1
|
Qiao W, Xie X, Shi PY, Ooi YS, Carette JE. Druggable genome screens identify SPP as an antiviral host target for multiple flaviviruses. Proc Natl Acad Sci U S A 2025; 122:e2421573122. [PMID: 39969998 DOI: 10.1073/pnas.2421573122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/22/2024] [Accepted: 01/16/2025] [Indexed: 02/21/2025] Open
Abstract
Mosquito-borne flaviviruses, such as dengue virus (DENV), Zika virus (ZIKV), West Nile virus, and yellow fever virus, pose significant public health threats globally. Extensive efforts have led to the development of promising highly active compounds against DENV targeting viral non-structural protein 4B (NS4B) protein. However, due to the cocirculation of flaviviruses and to prepare for emerging flaviviruses, there is a need for more broadly acting antivirals. Host-directed therapy where one targets a host factor required for viral replication may be active against multiple viruses that use similar replication strategies. Here, we used a CRISPR-Cas9 library that we designed to target the druggable genome and identified signal peptide peptidase (SPP, encoded by Histocompatibility Minor 13, HM13), as a critical host factor in DENV infection. Genetic knockout or introducing mutations that disrupt the proteolytic activity of SPP markedly reduced the replication of multiple flaviviruses. Although their substrates differ, SPP has structural homology with γ-secretase, which has been pursued as a pharmacological target for Alzheimer's disease. Notably, SPP-targeting compounds exhibited potent anti-DENV activity at low nanomolar concentrations across multiple primary and disease-relevant cell types, acting specifically through SPP inhibition rather than γ-secretase inhibition. Importantly, SPP inhibitors were active at low nanomolar concentrations against flaviviruses other than DENV including ZIKV while DENV NS4B inhibitors lost activity. This study emphasizes the strong potential of SPP as a pan-flaviviral target and provides a framework for identifying host druggable targets to screen for broad-spectrum antivirals.
Collapse
Affiliation(s)
- Wenjie Qiao
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Xuping Xie
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
| | - Yaw Shin Ooi
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
- Infectious Diseases Labs, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
2
|
Rashmi SH, Disha KS, Sudheesh N, Karunakaran J, Joseph A, Jagadesh A, Mudgal PP. Repurposing of approved antivirals against dengue virus serotypes: an in silico and in vitro mechanistic study. Mol Divers 2024; 28:2831-2844. [PMID: 37632595 PMCID: PMC11611978 DOI: 10.1007/s11030-023-10716-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/03/2023] [Accepted: 08/13/2023] [Indexed: 08/28/2023]
Abstract
Dengue is an emerging, mosquito-borne viral disease of international public health concern. Dengue is endemic in more than 100 countries across the world. However, there are no clinically approved antivirals for its cure. Drug repurposing proves to be an efficient alternative to conventional drug discovery approaches in this regard, as approved drugs with an established safety profile are tested for new indications, which circumvents several time-consuming experiments. In the present study, eight approved RNA-dependent RNA polymerase inhibitors of Hepatitis C virus were virtually screened against the Dengue virus polymerase protein, and their antiviral activity was assessed in vitro. Schrödinger software was used for in silico screening, where the compounds were passed through several hierarchical filters. Among the eight compounds, dasabuvir was finally selected for in vitro cytotoxicity and antiviral screening. Cytotoxicity profiling of dasabuvir in Vero cells revealed changes in cellular morphology, cell aggregation, and detachment at 50 μM. Based on these results, four noncytotoxic concentrations of dasabuvir (0.1, 0.25, 0.5, and 1 µM) were selected for antiviral screening against DENV-2 under three experimental conditions: pre-infection, co-infection, and post-infection treatment, by plaque reduction assay. Viral plaques were reduced significantly (p < 0.05) in the co-infection and post-infection treatment regimens; however, no reduction was observed in the pretreatment group. This indicated a possible interference of dasabuvir with NS5 RdRp, as seen from in silico interaction studies, translating into a reduction in virus plaques. Such studies reiterate the usefulness of drug repurposing as a viable strategy in antiviral drug discovery.
Collapse
Affiliation(s)
- S H Rashmi
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, India
| | - K Sai Disha
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, India
| | - N Sudheesh
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, India
| | - Joseph Karunakaran
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, India
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Anitha Jagadesh
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, India
| | - P P Mudgal
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
3
|
Ahmad G, Sohail M, Bilal M, Rasool N, Qamar MU, Ciurea C, Marceanu LG, Misarca C. N-Heterocycles as Promising Antiviral Agents: A Comprehensive Overview. Molecules 2024; 29:2232. [PMID: 38792094 PMCID: PMC11123935 DOI: 10.3390/molecules29102232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/07/2024] [Revised: 04/22/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Viruses are a real threat to every organism at any stage of life leading to extensive infections and casualties. N-heterocycles can affect the viral life cycle at many points, including viral entrance into host cells, viral genome replication, and the production of novel viral species. Certain N-heterocycles can also stimulate the host's immune system, producing antiviral cytokines and chemokines that can stop the reproduction of viruses. This review focused on recent five- or six-membered synthetic N-heterocyclic molecules showing antiviral activity through SAR analyses. The review will assist in identifying robust scaffolds that might be utilized to create effective antiviral drugs with either no or few side effects.
Collapse
Affiliation(s)
- Gulraiz Ahmad
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (G.A.); (M.S.)
| | - Maria Sohail
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (G.A.); (M.S.)
| | - Muhammad Bilal
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
| | - Nasir Rasool
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (G.A.); (M.S.)
| | - Muhammad Usman Qamar
- Institute of Microbiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan;
- Division of Infectious Diseases, Geneva University Hospitals, 1205 Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Codrut Ciurea
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (L.G.M.)
| | - Luigi Geo Marceanu
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (L.G.M.)
| | - Catalin Misarca
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (L.G.M.)
| |
Collapse
|
4
|
Shivaprasad S, Qiao W, Weng KF, Umashankar P, Carette JE, Sarnow P. CRISPR Screen Reveals PACT as a Pro-Viral Factor for Dengue Viral Replication. Viruses 2024; 16:725. [PMID: 38793607 PMCID: PMC11125577 DOI: 10.3390/v16050725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/13/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
The dengue virus is a single-stranded, positive-sense RNA virus that infects ~400 million people worldwide. Currently, there are no approved antivirals available. CRISPR-based screening methods have greatly accelerated the discovery of host factors that are essential for DENV infection and that can be targeted in host-directed antiviral interventions. In the present study, we performed a focused CRISPR (Clustered Regularly Interspaced Palindromic Repeats) library screen to discover the key host factors that are essential for DENV infection in human Huh7 cells and identified the Protein Activator of Interferon-Induced Protein Kinase (PACT) as a novel pro-viral factor for DENV. PACT is a double-stranded RNA-binding protein generally known to activate antiviral responses in virus-infected cells and block viral replication. However, in our studies, we observed that PACT plays a pro-viral role in DENV infection and specifically promotes viral RNA replication. Knockout of PACT resulted in a significant decrease in DENV RNA and protein abundances in infected cells, which was rescued upon ectopic expression of full-length PACT. An analysis of global gene expression changes indicated that several ER-associated pro-viral genes such as ERN1, DDIT3, HERPUD1, and EIF2AK3 are not upregulated in DENV-infected PACT knockout cells as compared to infected wildtype cells. Thus, our study demonstrates a novel role for PACT in promoting DENV replication, possibly through modulating the expression of ER-associated pro-viral genes.
Collapse
Affiliation(s)
- Shwetha Shivaprasad
- Department of Microbiology & Immunology, Stanford University SOM, Stanford, CA 94305, USA; (W.Q.); (J.E.C.); (P.S.)
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, Karnataka, India;
| | - Wenjie Qiao
- Department of Microbiology & Immunology, Stanford University SOM, Stanford, CA 94305, USA; (W.Q.); (J.E.C.); (P.S.)
| | - Kuo-Feng Weng
- Department of Microbiology & Immunology, Stanford University SOM, Stanford, CA 94305, USA; (W.Q.); (J.E.C.); (P.S.)
| | - Pavithra Umashankar
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, Karnataka, India;
| | - Jan E. Carette
- Department of Microbiology & Immunology, Stanford University SOM, Stanford, CA 94305, USA; (W.Q.); (J.E.C.); (P.S.)
| | - Peter Sarnow
- Department of Microbiology & Immunology, Stanford University SOM, Stanford, CA 94305, USA; (W.Q.); (J.E.C.); (P.S.)
| |
Collapse
|
5
|
Chen X, Yan Y, Song H, Wang Z, Wang A, Yang J, Zhou R, Xu S, Yang S, Li W, Qin X, Dai Q, Liu M, Lv K, Cao R, Zhong W. Investigation of novel 5'-amino adenosine derivatives with potential anti-Zika virus activity. Eur J Med Chem 2023; 261:115852. [PMID: 37801825 DOI: 10.1016/j.ejmech.2023.115852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/23/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/08/2023]
Abstract
The Zika virus (ZIKV) infections remains a global health threat. However, no approved drug for treating ZIKV infection. We previously found TZY12-9, a 5'-amino NI analog, that showed anti-ZIKV activity without chemical phosphorylation. Here, a series of 5'-amino NI analogs were synthesized and evaluated. The compound XSJ2-46 exhibited potent in vitro activity without requiring chemical phosphorylation, favorable pharmacokinetic and acute toxicity profiles. Preliminary mechanisms of anti-ZIKV activity of XSJ2-46 were investigated via a series of ZIKV non-structural protein inhibition assays and host cell RNA-seq. XSJ2-46 acted at the replication stage of viral infection cycle, and exhibited reasonable inhibition of RNA-dependent RNA polymerases (RdRp) with an IC50 value of 8.78 μM, while not affecting MTase. RNA-seq analysis also revealed differential expression genes involved in cytokine and cytokine receptor pathway in ZIKV-infected U87 cells treated with XSJ2-46. Importantly, treatment with XSJ2-46 (10 mg/kg/day) significantly enhanced survival protection (70% survival) in ZIKV-infected ICR mice. Additionally, XSJ2-46 administration resulted in a significant decrease in serum levels of ZIKV viral RNA in the IFNα/β receptor-deficient (Ifnar-/-) A129 mouse model. Therefore, the remarkable in vitro and in vivo anti-ZIKV activity of compound XSJ2-46 highlights the promising research direction of utilizing the 5'-amino NI structure skeleton for developing antiviral NIs.
Collapse
Affiliation(s)
- Xingjuan Chen
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shannxi, 710072, China; National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yunzheng Yan
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Huijuan Song
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zhuang Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shannxi, 710072, China; National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Apeng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jingjing Yang
- Song Li' Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Sanya, Hainan, 572000, China
| | - Rui Zhou
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shijie Xu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shaokang Yang
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Wei Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xiaoyu Qin
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Qingsong Dai
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Mingliang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Kai Lv
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Ruiyuan Cao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Wu Zhong
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| |
Collapse
|
6
|
Feracci M, Eydoux C, Fattorini V, Lo Bello L, Gauffre P, Selisko B, Sutto-Ortiz P, Shannon A, Xia H, Shi PY, Noel M, Debart F, Vasseur JJ, Good S, Lin K, Moussa A, Sommadossi JP, Chazot A, Alvarez K, Guillemot JC, Decroly E, Ferron F, Canard B. AT-752 targets multiple sites and activities on the Dengue virus replication enzyme NS5. Antiviral Res 2023; 212:105574. [PMID: 36905944 DOI: 10.1016/j.antiviral.2023.105574] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/20/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/12/2023]
Abstract
AT-752 is a guanosine analogue prodrug active against dengue virus (DENV). In infected cells, it is metabolized into 2'-methyl-2'-fluoro guanosine 5'-triphosphate (AT-9010) which inhibits RNA synthesis in acting as a RNA chain terminator. Here we show that AT-9010 has several modes of action on DENV full-length NS5. AT-9010 does not inhibit the primer pppApG synthesis step significantly. However, AT-9010 targets two NS5-associated enzyme activities, the RNA 2'-O-MTase and the RNA-dependent RNA polymerase (RdRp) at its RNA elongation step. Crystal structure and RNA methyltransferase (MTase) activities of the DENV 2 MTase domain in complex with AT-9010 at 1.97 Å resolution shows the latter bound to the GTP/RNA-cap binding site, accounting for the observed inhibition of 2'-O but not N7-methylation activity. AT-9010 is discriminated ∼10 to 14-fold against GTP at the NS5 active site of all four DENV1-4 NS5 RdRps, arguing for significant inhibition through viral RNA synthesis termination. In Huh-7 cells, DENV1-4 are equally sensitive to AT-281, the free base of AT-752 (EC50 ≈ 0.50 μM), suggesting broad spectrum antiviral properties of AT-752 against flaviviruses.
Collapse
Affiliation(s)
- Mikael Feracci
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Cécilia Eydoux
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Véronique Fattorini
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Lea Lo Bello
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Pierre Gauffre
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Barbara Selisko
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Priscila Sutto-Ortiz
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Ashleigh Shannon
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Hongjie Xia
- Department of Biochemistry and Molecular Biology, Sealy Institute for Drug Discovery, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, Sealy Institute for Drug Discovery, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA.
| | - Mathieu Noel
- IBMM, UMR 5247 CNRS-UM1-UM2, Department of Nucleic Acids, Montpellier University, Place E. Bataillon, 34095, Montpellier Cedex 05, France
| | - Françoise Debart
- IBMM, UMR 5247 CNRS-UM1-UM2, Department of Nucleic Acids, Montpellier University, Place E. Bataillon, 34095, Montpellier Cedex 05, France
| | - Jean-Jacques Vasseur
- IBMM, UMR 5247 CNRS-UM1-UM2, Department of Nucleic Acids, Montpellier University, Place E. Bataillon, 34095, Montpellier Cedex 05, France
| | - Steve Good
- Atea Pharmaceuticals, Inc., 225 Franklin St., Suite 2100, Boston, MA, 02110, USA
| | - Kai Lin
- Atea Pharmaceuticals, Inc., 225 Franklin St., Suite 2100, Boston, MA, 02110, USA
| | - Adel Moussa
- Atea Pharmaceuticals, Inc., 225 Franklin St., Suite 2100, Boston, MA, 02110, USA
| | | | - Aurélie Chazot
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Karine Alvarez
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Jean-Claude Guillemot
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Etienne Decroly
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - François Ferron
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Bruno Canard
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France.
| |
Collapse
|
7
|
Celegato M, Sturlese M, Vasconcelos Costa V, Trevisan M, Lallo Dias AS, Souza Passos IB, Queiroz-Junior CM, Messa L, Favaro A, Moro S, Teixeira MM, Loregian A, Mercorelli B. Small-Molecule Inhibitor of Flaviviral NS3-NS5 Interaction with Broad-Spectrum Activity and Efficacy In Vivo. mBio 2023; 14:e0309722. [PMID: 36622141 PMCID: PMC9973282 DOI: 10.1128/mbio.03097-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/11/2022] [Accepted: 11/30/2022] [Indexed: 01/10/2023] Open
Abstract
Every year, dengue virus (DENV) causes one hundred million infections worldwide that can result in dengue disease and severe dengue. Two other mosquito-borne flaviviruses, i.e., Zika virus (ZIKV) and West Nile virus (WNV), are responsible of prolonged outbreaks and are associated with severe neurological diseases, congenital defects, and eventually death. These three viruses, despite their importance for global public health, still lack specific drug treatments. Here, we describe the structure-guided discovery of small molecules with pan-flavivirus antiviral potential by a virtual screening of ~1 million structures targeting the NS3-NS5 interaction surface of different flaviviruses. Two molecules inhibited the interaction between DENV NS3 and NS5 in vitro and the replication of all DENV serotypes as well as ZIKV and WNV and exhibited low propensity to select resistant viruses. Remarkably, one molecule demonstrated efficacy in a mouse model of dengue by reducing peak viremia, viral load in target organs, and associated tissue pathology. This study provides the proof of concept that targeting the flaviviral NS3-NS5 interaction is an effective therapeutic strategy able to reduce virus replication in vivo and discloses new chemical scaffolds that could be further developed, thus providing a significant milestone in the development of much awaited broad-spectrum antiflaviviral drugs. IMPORTANCE More than one-third of the human population is at risk of infection by different mosquito-borne flaviviruses. Despite this, no specific antiviral drug is currently available. In this work, using a computational approach based on molecular dynamics simulation and virtual screening of ~1 million small-molecule structures, we identified a compound that targets the interaction between the two sole flaviviral enzymes, i.e., NS3 and NS5. This compound demonstrated pan-serotype anti-DENV activity and pan-flavivirus potential in infected cells, low propensity to select viral resistant mutant viruses, and efficacy in a mouse model of dengue. Broad-spectrum antivirals are much awaited, and this work represents a significant advance toward the development of therapeutic molecules with extended antiflavivirus potential that act by an innovative mechanism and could be used alone or in combination with other antivirals.
Collapse
Affiliation(s)
- Marta Celegato
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Mattia Sturlese
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | | | - Marta Trevisan
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Angélica Samer Lallo Dias
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Lorenzo Messa
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Annagiulia Favaro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Stefano Moro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Mauro Martins Teixeira
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Arianna Loregian
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | |
Collapse
|
8
|
Natural Compounds as Non-Nucleoside Inhibitors of Zika Virus Polymerase through Integration of In Silico and In Vitro Approaches. Pharmaceuticals (Basel) 2022; 15:ph15121493. [PMID: 36558945 PMCID: PMC9788182 DOI: 10.3390/ph15121493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/26/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
Although the past epidemic of Zika virus (ZIKV) resulted in severe neurological consequences for infected infants and adults, there are still no approved drugs to treat ZIKV infection. In this study, we applied computational approaches to screen an in-house database of 77 natural and semi-synthetic compounds against ZIKV NS5 RNA-dependent RNA-polymerase (NS5 RdRp), an essential protein for viral RNA elongation during the replication process. For this purpose, we integrated computational approaches such as binding-site conservation, chemical space analysis and molecular docking. As a result, we prioritized nine virtual hits for experimental evaluation. Enzymatic assays confirmed that pedalitin and quercetin inhibited ZIKV NS5 RdRp with IC50 values of 4.1 and 0.5 µM, respectively. Moreover, pedalitin also displayed antiviral activity on ZIKV infection with an EC50 of 19.28 µM cell-based assays, with low toxicity in Vero cells (CC50 = 83.66 µM) and selectivity index of 4.34. These results demonstrate the potential of the natural compounds pedalitin and quercetin as candidates for structural optimization studies towards the discovery of new anti-ZIKV drug candidates.
Collapse
|
9
|
Qian X, Qi Z. Mosquito-Borne Flaviviruses and Current Therapeutic Advances. Viruses 2022; 14:v14061226. [PMID: 35746697 PMCID: PMC9229039 DOI: 10.3390/v14061226] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/30/2022] [Revised: 05/25/2022] [Accepted: 06/02/2022] [Indexed: 12/10/2022] Open
Abstract
Mosquito-borne flavivirus infections affect approximately 400 million people worldwide each year and are global threats to public health. The common diseases caused by such flaviviruses include West Nile, yellow fever, dengue, Zika infection and Japanese encephalitis, which may result in severe symptoms and disorders of multiple organs or even fatal outcomes. Till now, no specific antiviral agents are commercially available for the treatment of the diseases. Numerous strategies have been adopted to develop novel and promising inhibitors against mosquito-borne flaviviruses, including drugs targeting the critical viral components or essential host factors during infection. Research advances in antiflaviviral therapy might optimize and widen the treatment options for flavivirus infection. This review summarizes the current developmental progresses and involved molecular mechanisms of antiviral agents against mosquito-borne flaviviruses.
Collapse
|
10
|
Qian W, Xue JX, Xu J, Li F, Zhou GF, Wang F, Luo RH, Liu J, Zheng YT, Zhou GC. Design, synthesis, discovery and SAR of the fused tricyclic derivatives of indoline and imidazolidinone against DENV replication and infection. Bioorg Chem 2022; 120:105639. [DOI: 10.1016/j.bioorg.2022.105639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/16/2021] [Revised: 01/09/2022] [Accepted: 01/20/2022] [Indexed: 12/15/2022]
|
11
|
Anwar MN, Akhtar R, Abid M, Khan SA, Rehman ZU, Tayyub M, Malik MI, Shahzad MK, Mubeen H, Qadir MS, Hameed M, Wahaab A, Li Z, Liu K, Li B, Qiu Y, Ma Z, Wei J. The interactions of flaviviruses with cellular receptors: Implications for virus entry. Virology 2022; 568:77-85. [DOI: 10.1016/j.virol.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/21/2021] [Revised: 01/10/2022] [Accepted: 02/02/2022] [Indexed: 12/17/2022]
|
12
|
Abstract
Flaviviruses such as dengue, Japanese encephalitis, West Nile, Yellow Fever and Zika virus, cause viral hemorrhagic fever and encephalitis in humans. However, antiviral therapeutics to treat or prevent flavivirus infections are not yet available. Thus, there is pressing need to develop therapeutics and vaccines that target flavivirus infections. All flaviviruses carry a positive-sense single-stranded RNA genome, which encodes ten proteins; three structural proteins form the virus shell, and seven nonstructural (NS) proteins are involved in replication of the viral genome. While all NS proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) are part of a functional membrane-bound replication complex, enzymatic activities required for flaviviral replication reside in only two NS proteins, NS3 and NS5. NS3 functions as a protease, helicase, and triphosphatase, and NS5 as a capping enzyme, methyltransferase, and RNA-dependent RNA polymerase. In this chapter, we provide an overview of viral replication focusing on the structure and function of NS3 and NS5 replicases. We further describe strategies and examples of current efforts to identify potential flavivirus inhibitors against NS3 and NS5 enzymatic activities that can be developed as therapeutic agents to combat flavivirus infections.
Collapse
Affiliation(s)
- Ekaterina Knyazhanskaya
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX, United States
| | - Marc C Morais
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX, United States
| | - Kyung H Choi
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX, United States.
| |
Collapse
|
13
|
Fernandes PO, Chagas MA, Rocha WR, Moraes AH. Non-structural protein 5 (NS5) as a target for antiviral development against established and emergent flaviviruses. Curr Opin Virol 2021; 50:30-39. [PMID: 34340199 DOI: 10.1016/j.coviro.2021.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/23/2020] [Revised: 06/18/2021] [Accepted: 07/02/2021] [Indexed: 11/19/2022]
Abstract
Flaviviruses are among the most critical pathogens in tropical regions and cause a growing number of severe diseases in developing countries. The development of antiviral therapeutics is crucial for managing flavivirus outbreaks. Among the ten proteins encoded in the flavivirus RNA, non-structural protein 5, NS5, is a promising drug target. NS5 plays a fundamental role in flavivirus replication, viral RNA methylation, RNA polymerization, and host immune system evasion. Most of the NS5 inhibitor candidates target NS5 active sites. However, the similarity of NS5 activity sites with human enzymes can cause side effects. Identifying new allosteric sites in NS5 can contribute enormously to antiviral development. The NS5 structural characterization enabled exploring new regions, such as the residues involved in MTase-RdRp interaction, NS5 oligomerization, and NS5 interaction with other viral and host-cell proteins. Targeting NS5 critical interactions might lead to new compounds and overcomes the toxicity of current NS5-inhibitor candidates.
Collapse
Affiliation(s)
- Philipe O Fernandes
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | - Marcelo A Chagas
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | - Willian R Rocha
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | - Adolfo H Moraes
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil; Department of NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany.
| |
Collapse
|
14
|
Insights on Dengue and Zika NS5 RNA-dependent RNA polymerase (RdRp) inhibitors. Eur J Med Chem 2021; 224:113698. [PMID: 34274831 DOI: 10.1016/j.ejmech.2021.113698] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/24/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 11/20/2022]
Abstract
Over recent years, many outbreaks caused by (re)emerging RNA viruses have been reported worldwide, including life-threatening Flaviviruses, such as Dengue (DENV) and Zika (ZIKV). Currently, there is only one licensed vaccine against Dengue, Dengvaxia®. However, its administration is not recommended for children under nine years. Still, there are no specific inhibitors available to treat these infectious diseases. Among the flaviviral proteins, NS5 RNA-dependent RNA polymerase (RdRp) is a metalloenzyme essential for viral replication, suggesting that it is a promising macromolecular target since it has no human homolog. Nowadays, several NS5 RdRp inhibitors have been reported, while none inhibitors are currently in clinical development. In this context, this review constitutes a comprehensive work focused on RdRp inhibitors from natural, synthetic, and even repurposing sources. Furthermore, their main aspects associated with the structure-activity relationship (SAR), proposed mechanisms of action, computational studies, and other topics will be discussed in detail.
Collapse
|
15
|
Lin X, Liang C, Zou L, Yin Y, Wang J, Chen D, Lan W. Advance of structural modification of nucleosides scaffold. Eur J Med Chem 2021; 214:113233. [PMID: 33550179 PMCID: PMC7995807 DOI: 10.1016/j.ejmech.2021.113233] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/25/2020] [Revised: 01/06/2021] [Accepted: 01/23/2021] [Indexed: 12/12/2022]
Abstract
With Remdesivir being approved by FDA as a drug for the treatment of Corona Virus Disease 2019 (COVID-19), nucleoside drugs have once again received widespread attention in the medical community. Herein, we summarized modification of traditional nucleoside framework (sugar + base), traizole nucleosides, nucleoside analogues assembled by other drugs, macromolecule-modified nucleosides, and their bioactivity rules. 2'-"Ara"-substituted by -F or -CN group, and 3'-"ara" substituted by acetylenyl group can greatly influence their anti-tumor activities. Dideoxy dehydrogenation of 2',3'-sites can enhance antiviral efficiencies. Acyclic nucleosides and L-type nucleosides mainly represented antiviral capabilities. 5-F Substituted uracil analogues exihibit anti-tumor effects, and the substrates substituted by -I, -CF3, bromovinyl group usually show antiviral activities. The sugar coupled with 1-N of triazolid usually displays anti-tumor efficiencies, while the sugar coupled with 2-N of triazolid mainly represents antiviral activities. The nucleoside analogues assembled by cholesterol, polyethylene glycol, fatty acid and phospholipid would improve their bioavailabilities and bioactivities, or reduce their toxicities.
Collapse
Affiliation(s)
- Xia Lin
- Medical College, Guangxi University, Nanning, 530004, China; College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China; Guangxi Medical College, Nanning, 530023, China
| | | | - Lianjia Zou
- Guangxi Medical College, Nanning, 530023, China
| | - Yanchun Yin
- Guangxi Medical College, Nanning, 530023, China
| | - Jianyi Wang
- Medical College, Guangxi University, Nanning, 530004, China; College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China.
| | - Dandan Chen
- Guangxi Medical College, Nanning, 530023, China
| | - Weisen Lan
- College of Agriculture, Guangxi University, Nanning, 530004, China
| |
Collapse
|
16
|
Two RNA Tunnel Inhibitors Bind in Highly Conserved Sites in Dengue Virus NS5 Polymerase: Structural and Functional Studies. J Virol 2020; 94:JVI.01130-20. [PMID: 32907977 DOI: 10.1128/jvi.01130-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/04/2020] [Accepted: 08/29/2020] [Indexed: 11/20/2022] Open
Abstract
Dengue virus (DENV) NS5 RNA-dependent RNA polymerase (RdRp), an important drug target, synthesizes viral RNA and is essential for viral replication. While a number of allosteric inhibitors have been reported for hepatitis C virus RdRp, few have been described for DENV RdRp. Following a diverse compound screening campaign and a rigorous hit-to-lead flowchart combining biochemical and biophysical approaches, two DENV RdRp nonnucleoside inhibitors were identified and characterized. These inhibitors show low- to high-micromolar inhibition in DENV RNA polymerization and cell-based assays. X-ray crystallography reveals that they bind in the enzyme RNA template tunnel. One compound (NITD-434) induced an allosteric pocket at the junction of the fingers and palm subdomains by displacing residue V603 in motif B. Binding of another compound (NITD-640) ordered the fingers loop preceding the F motif, close to the RNA template entrance. Most of the amino acid residues that interacted with these compounds are highly conserved in flaviviruses. Both sites are important for polymerase de novo initiation and elongation activities and essential for viral replication. This work provides evidence that the RNA tunnel in DENV RdRp offers interesting target sites for inhibition.IMPORTANCE Dengue virus (DENV), an important arthropod-transmitted human pathogen that causes a spectrum of diseases, has spread dramatically worldwide in recent years. Despite extensive efforts, the only commercial vaccine does not provide adequate protection to naive individuals. DENV NS5 polymerase is a promising drug target, as exemplified by the development of successful commercial drugs against hepatitis C virus (HCV) polymerase and HIV-1 reverse transcriptase. High-throughput screening of compound libraries against this enzyme enabled the discovery of inhibitors that induced binding sites in the RNA template channel. Characterizations by biochemical, biophysical, and reverse genetics approaches provide a better understanding of the biological relevance of these allosteric sites and the way forward to design more-potent inhibitors.
Collapse
|
17
|
Wang Y, Anirudhan V, Du R, Cui Q, Rong L. RNA-dependent RNA polymerase of SARS-CoV-2 as a therapeutic target. J Med Virol 2020; 93:300-310. [PMID: 32633831 DOI: 10.1002/jmv.26264] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/27/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/23/2022]
Abstract
The global pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), named coronavirus disease 2019, has infected more than 8.9 million people worldwide. This calls for urgent effective therapeutic measures. RNA-dependent RNA polymerase (RdRp) activity in viral transcription and replication has been recognized as an attractive target to design novel antiviral strategies. Although SARS-CoV-2 shares less genetic similarity with SARS-CoV (~79%) and Middle East respiratory syndrome coronavirus (~50%), the respective RdRps of the three coronaviruses are highly conserved, suggesting that RdRp is a good broad-spectrum antiviral target for coronaviruses. In this review, we discuss the antiviral potential of RdRp inhibitors (mainly nucleoside analogs) with an aim to provide a comprehensive account of drug discovery on SARS-CoV-2.
Collapse
Affiliation(s)
- Yanyan Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Varada Anirudhan
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois
| | - Ruikun Du
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.,Shandong Provincial Collaborative Innovation Center for Antiviral Traditional Chinese Medicine, Jinan, China.,Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Qinghua Cui
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.,Shandong Provincial Collaborative Innovation Center for Antiviral Traditional Chinese Medicine, Jinan, China.,Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Lijun Rong
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
18
|
Abstract
Dengue virus (DENV) was designated as a top 10 public health threat by the World Health Organization in 2019. No clinically approved anti-DENV drug is currently available. Here we report the high-resolution cocrystal structure (1.5 Å) of the DENV-2 capsid protein in complex with an inhibitor that potently suppresses DENV-2 but not other DENV serotypes. The inhibitor induces a "kissing" interaction between two capsid dimers. The inhibitor-bound capsid tetramers are assembled inside virions, resulting in defective uncoating of nucleocapsid when infecting new cells. Resistant DENV-2 emerges through one mutation that abolishes hydrogen bonds in the capsid structure, leading to a loss of compound binding. Structure-based analysis has defined the amino acids responsible for the inhibitor's inefficacy against other DENV serotypes. The results have uncovered an antiviral mechanism through inhibitor-induced tetramerization of the viral capsid and provided essential structural and functional knowledge for rational design of panserotype DENV capsid inhibitors.
Collapse
|
19
|
Pierson TC, Diamond MS. The continued threat of emerging flaviviruses. Nat Microbiol 2020; 5:796-812. [PMID: 32367055 DOI: 10.1038/s41564-020-0714-0] [Citation(s) in RCA: 582] [Impact Index Per Article: 116.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/27/2019] [Accepted: 03/27/2020] [Indexed: 12/18/2022]
Abstract
Flaviviruses are vector-borne RNA viruses that can emerge unexpectedly in human populations and cause a spectrum of potentially severe diseases including hepatitis, vascular shock syndrome, encephalitis, acute flaccid paralysis, congenital abnormalities and fetal death. This epidemiological pattern has occurred numerous times during the last 70 years, including epidemics of dengue virus and West Nile virus, and the most recent explosive epidemic of Zika virus in the Americas. Flaviviruses are now globally distributed and infect up to 400 million people annually. Of significant concern, outbreaks of other less well-characterized flaviviruses have been reported in humans and animals in different regions of the world. The potential for these viruses to sustain epidemic transmission among humans is poorly understood. In this Review, we discuss the basic biology of flaviviruses, their infectious cycles, the diseases they cause and underlying host immune responses to infection. We describe flaviviruses that represent an established ongoing threat to global health and those that have recently emerged in new populations to cause significant disease. We also provide examples of lesser-known flaviviruses that circulate in restricted areas of the world but have the potential to emerge more broadly in human populations. Finally, we discuss how an understanding of the epidemiology, biology, structure and immunity of flaviviruses can inform the rapid development of countermeasures to treat or prevent human infections as they emerge.
Collapse
Affiliation(s)
- Theodore C Pierson
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, the National Institutes of Health, Bethesda, MD, USA.
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
20
|
CRISPR-Cas13a Cleavage of Dengue Virus NS3 Gene Efficiently Inhibits Viral Replication. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:1460-1469. [PMID: 32160714 PMCID: PMC7056623 DOI: 10.1016/j.omtn.2020.01.028] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 06/04/2019] [Revised: 12/02/2019] [Accepted: 01/23/2020] [Indexed: 12/23/2022]
Abstract
The CRISPR-Cas9 system has been applied to DNA editing with precision in eukaryotic and prokaryotic systems, but it is unable to edit RNA directly. A recently developed CRISPR-Cas13a system has been shown to be capable of effectively knocking down RNA expression in mammalian and plant cells. In this study, we employ the CRISPR-Cas13a system to achieve reprogrammable inactivation of dengue virus in mammalian cells. Quantitative reverse transcription PCR (qRT-PCR), fluorescence-activated cell sorting (FACS), and plaque assays showed that CRISPR RNA (crRNA) targeting the NS3 region led to the greatest viral inhibition among 10 crRNAs targeting different regions along the dengue viral genomic RNA. Deletions and insertions had also been found adjacent to the NS3 region after NS3-crRNA/Cas13a complex transfection. Our results demonstrate that the CRISPR-Cas13a system is a novel and effective technology to inhibit dengue viral replication, suggesting that such a programmable method may be further developed into a novel therapeutic strategy for dengue and other RNA viruses.
Collapse
|
21
|
Abdullah AA, Lee YK, Chin SP, Lim SK, Lee VS, Othman R, Othman S, Rahman NA, Yusof R, Heh CH. Discovery of Dengue Virus Inhibitors. Curr Med Chem 2020; 27:4945-5036. [PMID: 30514185 DOI: 10.2174/0929867326666181204155336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/28/2018] [Revised: 11/11/2018] [Accepted: 11/22/2018] [Indexed: 11/22/2022]
Abstract
To date, there is still no approved anti-dengue agent to treat dengue infection in the market. Although the only licensed dengue vaccine, Dengvaxia is available, its protective efficacy against serotypes 1 and 2 of dengue virus was reported to be lower than serotypes 3 and 4. Moreover, according to WHO, the risk of being hospitalized and having severe dengue increased in seronegative individuals after they received Dengvaxia vaccination. Nevertheless, various studies had been carried out in search of dengue virus inhibitors. These studies focused on the structural (C, prM, E) and non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5) of dengue virus as well as host factors as drug targets. Hence, this article provides an overall up-to-date review of the discovery of dengue virus inhibitors that are only targeting the structural and non-structural viral proteins as drug targets.
Collapse
Affiliation(s)
- Adib Afandi Abdullah
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Yean Kee Lee
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Sek Peng Chin
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - See Khai Lim
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Vannajan Sanghiran Lee
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Rozana Othman
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Shatrah Othman
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Noorsaadah Abdul Rahman
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Rohana Yusof
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Choon Han Heh
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
22
|
Ngo AM, Shurtleff MJ, Popova KD, Kulsuptrakul J, Weissman JS, Puschnik AS. The ER membrane protein complex is required to ensure correct topology and stable expression of flavivirus polyproteins. eLife 2019; 8:48469. [PMID: 31516121 PMCID: PMC6756788 DOI: 10.7554/elife.48469] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/15/2019] [Accepted: 09/13/2019] [Indexed: 12/27/2022] Open
Abstract
Flaviviruses translate their genomes as multi-pass transmembrane proteins at the endoplasmic reticulum (ER) membrane. Here, we show that the ER membrane protein complex (EMC) is indispensable for the expression of viral polyproteins. We demonstrated that EMC was essential for accurate folding and post-translational stability rather than translation efficiency. Specifically, we revealed degradation of NS4A-NS4B, a region rich in transmembrane domains, in absence of EMC. Orthogonally, by serial passaging of virus on EMC-deficient cells, we identified two non-synonymous point mutations in NS4A and NS4B, which rescued viral replication. Finally, we showed a physical interaction between EMC and viral NS4B and that the NS4A-4B region adopts an aberrant topology in the absence of the EMC leading to degradation. Together, our data highlight how flaviviruses hijack the EMC for transmembrane protein biogenesis to achieve optimal expression of their polyproteins, which reinforces a role for the EMC in stabilizing challenging transmembrane proteins during synthesis.
Collapse
Affiliation(s)
- Ashley M Ngo
- Chan Zuckerberg Biohub, San Francisco, United States
| | - Matthew J Shurtleff
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Katerina D Popova
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | | | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | | |
Collapse
|
23
|
Nucleoside Analogs with Antiviral Activity against Yellow Fever Virus. Antimicrob Agents Chemother 2019; 63:AAC.00889-19. [PMID: 31262759 DOI: 10.1128/aac.00889-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/30/2019] [Accepted: 06/24/2019] [Indexed: 12/15/2022] Open
Abstract
Yellow fever virus (YFV) is a human Flavivirus reemerging in parts of the world. While a vaccine is available, large outbreaks have recently occurred in Brazil and certain African countries. Development of an effective antiviral against YFV is crucial, as there is no available effective drug against YFV. We have identified several novel nucleoside analogs with potent antiviral activity against YFV with 50% effective concentration (EC50) values between 0.25 and 1 μM with selectivity indices over 100 in culture.
Collapse
|
24
|
An RNA-centric dissection of host complexes controlling flavivirus infection. Nat Microbiol 2019; 4:2369-2382. [PMID: 31384002 PMCID: PMC6879806 DOI: 10.1038/s41564-019-0518-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/21/2018] [Accepted: 04/23/2019] [Indexed: 12/26/2022]
Abstract
Flaviviruses including dengue virus (DENV) and Zika virus (ZIKV) cause significant human disease. Co-opting cellular factors for viral translation and viral genome replication at the endoplasmic reticulum (ER) is a shared replication strategy, despite different clinical outcomes. While the protein products of these viruses have been studied in depth, how the RNA genomes operate inside human cells is poorly understood. Using comprehensive identification of RNA binding proteins by mass spectrometry (ChIRP-MS), we took an RNA-centric viewpoint of flaviviral infection and identified several hundred proteins associated with both DENV and ZIKV genomic RNA in human cells. Genome-scale knockout screens assigned putative functional relevance to the RNA-protein interactions observed by ChIRP-MS. The ER-localized RNA binding proteins vigilin and RRBP1 directly bound viral RNA and each acted at distinct stages in the life cycle of flaviviruses. Thus, this versatile strategy can elucidate features of human biology that control pathogenesis of clinically relevant viruses.
Collapse
|
25
|
Dighe SN, Ekwudu O, Dua K, Chellappan DK, Katavic PL, Collet TA. Recent update on anti-dengue drug discovery. Eur J Med Chem 2019; 176:431-455. [PMID: 31128447 DOI: 10.1016/j.ejmech.2019.05.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/14/2019] [Revised: 04/12/2019] [Accepted: 05/06/2019] [Indexed: 01/27/2023]
Abstract
Dengue is the most important arthropod-borne viral disease of humans, with more than half of the global population living in at-risk areas. Despite the negative impact on public health, there are no antiviral therapies available, and the only licensed vaccine, Dengvaxia®, has been contraindicated in children below nine years of age. In an effort to combat dengue, several small molecules have entered into human clinical trials. Here, we review anti-DENV molecules and their drug targets that have been published within the past five years (2014-2018). Further, we discuss their probable mechanisms of action and describe a role for classes of clinically approved drugs and also an unclassified class of anti-DENV agents. This review aims to enhance our understanding of novel agents and their cognate targets in furthering innovations in the use of small molecules for dengue drug therapies.
Collapse
Affiliation(s)
- Satish N Dighe
- Innovative Medicines Group, Institute of Health & Biomedical Innovation, School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia.
| | - O'mezie Ekwudu
- Innovative Medicines Group, Institute of Health & Biomedical Innovation, School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Peter L Katavic
- Innovative Medicines Group, Institute of Health & Biomedical Innovation, School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Trudi A Collet
- Innovative Medicines Group, Institute of Health & Biomedical Innovation, School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
26
|
Tick-borne encephalitis in Europe and Russia: Review of pathogenesis, clinical features, therapy, and vaccines. Antiviral Res 2019; 164:23-51. [PMID: 30710567 DOI: 10.1016/j.antiviral.2019.01.014] [Citation(s) in RCA: 244] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/23/2018] [Revised: 12/10/2018] [Accepted: 01/22/2019] [Indexed: 02/07/2023]
Abstract
Tick-borne encephalitis (TBE) is an illness caused by tick-borne encephalitis virus (TBEV) infection which is often limited to a febrile illness, but may lead to very aggressive downstream neurological manifestations. The disease is prevalent in forested areas of Europe and northeastern Asia, and is typically caused by infection involving one of three TBEV subtypes, namely the European (TBEV-Eu), the Siberian (TBEV-Sib), or the Far Eastern (TBEV-FE) subtypes. In addition to the three main TBEV subtypes, two other subtypes; i.e., the Baikalian (TBEV-Bkl) and the Himalayan subtype (TBEV-Him), have been described recently. In Europe, TBEV-Eu infection usually results in only mild TBE associated with a mortality rate of <2%. TBEV-Sib infection also results in a generally mild TBE associated with a non-paralytic febrile form of encephalitis, although there is a tendency towards persistent TBE caused by chronic viral infection. TBE-FE infection is considered to induce the most severe forms of TBE. Importantly though, viral subtype is not the sole determinant of TBE severity; both mild and severe cases of TBE are in fact associated with infection by any of the subtypes. In keeping with this observation, the overall TBE mortality rate in Russia is ∼2%, in spite of the fact that TBEV-Sib and TBEV-FE subtypes appear to be inducers of more severe TBE than TBEV-Eu. On the other hand, TBEV-Sib and TBEV-FE subtype infections in Russia are associated with essentially unique forms of TBE rarely seen elsewhere if at all, such as the hemorrhagic and chronic (progressive) forms of the disease. For post-exposure prophylaxis and TBE treatment in Russia and Kazakhstan, a specific anti-TBEV immunoglobulin is currently used with well-documented efficacy, but the use of specific TBEV immunoglobulins has been discontinued in Europe due to concerns regarding antibody-enhanced disease in naïve individuals. Therefore, new treatments are essential. This review summarizes available data on the pathogenesis and clinical features of TBE, plus different vaccine preparations available in Europe and Russia. In addition, new treatment possibilities, including small molecule drugs and experimental immunotherapies are reviewed. The authors caution that their descriptions of approved or experimental therapies should not be considered to be recommendations for patient care.
Collapse
|
27
|
Dengue drug discovery: Progress, challenges and outlook. Antiviral Res 2018; 163:156-178. [PMID: 30597183 DOI: 10.1016/j.antiviral.2018.12.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/17/2018] [Revised: 12/22/2018] [Accepted: 12/25/2018] [Indexed: 12/14/2022]
Abstract
In the context of the only available vaccine (DENGVAXIA) that was marketed in several countries, but poses higher risks to unexposed individuals, the development of antivirals for dengue virus (DENV), whilst challenging, would bring significant benefits to public health. Here recent progress in the field of DENV drug discovery made in academic laboratories and industry is reviewed. Characteristics of an ideal DENV antiviral molecule, given the specific immunopathology provoked by this acute viral infection, are described. New chemical classes identified from biochemical, biophysical and phenotypic screens that target viral (especially NS4B) and host proteins, offer promising opportunities for further development. In particular, new methodologies ("omics") can accelerate the discovery of much awaited flavivirus specific inhibitors. Challenges and opportunities in lead identification activities as well as the path to clinical development of dengue drugs are discussed. To galvanize DENV drug discovery, collaborative public-public partnerships and open-access resources will greatly benefit both the DENV research community and DENV patients.
Collapse
|
28
|
Bardiot D, Koukni M, Smets W, Carlens G, McNaughton M, Kaptein S, Dallmeier K, Chaltin P, Neyts J, Marchand A. Discovery of Indole Derivatives as Novel and Potent Dengue Virus Inhibitors. J Med Chem 2018; 61:8390-8401. [PMID: 30149709 DOI: 10.1021/acs.jmedchem.8b00913] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022]
Abstract
3-Acyl-indole derivative 1 was identified as a novel dengue virus (DENV) inhibitor from a DENV serotype 2 (DENV-2) phenotypic antiviral screen. Extensive SAR studies led to the discovery of new derivatives with improved DENV-2 potency as well as activity in nanomolar to micromolar range against the other DENV serotypes. In addition to the potency, physicochemical properties and metabolic stability in rat and human microsomes were improved during the optimization process. Chiral separation of the racemic mixtures showed a clear preference for one of the two enantiomers. Furthermore, rat pharmacokinetics of two compounds will be discussed in more detail, demonstrating the potential of this new series of pan-serotype-DENV inhibitors.
Collapse
Affiliation(s)
- Dorothée Bardiot
- Cistim Leuven vzw , Bioincubator 2, Gaston Geenslaan 2 , 3001 Leuven , Belgium
| | - Mohamed Koukni
- Cistim Leuven vzw , Bioincubator 2, Gaston Geenslaan 2 , 3001 Leuven , Belgium
| | - Wim Smets
- Cistim Leuven vzw , Bioincubator 2, Gaston Geenslaan 2 , 3001 Leuven , Belgium
| | - Gunter Carlens
- Cistim Leuven vzw , Bioincubator 2, Gaston Geenslaan 2 , 3001 Leuven , Belgium
| | - Michael McNaughton
- Cistim Leuven vzw , Bioincubator 2, Gaston Geenslaan 2 , 3001 Leuven , Belgium
| | - Suzanne Kaptein
- Laboratory of Virology, Rega Institute for Medical Research , KU Leuven , Herestraat 49 , Box 1030, 3000 Leuven , Belgium
| | - Kai Dallmeier
- Laboratory of Virology, Rega Institute for Medical Research , KU Leuven , Herestraat 49 , Box 1030, 3000 Leuven , Belgium
| | - Patrick Chaltin
- Cistim Leuven vzw , Bioincubator 2, Gaston Geenslaan 2 , 3001 Leuven , Belgium.,Centre for Drug Design and Discovery , KU Leuven , Bioincubator 2, Gaston Geenslaan 2 , 3001 Leuven , Belgium
| | - Johan Neyts
- Laboratory of Virology, Rega Institute for Medical Research , KU Leuven , Herestraat 49 , Box 1030, 3000 Leuven , Belgium
| | - Arnaud Marchand
- Cistim Leuven vzw , Bioincubator 2, Gaston Geenslaan 2 , 3001 Leuven , Belgium
| |
Collapse
|
29
|
A Small-Molecule Oligosaccharyltransferase Inhibitor with Pan-flaviviral Activity. Cell Rep 2018; 21:3032-3039. [PMID: 29241533 DOI: 10.1016/j.celrep.2017.11.054] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/08/2017] [Revised: 10/16/2017] [Accepted: 11/15/2017] [Indexed: 01/04/2023] Open
Abstract
The mosquito-borne flaviviruses include important human pathogens such as dengue, Zika, West Nile, and yellow fever viruses, which pose a serious threat for global health. Recent genetic screens identified endoplasmic reticulum (ER)-membrane multiprotein complexes, including the oligosaccharyltransferase (OST) complex, as critical flavivirus host factors. Here, we show that a chemical modulator of the OST complex termed NGI-1 has promising antiviral activity against flavivirus infections. We demonstrate that NGI-1 blocks viral RNA replication and that antiviral activity does not depend on inhibition of the N-glycosylation function of the OST. Viral mutants adapted to replicate in cells deficient of the OST complex showed resistance to NGI-1 treatment, reinforcing the on-target activity of NGI-1. Lastly, we show that NGI-1 also has strong antiviral activity in primary and disease-relevant cell types. This study provides an example for advancing from the identification of genetic determinants of infection to a host-directed antiviral compound with broad activity against flaviviruses.
Collapse
|
30
|
Marzag H, Zerhouni M, Tachallait H, Demange L, Robert G, Bougrin K, Auberger P, Benhida R. Modular synthesis of new C-aryl-nucleosides and their anti-CML activity. Bioorg Med Chem Lett 2018; 28:1931-1936. [PMID: 29655981 DOI: 10.1016/j.bmcl.2018.03.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/13/2018] [Accepted: 03/22/2018] [Indexed: 02/08/2023]
Abstract
The C-aryl-ribosyles are of utmost interest for the development of antiviral and anticancer agents. Even if several synthetic pathways have been disclosed for the preparation of these nucleosides, a direct, few steps and modular approaches are still lacking. In line with our previous efforts, we report herein a one step - eco-friendly β-ribosylation of aryles and heteroaryles through a direct Friedel-Craft ribosylation mediated by bismuth triflate, Bi(OTf)3. The resulting carbohydrates have been functionalized by cross-coupling reactions, leading to a series of new C-aryl-nucleosides (32 compounds). Among them, we observed that 5d exerts promising anti-proliferative effects against two human Chronic Myeloid Leukemia (CML) cell lines, both sensitive (K562-S) or resistant (K562-R) to imatinib, the "gold standard of care" used in this pathology. Moreover, we demonstrated that 5d kills CML cells by a non-conventional mechanism of cell death.
Collapse
Affiliation(s)
- Hamid Marzag
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR 7272, 06108 Nice, France; Plant Chemistry, Organic and Bioorganic Synthesis Team, URAC23, Faculty of Sciences, B.P. 1014, GEOPAC Research Center, Mohammed V University, Rabat, Morocco
| | - Marwa Zerhouni
- Université Côte d'Azur, INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Bâtiment ARCHIMED, 151 Route de Saint-Antoine de Ginestière, BP 2 3194, 06204 Nice Cedex 3, France
| | - Hamza Tachallait
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR 7272, 06108 Nice, France; Plant Chemistry, Organic and Bioorganic Synthesis Team, URAC23, Faculty of Sciences, B.P. 1014, GEOPAC Research Center, Mohammed V University, Rabat, Morocco
| | - Luc Demange
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR 7272, 06108 Nice, France; Département de Chimie, Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Pharmaceutiques, 4 avenue de l'Observatoire & UFR Biomédicale des Saints Pères, 45 rue des Saints Pères, Paris Fr-75006, France
| | - Guillaume Robert
- Université Côte d'Azur, INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Bâtiment ARCHIMED, 151 Route de Saint-Antoine de Ginestière, BP 2 3194, 06204 Nice Cedex 3, France
| | - Khalid Bougrin
- Plant Chemistry, Organic and Bioorganic Synthesis Team, URAC23, Faculty of Sciences, B.P. 1014, GEOPAC Research Center, Mohammed V University, Rabat, Morocco
| | - Patrick Auberger
- Université Côte d'Azur, INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Bâtiment ARCHIMED, 151 Route de Saint-Antoine de Ginestière, BP 2 3194, 06204 Nice Cedex 3, France
| | - Rachid Benhida
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR 7272, 06108 Nice, France; Mohamed VI Polytechnic University, UM6P, 43150 Ben Guerir, Morocco.
| |
Collapse
|
31
|
Chen S, Yang C, Zhang W, Mahalingam S, Wang M, Cheng A. Flaviviridae virus nonstructural proteins 5 and 5A mediate viral immune evasion and are promising targets in drug development. Pharmacol Ther 2018; 190:1-14. [PMID: 29742479 DOI: 10.1016/j.pharmthera.2018.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/23/2022]
Abstract
Infections with viruses in the Flaviviridae family have a vast global and economic impact because of the high morbidity and mortality. The pathogenesis of Flaviviridae infections is very complex and not fully understood because these viruses can inhibit multiple immune pathways including the complement system, NK cells, and IFN induction and signalling pathways. The non-structural (NS) 5 and 5A proteins of Flaviviridae viruses are highly conserved and play an important role in resisting host immunity through various evasion mechanisms. This review summarizes the strategies used by the NS5 and 5A proteins of Flaviviridae viruses for evading the innate immune response by inhibiting pattern recognition receptor (PRR) signalling pathways (TLR/MyD88, IRF7), suppressing interferon (IFN) signalling pathways (IFN-γRs, STAT1, STAT2), and impairing the function of IFN-stimulated genes (ISGs) (e.g. protein kinase R [PKR], oligoadenylate synthase [OAS]). All of these immune evasion mechanisms depend on the interaction of NS5 or NS5A with cellular proteins, such as MyD88 and IRF7, IFN-αRs, IFN-γRs, STAT1, STAT2, PKR and OAS. NS5 is the most attractive target for the discovery of broad spectrum compounds against Flaviviridae virus infection. The methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRp) activities of NS5 are the main therapeutic targets for antiviral drugs against Flaviviridae virus infection. Based on our site mapping, the sites involved in immune evasion provide some potential and promising targets for further novel antiviral therapeutics.
Collapse
Affiliation(s)
- Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China.
| | - Chao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Wei Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Suresh Mahalingam
- Emerging Viruses and Inflammation Research Group, Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China.
| |
Collapse
|
32
|
Structure-activity relationship of uridine-based nucleoside phosphoramidate prodrugs for inhibition of dengue virus RNA-dependent RNA polymerase. Bioorg Med Chem Lett 2018; 28:2324-2327. [PMID: 29801997 DOI: 10.1016/j.bmcl.2018.04.069] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/02/2018] [Revised: 04/25/2018] [Accepted: 04/29/2018] [Indexed: 11/24/2022]
Abstract
To identify a potent and selective nucleoside inhibitor of dengue virus RNA-dependent RNA polymerase, a series of 2'- and/or 4'-ribose sugar modified uridine nucleoside phosphoramidate prodrugs and their corresponding triphosphates were synthesized and evaluated. Replacement of 2'-OH with 2'-F led to be a poor substrate for both dengue virus and human mitochondrial RNA polymerases. Instead of 2'-fluorination, the introduction of fluorine at the ribose 4'-position was found not to affect the inhibition of the dengue virus polymerase with a reduction in uptake by mitochondrial RNA polymerase. 2'-C-ethynyl-4'-F-uridine phosphoramidate prodrug displayed potent anti-dengue virus activity in the primary human peripheral blood mononuclear cell-based assay with no significant cytotoxicity in human hepatocellular liver carcinoma cell lines and no mitochondrial toxicity in the cell-based assay using human prostate cancer cell lines.
Collapse
|
33
|
Nucleobases and corresponding nucleosides display potent antiviral activities against dengue virus possibly through viral lethal mutagenesis. PLoS Negl Trop Dis 2018; 12:e0006421. [PMID: 29672522 PMCID: PMC5929572 DOI: 10.1371/journal.pntd.0006421] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/26/2017] [Revised: 05/01/2018] [Accepted: 03/31/2018] [Indexed: 11/23/2022] Open
Abstract
Dengue virus affects millions of people worldwide each year. To date, there is no drug for the treatment of dengue-associated disease. Nucleosides are effective antivirals and work by inhibiting the accurate replication of the viral genome. Nucleobases offer a cheaper alternative to nucleosides for broad antiviral applications. Metabolic activation of nucleobases involves condensation with 5-phosphoribosyl-1-pyrophosphate to give the corresponding nucleoside-5’-monophosphate. This could provide an alternative to phosphorylation of a nucleoside, a step that is often rate limiting and inefficient in activation of nucleosides. We evaluated more than 30 nucleobases and corresponding nucleosides for their antiviral activity against dengue virus. Five nucleobases and two nucleosides were found to induce potent antiviral effects not previously described. Our studies further revealed that nucleobases were usually more active with a better tissue culture therapeutic index than their corresponding nucleosides. The development of viral lethal mutagenesis, an antiviral approach that takes into account the quasispecies behavior of RNA viruses, represents an exciting prospect not yet studied in the context of dengue replication. Passage of the virus in the presence of the nucleobase 3a (T-1105) and corresponding nucleoside 3b (T-1106), favipiravir derivatives, induced an increase in apparent mutations, indicating lethal mutagenesis as a possible antiviral mechanism. A more concerted and widespread screening of nucleobase libraries is a very promising approach to identify dengue virus inhibitors including those that may act as viral mutagens. Dengue virus is a world-wide public health menace estimated to infect hundreds of millions of people per year. Vaccines to prevent dengue virus infection have had limited success due in part to the requirement to elicit effective immune responses against the four dengue serotypes. There is an urgent unmet need for anti-dengue virus therapies. Nucleosides are effective antiviral small molecules which usually work by inhibiting the accurate replication of the viral genome. Typically, nucleosides must be converted within the cell to their triphosphate form to inhibit virus replication, thus inefficient phosphorylation often leads to suboptimal activity. We screened a small library of nucleobases that require an activation pathway different from nucleosides to achieve the same active form. We identified some known and previously undescribed dengue virus nucleobase inhibitors and their corresponding nucleosides. Our investigation of the mechanism of action of one nucleobase and its corresponding nucleoside found evidence for enhanced mutagenesis of the dengue virus genome in the presence of the compounds in cell culture. A wide screening of nucleobases libraries is a promising strategy to discover dengue virus inhibitors including potential viral mutagens.
Collapse
|
34
|
Gopala Reddy SB, Chin WX, Shivananju NS. Dengue virus NS2 and NS4: Minor proteins, mammoth roles. Biochem Pharmacol 2018; 154:54-63. [PMID: 29674002 DOI: 10.1016/j.bcp.2018.04.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/11/2018] [Accepted: 04/10/2018] [Indexed: 12/11/2022]
Abstract
Despite the ever-increasing global incidence of dengue fever, there are no specific chemotherapy regimens for its treatment. Structural studies on dengue virus (DENV) proteins have revealed potential drug targets. Major DENV proteins such as the envelope protein and non-structural (NS) proteins 3 and 5 have been extensively investigated in antiviral studies, but with limited success in vitro. However, the minor NS proteins NS2 and NS4 have remained relatively underreported. Emerging evidence indicating their indispensable roles in virus propagation and host immunomodulation should encourage us to target these proteins for drug discovery. This review covers current knowledge on DENV NS2 and NS4 proteins from structural and functional perspectives and assesses their potential as targets for antiviral design. Antiviral targets in NS2A include surface-exposed transmembrane regions involved in pathogenesis, while those in NS2B include protease-binding sites in a conserved hydrophilic domain. Ideal drug targets in NS4A include helix α4 and the PEPEKQR sequence, which are essential for NS4A-2K cleavage and NS4A-NS4B association, respectively. In NS4B, the cytoplasmic loop connecting helices α5 and α7 is an attractive target for antiviral design owing to its role in dimerization and NS4B-NS3 interaction. Findings implicating NS2A, NS2B, and NS4A in membrane-modulation and viroporin-like activities indicate an opportunity to target these proteins by disrupting their association with membrane lipids. Despite the lack of 3D structural data, recent topological findings and progress in structure-prediction methods should be sufficient impetus for targeting NS2 and NS4 for drug design.
Collapse
Affiliation(s)
- Sindhoora Bhargavi Gopala Reddy
- Department of Biotechnology, Sri Jayachamarajendra College of Engineering, JSS Science and Technology University, JSS TEI Campus, Mysuru 57006, Karnataka, India
| | - Wei-Xin Chin
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Nanjunda Swamy Shivananju
- Department of Biotechnology, Sri Jayachamarajendra College of Engineering, JSS Science and Technology University, JSS TEI Campus, Mysuru 57006, Karnataka, India.
| |
Collapse
|
35
|
Lin C, Yu J, Hussain M, Zhou Y, Duan A, Pan W, Yuan J, Zhang J. Design, synthesis, and biological evaluation of novel 7-deazapurine nucleoside derivatives as potential anti-dengue virus agents. Antiviral Res 2018; 149:95-105. [DOI: 10.1016/j.antiviral.2017.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/24/2017] [Revised: 10/01/2017] [Accepted: 11/05/2017] [Indexed: 10/18/2022]
|
36
|
Eyer L, Nencka R, de Clercq E, Seley-Radtke K, Růžek D. Nucleoside analogs as a rich source of antiviral agents active against arthropod-borne flaviviruses. Antivir Chem Chemother 2018; 26:2040206618761299. [PMID: 29534608 PMCID: PMC5890575 DOI: 10.1177/2040206618761299] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/24/2017] [Accepted: 01/30/2018] [Indexed: 12/27/2022] Open
Abstract
Nucleoside analogs represent the largest class of small molecule-based antivirals, which currently form the backbone of chemotherapy of chronic infections caused by HIV, hepatitis B or C viruses, and herpes viruses. High antiviral potency and favorable pharmacokinetics parameters make some nucleoside analogs suitable also for the treatment of acute infections caused by other medically important RNA and DNA viruses. This review summarizes available information on antiviral research of nucleoside analogs against arthropod-borne members of the genus Flavivirus within the family Flaviviridae, being primarily focused on description of nucleoside inhibitors of flaviviral RNA-dependent RNA polymerase, methyltransferase, and helicase/NTPase. Inhibitors of intracellular nucleoside synthesis and newly discovered nucleoside derivatives with high antiflavivirus potency, whose modes of action are currently not completely understood, have drawn attention. Moreover, this review highlights important challenges and complications in nucleoside analog development and suggests possible strategies to overcome these limitations.
Collapse
Affiliation(s)
- Luděk Eyer
- Department of Virology, Veterinary Research Institute, Brno, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Erik de Clercq
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | | | - Daniel Růžek
- Department of Virology, Veterinary Research Institute, Brno, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| |
Collapse
|
37
|
Anusuya S, Gromiha MM. Structural basis of flavonoids as dengue polymerase inhibitors: insights from QSAR and docking studies. J Biomol Struct Dyn 2017; 37:104-115. [DOI: 10.1080/07391102.2017.1419146] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/18/2022]
Affiliation(s)
- Shanmugam Anusuya
- Department of Biotechnology, Indian Institute of Technology Madras, Bhupat and Jyoti Mehta School of Biosciences, Chennai 600036, Tamil Nadu, India
- School of Biotechnology, National Institute of Technology Calicut, Kozhikode 673601, Kerala, India
| | - M. Michael Gromiha
- Department of Biotechnology, Indian Institute of Technology Madras, Bhupat and Jyoti Mehta School of Biosciences, Chennai 600036, Tamil Nadu, India
- Advanced Computational Drug Discovery Unit (ACDD), Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama 226-8501, Kanagawa, Japan
| |
Collapse
|
38
|
Abstract
Zika virus (ZIKV) infection during pregnancy can cause devastating congenital abnormities or fetal demise. Zika virus infection could also cause Guillain-Barré syndrome in adults. Mosquito control, vaccine, and therapeutics are 3 potential, effective means to prevent ZIKV infection. Here we review the current status of ZIKV drug discovery. Both small molecule inhibitors and therapeutic antibodies have been identified, some of which have shown promising efficacy in mouse models. Most inhibitors were identified through screening US Food and Drug Administration-approved drugs and clinical trial compounds; however, none of them were potent enough to justify a ZIKV clinical trial. Such a repurposing approach has also been pursued for dengue therapy, with several compounds tested in clinical trials showing no clinical benefits. Because pregnant women are the main target population for ZIKV treatment, therapeutic candidates could be developed through a 2-stage path. The first stage should demonstrate safety and efficacy in nonpregnant patients. Once efficacy has been demonstrated in nonpregnant patients, the candidates should be rapidly advanced to stage 2 for safety and efficacy evaluation in pregnant patients. The 2-stage developmental path is supported by previous results from trials with other viral infections that showed that treatment of pregnant women with antiviral drugs or hyperimmunoglobulins significantly reduced congenital abnormalities in neonates.
Collapse
Affiliation(s)
- Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston
| | - Jing Zou
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston
| | - Chao Shan
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston
| |
Collapse
|
39
|
Hřebabecký H, Dračínský M, Procházková E, Šála M, Mackman R, Nencka R. Control of α/β Anomer Formation by a 2',5' Bridge: Toward Nucleoside Derivatives Locked in the South Conformation. J Org Chem 2017; 82:11337-11347. [PMID: 28972760 DOI: 10.1021/acs.joc.7b01000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/01/2023]
Abstract
We describe a novel stereoselective synthesis of nucleoside derivatives with the ribose ring locked in the South conformation by a bridge between C2' and C5'. Despite the intrinsic constraints of the bicyclic structure, we demonstrate that their synthesis can be achieved by ring closing metathesis of readily accessible precursors. The obtained ribose derivatives are, however, very poor substrates for further installation of the nucleobases, and even simple nucleophiles, such as azido or cyano anions, react with unexpected stereo- or regioselectivity under standard glycosylation conditions. Here we explain this behavior by employing density functional theory (DFT) computations and devise an alternative approach resulting in isomers with the desired orientation of the nucleobase.
Collapse
Affiliation(s)
- Hubert Hřebabecký
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , v.v.i, Gilead Sciences & IOCB Research Centre, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , v.v.i, Gilead Sciences & IOCB Research Centre, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Eliška Procházková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , v.v.i, Gilead Sciences & IOCB Research Centre, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Michal Šála
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , v.v.i, Gilead Sciences & IOCB Research Centre, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Richard Mackman
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , v.v.i, Gilead Sciences & IOCB Research Centre, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
40
|
Escape of Tick-Borne Flavivirus from 2'- C-Methylated Nucleoside Antivirals Is Mediated by a Single Conservative Mutation in NS5 That Has a Dramatic Effect on Viral Fitness. J Virol 2017; 91:JVI.01028-17. [PMID: 28814513 DOI: 10.1128/jvi.01028-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/19/2017] [Accepted: 08/01/2017] [Indexed: 12/30/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) causes a severe and potentially fatal neuroinfection in humans. Despite its high medical relevance, no specific antiviral therapy is currently available. Here we demonstrate that treatment with a nucleoside analog, 7-deaza-2'-C-methyladenosine (7-deaza-2'-CMA), substantially improved disease outcomes, increased survival, and reduced signs of neuroinfection and viral titers in the brains of mice infected with a lethal dose of TBEV. To investigate the mechanism of action of 7-deaza-2'-CMA, two drug-resistant TBEV clones were generated and characterized. The two clones shared a signature amino acid substitution, S603T, in the viral NS5 RNA-dependent RNA polymerase (RdRp) domain. This mutation conferred resistance to various 2'-C-methylated nucleoside derivatives, but no cross-resistance was seen with other nucleoside analogs, such as 4'-C-azidocytidine and 2'-deoxy-2'-beta-hydroxy-4'-azidocytidine (RO-9187). All-atom molecular dynamics simulations revealed that the S603T RdRp mutant repels a water molecule that coordinates the position of a metal ion cofactor as 2'-C-methylated nucleoside analogs approach the active site. To investigate its phenotype, the S603T mutation was introduced into a recombinant TBEV strain (Oshima-IC) generated from an infectious cDNA clone and into a TBEV replicon that expresses a reporter luciferase gene (Oshima-REP-luc2A). The mutants were replication impaired, showing reduced growth and a small plaque size in mammalian cell culture and reduced levels of neuroinvasiveness and neurovirulence in rodent models. These results indicate that TBEV resistance to 2'-C-methylated nucleoside inhibitors is conferred by a single conservative mutation that causes a subtle atomic effect within the active site of the viral NS5 RdRp and is associated with strong attenuation of the virus.IMPORTANCE This study found that the nucleoside analog 7-deaza-2'-C-methyladenosine (7-deaza-2'-CMA) has high antiviral activity against tick-borne encephalitis virus (TBEV), a pathogen that causes severe human neuroinfections in large areas of Europe and Asia and for which there is currently no specific therapy. Treating mice infected with a lethal dose of TBEV with 7-deaza-2'-CMA resulted in significantly higher survival rates and reduced the severity of neurological signs of the disease. Thus, this compound shows promise for further development as an anti-TBEV drug. It is important to generate drug-resistant mutants to understand how the drug works and to develop guidelines for patient treatment. We generated TBEV mutants that were resistant not only to 7-deaza-2'-CMA but also to a broad range of other 2'-C-methylated antiviral medications. Our findings suggest that combination therapy may be used to improve treatment and reduce the emergence of drug-resistant viruses during nucleoside analog therapy for TBEV infection.
Collapse
|
41
|
Okon A, Matos de Souza MR, Shah R, Amorim R, da Costa LJ, Wagner CR. Anchimerically Activatable Antiviral ProTides. ACS Med Chem Lett 2017; 8:958-962. [PMID: 28947944 DOI: 10.1021/acsmedchemlett.7b00277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/08/2017] [Accepted: 08/14/2017] [Indexed: 01/08/2023] Open
Abstract
This work describes the synthesis and biological evaluation of an anchimerically activated proTide of 2'-C-β-methylguanosine as an inhibitor of dengue virus 2 (DENV-2). The proTide incorporates a chemically cleavable 2-(methylthio)ethyl moiety and a HINT1 hydrolyzable tryptamine phosphoramidate. Inhibition of DENV-2 replication by proTide 6 was 5-fold greater than the parent nucleoside while displaying no apparent cytotoxicity. Furthermore, we demonstrate with a HINT1 inhibitor that the anti DENV-2 activity of the proTide correlates with the activity of HINT1. Taken together, these results demonstrate that a phosphoramidate based pronucleotide that undergoes an initial nonenzymatic activation step based on anchimeric assistance followed by P-N bond cleavage by HINT1 can be prepared.
Collapse
Affiliation(s)
| | - Marcos Romário Matos de Souza
- Departamento
de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro Brazil
| | | | - Raquel Amorim
- Departamento
de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro Brazil
| | - Luciana Jesus da Costa
- Departamento
de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro Brazil
| | | |
Collapse
|
42
|
Boldescu V, Behnam MAM, Vasilakis N, Klein CD. Broad-spectrum agents for flaviviral infections: dengue, Zika and beyond. Nat Rev Drug Discov 2017; 16:565-586. [PMID: 28473729 PMCID: PMC5925760 DOI: 10.1038/nrd.2017.33] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023]
Abstract
Infections with flaviviruses, such as dengue, West Nile virus and the recently re-emerging Zika virus, are an increasing and probably lasting global risk. This Review summarizes and comments on the opportunities for broad-spectrum agents that are active against multiple flaviviruses. Broad-spectrum activity is particularly desirable to prepare for the next flaviviral epidemic, which could emerge from as-yet unknown or neglected viruses. Potential molecular targets for broad-spectrum antiflaviviral compounds include viral proteins, such as the viral protease or polymerase, and host targets that are exploited by these viruses during entry and replication, including α-glucosidase and proteins involved in nucleoside biosynthesis. Numerous compounds with broad-spectrum antiviral activity have already been identified by target-specific or phenotypic assays. For other compounds, broad-spectrum activity can be anticipated because of their mode of action and molecular targets.
Collapse
Affiliation(s)
- Veaceslav Boldescu
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
- Laboratory of Organic Synthesis and Biopharmaceuticals, Institute of Chemistry of the Academy of Sciences of Moldova, Academiei 3, 2028 Chisinau, Moldova
| | - Mira A. M. Behnam
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Nikos Vasilakis
- Dept. of Pathology and Center for Biodefense and Emerging Infectious Diseases, Center for Tropical Diseases and Institute for Human Infections and Immunity, 2.138D Keiller Bldg, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555–0609, USA
| | - Christian D. Klein
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| |
Collapse
|
43
|
Wiwanitkit S, Wiwanitkit V. Doubled dosage of sofosbuvir is expected for inhibiting Zika virus infection. ASIAN PAC J TROP MED 2017; 10:612-613. [PMID: 28756928 DOI: 10.1016/j.apjtm.2017.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/20/2016] [Revised: 03/05/2017] [Accepted: 05/20/2017] [Indexed: 11/25/2022] Open
Abstract
Sofosbuvir is a new antiviral drug that has been recommended for management of hepatitis C virus (HCV) for a few years. New researches support that sofosbuvir might be useful for the management of Zika virus infection. Based on the pharmacological activity, inhibiting the HCV RNA-dependent RNA polymerase (RdRp or NS5 protein), sofosbuvir is proposed for its effectiveness against Zika virus infection. Here, the authors used a mathematical modelling theoretical approach to predict the expected dosage of sofosbuvir for inhibiting Zika virus infection. Based on the modeling study, if sofosbuvir is assigned for management of Zika virus infection, doubled dosage of the present dosage for hepatitis C management is recommended.
Collapse
Affiliation(s)
| | - Viroj Wiwanitkit
- Hainan Medical University, China; Dr DY Patil University, India; Faculty of Medicine, University of Nis, Serbia; Joseph Ayobabalola University, Nigeria
| |
Collapse
|
44
|
Lo YC, Huang IH, Ho TC, Chien YW, Perng GC. Antiviral Drugs and Other Therapeutic Options for Dengue Virus Infection. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2017. [DOI: 10.1007/s40506-017-0122-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/19/2022]
|
45
|
El Sahili A, Lescar J. Dengue Virus Non-Structural Protein 5. Viruses 2017; 9:E91. [PMID: 28441781 PMCID: PMC5408697 DOI: 10.3390/v9040091] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/31/2017] [Revised: 04/15/2017] [Accepted: 04/20/2017] [Indexed: 12/17/2022] Open
Abstract
The World Health Organization estimates that the yearly number of dengue cases averages 390 million. This mosquito-borne virus disease is endemic in over 100 countries and will probably continue spreading, given the observed trend in global warming. So far, there is no antiviral drug available against dengue, but a vaccine has been recently marketed. Dengue virus also serves as a prototype for the study of other pathogenic flaviviruses that are emerging, like West Nile virus and Zika virus. Upon viral entry into the host cell and fusion of the viral lipid membrane with the endosomal membrane, the viral RNA is released and expressed as a polyprotein, that is then matured into three structural and seven non-structural (NS) proteins. The envelope, membrane and capsid proteins form the viral particle while NS1-NS2A-NS2B-NS3-NS4A-NS4B and NS5 assemble inside a cellular replication complex, which is embedded in endoplasmic reticulum (ER)-derived vesicles. In addition to their roles in RNA replication within the infected cell, NS proteins help the virus escape the host innate immunity and reshape the host-cell inner structure. This review focuses on recent progress in characterizing the structure and functions of NS5, a protein responsible for the replication and capping of viral RNA that represents a promising drug target.
Collapse
Affiliation(s)
- Abbas El Sahili
- School of Biological Sciences, Nanyang Technological University, Nanyang Institute for Structural Biology, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921, Singapore.
| | - Julien Lescar
- School of Biological Sciences, Nanyang Technological University, Nanyang Institute for Structural Biology, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921, Singapore.
| |
Collapse
|
46
|
Alaoui S, Dufies M, Driowya M, Demange L, Bougrin K, Robert G, Auberger P, Pagès G, Benhida R. Synthesis and anti-cancer activities of new sulfonamides 4-substituted-triazolyl nucleosides. Bioorg Med Chem Lett 2017; 27:1989-1992. [PMID: 28325600 DOI: 10.1016/j.bmcl.2017.03.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/15/2016] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 12/11/2022]
Abstract
Nucleoside analogues are among the most known drugs commonly used in antiviral and anticancer chemotherapies. Among them, those featuring a five-membered ring nucleobase are of utmost interest such as the anti-cancer agent AICAR or the anti-viral drug ribavirin. Despite its low activity in vitro in different cell lines, AICAR is under clinical development for several pathologies, thanks to its original mode of action. Indeed, AICAR induced autophagy cell death and is able, following this mechanism, to circumvent resistance to apoptotic drugs including kinase inhibitors currently on the market. To improve the activity of AICAR, we report herein an efficient synthesis of new series of sulfonamide-4-substituted-1,2,3-triazolyl nucleosides using a Cu-catalyzed 1,3-dipolar cycloaddition. All these molecules have been fully characterized and evaluated against two aggressive tumor cell lines, RCC4 and MDA-MB-231. Among them, nucleoside analogue 5i belonging to the ribose series was found to be 19 to 66-fold more active than AICAR. Western blot analyses on RCC4 cells showed that 5i displayed an interesting mode of action by inducing both apoptosis and autophagy cell death, making therefore this class of molecules highly promising for further hit-to-lead optimization.
Collapse
Affiliation(s)
- Soukaina Alaoui
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR 7272, 06108 Nice, France; Laboratoire de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculté des Sciences, Université Mohammed V, B.P. 1014 Rabat, Morocco
| | - Maeva Dufies
- Université Côte d'Azur, CNRS UMR 7284 and INSERM U 1081, Institute for Research on Cancer and Aging (IRCAN), 28 Avenue de Valombrose, 06107 Nice, France
| | - Mohsine Driowya
- Laboratoire de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculté des Sciences, Université Mohammed V, B.P. 1014 Rabat, Morocco
| | - Luc Demange
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR 7272, 06108 Nice, France; Département de Chimie, Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Pharmaceutiques, 4 avenue de l'Observatoire & UFR Biomédicale des Saints Pères, 45 rue des Saints Pères, Paris Fr-75006, France
| | - Khalid Bougrin
- Laboratoire de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculté des Sciences, Université Mohammed V, B.P. 1014 Rabat, Morocco
| | - Guillaume Robert
- Université Côte d'Azur, INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Bâtiment ARCHIMED, 151 Route de Saint-Antoine de Ginestière, BP 2 3194, 06204 Nice Cedex 3, France
| | - Patrick Auberger
- Université Côte d'Azur, INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Bâtiment ARCHIMED, 151 Route de Saint-Antoine de Ginestière, BP 2 3194, 06204 Nice Cedex 3, France
| | - Gilles Pagès
- Université Côte d'Azur, CNRS UMR 7284 and INSERM U 1081, Institute for Research on Cancer and Aging (IRCAN), 28 Avenue de Valombrose, 06107 Nice, France
| | - Rachid Benhida
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR 7272, 06108 Nice, France.
| |
Collapse
|
47
|
Lesniewska-Kowiel MA, Muszalska I. Strategies in the designing of prodrugs, taking into account the antiviral and anticancer compounds. Eur J Med Chem 2017; 129:53-71. [DOI: 10.1016/j.ejmech.2017.02.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/09/2016] [Revised: 01/13/2017] [Accepted: 02/05/2017] [Indexed: 12/22/2022]
|
48
|
Orlov AA, Drenichev MS, Oslovsky VE, Kurochkin NN, Solyev PN, Kozlovskaya LI, Palyulin VA, Karganova GG, Mikhailov SN, Osolodkin DI. New tools in nucleoside toolbox of tick-borne encephalitis virus reproduction inhibitors. Bioorg Med Chem Lett 2017; 27:1267-1273. [DOI: 10.1016/j.bmcl.2017.01.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/06/2016] [Revised: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 12/19/2022]
|
49
|
Analysis of Ribonucleotide 5'-Triphosphate Analogs as Potential Inhibitors of Zika Virus RNA-Dependent RNA Polymerase by Using Nonradioactive Polymerase Assays. Antimicrob Agents Chemother 2017; 61:AAC.01967-16. [PMID: 27993851 DOI: 10.1128/aac.01967-16] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/13/2016] [Accepted: 12/13/2016] [Indexed: 01/20/2023] Open
Abstract
Zika virus (ZIKV) is an emerging human pathogen that is spreading rapidly through the Americas and has been linked to the development of microcephaly and to a dramatically increased number of Guillain-Barré syndrome cases. Currently, no vaccine or therapeutic options for the prevention or treatment of ZIKV infections exist. In the study described in this report, we expressed, purified, and characterized full-length nonstructural protein 5 (NS5) and the NS5 polymerase domain (NS5pol) of ZIKV RNA-dependent RNA polymerase. Using purified NS5, we developed an in vitro nonradioactive primer extension assay employing a fluorescently labeled primer-template pair. Both purified NS5 and NS5pol can carry out in vitro RNA-dependent RNA synthesis in this assay. Our results show that Mn2+ is required for enzymatic activity, while Mg2+ is not. We found that ZIKV NS5 can utilize single-stranded DNA but not double-stranded DNA as a template or a primer to synthesize RNA. The assay was used to compare the efficiency of incorporation of analog 5'-triphosphates by the ZIKV polymerase and to calculate their discrimination versus that of natural ribonucleotide triphosphates (rNTPs). The 50% inhibitory concentrations for analog rNTPs were determined in an alternative nonradioactive coupled-enzyme assay. We determined that, in general, 2'-C-methyl- and 2'-C-ethynyl-substituted analog 5'-triphosphates were efficiently incorporated by the ZIKV polymerase and were also efficient chain terminators. Derivatives of these molecules may serve as potential antiviral compounds to be developed to combat ZIKV infection. This report provides the first characterization of ZIKV polymerase and demonstrates the utility of in vitro polymerase assays in the identification of potential ZIKV inhibitors.
Collapse
|
50
|
Lai JH, Lin YL, Hsieh SL. Pharmacological intervention for dengue virus infection. Biochem Pharmacol 2017; 129:14-25. [PMID: 28104437 DOI: 10.1016/j.bcp.2017.01.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/24/2016] [Accepted: 01/12/2017] [Indexed: 12/11/2022]
Abstract
Dengue virus (DENV) infection has a considerable health impact in tropical and subtropical countries worldwide. Escalation of infection rates greatly increases morbidity and mortality, most commonly from deaths due to dengue hemorrhagic fever and dengue shock syndrome. Although the development of an effective, long-lasting vaccine has been a major aim for control and prevention of DENV infection, the currently licensed vaccine has limitations and is less than satisfactory. Thus, there remains an important need to identify effective and tolerable medications for treatment of DENV-infected patients both in the early phase, to prevent progression to fatal outcomes, and to minimize deaths after patients develop severe complications. This review will address several specific points, including (1) approaches to identify anti-DENV medications, (2) recent advances in the development of potential compounds targeting DENV infection, (3) experience with clinical trials of regimens for DENV infection, (4) some available medications of potential for clinical trials against DENV infection, (5) reasons for unsuccessful outcomes and challenges of anti-DENV treatments, and (6) directions for developing or selecting better anti-DENV strategies. This review provides useful guidance for clinicians selecting drugs for DENV-infected patients with severe manifestations or potential fatal disease progression, and for basic researchers seeking to develop effective anti-DENV regimens.
Collapse
Affiliation(s)
- Jenn-Haung Lai
- Division of Rheumatology, Allergy, and Immunology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Tao-Yuan, Taiwan, ROC; Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan, ROC.
| | - Yi-Ling Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, ROC
| | - Shie-Liang Hsieh
- Institute of Microbiology and Immunology, National Yang-Ming University, Taiwan, ROC; Institute of Clinical Medicine, National Yang-Ming University, Taiwan, ROC; Genomics Research Center, Academia Sinica, Taipei, Taiwan, ROC; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| |
Collapse
|