS TODAY 2021; 22:100887. [PMID: 38620577 PMCID: PMC7718584 DOI: 10.1016/j.apmt.2020.100887] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/11/2020] [Accepted: 11/14/2020] [Indexed: 05/09/2023]
Abstract
Nitric oxide (NO) is a gasotransmitter of great significance to developing the innate immune response to many bacterial and viral infections, while also modulating vascular physiology. The generation of NO from the upregulation of endogenous nitric oxide synthases serves as an efficacious method for inhibiting viral replication in host defense and warrants investigation for the development of antiviral therapeutics. With increased incidence of global pandemics concerning several respiratory-based viral infections, it is necessary to develop broad therapeutic platforms for inhibiting viral replication and enabling more efficient host clearance, as well as to fabricate new materials for deterring viral transmission from medical devices. Recent developments in creating stabilized NO donor compounds and their incorporation into macromolecular scaffolds and polymeric substrates has created a new paradigm for developing NO-based therapeutics for long-term NO release in applications for bactericidal and blood-contacting surfaces. Despite this abundance of research, there has been little consideration of NO-releasing scaffolds and substrates for reducing passive transmission of viral infections or for treating several respiratory viral infections. The aim of this review is to highlight the recent advances in developing gaseous NO, NO prodrugs, and NO donor compounds for antiviral therapies; discuss the limitations of NO as an antiviral agent; and outline future prospects for guiding materials design of a next generation of NO-releasing antiviral platforms.
Collapse
Key Words
- ACE, angiotensin converting enzyme
- AP1, activator protein 1
- COVID-19
- COVID-19, coronavirus disease 2019
- ECMO, extracorporeal membrane oxygenation, FDA, United States Food and Drug Administration
- GNSO, S-nitrosoglutathione
- H1N1, influenza A virus subtype H1N1
- HI, Host Immunology
- HIV, human immunodeficiency virus
- HPV, human papillomavirus
- HSV, herpes simplex virus
- I/R, pulmonary ischemia-reperfusion
- IC50, inhibitory concentration 50
- IFN, interferon
- IFNγ, interferon gamma
- IKK, inhibitor of nuclear factor kappa B kinase
- IRF-1, interferon regulatory factor 1
- Inhalation therapy
- Medical Terminology: ARDS, acute respiratory distress syndrome
- NF-κB, nuclear factor kappa-light-chain enhancer of activated B cells
- NO, nitric oxide
- NOS, nitric oxide synthase
- Nitric Oxide and Related Compounds: eNOS/NOS 3, endothelial nitric oxide synthase
- Nitric oxide
- Other: DNA, deoxyribonucleic acid
- P38-MAPK, P38 mitogen-activated protein kinases
- PAMP, pathogen-associated molecular pattern
- PCV2, porcine circovirus type 2
- PHT, pulmonary hypertension
- PKR, protein kinase R
- RNA, ribonucleic acid
- RNI, reactive nitrogen intermediate
- RSNO, S-nitrosothiol
- SARS, severe acute respiratory syndrome
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- SNAP, S-nitroso-N-acetyl-penicillamine
- STAT-1, signal transducer and activator of transcription 1
- Severe acute respiratory distress
- TAK1, transforming growth factor β-activated kinases-1
- TLR, toll-like receptor
- VAP, ventilator associated pneumonia
- Viral infection
- Viruses: CVB3, coxsackievirus
- dsRNA, double stranded (viral) ribonucleic acid
- gNO, gaseous nitric oxide
- iNOS/NOS 2, inducible nitric oxide synthase
- mtALDH, mitochondrial aldehyde dehydrogenase
- nNOS/NOS 1, neuronal nitric oxide synthase
Collapse
Affiliation(s)
- Mark R Garren
- School of Chemical, Materials, and Biochemical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Morgan Ashcraft
- School of Chemical, Materials, and Biochemical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Yun Qian
- School of Chemical, Materials, and Biochemical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Megan Douglass
- School of Chemical, Materials, and Biochemical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Elizabeth J Brisbois
- School of Chemical, Materials, and Biochemical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Hitesh Handa
- School of Chemical, Materials, and Biochemical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| |
Collapse
|
21
|
Mishra UK, Sanghvi YS, Egli M, Ramesh NG. Supramolecular Architecture through Self-Organization of Janus-Faced Homoazanucleosides. J Org Chem 2021; 86:367-378. [PMID: 33284627 DOI: 10.1021/acs.joc.0c02140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Design of Janus-faced or double-headed homoazanucleosides with the possibility to undergo self-organization through base pairing has been conceptualized and accomplished. The synthetic strategy demonstrates the unique ability to introduce two similar or complementary nucleobases on opposite arms of a chiral polyhydroxypyrrolidine while also ensuring that their faces are anti to each other to allow only intermolecular interactions between the nucleobases, an essential requisite for self-assembly. Single-crystal X-ray structures were determined for all three types of homoazanucleosides, one possessing two adenine molecules, the other with two thymine moieties, and the third containing both adenine and thymine. The crystal structures of all three display noncovalent interactions, including Watson-Crick base pairing, Hoogsteen H-bonding, and π-π stacking, resulting in unusual supramolecular patterns. The most striking supramolecular motif among them, which emerged from the crystal structure of the homoazanucleoside containing both adenine and thymine, is a left-handed helix formed through Watson-Crick pairing between nucleobases. The present study thus forms a prelude to the design of Janus-faced building blocks to establish helical pillars as well as lateral branches that together define a three-dimensional (3D) lattice. The ready accessibility of these molecules is expected to spur the next generation of discoveries in the design of functional nanomaterials.
Collapse
Affiliation(s)
- Umesh K Mishra
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Yogesh S Sanghvi
- Rasayan Inc., 2802 Crystal Ridge Road, Encinitas, California 92024-6615, United States
| | - Martin Egli
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Namakkal G Ramesh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
22
|
Niu YY, Wang LY, Yu YM, Li YT, Wu ZY, Yan CW. Molecular adduct of amantadine ferulate presents a pathway for slowing in vitro/ vivo releases and raising synergistic antiviral effects via dual optimization salification strategy. CrystEngComm 2021. [DOI: 10.1039/d1ce00382h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first synthesized antiviral drug-nutriment molecular salt demonstrating simultaneous slowed-release and synergistically enhanced antiviral effects is studied theoretically and experimentally.
Collapse
Affiliation(s)
- Yuan-Yuan Niu
- School of Medicine and Pharmacy
- College of Marine Life Science
- Ocean University of China
- Qingdao
- P.R. China
| | - Ling-Yang Wang
- School of Medicine and Pharmacy
- College of Marine Life Science
- Ocean University of China
- Qingdao
- P.R. China
| | - Yue-Ming Yu
- School of Medicine and Pharmacy
- College of Marine Life Science
- Ocean University of China
- Qingdao
- P.R. China
| | - Yan-Tuan Li
- School of Medicine and Pharmacy
- College of Marine Life Science
- Ocean University of China
- Qingdao
- P.R. China
| | - Zhi-Yong Wu
- School of Medicine and Pharmacy
- College of Marine Life Science
- Ocean University of China
- Qingdao
- P.R. China
| | - Cui-Wei Yan
- School of Medicine and Pharmacy
- College of Marine Life Science
- Ocean University of China
- Qingdao
- P.R. China
| |
Collapse
|
23
|
Hsu YH, Chang CC. Conversion of a readily available carbohydrate raw material into a rare l-deoxyhexose. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
P. O’Donovan F, O’Leary EM, O’Sullivan TP. Synthesis and Biological Evaluation of Novel Thionucleosides. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200608131955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The search for novel nucleosides has been a major research focus in medicinal
chemistry for several decades, particularly given their proven track record in the treatment
of viral infections and cancer. As bioisosteres of natural nucleosides, thionucleosides are
especially attractive targets as they often display improved biological activity. Furthermore,
the replacement of oxygen with sulfur may sometimes be accompanied by interesting
changes in pharmacological effect. This update covers recent advances in the preparation of
novel thionucleosides, grouped by synthetic strategy. The biological properties of the target
thionucleosides are also summarised, in addition to any reported structure activity relationships.
Collapse
Affiliation(s)
| | - Eileen M. O’Leary
- Department of Physical Sciences, Cork Institute of Technology, Cork, Ireland
| | | |
Collapse
|
25
|
Gevaert O, Van Overtveldt S, Da Costa M, Beerens K, Desmet T. GDP-altrose as novel product of GDP-mannose 3,5-epimerase: Revisiting its reaction mechanism. Int J Biol Macromol 2020; 165:1862-1868. [PMID: 33075338 DOI: 10.1016/j.ijbiomac.2020.10.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 10/23/2022]
Abstract
GDP-mannose 3,5-epimerase (GM35E) catalyzes the double epimerization of GDP-mannose to yield GDP-l-galactose. GDP-l-gulose (C5-epimer) has previously been detected as a byproduct of this reaction, indicating that C3,5-epimerization occurs through an initial epimerization at C5. Given these products, GM35E constitutes a valuable bridge between d- and l-hexoses. In order to fully exploit this potential, the enzyme might be subjected to specificity engineering for which profound mechanistic insights are beneficial. Accordingly, this study further elucidated GM35E's reaction mechanism. For the first time, the production of the C3-epimer GDP-altrose was demonstrated, resulting in an adjustment of the acknowledged reaction mechanism. As GM35E converts GDP-mannose to GDP-l-gulose, GDP-altrose and GDP-l-galactose in a 72:4:4:20 ratio, this indicates that the enzyme does not discriminate between the C3 and C5 position as initial epimerization site. This was also confirmed by a structural investigation. Based on a mutational analysis of the active site, residues S115 and R281 were attributed a stabilizing function, which is believed to support the reactivation process of the catalytic residues. This paper eventually reflected on some engineering strategies that aim to change the enzyme towards a single specificity.
Collapse
Affiliation(s)
- Ophelia Gevaert
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Stevie Van Overtveldt
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Matthieu Da Costa
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Koen Beerens
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Tom Desmet
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Gent, Belgium.
| |
Collapse
|
26
|
Sangwan R, Dubey A, Tiwari A, Mandal PK. The strategic use of para-quinone methides to access synthetically challenging and chemoselective α,α'-diarylmethyl N-glycosides from unprotected carbohydrate amines. Org Biomol Chem 2020; 18:1343-1348. [PMID: 32003394 DOI: 10.1039/d0ob00039f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Reported herein is a practical route to access synthetically challenging and chemoselective α,α'-diarylmethyl N-glycosides via Sc(OTf)3-catalyzed 1,6-conjugate addition of amino sugars with para-quinone methides (p-QMs). The reactions proceed smoothly without a base and under mild reaction conditions with a broad substrate scope and moderate to good yields.
Collapse
Affiliation(s)
- Rekha Sangwan
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram extn, Sitapur Road, P.O. Box 173, Lucknow 226031, India. and Academy of Scientific and Innovative Research, New Delhi 110001, India
| | - Atul Dubey
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram extn, Sitapur Road, P.O. Box 173, Lucknow 226031, India.
| | - Ashwani Tiwari
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram extn, Sitapur Road, P.O. Box 173, Lucknow 226031, India.
| | - Pintu Kumar Mandal
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram extn, Sitapur Road, P.O. Box 173, Lucknow 226031, India. and Academy of Scientific and Innovative Research, New Delhi 110001, India
| |
Collapse
|
27
|
Liu Q, Ke Y, Kan Y, Tang X, Li X, He Y, Wu L. Compatibility and Fidelity of Mirror-Image Thymidine in Transcription Events by T7 RNA Polymerase. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:604-613. [PMID: 32721880 PMCID: PMC7390857 DOI: 10.1016/j.omtn.2020.06.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/15/2020] [Accepted: 06/23/2020] [Indexed: 11/16/2022]
Abstract
Due to highly enzymatic d-stereoselectivity, l-nucleotides (l-2'-deoxynucleoside 5'-triphosphates [l-dNTPs]) are not natural targets of polymerases. In this study, we synthesized series of l-thymidine (l-T)-modified DNA strands and evaluated the processivity of nucleotide incorporation for transcription by T7 RNA polymerase (RNAP) with an l-T-containing template. When single l-T was introduced into the transcribed region, transcription proceeded to afford the full-length transcript with different efficiencies. However, introduction of l-T into the non-transcribed region did not exhibit a noticeable change in the transcription efficiency. Surprisingly, when two consecutive or internal l-Ts were introduced into the transcribed region, no transcripts were detected. Compared to natural template, significant lags in NTP incorporation into the template T+4/N and T+7/N (where the number corresponds to the site of l-T position, and + means downstream of the transcribed region) were detected by kinetic analysis. Furthermore, affinity of template T+4/N was almost the same with T/N, whereas affinity of T+7/N was apparently increased. Furthermore, no mismatch opposite to l-T in the template was detected in transcription reactions via gel fidelity analysis. These results demonstrate the effects of chiral l-T in DNA on the efficiency and fidelity of RNA transcription mediated by T7 RNAP, which provides important knowledge about how mirror-image thymidine perturbs the flow of genetic information during RNA transcription and development of diseases caused by gene mutation.
Collapse
Affiliation(s)
- Qingju Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongqi Ke
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhe Kan
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiangjun Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yujian He
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Li Wu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
28
|
Abstract
Abstract
Using purine as a scaffold, the methods for preparation of novel 2-aminopurine and purine derivatives substituted at position C
6 by the fragments of natural amino acids, short peptides, and N-heterocycles, including enantiopure ones, have been proposed. The methods for determination of the enantiomeric purity of the obtained chiral compounds have been developed. Conjugates exhibiting high antimycobacterial or anti-herpesvirus activity against both laboratory and multidrug-resistant strains were revealed among the obtained compounds.
Collapse
|
29
|
Li Z, Liu X, Nakanishi H, Gao XD. Encapsulation of Mannose-6-phosphate Isomerase in Yeast Spores and Its Application in l-Ribose Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6892-6899. [PMID: 32486647 DOI: 10.1021/acs.jafc.0c02399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A mannose-6-phosphate isomerase (MPI) from Geobacillus thermodenitrificans was expressed and successfully encapsulated into the Saccharomyces cerevisiae spores. Our results demonstrated that compared to the free enzyme, the MPI triple mutant encapsulated in osw2Δ spores exhibited much preferred enzymatic properties, such as enhanced catalytic activity, excellent reusability, thermostability, and tolerance to various harsh conditions. In combination with an l-arabinose isomerase (AI) also from G. thermodenitrificans, this technique of spore encapsulation was applied for producing a high-value rare sugar l-ribose from biomass-derived l-arabinose. Using a 10 mL reaction system, 350 mg of l-ribose was produced from 1 g of l-arabinose with a conversion yield of 35% by repeatedly reacting with 200 mg of AI-encapsulated spores and 300 mg of MPI-encapsulated spores. This study provides a very useful and concise approach for the synthesis of rare sugars and other useful compounds.
Collapse
Affiliation(s)
- Zijie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Xiaoxiao Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hideki Nakanishi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
30
|
Fu Q, Yu Z. Phosphoglycerate kinase 1 (PGK1) in cancer: A promising target for diagnosis and therapy. Life Sci 2020; 256:117863. [PMID: 32479953 DOI: 10.1016/j.lfs.2020.117863] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/22/2022]
Abstract
Phosphoglycerate kinase 1 (PGK1) is the first critical enzyme to produce ATP in the glycolytic pathway. PGK1 is not only a metabolic enzyme but also a protein kinase, which mediates the tumor growth, migration and invasion through phosphorylation some important substrates. Moreover, PGK1 is associated with poor treatment and prognosis of cancers. This manuscript reviews the structure, functions, post-translational modifications (PTMs) of PGK1 and its relationship with tumors, which demonstrates that PGK1 has indispensable value in the tumor progression. The current review highlights the important role of PGK1 in anticancer treatments.
Collapse
Affiliation(s)
- Qi Fu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, PR China.; College of Bioscience and Technology, Weifang Medical University, Weifang, Shandong Province, PR China
| | - Zhenhai Yu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, PR China..
| |
Collapse
|
31
|
Recent advances in properties, production, and applications of L-ribulose. Appl Microbiol Biotechnol 2020; 104:5663-5672. [PMID: 32372201 DOI: 10.1007/s00253-020-10637-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 12/31/2022]
Abstract
Currently, due to the special functions and potential application values, rare sugars become the hot topic in carbohydrate fields. L-Ribulose, an isomer of L-ribose, is an expensive rare ketopentose. As an important precursor for other rare sugars and L-nucleoside analogue synthesis, L-ribulose attracts more and more attention in recent days. Compared with complicated chemical synthesis, the bioconversion method becomes a good alternative approach to L-ribulose production. Generally, the bioconversion of L-ribulose was linked with ribitol, L-arabinose, L-ribose, L-xylulose, and L-arabitol. Herein, an overview of recent advances in the metabolic pathway, chemical synthesis, bioproduction of L-ribulose, and the potential application of L-ribulose is reviewed in detail in this paper. KEY POINTS: 1. L-Ribulose is a rare sugar and the key precursor for L-ribose production. 2. L-Ribulose is the starting material for L-nucleoside derivative synthesis. 3. Chemical synthesis, bioproduction, and applications of L-ribulose are reviewed.
Collapse
|
32
|
Chen M, Wu H, Zhang W, Mu W. Microbial and enzymatic strategies for the production of L-ribose. Appl Microbiol Biotechnol 2020; 104:3321-3329. [PMID: 32088757 DOI: 10.1007/s00253-020-10471-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/09/2020] [Accepted: 02/13/2020] [Indexed: 10/24/2022]
Abstract
L-Ribose is a non-naturally occurring pentose that recently has become known for its potential application in the pharmaceutical industry, as it is an ideal starting material for use in synthesizing L-nucleosides analogues, an important class of antiviral drugs. In the past few decades, the synthesis of L-ribose has been mainly undertaken through the chemical route. However, chemical synthesis of L-ribose is difficult to achieve on an industrial scale. Therefore, the biotechnological production of L-ribose has gained considerable attention, as it exhibits many merits over the chemical approaches. The present review focuses on various biotechnological strategies for the production of L-ribose through microbial biotransformation and enzymatic catalysis, and in particular on an analysis and comparison of the synthetic methods and different enzymes. The physiological functions and applications of L-ribose are also elucidated. In addition, different sugar isomerases involved in the production of L-ribose from a number of sources are discussed in detail with regard to their biochemical properties. Furthermore, analysis of the separation issues of L-ribose from the reaction solution and different purification methods is presented.Key points • l -Arabinose, l -ribulose and ribitol can be used to produce l -ribose by enzymes. • Five enzymes are systematically introduced for production of l -ribose. • Microbial transformation and enzymatic methods are promising for yielding l -ribose.
Collapse
Affiliation(s)
- Ming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Hao Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, Jiangsu, China
| |
Collapse
|
33
|
Mahmood S, Iqbal MW, Riaz T, Hassanin HA, Zhu Y, Ni D, Mu W. Characterization of a recombinant l-ribose isomerase from Mycetocola miduiensis and its application for the production of l-ribulose. Enzyme Microb Technol 2020; 135:109510. [DOI: 10.1016/j.enzmictec.2020.109510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/08/2020] [Accepted: 01/12/2020] [Indexed: 11/30/2022]
|
34
|
Li Q, Groaz E, Rocha-Pereira J, Neyts J, Herdewijn P. Anti-norovirus activity of C7-modified 4-amino-pyrrolo[2,1-f][1,2,4]triazine C-nucleosides. Eur J Med Chem 2020; 195:112198. [PMID: 32294613 DOI: 10.1016/j.ejmech.2020.112198] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/24/2019] [Accepted: 02/28/2020] [Indexed: 10/24/2022]
Abstract
Synthetic nucleoside analogues characterized by a C-C anomeric linkage form a family of promising therapeutics against infectious and malignant diseases. Herein, C-nucleosides comprising structural variations at the sugar and nucleobase moieties were examined for their ability to inhibit both murine and human norovirus RNA-dependent RNA polymerase (RdRp). We have found that the combination of 4-amino-pyrrolo[2,1-f][1,2,4]triazine and its 7-halogenated congeners with either a d-ribose or 2'-C-methyl-d-ribose unit resulted in analogues with good antiviral activity against murine norovirus (MNV), albeit coupled with a significant cytotoxicity. Among this series, 4-aza-7,9-dideazaadenosine notably retained a strong antiviral effect in a human norovirus (HuNoV) replicon assay with an EC50 = 0.015 μM. This study demonstrates that C-nucleosides can be used as viable starting scaffolds for further optimization towards the development of nucleoside-based inhibitors of norovirus replication.
Collapse
Affiliation(s)
- Qingfeng Li
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49 - Box 1041, Leuven, 3000, Belgium
| | - Elisabetta Groaz
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49 - Box 1041, Leuven, 3000, Belgium.
| | - Joana Rocha-Pereira
- KU Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy, Herestraat 49 - Box 1041, Leuven, 3000, Leuven, Belgium
| | - Johan Neyts
- KU Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy, Herestraat 49 - Box 1041, Leuven, 3000, Leuven, Belgium
| | - Piet Herdewijn
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49 - Box 1041, Leuven, 3000, Belgium.
| |
Collapse
|
35
|
Novel Insights into the Existence of the Putative UDP-Glucuronate 5-Epimerase Specificity. Catalysts 2020. [DOI: 10.3390/catal10020222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
C5-epimerases are promising tools for the production of rare l-hexoses from their more common d-counterparts. On that account, UDP-glucuronate 5-epimerase (UGA5E) attracts attention as this enzyme could prove to be useful for the synthesis of UDP-l-iduronate. Interestingly, l-iduronate is known as a precursor for the production of heparin, an effective anticoagulant. To date, the UGA5E specificity has only been detected in rabbit skin extract, and the respective enzyme has not been characterized in detail or even identified at the molecular level. Accordingly, the current work aimed to shed more light on the properties of UGA5E. Therefore, the pool of putative UGA5Es present in the UniProt database was scrutinized and their sequences were clustered in a phylogenetic tree. However, the examination of two of these enzymes revealed that they actually epimerize UDP-glucuronate at the 4- rather than 5-position. Furthermore, in silico analysis indicated that this should be the case for all sequences that are currently annotated as UGA5E and, hence, that such activity has not yet been discovered in nature. The detected l-iduronate synthesis in rabbit skin extract can probably be assigned to the enzyme chondroitin-glucuronate C5-epimerase, which catalyzes the conversion of d-glucuronate to l-iduronate on a polysaccharide level.
Collapse
|
36
|
Sivets GG. Regioselective and stereocontrolled syntheses of protected L-glycosides from L-arabinofuranosides. Carbohydr Res 2020; 488:107901. [DOI: 10.1016/j.carres.2019.107901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 11/28/2022]
|
37
|
Wu H, Huang J, Deng Y, Zhang W, Mu W. Production of l-ribose from l-arabinose by co-expression of l-arabinose isomerase and d-lyxose isomerase in Escherichia coli. Enzyme Microb Technol 2020; 132:109443. [DOI: 10.1016/j.enzmictec.2019.109443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 12/16/2022]
|
38
|
Garcia-Solaesa V, Serrano-Lorenzo P, Ramos-Arroyo MA, Blázquez A, Pagola-Lorz I, Artigas-López M, Arenas J, Martín MA, Jericó-Pascual I. A Novel Missense Variant Associated with A Splicing Defect in A Myopathic Form of PGK1 Deficiency in The Spanish Population. Genes (Basel) 2019; 10:genes10100785. [PMID: 31658606 PMCID: PMC6826351 DOI: 10.3390/genes10100785] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 11/16/2022] Open
Abstract
Phosphoglycerate kinase (PGK)1 deficiency is an X-linked inherited disease associated with different clinical presentations, sometimes as myopathic affectation without hemolytic anemia. We present a 40-year-old male with a mild psychomotor delay and mild mental retardation, who developed progressive exercise intolerance, cramps and sporadic episodes of rhabdomyolysis but no hematological features. A genetic study was carried out by a next-generation sequencing (NGS) panel of 32 genes associated with inherited metabolic myopathies. We identified a missense variant in the PGK1 gene c.1114G > A (p.Gly372Ser) located in the last nucleotide of exon 9. cDNA studies demonstrated abnormalities in mRNA splicing because this change abolishes the exon 9 donor site. This novel variant is the first variant associated with a myopathic form of PGK1 deficiency in the Spanish population.
Collapse
Affiliation(s)
- Virginia Garcia-Solaesa
- Department of Medical Genetics, Complejo Hospitalario de Navarra, IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain, (M.A.R.-A.).
| | - Pablo Serrano-Lorenzo
- Laboratorio de Enfermedades Mitocondriales y Neurometabólicas. Instituto de Investigación Hospital 12 de Octubre, 28041 Madrid, Spain, (P.S.-L.).
| | - Maria Antonia Ramos-Arroyo
- Department of Medical Genetics, Complejo Hospitalario de Navarra, IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain, (M.A.R.-A.).
| | - Alberto Blázquez
- Laboratorio de Enfermedades Mitocondriales y Neurometabólicas. Instituto de Investigación Hospital 12 de Octubre, 28041 Madrid, Spain, (P.S.-L.).
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28041 Madrid, Spain.
| | - Inmaculada Pagola-Lorz
- Department of Neurology, Complejo Hospitalario de Navarra, IdiSNA (Navarra Institute for Health Research), 31008 Pamplona, Spain, (I.P.-L.).
| | - Mercè Artigas-López
- Department of Medical Genetics, Complejo Hospitalario de Navarra, IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain, (M.A.R.-A.).
| | - Joaquín Arenas
- Laboratorio de Enfermedades Mitocondriales y Neurometabólicas. Instituto de Investigación Hospital 12 de Octubre, 28041 Madrid, Spain, (P.S.-L.).
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28041 Madrid, Spain.
| | - Miguel A Martín
- Laboratorio de Enfermedades Mitocondriales y Neurometabólicas. Instituto de Investigación Hospital 12 de Octubre, 28041 Madrid, Spain, (P.S.-L.).
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28041 Madrid, Spain.
| | - Ivonne Jericó-Pascual
- Department of Neurology, Complejo Hospitalario de Navarra, IdiSNA (Navarra Institute for Health Research), 31008 Pamplona, Spain, (I.P.-L.).
| |
Collapse
|
39
|
Li Q, Groaz E, Herdewijn P. Synthesis of tetradialdose phosphonate nucleosides as mimics of l-nucleotides. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Characterization of the First Bacterial and Thermostable GDP-Mannose 3,5-Epimerase. Int J Mol Sci 2019; 20:ijms20143530. [PMID: 31330931 PMCID: PMC6678494 DOI: 10.3390/ijms20143530] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 01/25/2023] Open
Abstract
GDP-mannose 3,5-epimerase (GM35E) catalyzes the conversion of GDP-mannose towards GDP-l-galactose and GDP-l-gulose. Although this reaction represents one of the few enzymatic routes towards the production of l-sugars and derivatives, it has not yet been exploited for that purpose. One of the reasons is that so far only GM35Es from plants have been characterized, yielding biocatalysts that are relatively unstable and difficult to express heterologously. Through the mining of sequence databases, we succeeded in identifying a promising bacterial homologue. The gene from the thermophilic organism Methylacidiphilum fumariolicum was codon optimized for expression in Escherichia coli, resulting in the production of 40 mg/L of recombinant protein. The enzyme was found to act as a self-sufficient GM35E, performing three chemical reactions in the same active site. Furthermore, the biocatalyst was highly stable at temperatures up to 55 °C, making it well suited for the synthesis of new carbohydrate products with application in the pharma industry.
Collapse
|
41
|
Young BE, Kundu N, Sczepanski JT. Mirror-Image Oligonucleotides: History and Emerging Applications. Chemistry 2019; 25:7981-7990. [PMID: 30913332 PMCID: PMC6615976 DOI: 10.1002/chem.201900149] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Indexed: 01/13/2023]
Abstract
As chiral molecules, naturally occurring d-oligonucleotides have enantiomers, l-DNA and l-RNA, which are comprised of l-(deoxy)ribose sugars. These mirror-image oligonucleotides have the same physical and chemical properties as that of their native d-counterparts, yet are highly orthogonal to the stereospecific environment of biology. Consequently, l-oligonucleotides are resistant to nuclease degradation and many of the off-target interactions that plague traditional d-oligonucleotide-based technologies; thus making them ideal for biomedical applications. Despite a flurry of interest during the early 1990s, the inability of d- and l-oligonucleotides to form contiguous Watson-Crick base pairs with each other has ultimately led to the perception that l-oligonucleotides have only limited utility. Recently, however, scientists have begun to uncover novel strategies to harness the bio-orthogonality of l-oligonucleotides, while overcoming (and even exploiting) their inability to Watson-Crick base pair with the natural polymer. Herein, a brief history of l-oligonucleotide research is presented and emerging l-oligonucleotide-based technologies, as well as their applications in research and therapy, are presented.
Collapse
Affiliation(s)
- Brian E. Young
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Nandini Kundu
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Jonathan T. Sczepanski
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
42
|
Synthesis and anti-HIV activity of L-2',3'-Dideoxy-4'-selenonucleosides (L-4'-Se-ddNs). Arch Pharm Res 2019; 42:780-789. [PMID: 31041687 DOI: 10.1007/s12272-019-01157-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 04/22/2019] [Indexed: 10/26/2022]
Abstract
Based on the potent anti-HIV activity of L-2',3'-dideoxycytidine (L-ddC), L-2',3'-dideoxy-4'-selenonucleosides (L-4'-Se-ddNs) have been synthesized from natural chiral template, L-glutamic acid, using Pummerer-type condensation as a key step. All synthesized compounds were assayed for anti-HIV-1 activity, but none of them did show any significant antiviral activity up to 100 μM, probably due to conformational differences between L-ddC and L-4'-Se-ddC, induced by the bulky selenium atom, which might play an important role in phosphorylation by cellular kinase.
Collapse
|
43
|
Cheviet T, Lefebvre-Tournier I, Wein S, Peyrottes S. Plasmodium Purine Metabolism and Its Inhibition by Nucleoside and Nucleotide Analogues. J Med Chem 2019; 62:8365-8391. [PMID: 30964283 DOI: 10.1021/acs.jmedchem.9b00182] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Malaria still affects around 200 million people and is responsible for more than 400,000 deaths per year, mostly children in subequatorial areas. This disease is caused by parasites of the Plasmodium genus. Only a few WHO-recommended treatments are available to prevent or cure plasmodial infections, but genetic mutations in the causal parasites have led to onset of resistance against all commercial antimalarial drugs. New drugs and targets are being investigated to cope with this emerging problem, including enzymes belonging to the main metabolic pathways, while nucleoside and nucleotide analogues are also a promising class of potential drugs. This review highlights the main metabolic pathways targeted for the development of potential antiplasmodial therapies based on nucleos(t)ide analogues, as well as the different series of purine-containing nucleoside and nucleotide derivatives designed to inhibit Plasmodium falciparum purine metabolism.
Collapse
Affiliation(s)
- Thomas Cheviet
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 UM-CNRS-ENSCM , Université Montpellier, Equipe Nucléosides & Effecteurs Phosphorylés , Place E. Bataillon, cc 1704 , 34095 Montpellier , France
| | - Isabelle Lefebvre-Tournier
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 UM-CNRS-ENSCM , Université Montpellier, Equipe Nucléosides & Effecteurs Phosphorylés , Place E. Bataillon, cc 1704 , 34095 Montpellier , France
| | - Sharon Wein
- Dynamique des Interactions Membranaires Normales et Pathologiques (DIMNP), UMR 5235 UM-CNRS , Université Montpellier , Place E. Bataillon , 34095 Montpellier , France
| | - Suzanne Peyrottes
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 UM-CNRS-ENSCM , Université Montpellier, Equipe Nucléosides & Effecteurs Phosphorylés , Place E. Bataillon, cc 1704 , 34095 Montpellier , France
| |
Collapse
|
44
|
Abstract
The preparation of 2-deoxy-l-ribose derivatives or mirror image deoxyribonucleosides (l-deoxyribonucleosides) from d-ribose is reported. Starting from inexpensive d-ribose, an acyclic d-form carbohydrate precursor was synthesized to study a unique carbonyl translocation process. In this novel radical reaction, not only was the configuration of the sugar transformed from the d-form to the l-form, but also deoxygenation at the C(2) position of the sugar was successfully achieved. This is one of the most practical methods for converting a d-sugar to a 2-deoxy-l-sugar in a one-step reaction. To further identify the reaction product, radical reactions followed by treatment with 1,3-propanedithiol and then benzoylation were performed to afford a dithioacetal derivative. The stereochemistry and configuration of the 2-deoxy-l-ribose dithioacetal derivative were confirmed by its X-ray crystal structure. To further apply this methodology, a diethyl thioacetal derivative was formed, followed by selective benzoyl protection, and an NIS-initiated cyclization reaction to give the desired ethyl S-l-2-deoxyriboside, which can be used as a 2-deoxy-l-ribosyl synthon in the formal total synthesis of various l-deoxyribonucleosides, such as l-dT.
Collapse
Affiliation(s)
- Wei-Syun Song
- Department of Chemistry , Fu Jen Catholic University , 510, Zhongzheng Rd. , Xinzhuang District, New Taipei City 24205 , Taiwan
| | - Si-Xian Liu
- Department of Chemistry , Fu Jen Catholic University , 510, Zhongzheng Rd. , Xinzhuang District, New Taipei City 24205 , Taiwan
| | - Che-Chien Chang
- Department of Chemistry , Fu Jen Catholic University , 510, Zhongzheng Rd. , Xinzhuang District, New Taipei City 24205 , Taiwan
| |
Collapse
|
45
|
Yoshimura Y, Saito Y, Natori Y, Wakamatsu H. Synthesis of 4'-Thionucleosides as Antitumor and Antiviral Agents. Chem Pharm Bull (Tokyo) 2018; 66:139-146. [PMID: 29386464 DOI: 10.1248/cpb.c17-00636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many attempts have been made to synthesize structurally novel nucleoside derivatives in order to identify effective compounds for the treatment of tumors and virus-caused disease. At our laboratories, as part of our efforts to synthesize 4'-thionucleosides, we have identified and characterized biologically active nucleosides. During the course of our synthetic study, we developed the Pummerer-type thioglycosylation reaction. As a result, we synthesized a potent antineoplastic nucleoside, 1-(2-deoxy-2-fluoro-β-D-4-thio-arabino-furanosyl)cytosine (4'-thioFAC), and several novel 4'-thionucleosides that possess antiherpes virus activities.
Collapse
Affiliation(s)
- Yuichi Yoshimura
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| | - Yukako Saito
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| | - Yoshihiro Natori
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| | - Hideaki Wakamatsu
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| |
Collapse
|
46
|
Han Q, Eiteman MA. Enhancement of NAD(H) pool for formation of oxidized biochemicals in Escherichia coli. J Ind Microbiol Biotechnol 2018; 45:939-950. [PMID: 30159648 DOI: 10.1007/s10295-018-2072-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/13/2018] [Indexed: 10/28/2022]
Abstract
The NAD+/NADH ratio and the total NAD(H) play important roles for whole-cell biochemical redox transformations. After the carbon source is exhausted, the degradation of NAD(H) could contribute to a decline in the rate of a desired conversion. In this study, methods to slow the native rate of NAD(H) degradation were examined using whole-cell Escherichia coli with two model oxidative NAD+-dependent biotransformations. A high phosphate concentration (50 mM) was observed to slow NAD(H) degradation. We also constructed E. coli strains with deletions in genes coding several enzymes involved in NAD+ degradation. In shake-flask experiments, the total NAD(H) concentration positively correlated with conversion of xylitol to L-xylulose by xylitol 4-dehydrogenase, and the greatest conversion (80%) was observed using MG1655 nadR nudC mazG/pZE12-xdh/pCS27-nox. Controlled 1-L batch processes comparing E. coli nadR nudC mazG with a wild-type background strain demonstrated a 30% increase in final L-xylulose concentration (5.6 vs. 7.9 g/L) and a 25% increase in conversion (0.53 vs. 0.66 g/g). MG1655 nadR nudC mazG was also examined for the conversion of galactitol to L-tagatose by galactitol 2-dehydrogenase. A batch process using 15 g/L glycerol and 10 g/L galactitol generated over 9.4 g/L L-tagatose, corresponding to 90% conversion and a yield of 0.95 g L-tagatose/g galactitol consumed. The results demonstrate the value of minimizing NAD(H) degradation as a means to improve NAD+-dependent biotransformations.
Collapse
Affiliation(s)
- Qi Han
- School of Chemical Materials and Biomedical Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Mark A Eiteman
- School of Chemical Materials and Biomedical Engineering, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
47
|
Seley-Radtke KL, Yates MK. The evolution of nucleoside analogue antivirals: A review for chemists and non-chemists. Part 1: Early structural modifications to the nucleoside scaffold. Antiviral Res 2018; 154:66-86. [PMID: 29649496 PMCID: PMC6396324 DOI: 10.1016/j.antiviral.2018.04.004] [Citation(s) in RCA: 316] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/22/2018] [Accepted: 04/04/2018] [Indexed: 02/07/2023]
Abstract
This is the first of two invited articles reviewing the development of nucleoside-analogue antiviral drugs, written for a target audience of virologists and other non-chemists, as well as chemists who may not be familiar with the field. Rather than providing a simple chronological account, we have examined and attempted to explain the thought processes, advances in synthetic chemistry and lessons learned from antiviral testing that led to a few molecules being moved forward to eventual approval for human therapies, while others were discarded. The present paper focuses on early, relatively simplistic changes made to the nucleoside scaffold, beginning with modifications of the nucleoside sugars of Ara-C and other arabinose-derived nucleoside analogues in the 1960's. A future paper will review more recent developments, focusing especially on more complex modifications, particularly those involving multiple changes to the nucleoside scaffold. We hope that these articles will help virologists and others outside the field of medicinal chemistry to understand why certain drugs were successfully developed, while the majority of candidate compounds encountered barriers due to low-yielding synthetic routes, toxicity or other problems that led to their abandonment.
Collapse
Affiliation(s)
- Katherine L Seley-Radtke
- 1000 Hilltop Circle, Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, Baltimore, MD, USA.
| | - Mary K Yates
- 1000 Hilltop Circle, Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, Baltimore, MD, USA
| |
Collapse
|
48
|
Yeo IS, Shim WY, Kim JH. Construction of genetically engineered Candida tropicalis for conversion of l-arabinose to l-ribulose. J Biotechnol 2018; 274:9-14. [PMID: 29407417 DOI: 10.1016/j.jbiotec.2018.01.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/16/2018] [Accepted: 01/26/2018] [Indexed: 11/15/2022]
Abstract
For the biological production of l-ribulose, conversion by enzymes or resting cells has been investigated. However, expensive or concentrated substrates, an additional purification step to remove borate and the requirement for cell cultivation and harvest steps before utilization of resting cells make the production process complex and unfavorable. Microbial fermentation may help overcome these limitations. In this study, we constructed a genetically engineered Candida tropicalis strain to produce l-ribulose by fermentation with a glucose/l-arabinose mixture. For the uptake of l-arabinose as a substrate and conversion of l-arabinose to l-ribulose, two heterologous genes coding for l-arabinose transporter and l-arabinose isomerase, were constitutively expressed in C. tropicalis under the GAPDH promoter. The Arabidopsis thaliana-originated l-arabinose transporter gene (STP2)-expressing strain exhibited a high l-arabinose uptake rate of 0.103 g/g cell/h and the expression of l-arabinose isomerase from Lactobacillus sakei 23 K showed 30% of conversion (9 g/L) from 30 g/L of l-arabinose. This genetically engineered strain can be used for l-ribulose production by fermentation using mixed sugars of glucose and l-arabinose.
Collapse
Affiliation(s)
- In-Seok Yeo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Woo-Yong Shim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jung Hoe Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
49
|
|
50
|
Kapusta K, Sizochenko N, Karabulut S, Okovytyy S, Voronkov E, Leszczynski J. QSPR modeling of optical rotation of amino acids using specific quantum chemical descriptors. J Mol Model 2018; 24:59. [DOI: 10.1007/s00894-018-3593-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/24/2018] [Indexed: 11/28/2022]
|