1
|
Zhong LY, Xie C, Zhang LL, Yang YL, Liu YT, Zhao GX, Bu GL, Tian XS, Jiang ZY, Yuan BY, Li PL, Wu PH, Jia WH, Münz C, Gewurz BE, Zhong Q, Sun C, Zeng MS. Research landmarks on the 60th anniversary of Epstein-Barr virus. SCIENCE CHINA. LIFE SCIENCES 2025; 68:354-380. [PMID: 39505801 DOI: 10.1007/s11427-024-2766-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/15/2024] [Indexed: 11/08/2024]
Abstract
Epstein-Barr virus (EBV), the first human oncovirus discovered in 1964, has become a focal point in virology, immunology, and oncology because of its unique biological characteristics and significant role in human diseases. As we commemorate the 60th anniversary of EBV's discovery, it is an opportune moment to reflect on the major advancements in our understanding of this complex virus. In this review, we highlight key milestones in EBV research, including its virion structure and life cycle, interactions with the host immune system, association with EBV-associated diseases, and targeted intervention strategies.
Collapse
Affiliation(s)
- Lan-Yi Zhong
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Chu Xie
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Le-Le Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yan-Lin Yang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yuan-Tao Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Ge-Xin Zhao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Guo-Long Bu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xian-Shu Tian
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zi-Ying Jiang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Bo-Yu Yuan
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Peng-Lin Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Pei-Huang Wu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, 8092, Switzerland
| | - Benjamin E Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Program in Virology, Boston, MA, 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Qian Zhong
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Cong Sun
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
2
|
Mark JKK, Teh AH, Yap BK. Epstein-Barr virus-infected nasopharyngeal carcinoma therapeutics: oncoprotein targets and clinical implications. Med Oncol 2025; 42:59. [PMID: 39888474 DOI: 10.1007/s12032-025-02610-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/13/2025] [Indexed: 02/01/2025]
Abstract
Nasopharyngeal carcinoma (NPC) is a distinctive epithelial cancer closely associated with Epstein-Barr Virus (EBV) infection, posing significant challenges in diagnosis and treatment due to its resistance to conventional therapies and high recurrence rates. Current therapies, including radiotherapy and chemotherapy, exhibit limited efficacy, particularly in recurrent or metastatic cases, highlighting the urgent need for novel therapeutic strategies. Targeting EBV oncoproteins, such as Epstein-Barr Virus encoded Nuclear Antigen 1 (EBNA1), Latent Membrane Protein 1 (LMP1), and Latent Membrane Protein 2 (LMP2), presents a promising therapeutic avenue in NPC treatment. This review discusses the latest advancements in drug discovery targeting EBV oncoproteins, emphasizing the identification of inhibitors for specific functional regions of oncoproteins EBNA1, LMP1, and LMP2. Particular attention is given to the molecular mechanisms of these inhibitors and their preclinical or clinical potential in treating EBV-positive NPC. These developments highlight a promising future for targeted therapies in improving outcomes for NPC patients.
Collapse
Affiliation(s)
- Jacqueline Kar Kei Mark
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Aik-Hong Teh
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900, Bayan Lepas, Penang, Malaysia
| | - Beow Keat Yap
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia.
| |
Collapse
|
3
|
Zhu Y, Wen Y, Xie Y, Chen G, Hu S, Wu Y, Jiang L, Viana B, Richard C, Wong KL, Jiao J, Wang J, Zou R. Intelligent Hierarchical Targeting Near-Infrared Persistent Luminescence Nanosystem for Improved Nuclear Delivery and Simultaneous Visualization/Therapy of EBV-Associated Cancer. ACS APPLIED MATERIALS & INTERFACES 2025; 17:3072-3083. [PMID: 39752553 DOI: 10.1021/acsami.4c20023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Epstein-Barr nuclear antigen 1 (EBNA1), a sequence-specific DNA binding protein of Epstein-Barr virus (EBV), is essential for viral genome replication and maintenance and is therefore an attractive target for the therapeutic intervention of EBV-associated cancers. Several EBNA1-specific inhibitors have demonstrated the ability to block EBNA1 function in vitro, but practical delivery strategies for these inhibitors in vivo are still lacking. Here, we report an intelligent hierarchical targeting theranostic nanosystem (denoted as mZGOCS@MnO2-P5) that integrates an azide (N3) terminal dual-targeting peptide (N3-P5), a tumor microenvironment-responsive degradable MnO2 nanosheet, and a mesoporous ZnGa2O4:Cr3+, Sn4+ near-infrared persistent luminescence (NIR-PL) nanosphere (mZGOCS). In our design, mZGOCS@MnO2-P5 enables primarily targeting of the EBV-specific oncoprotein LMP1 (an EBV-encoded transmembrane protein) via the LMP1 targeting motif within P5. Once internalized into cells, the MnO2 nanosheet would be degraded in the acidic and reducing tumor microenvironment, simultaneously releasing P5 and recovering the NIR-PL of ZnGa2O4:Cr3+, Sn4+ initially quenched by the MnO2 nanosheet, thereby providing an autofluorescence interference-free NIR-PL imaging signal for monitoring the delivery efficacy of P5. The released P5 can secondarily target EBNA1 via the EBNA1 binding motif, blocking its function and thus inhibiting the growth of EBV-positive tumors. The feasibility of our developed hierarchical targeting theranostic nanosystem is well demonstrated both in vitro and in vivo, highlighting the huge translational potential of mZGOCS@MnO2-P5 in EBV-associated cancer therapy.
Collapse
Affiliation(s)
- Yunfei Zhu
- Ministry of Education Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Ya Wen
- Department of Nuclear Medicine, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China
| | - Yanping Xie
- Department of Nuclear Medicine, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China
| | - Guangfeng Chen
- Department of Nuclear Medicine, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China
| | - Siqi Hu
- Department of Nuclear Medicine, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China
| | - Yue Wu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Lijun Jiang
- Hubei Key Laboratory of Genetic Regulation & Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Bruno Viana
- PSL Research University, Chimie ParisTech, Chemistry Research Institute of Paris (IRCP), French National Center for Scientific Research (CNRS), 75005 Paris, France
| | - Cyrille Richard
- CNRS, INSERM, UTCBS, Université Paris Cité, 75006 Paris, France
| | - Ka-Leung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Ju Jiao
- Department of Nuclear Medicine, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China
| | - Jing Wang
- Ministry of Education Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Rui Zou
- Department of Nuclear Medicine, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China
| |
Collapse
|
4
|
Sugiokto FG, Li R. Targeting EBV Episome for Anti-Cancer Therapy: Emerging Strategies and Challenges. Viruses 2025; 17:110. [PMID: 39861899 PMCID: PMC11768851 DOI: 10.3390/v17010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
As a ubiquitous human pathogen, the Epstein-Barr virus (EBV) has established lifelong persistent infection in about 95% of the adult population. The EBV infection is associated with approximately 200,000 human cancer cases and 140,000 deaths per year. The presence of EBV in tumor cells provides a unique advantage in targeting the viral genome (also known as episome), to develop anti-cancer therapeutics. In this review, we summarize current strategies targeting the viral episome in cancer cells. We also highlight emerging technologies, such as clustered regularly interspersed short palindromic repeat (CRISPR)-based gene editing or activation, which offer promising avenues for selective targeting of the EBV episome for anti-cancer therapy. We discuss the challenges, limitations, and future perspectives associated with these strategies, including potential off-target effects, anti-cancer efficacy and safety.
Collapse
Affiliation(s)
- Febri Gunawan Sugiokto
- Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA 15219, USA;
- Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Renfeng Li
- Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA 15219, USA;
- Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
5
|
Pociupany M, Snoeck R, Dierickx D, Andrei G. Treatment of Epstein-Barr Virus infection in immunocompromised patients. Biochem Pharmacol 2024; 225:116270. [PMID: 38734316 DOI: 10.1016/j.bcp.2024.116270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Epstein-Barr Virus (EBV), is a ubiquitous γ-Herpesvirus that infects over 95% of the human population and can establish a life-long infection without causing any clinical symptoms in healthy individuals by residing in memory B-cells. Primary infection occurs in childhood and is mostly asymptomatic, however in some young adults it can result in infectious mononucleosis (IM). In immunocompromised individuals however, EBV infection has been associated with many different malignancies. Since EBV can infect both epithelial and B-cells and very rarely NK cells and T-cells, it is associated with both epithelial cancers like nasopharyngeal carcinoma (NPC) and gastric carcinoma (GC), with lymphomas including Burkitt Lymphoma (BL) or Post-transplant Lymphoproliferative Disorder (PTLD) and rarely with NK/T-cell lymphomas. Currently there are no approved antivirals active in PTLD nor in any other malignancy. Moreover, lytic phase disease almost never requires antiviral treatment. Although many novel therapies against EBV have been described, the management and/or prevention of EBV primary infections or reactivations remains difficult. In this review, we discuss EBV infection, therapies targeting EBV in both lytic and latent state with novel therapeutics developed that show anti-EBV activity as well as EBV-associated malignancies both, epithelial and lymphoproliferative malignancies and emerging therapies targeting the EBV-infected cells.
Collapse
Affiliation(s)
- Martyna Pociupany
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Robert Snoeck
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Daan Dierickx
- Laboratory of Experimental Hematology, Department of Oncology, KU Leuven, Leuven, Belgium; Department of Hematology, University Hospitals Leuven, Leuven, Belgium
| | - Graciela Andrei
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.
| |
Collapse
|
6
|
Lv M, Ding Y, Zhang Y, Liu S. Targeting EBV-encoded products: Implications for drug development in EBV-associated diseases. Rev Med Virol 2024; 34:e2487. [PMID: 37905912 DOI: 10.1002/rmv.2487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/02/2023] [Accepted: 10/22/2023] [Indexed: 11/02/2023]
Abstract
Epstein-Barr virus, a human gamma-herpesvirus, has a close connection to the pathogenesis of cancers and other diseases, which are a burden for public health worldwide. So far, several drugs or biomolecules have been discovered that can target EBV-encoded products for treatment, such as Silvestrol, affinity toxin, roscovitine, H20, H31, curcumin, thymoquinone, and ribosomal protein L22. These drugs activate or inhibit the function of some biomolecules, affecting subsequent signalling pathways by acting on the products of EBV. These drugs usually target LMP1, LMP2; EBNA1, EBNA2, EBNA3; EBER1, EBER2; Bam-HI A rightward transcript and BHRF1. Additionally, some promising findings in the fields of vaccines, immunological, and cellular therapies have been established. In this review, we mainly summarise the function of drugs mentioned above and unique mechanisms, hoping that we can help giving insight to the design of drugs for the treatment of EBV-associated diseases.
Collapse
Affiliation(s)
- Mengwen Lv
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Pathogenic Biology, Qingdao University Medical College, Qingdao, China
| | - Yuan Ding
- Department of Special Examination, Qingdao Women & Children Hospital, Qingdao, China
| | - Yan Zhang
- Department of Pathogenic Biology, Qingdao University Medical College, Qingdao, China
- Department of Clinical Laboratory, Zibo Central Hospital, Zibo, China
| | - Shuzhen Liu
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
7
|
Huang WH, Su WM, Wang CW, Fang YH, Jian YW, Hsu HJ, Peng CW. Momordica anti-HIV protein MAP30 abrogates the Epstein-Barr virus nuclear antigen 1 dependent functions in host cells. Heliyon 2023; 9:e21486. [PMID: 38027600 PMCID: PMC10660024 DOI: 10.1016/j.heliyon.2023.e21486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/07/2023] [Accepted: 10/22/2023] [Indexed: 12/01/2023] Open
Abstract
Originally extracted from Momordica charantia seeds, the antiviral and anti-tumor activities of Momordica anti-HIV protein MAP30 have become well known. Although MAP30 has been reported to possess antiviral activity against several human viruses, the current understanding of the MAP30-mediated antiviral response is mainly derived from the previous research work on anti-HIV herbal medicines; the mechanistic insight of its effects on other viruses remains largely unknown. In this study, we showed that both ectopically expressed and purified recombinant MAP30 (rMAP30) impeded Epstein-Barr virus Nuclear Antigen 1 (EBNA1)-mediated transcription from the viral latent replication origin. Mechanistically, in vivo and in vitro studies revealed that MAP30 caused EBNA1 to dissociate from the cognate binding sites, which disrupted downstream EBNA1-dependent viral epigenome accumulation and cell maintenance of Epstein-Barr virus (EBV)-associated neoplastic cells. Finally, mutational analysis indicated that the N-terminal ricin A homologous domain shared by ricin-like proteins was implicated in the anti-EBV response. Our study provides evidence to support that MAP30 has a unique property to combat EBV latent infection, suggesting a potential to develop this herbal protein to be an alternative medicine for EBV associated diseases.
Collapse
Affiliation(s)
- Wei-Hang Huang
- Department of Clinical Pathology Department of Hematology & Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 97002 Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan
| | - Wen-Min Su
- Department of Life Science, National Dong-Hwa University, Shoufeng, Hualien, 974301 Taiwan
| | - Chung-Wei Wang
- Department of Life Science, National Dong-Hwa University, Shoufeng, Hualien, 974301 Taiwan
| | - Yue-Hao Fang
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan
| | - Yuan-Wei Jian
- Department of Life Sciences, Tzu Chi University, Hualien, 97004 Taiwan
| | - Hao-Jen Hsu
- Department of Life Sciences, Tzu Chi University, Hualien, 97004 Taiwan
| | - Chih-Wen Peng
- Department of Life Science, National Dong-Hwa University, Shoufeng, Hualien, 974301 Taiwan
| |
Collapse
|
8
|
Ahmed K, Jha S. Oncoviruses: How do they hijack their host and current treatment regimes. Biochim Biophys Acta Rev Cancer 2023; 1878:188960. [PMID: 37507056 DOI: 10.1016/j.bbcan.2023.188960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/05/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Viruses have the ability to modulate the cellular machinery of their host to ensure their survival. While humans encounter numerous viruses daily, only a select few can lead to disease progression. Some of these viruses can amplify cancer-related traits, particularly when coupled with factors like immunosuppression and co-carcinogens. The global burden of cancer development resulting from viral infections is approximately 12%, and it arises as an unfortunate consequence of persistent infections that cause chronic inflammation, genomic instability from viral genome integration, and dysregulation of tumor suppressor genes and host oncogenes involved in normal cell growth. This review provides an in-depth discussion of oncoviruses and their strategies for hijacking the host's cellular machinery to induce cancer. It delves into how viral oncogenes drive tumorigenesis by targeting key cell signaling pathways. Additionally, the review discusses current therapeutic approaches that have been approved or are undergoing clinical trials to combat malignancies induced by oncoviruses. Understanding the intricate interactions between viruses and host cells can lead to the development of more effective treatments for virus-induced cancers.
Collapse
Affiliation(s)
- Kainat Ahmed
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Sudhakar Jha
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
9
|
Monaco MCG, Soldan SS, Su C, Clauze A, Cooper JF, Patel RJ, Lu F, Hughes RJ, Messick TE, Andrada FC, Ohayon J, Lieberman PM, Jacobson S. EBNA1 Inhibitors Block Proliferation of Spontaneous Lymphoblastoid Cell Lines From Patients With Multiple Sclerosis and Healthy Controls. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:e200149. [PMID: 37562974 PMCID: PMC10414776 DOI: 10.1212/nxi.0000000000200149] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/13/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND AND OBJECTIVES Epstein-Barr virus (EBV) is a ubiquitous herpesvirus that establishes lifelong latency in memory B cells and has been identified as a major risk factor of multiple sclerosis (MS). B cell depletion therapies have disease-modifying benefit in MS. However, it is unclear whether this benefit is partly attributable to the elimination of EBV+ B cells. Currently, there are no EBV-specific antiviral therapies available for targeting EBV latent infection in MS and limited experimental models to study EBV in MS. METHODS In this study, we describe the establishment of spontaneous lymphoblastoid cell lines (SLCLs) generated ex vivo with the endogenous EBV of patients with MS and controls and treated with either an Epstein-Barr virus nuclear antigen 1 (EBNA1) inhibitor (VK-1727) or cladribine, a nucleoside analog that eliminates B cells. RESULTS We showed that a small molecule inhibitor of EBNA1, a critical regulator of the EBV life cycle, blocks the proliferation and metabolic activity of these SLCLs. In contrast to cladribine, a highly cytotoxic B cell depleting therapy currently used in MS, the EBNA1 inhibitor VK-1727 was cytostatic rather than cytotoxic and selective for EBV+ cells, while having no discernible effects on EBV- cells. We validate that VK-1727 reduces EBNA1 DNA binding at known viral and cellular sites by ChIP-qPCR. DISCUSSION This study shows that patient-derived SLCLs provide a useful tool for interrogating the role of EBV+ B cells in MS and suggests that a clinical trial testing the effect of EBNA1 inhibitors in MS may be warranted.
Collapse
Affiliation(s)
- Maria Chiara G Monaco
- From the Neuroimmunology Branch (M.C.G.M., A.C., R.J.H., S.J.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; The Wistar Institute (S.S.S., C.S., J.F.C., R.J.P., F.L., T.E.M., P.M.L.), Philadelphia, PA; and Neuroimmunology Clinic (F.C.A., J.O.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| | - Samantha S Soldan
- From the Neuroimmunology Branch (M.C.G.M., A.C., R.J.H., S.J.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; The Wistar Institute (S.S.S., C.S., J.F.C., R.J.P., F.L., T.E.M., P.M.L.), Philadelphia, PA; and Neuroimmunology Clinic (F.C.A., J.O.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| | - Chenhe Su
- From the Neuroimmunology Branch (M.C.G.M., A.C., R.J.H., S.J.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; The Wistar Institute (S.S.S., C.S., J.F.C., R.J.P., F.L., T.E.M., P.M.L.), Philadelphia, PA; and Neuroimmunology Clinic (F.C.A., J.O.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| | - Annaliese Clauze
- From the Neuroimmunology Branch (M.C.G.M., A.C., R.J.H., S.J.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; The Wistar Institute (S.S.S., C.S., J.F.C., R.J.P., F.L., T.E.M., P.M.L.), Philadelphia, PA; and Neuroimmunology Clinic (F.C.A., J.O.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| | - John F Cooper
- From the Neuroimmunology Branch (M.C.G.M., A.C., R.J.H., S.J.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; The Wistar Institute (S.S.S., C.S., J.F.C., R.J.P., F.L., T.E.M., P.M.L.), Philadelphia, PA; and Neuroimmunology Clinic (F.C.A., J.O.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| | - Rishi J Patel
- From the Neuroimmunology Branch (M.C.G.M., A.C., R.J.H., S.J.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; The Wistar Institute (S.S.S., C.S., J.F.C., R.J.P., F.L., T.E.M., P.M.L.), Philadelphia, PA; and Neuroimmunology Clinic (F.C.A., J.O.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| | - Fang Lu
- From the Neuroimmunology Branch (M.C.G.M., A.C., R.J.H., S.J.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; The Wistar Institute (S.S.S., C.S., J.F.C., R.J.P., F.L., T.E.M., P.M.L.), Philadelphia, PA; and Neuroimmunology Clinic (F.C.A., J.O.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| | - Randall J Hughes
- From the Neuroimmunology Branch (M.C.G.M., A.C., R.J.H., S.J.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; The Wistar Institute (S.S.S., C.S., J.F.C., R.J.P., F.L., T.E.M., P.M.L.), Philadelphia, PA; and Neuroimmunology Clinic (F.C.A., J.O.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| | - Troy E Messick
- From the Neuroimmunology Branch (M.C.G.M., A.C., R.J.H., S.J.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; The Wistar Institute (S.S.S., C.S., J.F.C., R.J.P., F.L., T.E.M., P.M.L.), Philadelphia, PA; and Neuroimmunology Clinic (F.C.A., J.O.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| | - Frances C Andrada
- From the Neuroimmunology Branch (M.C.G.M., A.C., R.J.H., S.J.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; The Wistar Institute (S.S.S., C.S., J.F.C., R.J.P., F.L., T.E.M., P.M.L.), Philadelphia, PA; and Neuroimmunology Clinic (F.C.A., J.O.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| | - Joan Ohayon
- From the Neuroimmunology Branch (M.C.G.M., A.C., R.J.H., S.J.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; The Wistar Institute (S.S.S., C.S., J.F.C., R.J.P., F.L., T.E.M., P.M.L.), Philadelphia, PA; and Neuroimmunology Clinic (F.C.A., J.O.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| | - Paul M Lieberman
- From the Neuroimmunology Branch (M.C.G.M., A.C., R.J.H., S.J.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; The Wistar Institute (S.S.S., C.S., J.F.C., R.J.P., F.L., T.E.M., P.M.L.), Philadelphia, PA; and Neuroimmunology Clinic (F.C.A., J.O.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD.
| | - Steven Jacobson
- From the Neuroimmunology Branch (M.C.G.M., A.C., R.J.H., S.J.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; The Wistar Institute (S.S.S., C.S., J.F.C., R.J.P., F.L., T.E.M., P.M.L.), Philadelphia, PA; and Neuroimmunology Clinic (F.C.A., J.O.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD.
| |
Collapse
|
10
|
Zhao B. Epstein-Barr Virus B Cell Growth Transformation: The Nuclear Events. Viruses 2023; 15:832. [PMID: 37112815 PMCID: PMC10146190 DOI: 10.3390/v15040832] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Epstein-Barr virus (EBV) is the first human DNA tumor virus identified from African Burkitt's lymphoma cells. EBV causes ~200,000 various cancers world-wide each year. EBV-associated cancers express latent EBV proteins, EBV nuclear antigens (EBNAs), and latent membrane proteins (LMPs). EBNA1 tethers EBV episomes to the chromosome during mitosis to ensure episomes are divided evenly between daughter cells. EBNA2 is the major EBV latency transcription activator. It activates the expression of other EBNAs and LMPs. It also activates MYC through enhancers 400-500 kb upstream to provide proliferation signals. EBNALP co-activates with EBNA2. EBNA3A/C represses CDKN2A to prevent senescence. LMP1 activates NF-κB to prevent apoptosis. The coordinated activity of EBV proteins in the nucleus allows efficient transformation of primary resting B lymphocytes into immortalized lymphoblastoid cell lines in vitro.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
11
|
Smith C, Khanna R. Adoptive T-cell therapy targeting Epstein-Barr virus as a treatment for multiple sclerosis. Clin Transl Immunology 2023; 12:e1444. [PMID: 36960148 PMCID: PMC10028422 DOI: 10.1002/cti2.1444] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/23/2023] Open
Abstract
Emergence of a definitive link between Epstein-Barr virus (EBV) and multiple sclerosis has provided an impetus to develop immune-based therapies to target EBV-infected B cells. Initial studies with autologous EBV-specific T-cell therapy demonstrated that this therapy is safe with minimal side effects and more importantly multiple patients showed both symptomatic and objective neurological improvements including improved quality of life, reduction of fatigue and reduced intrathecal IgG production. These observations have been successfully extended to an 'off-the-shelf' allogeneic EBV-specific T-cell therapy manufactured using peripheral blood lymphocytes of healthy seropositive individuals. This adoptive immunotherapy has also been shown to be safe with encouraging clinical responses. Allogeneic EBV T-cell therapy overcomes some of the limitations of autologous therapy and can be rapidly delivered to patients with improved therapeutic potential.
Collapse
Affiliation(s)
- Corey Smith
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development, Infection and Inflammation ProgramQIMR Berghofer Medical Research InstituteHerstonQLDAustralia
| | - Rajiv Khanna
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development, Infection and Inflammation ProgramQIMR Berghofer Medical Research InstituteHerstonQLDAustralia
| |
Collapse
|
12
|
Impact of Tumour Epstein–Barr Virus Status on Clinical Outcome in Patients with Classical Hodgkin Lymphoma (cHL): A Review of the Literature and Analysis of a Clinical Trial Cohort of Children with cHL. Cancers (Basel) 2022; 14:cancers14174297. [PMID: 36077832 PMCID: PMC9454639 DOI: 10.3390/cancers14174297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The Epstein–Barr virus (EBV) contributes to different forms of human cancer, including a subset of classical Hodgkin lymphoma (cHL), a B-cell lymphoma with unusual histological features. Although the pathogenesis of EBV-associated cHL remains to be elucidated, biological investigations point to an important aetiological role for the virus in the development of this tumour. This is even more relevant now considering the potential opportunities that exist to treat EBV-associated disorders, for example, with immunotherapeutics or small molecule inhibitors targeting viral proteins. For this reason, we believe it is now timely to review the association between EBV and cHL and in particular to re-evaluate the impact of EBV status on clinical outcomes in cHL patients. Herein, we also report the impact of EBV on clinical outcomes in a cohort of children and adolescents with cHL. Abstract In this study, we have re-evaluated how EBV status influences clinical outcome. To accomplish this, we performed a literature review of all studies that have reported the effect of EBV status on patient outcome and also explored the effect of EBV positivity on outcome in a clinical trial of children with cHL from the UK. Our literature review revealed that almost all studies of older adults/elderly patients have reported an adverse effect of an EBV-positive status on outcome. In younger adults with cHL, EBV-positive status was either associated with a moderate beneficial effect or no effect, and the results in children and adolescents were conflicting. Our own analysis of a series of 166 children with cHL revealed no difference in overall survival between EBV-positive and EBV-negative groups (p = 0.942, log rank test). However, EBV-positive subjects had significantly longer event-free survival (p = 0.0026). Positive latent membrane protein 1 (LMP1) status was associated with a significantly lower risk of treatment failure in a Cox regression model (HR = 0.21, p = 0.005). In models that controlled for age, gender, and stage, EBV status had a similar effect size and statistical significance. This study highlights the age-related impact of EBV status on outcome in cHL patients and suggests different pathogenic effects of EBV at different stages of life.
Collapse
|
13
|
Chakravorty S, Afzali B, Kazemian M. EBV-associated diseases: Current therapeutics and emerging technologies. Front Immunol 2022; 13:1059133. [PMID: 36389670 PMCID: PMC9647127 DOI: 10.3389/fimmu.2022.1059133] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 11/13/2022] Open
Abstract
EBV is a prevalent virus, infecting >90% of the world's population. This is an oncogenic virus that causes ~200,000 cancer-related deaths annually. It is, in addition, a significant contributor to the burden of autoimmune diseases. Thus, EBV represents a significant public health burden. Upon infection, EBV remains dormant in host cells for long periods of time. However, the presence or episodic reactivation of the virus increases the risk of transforming healthy cells to malignant cells that routinely escape host immune surveillance or of producing pathogenic autoantibodies. Cancers caused by EBV display distinct molecular behaviors compared to those of the same tissue type that are not caused by EBV, presenting opportunities for targeted treatments. Despite some encouraging results from exploration of vaccines, antiviral agents and immune- and cell-based treatments, the efficacy and safety of most therapeutics remain unclear. Here, we provide an up-to-date review focusing on underlying immune and environmental mechanisms, current therapeutics and vaccines, animal models and emerging technologies to study EBV-associated diseases that may help provide insights for the development of novel effective treatments.
Collapse
Affiliation(s)
- Srishti Chakravorty
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Majid Kazemian
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States.,Department of Computer Science, Purdue University, West Lafayette IN, United States
| |
Collapse
|
14
|
Messick TE, Smith GR, Soldan SS, McDonnell ME, Deakyne JS, Malecka KA, Tolvinski L, van den Heuvel APJ, Gu BW, Cassel JA, Tran DH, Wassermann BR, Zhang Y, Velvadapu V, Zartler ER, Busson P, Reitz AB, Lieberman PM. Structure-based design of small-molecule inhibitors of EBNA1 DNA binding blocks Epstein-Barr virus latent infection and tumor growth. Sci Transl Med 2020; 11:11/482/eaau5612. [PMID: 30842315 DOI: 10.1126/scitranslmed.aau5612] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 02/07/2019] [Indexed: 12/14/2022]
Abstract
Epstein-Barr virus (EBV) is a DNA tumor virus responsible for 1 to 2% of human cancers including subtypes of Burkitt's lymphoma, Hodgkin's lymphoma, gastric carcinoma, and nasopharyngeal carcinoma (NPC). Persistent latent infection drives EBV-associated tumorigenesis. Epstein-Barr nuclear antigen 1 (EBNA1) is the only viral protein consistently expressed in all EBV-associated tumors and is therefore an attractive target for therapeutic intervention. It is a multifunctional DNA binding protein critical for viral replication, genome maintenance, viral gene expression, and host cell survival. Using a fragment-based approach and x-ray crystallography, we identify a 2,3-disubstituted benzoic acid series that selectively inhibits the DNA binding activity of EBNA1. We characterize these inhibitors biochemically and in cell-based assays, including chromatin immunoprecipitation and DNA replication assays. In addition, we demonstrate the potency of EBNA1 inhibitors to suppress tumor growth in several EBV-dependent xenograft models, including patient-derived xenografts for NPC. These inhibitors selectively block EBV gene transcription and alter the cellular transforming growth factor-β (TGF-β) signaling pathway in NPC tumor xenografts. These EBNA1-specific inhibitors show favorable pharmacological properties and have the potential to be further developed for the treatment of EBV-associated malignancies.
Collapse
Affiliation(s)
- Troy E Messick
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA.
| | - Garry R Smith
- Fox Chase Chemical Diversity Center Inc., 3805 Old Easton Road, Doylestown, PA 18902, USA
| | - Samantha S Soldan
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Mark E McDonnell
- Fox Chase Chemical Diversity Center Inc., 3805 Old Easton Road, Doylestown, PA 18902, USA.,Vironika LLC, 3624 Market Street, Ste 5E, Philadelphia, PA 19104, USA
| | | | | | - Lois Tolvinski
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | | | - Bai-Wei Gu
- Vironika LLC, 3624 Market Street, Ste 5E, Philadelphia, PA 19104, USA
| | - Joel A Cassel
- Vironika LLC, 3624 Market Street, Ste 5E, Philadelphia, PA 19104, USA
| | - Donna H Tran
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | | | - Yan Zhang
- Fox Chase Chemical Diversity Center Inc., 3805 Old Easton Road, Doylestown, PA 18902, USA
| | - Venkata Velvadapu
- Fox Chase Chemical Diversity Center Inc., 3805 Old Easton Road, Doylestown, PA 18902, USA
| | - Edward R Zartler
- Quantum Tessera Consulting LLC, 508 Tawnyberry Lane, Collegeville, PA 19426, USA
| | - Pierre Busson
- Institut Gustave Roussy, 114 Rue Edouard Vaillant, 84800 Villejuif, France
| | - Allen B Reitz
- Fox Chase Chemical Diversity Center Inc., 3805 Old Easton Road, Doylestown, PA 18902, USA
| | - Paul M Lieberman
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
15
|
De Leo A, Calderon A, Lieberman PM. Control of Viral Latency by Episome Maintenance Proteins. Trends Microbiol 2019; 28:150-162. [PMID: 31624007 DOI: 10.1016/j.tim.2019.09.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/30/2019] [Accepted: 09/05/2019] [Indexed: 12/12/2022]
Abstract
The human DNA tumor viruses Epstein-Barr virus (EBV), Kaposi's sarcoma-associated herpesvirus (KSHV), and human papillomavirus (HPV) share the common property of persisting as multicopy episomes in the nuclei of rapidly dividing host cells. These episomes form the molecular basis for viral latency and are etiologically linked to virus-associated cancers. Episome maintenance requires epigenetic programming to ensure the proper control of viral gene expression, DNA replication, and genome copy number. For these viruses, episome maintenance requires a dedicated virus-encoded episome maintenance protein (EMP), namely LANA (KSHV), EBNA1 (EBV), and E2 (HPV). Here, we review common features of these viral EMPs and discuss recent advances in understanding how they contribute to the epigenetic control of viral episome maintenance during latency.
Collapse
|
16
|
Tsang CM, Lui VWY, Bruce JP, Pugh TJ, Lo KW. Translational genomics of nasopharyngeal cancer. Semin Cancer Biol 2019; 61:84-100. [PMID: 31521748 DOI: 10.1016/j.semcancer.2019.09.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 12/26/2022]
Abstract
Nasopharyngeal carcinoma (NPC), also named the Cantonese cancer, is a unique cancer with strong etiological association with infection of the Epstein-Barr virus (EBV). With particularly high prevalence in Southeast Asia, the involvement of EBV and genetic aberrations contributive to NPC tumorigenesis have remained unclear for decades. Recently, genomic analysis of NPC has defined it as a genetically homogeneous cancer, driven largely by NF-κB signaling caused by either somatic aberrations of NF-κB negative regulators or by overexpression of the latent membrane protein 1 (LMP1), an EBV viral oncoprotein. This represents a landmark finding of the NPC genome. Exome and RNA sequencing data from new EBV-positive NPC models also highlight the importance of PI3K pathway aberrations in NPC. We also realize for the first time that NPC mutational burden, mutational signatures, MAPK/PI3K aberrations, and MHC Class I gene aberrations, are prognostic for patient outcome. Together, these multiple genomic discoveries begin to shape the focus of NPC therapy development. Given the challenge of NF-κB targeting in human cancers, more innovative drug discovery approaches should be explored to target the unique atypical NF-κB activation feature of NPC. Our next decade of NPC research should focus on further identification of the -omic landscapes of recurrent and metastatic NPC, development of gene-based precision medicines, as well as large-scale drug screening with the newly developed and well-characterized EBV-positive NPC models. Focused preclinical and clinical investigations on these major directions may identify new and effective targeting strategies to further improve survival of NPC patients.
Collapse
Affiliation(s)
- Chi Man Tsang
- Department of Anatomical and cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Vivian Wai Yan Lui
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Jeffrey P Bruce
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada; Ontario Institute for Cancer Research, Toronto, ON, M5G 1L7, Canada
| | - Kwok Wai Lo
- Department of Anatomical and cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
17
|
An etiological role for the Epstein-Barr virus in the pathogenesis of classical Hodgkin lymphoma. Blood 2019; 134:591-596. [DOI: 10.1182/blood.2019000568] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/06/2019] [Indexed: 12/31/2022] Open
Abstract
Abstract
Although a pathogenic role for the Epstein-Barr virus (EBV) is largely undisputed for tumors that are consistently EBV genome positive (eg, nasopharyngeal carcinoma, endemic Burkitt lymphoma), this is not the case for classical Hodgkin lymphoma (cHL), a tumor with only a variable EBV association. In light of recent developments in immunotherapeutics and small molecules targeting EBV, we believe it is now timely to reevaluate the role of EBV in cHL pathogenesis.
Collapse
|
18
|
Kerr JR. Epstein-Barr virus (EBV) reactivation and therapeutic inhibitors. J Clin Pathol 2019; 72:651-658. [DOI: 10.1136/jclinpath-2019-205822] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 05/19/2019] [Accepted: 06/10/2019] [Indexed: 12/11/2022]
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human virus which infects almost all humans during their lifetime and following the acute phase, persists for the remainder of the life of the individual. EBV infects B lymphocytes leading to their immortalisation, with persistence of the EBV genome as an episome. In the latent phase, EBV is prevented from reactivating through efficient cytotoxic cellular immunity. EBV reactivates (lytic phase) under conditions of psychological stress with consequent weakening of cellular immunity, and EBV reactivation has been shown to occur in a subset of individuals with each of a variety of cancers, autoimmune diseases, the autoimmune-like disease, chronic fatigue syndrome/myalgic encephalitis and under other circumstances such as being an inpatient in an intensive care unit. Chronic EBV reactivation is an important mechanism in the pathogenesis of many such diseases, yet is rarely tested for in immunocompetent individuals. This review summarises the pathogenesis of EBV infection, EBV reactivation and its role in disease, and methods which may be used to detect it. Known inhibitors of EBV reactivation and replication are discussed, including drugs licensed for treatment of other herpesviruses, licensed or experimental drugs for various other indications, compounds at an early stage of drug development and nutritional constituents such as vitamins and dietary supplements.
Collapse
|
19
|
Novel Therapeutics for Epstein⁻Barr Virus. Molecules 2019; 24:molecules24050997. [PMID: 30871092 PMCID: PMC6429425 DOI: 10.3390/molecules24050997] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 12/11/2022] Open
Abstract
Epstein–Barr virus (EBV) is a human γ-herpesvirus that infects up to 95% of the adult population. Primary EBV infection usually occurs during childhood and is generally asymptomatic, though the virus can cause infectious mononucleosis in 35–50% of the cases when infection occurs later in life. EBV infects mainly B-cells and epithelial cells, establishing latency in resting memory B-cells and possibly also in epithelial cells. EBV is recognized as an oncogenic virus but in immunocompetent hosts, EBV reactivation is controlled by the immune response preventing transformation in vivo. Under immunosuppression, regardless of the cause, the immune system can lose control of EBV replication, which may result in the appearance of neoplasms. The primary malignancies related to EBV are B-cell lymphomas and nasopharyngeal carcinoma, which reflects the primary cell targets of viral infection in vivo. Although a number of antivirals were proven to inhibit EBV replication in vitro, they had limited success in the clinic and to date no antiviral drug has been approved for the treatment of EBV infections. We review here the antiviral drugs that have been evaluated in the clinic to treat EBV infections and discuss novel molecules with anti-EBV activity under investigation as well as new strategies to treat EBV-related diseases.
Collapse
|
20
|
Jiang L, Xie C, Lung HL, Lo KW, Law GL, Mak NK, Wong KL. EBNA1-targeted inhibitors: Novel approaches for the treatment of Epstein-Barr virus-associated cancers. Am J Cancer Res 2018; 8:5307-5319. [PMID: 30555548 PMCID: PMC6276081 DOI: 10.7150/thno.26823] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 08/14/2018] [Indexed: 12/11/2022] Open
Abstract
Epstein-Barr virus (EBV) infects more than 90% of humans worldwide and establishes lifelong latent infection in the hosts. It is closely associated with endemic forms of a wide range of human cancers and directly contributes to the formation of some. Despite its critical role in cancer development, no EBV- or EBV latent protein-targeted therapy is available. The EBV-encoded latent protein, Epstein-Barr nuclear antigen 1 (EBNA1), is expressed in all EBV-associated tumors and acts as the only latent protein in some of these tumors. This versatile protein functions in the maintenance, replication, and segregation of the EBV genome and can therefore serve as an attractive therapeutic target to treat EBV-associated cancers. In the last decades, efforts have been made for designing specific EBNA1 inhibitors to decrease EBNA1 expression or interfere with EBNA1-dependent functions. In this review, we will briefly introduce the salient features of EBNA1, summarize its functional domains, and focus on the recent developments in the identification and design of EBNA1 inhibitors related to various EBNA1 domains as well as discuss their comparative merits.
Collapse
|
21
|
Cheng Z, Wang W, Wu C, Zou X, Fang L, Su W, Wang P. Novel Pyrrole–Imidazole Polyamide Hoechst Conjugate Suppresses Epstein–Barr Virus Replication and Virus-Positive Tumor Growth. J Med Chem 2018; 61:6674-6684. [DOI: 10.1021/acs.jmedchem.8b00496] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zhehong Cheng
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Shenzhen, Guangdong 518055, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Wei Wang
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Shenzhen, Guangdong 518055, China
| | - Chunlei Wu
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Shenzhen, Guangdong 518055, China
| | - Xiaohua Zou
- Shenzhen Laboratory of Antibody Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Lijing Fang
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Shenzhen, Guangdong 518055, China
| | - Wu Su
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Shenzhen, Guangdong 518055, China
| | - Pu Wang
- Shenzhen Laboratory of Antibody Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| |
Collapse
|
22
|
EBNA1: Oncogenic Activity, Immune Evasion and Biochemical Functions Provide Targets for Novel Therapeutic Strategies against Epstein-Barr Virus- Associated Cancers. Cancers (Basel) 2018; 10:cancers10040109. [PMID: 29642420 PMCID: PMC5923364 DOI: 10.3390/cancers10040109] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 03/26/2018] [Accepted: 03/29/2018] [Indexed: 12/12/2022] Open
Abstract
The presence of the Epstein-Barr virus (EBV)-encoded nuclear antigen-1 (EBNA1) protein in all EBV-carrying tumours constitutes a marker that distinguishes the virus-associated cancer cells from normal cells and thereby offers opportunities for targeted therapeutic intervention. EBNA1 is essential for viral genome maintenance and also for controlling viral gene expression and without EBNA1, the virus cannot persist. EBNA1 itself has been linked to cell transformation but the underlying mechanism of its oncogenic activity has been unclear. However, recent data are starting to shed light on its growth-promoting pathways, suggesting that targeting EBNA1 can have a direct growth suppressing effect. In order to carry out its tasks, EBNA1 interacts with cellular factors and these interactions are potential therapeutic targets, where the aim would be to cripple the virus and thereby rid the tumour cells of any oncogenic activity related to the virus. Another strategy to target EBNA1 is to interfere with its expression. Controlling the rate of EBNA1 synthesis is critical for the virus to maintain a sufficient level to support viral functions, while at the same time, restricting expression is equally important to prevent the immune system from detecting and destroying EBNA1-positive cells. To achieve this balance EBNA1 has evolved a unique repeat sequence of glycines and alanines that controls its own rate of mRNA translation. As the underlying molecular mechanisms for how this repeat suppresses its own rate of synthesis in cis are starting to be better understood, new therapeutic strategies are emerging that aim to modulate the translation of the EBNA1 mRNA. If translation is induced, it could increase the amount of EBNA1-derived antigenic peptides that are presented to the major histocompatibility (MHC) class I pathway and thus, make EBV-carrying cancers better targets for the immune system. If translation is further suppressed, this would provide another means to cripple the virus.
Collapse
|
23
|
Noh KW, Park J, Joo EH, Lee EK, Choi EY, Kang MS. ERK2 phosphorylation of EBNA1 serine 383 residue is important for EBNA1-dependent transactivation. Oncotarget 2018; 7:25507-15. [PMID: 27009860 PMCID: PMC5041921 DOI: 10.18632/oncotarget.8177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/29/2016] [Indexed: 11/25/2022] Open
Abstract
Functional inhibition of Epstein-Barr virus (EBV)-encoded nuclear antigen 1 (EBNA1) can cause the death of EBV infected cells. In this study, a bioinformatics tool predicted the existence of putative extracellular signal-regulated kinase (ERK) docking and substrate consensus sites on EBNA1, suggesting that ERK2 could bind to and phosphorylate EBNA1. In accordance, ERK2 was found to phosphorylate EBNA1 serine 383 in a reaction suppressed by H20 (a structural congener of the ERK inhibitor), U0126 (an inhibitor of MEK kinase), and mutations at substrate (S383A) or putative ERK docking sites. Wild-type (S383) and phosphomimetic (S383D) EBNA1 demonstrated comparable transactivation function, which was suppressed by H20 or U0126. In contrast, non-phosphorylated EBNA1 mutants displayed significantly impaired transactivation activity. ERK2 knock-down by siRNA, or treatment with U0126 or H20 repressed EBNA1-dependent transactivation. Collectively, these data indicate that blocking ERK2-directed phosphorylation can suppress EBNA1-transactivation function in latent EBV-infected cells, validating ERK2 as a drug target for EBV-associated disorders.
Collapse
Affiliation(s)
- Ka-Won Noh
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
| | - Jihyun Park
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
| | - Eun Hye Joo
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
| | - Eun Kyung Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
| | - Eun Young Choi
- BioMembrane Plasticity Research Center (MPRC), Seoul National University College of Medicine, Jongno-gu, Seoul, Korea
| | - Myung-Soo Kang
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Korea.,Samsung Biomedical Research Institute (SBRI), Samsung Medical Center and Sungkyunkwan University, Seoul, Korea.,BioMembrane Plasticity Research Center (MPRC), Seoul National University College of Medicine, Jongno-gu, Seoul, Korea
| |
Collapse
|
24
|
Bonnat L, Bar L, Génnaro B, Bonnet H, Jarjayes O, Thomas F, Dejeu J, Defrancq E, Lavergne T. Template-Mediated Stabilization of a DNA G-Quadruplex formed in the HIV-1 Promoter and Comparative Binding Studies. Chemistry 2017; 23:5602-5613. [PMID: 28264144 DOI: 10.1002/chem.201700417] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Indexed: 02/06/2023]
Abstract
G-rich DNA oligonucleotides derived from the promoter region of the HIV-1 long terminal repeat (LTR) were assembled onto an addressable cyclopeptide platform through sequential oxime ligation, a thiol-iodoacetamide SN2 reaction, and copper-catalyzed azide-alkyne cycloaddition reactions. The resulting conjugate was shown to fold into a highly stable antiparallel G4 architecture as demonstrated by UV, circular dichroism (CD), and NMR spectroscopic analysis. The binding affinities of six state-of-the-art G4-binding ligands toward the HIV-G4 structure were compared to those obtained with a telomeric G4 structure and a hairpin structure. Surface plasmon resonance binding analysis provides new insights into the binding mode of broadly exploited G4 chemical probes and further suggests that potent and selective recognition of viral G4 structures of functional significance might be achieved.
Collapse
Affiliation(s)
- Laureen Bonnat
- Univ. Grenoble Alpes, CNRS, DCM UMR-5250, 38000, Grenoble, France.,Univ. Grenoble Alpes, CNRS, DPM UMR-5063, 38000, Grenoble, France
| | - Laure Bar
- Univ. Grenoble Alpes, CNRS, DCM UMR-5250, 38000, Grenoble, France
| | - Béatrice Génnaro
- Univ. Grenoble Alpes, CNRS, DCM UMR-5250, 38000, Grenoble, France
| | - Hugues Bonnet
- Univ. Grenoble Alpes, CNRS, DCM UMR-5250, 38000, Grenoble, France
| | - Olivier Jarjayes
- Univ. Grenoble Alpes, CNRS, DCM UMR-5250, 38000, Grenoble, France
| | - Fabrice Thomas
- Univ. Grenoble Alpes, CNRS, DCM UMR-5250, 38000, Grenoble, France
| | - Jérôme Dejeu
- Univ. Grenoble Alpes, CNRS, DCM UMR-5250, 38000, Grenoble, France
| | - Eric Defrancq
- Univ. Grenoble Alpes, CNRS, DCM UMR-5250, 38000, Grenoble, France
| | - Thomas Lavergne
- Univ. Grenoble Alpes, CNRS, DCM UMR-5250, 38000, Grenoble, France
| |
Collapse
|
25
|
Noh KW, Park J, Kang MS. Targeted disruption of EBNA1 in EBV-infected cells attenuated cell growth. BMB Rep 2017; 49:226-31. [PMID: 26879316 PMCID: PMC4915242 DOI: 10.5483/bmbrep.2016.49.4.260] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Indexed: 01/02/2023] Open
Abstract
Epstein Barr virus (EBV)-encoded nuclear antigen-1 (EBNA1) plays a pivotal in an
EBV episome replication and persistence. Despite considerable attempts, there
are no EBV drugs or vaccines. We attempted to eradicate EBV episomes by
targeting EBNA1 using the transcription activator-like effector nucleases
(TALEN) (E1TN). E1TN-mediated transient knockout (KO) of EBNA1 reduced EBNA1
expression, and caused significant loss of EBV genomes and progressive death of
EBV-infected cells. Furthermore, when a mixture of EBV-infected Burkitt’s
lymphoma (BL) cells and EBV-negative BL cells was targeted by E1TN, EBV-negative
cells were counter-selected while most EBV-infected cells died, further
substantiating that EBNA1 KO caused selective death of EBV-infected cells.
TALEN-mediated transient targeting of EBNA1 attenuated the growth of
EBV-infected cells, implicating a possible therapeutic application of E1TN for
EBV-associated disorders. [BMB Reports 2016; 49(4): 226-231]
Collapse
Affiliation(s)
- Ka-Won Noh
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Korea
| | - Jihyun Park
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Korea
| | - Myung-Soo Kang
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University; Samsung Biomedical Research Institute (SBRI), Samsung Medical Center, Seoul 06351; BioMembrane Plasticity Research Center (MPRC), Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
26
|
Abstract
It is more than 50 years since the Epstein-Barr virus (EBV), the first human tumour virus, was discovered. EBV has subsequently been found to be associated with a diverse range of tumours of both lymphoid and epithelial origin. Progress in the molecular analysis of EBV has revealed fundamental mechanisms of more general relevance to the oncogenic process. This Timeline article highlights key milestones in the 50-year history of EBV and discusses how this virus provides a paradigm for exploiting insights at the molecular level in the diagnosis, treatment and prevention of cancer.
Collapse
Affiliation(s)
- Lawrence S Young
- Warwick Medical School, The University of Warwick, Coventry CV4 7AL, UK
| | - Lee Fah Yap
- Department of Oral and Craniofacial Sciences and Oral Cancer Research Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Paul G Murray
- Institute of Cancer and Genomic Medicine, University of Birmingham, Vincent Drive, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
27
|
van Diemen FR, Kruse EM, Hooykaas MJG, Bruggeling CE, Schürch AC, van Ham PM, Imhof SM, Nijhuis M, Wiertz EJHJ, Lebbink RJ. CRISPR/Cas9-Mediated Genome Editing of Herpesviruses Limits Productive and Latent Infections. PLoS Pathog 2016; 12:e1005701. [PMID: 27362483 PMCID: PMC4928872 DOI: 10.1371/journal.ppat.1005701] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/23/2016] [Indexed: 12/15/2022] Open
Abstract
Herpesviruses infect the majority of the human population and can cause significant morbidity and mortality. Herpes simplex virus (HSV) type 1 causes cold sores and herpes simplex keratitis, whereas HSV-2 is responsible for genital herpes. Human cytomegalovirus (HCMV) is the most common viral cause of congenital defects and is responsible for serious disease in immuno-compromised individuals. Epstein-Barr virus (EBV) is associated with infectious mononucleosis and a broad range of malignancies, including Burkitt’s lymphoma, nasopharyngeal carcinoma, Hodgkin’s disease, and post-transplant lymphomas. Herpesviruses persist in their host for life by establishing a latent infection that is interrupted by periodic reactivation events during which replication occurs. Current antiviral drug treatments target the clinical manifestations of this productive stage, but they are ineffective at eliminating these viruses from the infected host. Here, we set out to combat both productive and latent herpesvirus infections by exploiting the CRISPR/Cas9 system to target viral genetic elements important for virus fitness. We show effective abrogation of HCMV and HSV-1 replication by targeting gRNAs to essential viral genes. Simultaneous targeting of HSV-1 with multiple gRNAs completely abolished the production of infectious particles from human cells. Using the same approach, EBV can be almost completely cleared from latently infected EBV-transformed human tumor cells. Our studies indicate that the CRISPR/Cas9 system can be effectively targeted to herpesvirus genomes as a potent prophylactic and therapeutic anti-viral strategy that may be used to impair viral replication and clear latent virus infection. Herpesviruses are large DNA viruses that are carried by almost 100% of the adult human population. Herpesviruses include several important human pathogens, such as herpes simplex viruses (HSV) type 1 and 2 (causing cold sores and genital herpes, respectively), human cytomegalovirus (HCMV; the most common viral cause of congenital defects, and responsible for serious disease in immuno-compromised individuals), and Epstein-Barr virus (EBV; associated with infectious mononucleosis and a wide range of malignancies). Current antiviral drug treatments are not effective in clearing herpesviruses from infected individuals. Therefore, there is a need for alternative strategies to combat these pathogenic viruses and prevent or cure herpesvirus-associated diseases. Here, we have assessed whether a direct attack of herpesvirus genomes within virus-infected cells can inactivate these viruses. For this, we have made use of the recently developed CRISPR/Cas9 genome-engineering system to target and alter specific regions within the genome of these viruses. By targeting sites in the genomes of three different herpesviruses (HSV-1, HCMV, and EBV), we show complete inhibition of viral replication and in some cases even eradication of the viral genomes from infected cells. The findings presented in this study open new avenues for the development of therapeutic strategies to combat pathogenic human herpesviruses using novel genome-engineering technologies.
Collapse
Affiliation(s)
- Ferdy R. van Diemen
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Elisabeth M. Kruse
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | - Anita C. Schürch
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Petra M. van Ham
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Saskia M. Imhof
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Monique Nijhuis
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Robert Jan Lebbink
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
28
|
Infection-associated non-Hodgkin lymphomas. Clin Microbiol Infect 2015; 21:991-7. [PMID: 26253291 DOI: 10.1016/j.cmi.2015.07.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/13/2015] [Accepted: 07/24/2015] [Indexed: 12/12/2022]
Abstract
Non-Hodgkin lymphomas (NHLs) are malignant proliferations of lymphoid cells. Lymphoid cells proliferate in a physiological manner in response to antigen-dependent and antigen-independent signals. Some lymphotropic viruses, such as Epstein-Barr virus and human T-lymphotropic virus 1, as well as pathogens leading to chronic antigenic stimulation (such as Helicobacter pylori and hepatitis C virus), are associated with NHL. We review here some of the pathophysiological features of infection-associated NHL.
Collapse
|
29
|
Abstract
Latent Epstein–Barr virus (EBV) infection has a substantial role in causing many human disorders. The persistence of these viral genomes in all malignant cells, yet with the expression of limited latent genes, is consistent with the notion that EBV latent genes are important for malignant cell growth. While the EBV-encoded nuclear antigen-1 (EBNA-1) and latent membrane protein-2A (LMP-2A) are critical, the EBNA-leader proteins, EBNA-2, EBNA-3A, EBNA-3C and LMP-1, are individually essential for in vitro transformation of primary B cells to lymphoblastoid cell lines. EBV-encoded RNAs and EBNA-3Bs are dispensable. In this review, the roles of EBV latent genes are summarized.
Collapse
Affiliation(s)
- Myung-Soo Kang
- 1] Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Samsung Medical Center, Sungkyunkwan University, Seoul, Korea [2] Samsung Biomedical Research Institute (SBRI), Samsung Medical Center, Sungkyunkwan University, Seoul, Korea
| | - Elliott Kieff
- Department of Medicine, Brigham and Women's Hospital, Program in Virology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
30
|
Hornig J, McGregor A. Design and development of antivirals and intervention strategies against human herpesviruses using high-throughput approach. Expert Opin Drug Discov 2014; 9:891-915. [DOI: 10.1517/17460441.2014.922538] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|