1
|
Jangra S, Potts J, Ghosh A, Seal DR. Genome editing: A novel approach to manage insect vectors of plant viruses. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 174:104189. [PMID: 39341259 DOI: 10.1016/j.ibmb.2024.104189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/10/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024]
Abstract
Insect vectors significantly threaten global agriculture by transmitting numerous plant viruses. Various measures, from conventional insecticides to genetic engineering, are used to mitigate this threat. However, none provide complete resistance. Therefore, researchers are looking for novel control options. In recent years with the advancements in genomic technologies, genomes and transcriptomes of various insect vectors have been generated. However, the lack of knowledge about gene functions hinders the development of novel strategies to restrict virus spread. RNA interference (RNAi) is widely used to elucidate gene functions, but its variable efficacy hampers its use in managing insect vectors and plant viruses. Genome editing has the potential to overcome these challenges and has been extensively used in various insect pest species. This review summarizes the progress and potential of genome editing in plant virus vectors and its application as a functional genomic tool to elucidate virus-vector interactions. We also discuss the major challenges associated with editing genes of interest in insect vectors.
Collapse
Affiliation(s)
- Sumit Jangra
- UF/IFAS Tropical Research and Education Center, Homestead, FL, 33031, USA.
| | - Jesse Potts
- UF/IFAS Tropical Research and Education Center, Homestead, FL, 33031, USA
| | - Amalendu Ghosh
- Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Dakshina R Seal
- UF/IFAS Tropical Research and Education Center, Homestead, FL, 33031, USA
| |
Collapse
|
2
|
Fang W, Zhou L, Deng B, Guo B, Chen X, Chen P, Lu C, Dong Z, Pan M. Establishment of a Secretory Protein-Inducible CRISPR/Cas9 System for Nosema bombycis in Insect Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13175-13185. [PMID: 38817125 DOI: 10.1021/acs.jafc.3c08647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Gene editing techniques are widely and effectively used for the control of pathogens, but it is difficult to directly edit the genes of Microsporidia due to its unique spore wall structure. Innovative technologies and methods are urgently needed to break through this limitation of microsporidia therapies. Here, we establish a microsporidia-inducible gene editing system through core components of microsporidia secreted proteins, which could edit target genes after infection with microsporidia. We identified that Nosema bombycis NB29 is a secretory protein and found to interact with itself. The NB29-N3, which lacked the nuclear localization signal, was localized in the cytoplasm, and could be tracked into the nucleus after interacting with NB29-B. Furthermore, the gene editing system was constructed with the Cas9 protein expressed in fusion with the NB29-N3. The system could edit the exogenous gene EGFP and the endogenous gene BmRpn3 after overexpression of NB29 or infection with N. bombycis.
Collapse
Affiliation(s)
- Wenxuan Fang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Liang Zhou
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Boyuan Deng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Binyu Guo
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Xue Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Peng Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Cheng Lu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Zhanqi Dong
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Minhui Pan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| |
Collapse
|
3
|
Komal J, Desai HR, Samal I, Mastinu A, Patel RD, Kumar PVD, Majhi PK, Mahanta DK, Bhoi TK. Unveiling the Genetic Symphony: Harnessing CRISPR-Cas Genome Editing for Effective Insect Pest Management. PLANTS (BASEL, SWITZERLAND) 2023; 12:3961. [PMID: 38068598 PMCID: PMC10708123 DOI: 10.3390/plants12233961] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 10/16/2024]
Abstract
Phytophagous insects pose a significant threat to global crop yield and food security. The need for increased agricultural output while reducing dependence on harmful synthetic insecticides necessitates the implementation of innovative methods. The utilization of CRISPR-Cas (Clustered regularly interspaced short palindromic repeats) technology to develop insect pest-resistant plants is believed to be a highly effective approach in reducing production expenses and enhancing the profitability of farms. Insect genome research provides vital insights into gene functions, allowing for a better knowledge of insect biology, adaptability, and the development of targeted pest management and disease prevention measures. The CRISPR-Cas gene editing technique has the capability to modify the DNA of insects, either to trigger a gene drive or to overcome their resistance to specific insecticides. The advancements in CRISPR technology and its various applications have shown potential in developing insect-resistant varieties of plants and other strategies for effective pest management through a sustainable approach. This could have significant consequences for ensuring food security. This approach involves using genome editing to create modified insects or crop plants. The article critically analyzed and discussed the potential and challenges associated with exploring and utilizing CRISPR-Cas technology for reducing insect pest pressure in crop plants.
Collapse
Affiliation(s)
- J. Komal
- Basic Seed Multiplication and Training Centre, Central Silk Board, Kharaswan 833216, Jharkhand, India;
| | - H. R. Desai
- Department of Entomology, Main Cotton Research Station, Navsari Agricultural University, Surat 395007, Gujarat, India; (H.R.D.); (R.D.P.)
| | - Ipsita Samal
- Indian Council of Agricultural Research-National Research Centre on Litchi, Mushahari, Ramna, Muzaffarpur 842002, Bihar, India;
| | - Andrea Mastinu
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy
| | - R. D. Patel
- Department of Entomology, Main Cotton Research Station, Navsari Agricultural University, Surat 395007, Gujarat, India; (H.R.D.); (R.D.P.)
| | - P. V. Dinesh Kumar
- Research Extension Centre, Central Silk Board, Hoshangabad 461001, Madhya Pradesh, India;
| | - Prasanta Kumar Majhi
- Department of Plant Breeding and Genetics, Odisha University of Agriculture and Technology, Bhubaneswar 751003, Odisha, India;
| | - Deepak Kumar Mahanta
- Forest Entomology Discipline, Forest Protection Division, Indian Council of Forestry Research and Education (ICFRE)-Forest Research Institute (ICFRE-FRI), Dehradun 248006, Uttarakhand, India
| | - Tanmaya Kumar Bhoi
- Forest Protection Division, Indian Council of Forestry Research and Education (ICFRE)-Arid Forest Research Institute (ICFRE-AFRI), Jodhpur 342005, Rajasthan, India
| |
Collapse
|
4
|
Li K, Dong Z, Pan M. Common strategies in silkworm disease resistance breeding research. PEST MANAGEMENT SCIENCE 2023; 79:2287-2298. [PMID: 36935349 DOI: 10.1002/ps.7454] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/09/2023] [Accepted: 03/20/2023] [Indexed: 06/02/2023]
Abstract
The silkworm, which is considered a model invertebrate organism, was the first insect used for silk production in human history and has been utilized extensively throughout its domestication. However, sericulture has been plagued by various pathogens that have caused significant economic losses. To enhance the resistance of a host to its pathogens,numerous strategies have been developed. For instance, gene-editing techniques have been applied to a wide range of organisms, effectively solving a variety of experimental problems. This review focuses on several common silkworm pests and their pathogenic mechanisms, with a particular emphasis on breeding for disease resistance to control multiple types of silkworm diseases. The review also compares the advantages and disadvantages of transgenic technology and gene-editing systems. Finally, the paper provides a brief summary of current strategies used in breeding silkworm disease resistance, along with a discussion of the establishment of existing technologies and their future application prospects. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kejie Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- The First Affiliated Hospital of Chongqing Medical and pharmaceutical College, Chongqing, China
| | - Zhanqi Dong
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Minhui Pan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| |
Collapse
|
5
|
Li K, Dong Z, Dong F, Hu Z, Huang L, Wang J, Chen P, Lu C, Pan M. Transcriptome analysis reveals that knocking out BmNPV iap2 induces apoptosis by inhibiting the oxidative phosphorylation pathway. Int J Biol Macromol 2023; 233:123482. [PMID: 36736521 DOI: 10.1016/j.ijbiomac.2023.123482] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/30/2022] [Accepted: 01/26/2023] [Indexed: 02/03/2023]
Abstract
Apoptosis is essential for the normal growth, development, and immunity defense of living organisms, and its function and mechanisms have been intensively studied. When viral infection occurs, apoptosis is triggered, causing programmed death of the infected cells. Meanwhile, viruses have also evolved countermeasures to inhibit apoptosis in host cells. We previously constructed a transgenic silkworm line with significantly improved resistance to Bombyx mori nucleopolyhedrovirus (BmNPV) by knocking out the BmNPV inhibitor of apoptosis 2 (iap2) gene. However, the mechanism of how IAP2 induces apoptosis still needs to be further investigated. Here, the transcriptomes of Cas9(-)/sgiap2 (-) and Cas9(+)/sgiap2(+) strains were analyzed at 48 h after BmNPV infection, and a total of 709 differential genes were obtained. A KEGG analysis revealed that the differentially expressed genes were enriched in the oxidative phosphorylation, proteasome, and ribosome pathways. In the oxidative phosphorylation pathway, 41 differentially expressed genes were downregulated, and 12 of these genes were verified by qRT-PCR. More importantly, the knockout of BmNPV iap2 led to the inhibition of the oxidative phosphorylation pathway, followed by activated oxidative stress triggered apoptosis, thereby inhibiting the replication of BmNPV in vitro and vivo. The results provide a basis for the analysis of the initiation of apoptosis that can inhibit virus proliferation, and the study presents new ideas for the subsequent creation of resistant material.
Collapse
Affiliation(s)
- Kejie Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Zhanqi Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China.
| | - Feifan Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Zhigang Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Liang Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Jie Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Minhui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China.
| |
Collapse
|
6
|
Qiao H, Jiang S, Fu H, Xiong Y, Zhang W, Xu L, Cheng D, Wang J. CRISPR/Cas9 establishment-mediated targeted mutagenesis in Macrobrachium nipponense. Front Physiol 2023; 14:1141359. [PMID: 37035655 PMCID: PMC10079998 DOI: 10.3389/fphys.2023.1141359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction: CRISPR/Cas9 is a gene-editing technology which could specifically cleave dsDNA and induce target gene mutation. CRISPR/Cas9 has been widely used in gene functional studies in many fields, such as medicine, biology, and agriculture due to its simple design, low cost, and high efficiency. Although it has been well developed in model fish and freshwater fish for gene function analysis, it is still novel in the studies dealing with economic crustacean species. Methods: In this study, we established a CRISPR/Cas9 system based on microinjection for M. nipponense, an important economic crustacean aquaculture species. The vitellogenin (Vg) gene and the eyeless (Ey) gene were selected as the targeted genes for mutation. Two sgRNAs were designed for Mn-Vg and Mn-Ey gene editing, respectively. Results and Discussion: For sg-Vg-1, the gastrula survival ratio was 8.69%, and the final hatching ratio was 4.83%. The blastula mutant ratio was 10%, and the hatching individual mutant ratio was 30%. For sg-Vg-2, the gastrula survival ratio was 5.85%, and the final hatching ratio was 3.89%. The blastula mutant ratio was 16.67%, and no mutant sequences were detected in hatching individuals. For sg-Ey-1, the gastrula survival ratio was 6.25%, and the final hatching ratio was 2.34%. The blastula mutant ratio was 10.00%, and the hatching individual mutant ratio was 66.67%. For sg-Ey-2, the gastrula survival ratio was 6.00%, and the final hatching ratio was 2.67%. No mutant sequence was detected in both blastula stage and hatching individuals. There were no significant morphological changes observed in the Mn-Vg group. Two deformed types were detected in sg-Ey-1-injected embryos. An evident developmental delay of the compound eye was detected in Ey-sg1-H1 in the zoea stage. The compound eyes of the Ey-sg1-H2 embryo could not form well-defined spheres, and the whole compound eye appeared to diffuse at the end of the late zoea stage. The establishment of a gene-editing platform based on CRISPR/Cas9 will not only provide an efficient and convenient method for gene function analysis but also provide a powerful tool for molecular-assisted breeding of Macrobrachium nipponense.
Collapse
Affiliation(s)
- Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- *Correspondence: Hongtuo Fu, ; Sufei Jiang,
| | - Hongtuo Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- *Correspondence: Hongtuo Fu, ; Sufei Jiang,
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Lei Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Dan Cheng
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Jisheng Wang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| |
Collapse
|
7
|
Dong Z, Zhang X, Xiao M, Li K, Wang J, Chen P, Hu Z, Lu C, Pan M. Baculovirus LEF-11 interacts with BmIMPI to induce cell cycle arrest in the G2/M phase for viral replication. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105231. [PMID: 36464350 DOI: 10.1016/j.pestbp.2022.105231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/23/2022] [Accepted: 09/08/2022] [Indexed: 06/17/2023]
Abstract
Viruses arrest the host cell cycle and using multiple functions of host cells is an important approach for their replication. Baculovirus arrests infected insect cells at both the late S and G2/M phase, but the strategy employed by baculovirus is not clearly understood. Our research suggests that the Bombyx mori nucleopolyhedrovirus (BmNPV) could arrest the cell cycle in the G2/M phase to promote virus replication, and also that the viral protein LEF-11 could inhibit host cell proliferation and arrest the cell cycle by inhibiting the cell cycle checkpoint proteins BmCyclinB and BmCDK1. Furthermore, we found that LEF-11 interacts with BmIMPI to regulate cell proliferation, but not by direct interaction with BmCyclinB or BmCDK1. In addition, our findings showed that BmIMPI was important and necessary for LEF-11 induced cell cycle arrest in the G2/M phase. Moreover, BmIMPI was found to interact with BmCyclinB and BmCDK1, and down-regulate the expression of BmCyclinB and BmCDK1 to compromise the cell cycle and cell proliferation. Taken together, the data presented demonstrated that baculovirus LEF-11 regulates BmIMPI to inhibit host cell proliferation and provide a new insight into the molecular mechanisms employed by viruses to induce cell cycle arrest.
Collapse
Affiliation(s)
- Zhanqi Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China
| | - Xinling Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Miao Xiao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - KeJie Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Jie Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China
| | - Zhigang Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China.
| | - Minhui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China.
| |
Collapse
|
8
|
Khurana A, Sayed N, Singh V, Khurana I, Allawadhi P, Rawat PS, Navik U, Pasumarthi SK, Bharani KK, Weiskirchen R. A comprehensive overview of CRISPR/Cas 9 technology and application thereof in drug discovery. J Cell Biochem 2022; 123:1674-1698. [PMID: 36128934 DOI: 10.1002/jcb.30329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/13/2022] [Accepted: 09/01/2022] [Indexed: 11/07/2022]
Abstract
Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-Cas technology possesses revolutionary potential to positively affect various domains of drug discovery. It has initiated a rise in the area of genetic engineering and its advantages range from classical science to translational medicine. These genome editing systems have given a new dimension to our capabilities to alter, detect and annotate specified gene sequences. Moreover, the ease, robustness and adaptability of the CRISPR/Cas9 technology have led to its extensive utilization in research areas in such a short period of time. The applications include the development of model cell lines, understanding disease mechanisms, discovering disease targets, developing transgenic animals and plants, and transcriptional modulation. Further, the technology is rapidly growing; hence, an overlook of progressive success is crucial. This review presents the current status of the CRISPR-Cas technology in a tailor-made format from its discovery to several advancements for drug discovery alongwith future trends associated with possibilities and hurdles including ethical concerns.
Collapse
Affiliation(s)
- Amit Khurana
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Aachen, Germany
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), PVNRTVU, Hyderabad, Telangana, India
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), PVNRTVU, Mamnoor, Warangal, Telangana, India
| | - Nilofer Sayed
- Department of Pharmacy, Pravara Rural Education Society's (P.R.E.S.'s) College of Pharmacy, Shreemati Nathibai Damodar Thackersey (SNDT) Women's University, Nashik, Maharashtra, India
| | - Vishakha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Isha Khurana
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, India
| | - Prince Allawadhi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Pushkar Singh Rawat
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | | | - Kala Kumar Bharani
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), PVNRTVU, Mamnoor, Warangal, Telangana, India
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
9
|
Hu ZG, Dong ZQ, Miao JH, Li KJ, Wang J, Chen P, Lu C, Pan MH. Identification of the Key Functional Domains of Bombyx mori Nucleopolyhedrovirus IE1 Protein. Int J Mol Sci 2022; 23:ijms231810276. [PMID: 36142194 PMCID: PMC9499007 DOI: 10.3390/ijms231810276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 11/28/2022] Open
Abstract
The immediate early protein 1 (IE1) acts as a transcriptional activator and is essential for viral gene transcription and viral DNA replication. However, the key regulatory domains of IE1 remain poorly understood. Here, we analyzed the sequence characteristics of Bombyx mori nucleopolyhedrovirus (BmNPV) IE1 and identified the key functional domains of BmNPV IE1 by stepwise truncation. Our results showed that BmNPV IE1 was highly similar to Autographa californica nucleopolyhedrovirus (AcMNPV) IE1, but was less conserved with IE1 of other baculoviruses, the C-terminus of IE1 was more conserved than the N-terminus, and BmNPV IE1 was also necessary for BmNPV proliferation. Moreover, we found that IE1158–208 was a major nuclear localization element, and IE11–157 and IE1539–559 were minor nuclear localization elements, but the combination of these two minor elements was equally sufficient to fully mediate the nuclear entry of IE1. Meanwhile, IE11–258, IE1560–584, and the association of amino acids 258 and 259 were indispensable for the transactivation activity of BmNPV IE1. These results systematically resolve the functional domains of BmNPV IE1, which contribute to the understanding of the mechanism of baculovirus infection and provide a possibility to synthesize a small molecule IE1-truncated mutant as an agonist or antagonist.
Collapse
Affiliation(s)
- Zhi-Gang Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Zhan-Qi Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Key Laboratory for Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China
| | - Jiang-Hao Miao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Ke-Jie Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Jie Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Key Laboratory for Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Key Laboratory for Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China
- Correspondence: (C.L.); (M.-H.P.); Tel.: +86-023-68250076 (M.-H.P.)
| | - Min-Hui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Key Laboratory for Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China
- Correspondence: (C.L.); (M.-H.P.); Tel.: +86-023-68250076 (M.-H.P.)
| |
Collapse
|
10
|
Pan X, Luo Y, Liao N, Zhang Y, Xiao M, Chen P, Lu C, Dong Z. CRISPR/Cpf1 multiplex genome editing system increases silkworm tolerance to BmNPV. Int J Biol Macromol 2022; 200:566-573. [PMID: 35066025 DOI: 10.1016/j.ijbiomac.2022.01.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 11/25/2022]
Abstract
The CRISPR/Cas9 genome editing technology is now widely used in insect studies, but the use of CRISPR can be further increased to improve insect genome engineering. We established a direct mutation at multiple loci in several genes simultaneously used by CRISPR/Cpf1 multiplex genome editing technology to target the BmNPV genome. We constructed a transgenic line that can target the BmNPV ie-1, gp64, and DNApoly genes simultaneously, and hybridized this line with an FnCpf1 transgenic line to obtain an FnCpf1 × gNPVM binary hybrid expression system and to activate the FnCpf1 gene editing system. We showed that the multiple gene editing system introduced deletions, mutations, and insertions at three target sites, and that it did not affect the economic traits of transgenic silkworm lines. The antiviral response of multiplexed genome editing lines increased significantly, and viral gene transcription and replication were significantly affected in the transgenic silkworm lines. This study provides innovative resistance materials for silkworm breeding and also provides a simplified platform for efficient insect multi genome engineering and genetic operation.
Collapse
Affiliation(s)
- Xuan Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Yan Luo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Nachuan Liao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Ya Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Miao Xiao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China.
| | - Zhanqi Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China.
| |
Collapse
|
11
|
Li R, Meng Q, Qi J, Hu L, Huang J, Zhang Y, Yang J, Sun J. Microinjection-based CRISPR/Cas9 mutagenesis in the decapoda crustaceans, Neocaridina heteropoda and Eriocheir sinensis. J Exp Biol 2022; 225:274276. [DOI: 10.1242/jeb.243702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/31/2022] [Indexed: 11/20/2022]
Abstract
CRISPR/Cas9 technology has been applied to many arthropods. However, application of this technology to crustaceans remains limited due to the unique characteristics of embryos. Our group has developed a microinjection system to introduce the CRISPR/Cas9 system into Neocaridina heteropoda embryos (one-cell stage). Using the developed method, we mutated the target gene Nh-scarlet (N. heteropoda scarlet), which functions in eye development and pigmentation. The results showed that both eye color and shape were altered in individuals in which Nh-scarlet was knocked out. Furthermore, this system was also successfully applied to another decapod crustacean, Eriocheir sinensis. DNA sequencing revealed that the zoeae with red eyes had an edited version of Es-scarlet. This study provides a stable microinjection method for freshwater crustaceans, and will contribute to functional genomics studies in various decapods.
Collapse
Affiliation(s)
- Ran Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Qinghao Meng
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Jiachen Qi
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Lezhen Hu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Jinwei Huang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Yichen Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Jiale Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, People's Republic of China
| |
Collapse
|
12
|
Li Z, You L, Zhang Q, Yu Y, Tan A. A Targeted In-Fusion Expression System for Recombinant Protein Production in Bombyx mori. Front Genet 2022; 12:816075. [PMID: 35058975 PMCID: PMC8763709 DOI: 10.3389/fgene.2021.816075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 11/30/2021] [Indexed: 11/25/2022] Open
Abstract
The domesticated silkworm, Bombyx mori, is an economically important insect that synthesizes large amounts of silk proteins in its silk gland to make cocoons. In recent years, germline transformation strategies advanced the bioengineering of the silk gland as an ideal bioreactor for mass production of recombinant proteins. However, the yield of exogenous proteins varied largely due to the random insertion and gene drift caused by canonical transposon-based transformation, calling for site-specific and stable expression systems. In the current study, we established a targeted in-fusion expression system by using the transcription activator-like effector nuclease (TALEN)-mediated targeted insertion to target genomic locus of sericin, one of the major silk proteins. We successfully generated chimeric Sericin1-EGFP (Ser-2A-EGFP) transformant, producing up to 3.1% (w/w) of EGFP protein in the cocoon shell. With this strategy, we further expressed the medically important human epidermal growth factor (hEGF) and the protein yield in both middle silk glands, and cocoon shells reached to more than 15-fold higher than the canonical piggyBac-based transgenesis. This natural Sericin1 expression system provides a new strategy for producing recombinant proteins by using the silkworm silk gland as the bioreactor.
Collapse
Affiliation(s)
- Zhiqian Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.,Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China.,Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Lang You
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.,Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Qichao Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.,Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Ye Yu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.,Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Anjiang Tan
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.,Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| |
Collapse
|
13
|
Abstract
:
Clustered regularly interspaced short palindromic repeats along with CRISPR-associated protein
mechanisms preserve the memory of previous experiences with DNA invaders, in particular spacers
that are embedded in CRISPR arrays between coordinate repeats. There has been a fast progression in
the comprehension of this immune system and its implementations; however, there are numerous points
of view that anticipate explanations to make the field an energetic research zone. The efficiency of
CRISPR-Cas depends upon well-considered single guide RNA; for this purpose, many bioinformatics
methods and tools are created to support the design of greatly active and precise single guide RNA. Insilico
single guide RNA architecture is a crucial point for effective gene editing by means of the
CRISPR technique. Persistent attempts have been made to improve in-silico single guide RNA formulation
having great on-target effectiveness and decreased off-target effects. This review offers a summary
of the CRISPR computational tools to help different researchers pick a specific tool for their work according
to pros and cons, along with new thoughts to make new computational tools to overcome all existing
limitations.
Collapse
Affiliation(s)
- Mohsin Ali Nasir
- Center for Informational Biology, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave,
West Hi-Tech Zone, Chengdu 611731, China
| | - Samia Nawaz
- Center for Informational Biology, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave,
West Hi-Tech Zone, Chengdu 611731, China
| | - Jian Huang
- Center for Informational Biology, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave,
West Hi-Tech Zone, Chengdu 611731, China
| |
Collapse
|
14
|
Liao N, Dong Z, Zhang X, Qin Q, Luo Y, Huang L, Chen P, Lu C, Pan M. Construction of a CRISPR/FnCas12a multi-sites editing system for inhibiting proliferation of Bombyx mori nuclearpolyhedrosisvirus. Int J Biol Macromol 2021; 193:585-591. [PMID: 34699896 DOI: 10.1016/j.ijbiomac.2021.10.125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/11/2021] [Accepted: 10/18/2021] [Indexed: 12/26/2022]
Abstract
In recent years, Cas12a, a new member of the CRISPR family, has been found to have both DNase and RNase activities, have a simple structure, and a single promoter can simultaneously initiate multiple crRNAs, making the CRISPR/Cas12a editing system more advantageous in terms of structure and mechanism of action. Our team has successfully constructed Cas12a system that can be used in silkworm. Cas12a can be used to edit the multiple target sites. In production, a lot of factors can affect the production of silk industry. In order to make the silkworm resistant to the virus, using gene editing technology to knock out key genes for replication and proliferation in the Bombyx mori nuclearpolyhedrosisvirus (BmNPV) genome. Multiple sites on the BmNPV genome were selected as the target sites. We constructed the multi-sites expression vector of gie1-M (361 bp, 597 bp, 927 bp of ie-1) that edited multiple sites of BmNPV ie-1. The effects of multi-sites editing system on the proliferation and replication of the virus after the BmNPV genome was knocked out were examined. The results show that compared with CRISPR/FnCas12a single-site editing (gie1), multi-sites editing (gie1-M) can knock out the BmNPV genome more effectively and have a higher inhibitory effect on virus replication and proliferation. This system can provide a new direction for the breeding of silkworm resistant materials, and it can also lay a good technical platform for the identification and research of biological gene function.
Collapse
Affiliation(s)
- Nachuan Liao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Zhanqi Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
| | - Xinling Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Qi Qin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Yan Luo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Liang Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China.
| | - Minhui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China.
| |
Collapse
|
15
|
Xiao Q, Dong ZQ, Zhu Y, Zhang Q, Yang X, Xiao M, Chen P, Lu C, Pan MH. Bombyx mori Nucleopolyhedrovirus (BmNPV) Induces G2/M Arrest to Promote Viral Multiplication by Depleting BmCDK1. INSECTS 2021; 12:insects12121098. [PMID: 34940186 PMCID: PMC8708760 DOI: 10.3390/insects12121098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 01/01/2023]
Abstract
Simple Summary Baculoviruses arrest the cell cycle in the S or G2/M phase in insect cells, but the exact mechanism of this process still remains obscure. Bombyx mori nucleopolyhedrovirus (BmNPV), one of the best characterized baculoviruses, is an important pathogen in silkworms. In the present study, we determined that downregulation of BmCDK1 and BmCyclin B expression was required for BmNPV-mediated G2/M phase arrest, which plays an essential role in facilitating BmNPV replication. Further investigations showed that BmNPV IAP1 interacted with BmCDK1. The overexpression of the BmNPV iap1 gene led to the accumulation of cells in the G2/M phase, and BmNPV iap1 gene knockdown attenuated the effect of BmNPV-mediated G2/M phase arrest. These findings enhance the understanding of BmNPV pathogenesis, and indicate a novel mechanism through which baculoviruses impact the cell cycle progression. Abstract Understanding virus–host interaction is very important for delineating the mechanism involved in viral replication and host resistance. Baculovirus, an insect virus, can cause S or G2/M phase arrest in insect cells. However, the roles and mechanism of Baculovirus-mediated S or G2/M phase arrest are not fully understood. Our results, obtained using flow cytometry (FCM), tubulin-labeling, BrdU-labeling, and CellTiter 96® AQueous One Solution Cell Proliferation Assay (MTS), showed that Bombyx mori nucleopolyhedrovirus (BmNPV) induced G2/M phase arrest and inhibited cellular DNA replication as well as cell proliferation in BmN-SWU1 cells. We found that BmNPV induced G2/M arrest to support its replication and proliferation by reducing the expression of BmCDK1 and BmCyclin B. Co-immunoprecipitation assays confirmed that BmNPV IAP1 interacted with BmCDK1. BmNPV iap1 was involved in the process of BmNPV-induced G2/M arrest by reducing the content of BmCDK1. Taken together, our results improve the understanding of the virus–host interaction network, and provide a potential target gene that connects apoptosis and the cell cycle.
Collapse
Affiliation(s)
- Qin Xiao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (Q.X.); (Z.-Q.D.); (Y.Z.); (Q.Z.); (X.Y.); (M.X.); (P.C.)
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Zhan-Qi Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (Q.X.); (Z.-Q.D.); (Y.Z.); (Q.Z.); (X.Y.); (M.X.); (P.C.)
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Yan Zhu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (Q.X.); (Z.-Q.D.); (Y.Z.); (Q.Z.); (X.Y.); (M.X.); (P.C.)
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Qian Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (Q.X.); (Z.-Q.D.); (Y.Z.); (Q.Z.); (X.Y.); (M.X.); (P.C.)
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Xiu Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (Q.X.); (Z.-Q.D.); (Y.Z.); (Q.Z.); (X.Y.); (M.X.); (P.C.)
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Miao Xiao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (Q.X.); (Z.-Q.D.); (Y.Z.); (Q.Z.); (X.Y.); (M.X.); (P.C.)
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (Q.X.); (Z.-Q.D.); (Y.Z.); (Q.Z.); (X.Y.); (M.X.); (P.C.)
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (Q.X.); (Z.-Q.D.); (Y.Z.); (Q.Z.); (X.Y.); (M.X.); (P.C.)
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
- Correspondence: (C.L.); (M.-H.P.); Tel.: +86-23-6825-0346 (C.L.); +86-23-6825-0076 (M.-H.P.); Fax: +86-23-6825-1128 (C.L. & M.-H.P.)
| | - Min-Hui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (Q.X.); (Z.-Q.D.); (Y.Z.); (Q.Z.); (X.Y.); (M.X.); (P.C.)
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
- Correspondence: (C.L.); (M.-H.P.); Tel.: +86-23-6825-0346 (C.L.); +86-23-6825-0076 (M.-H.P.); Fax: +86-23-6825-1128 (C.L. & M.-H.P.)
| |
Collapse
|
16
|
Yang X, Zhang X, Liu Y, Yang D, Liu Z, Chen K, Tang L, Wang M, Hu Z, Zhang S, Huang Y. Transgenic genome editing-derived antiviral therapy to nucleopolyhedrovirus infection in the industrial strain of the silkworm. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 139:103672. [PMID: 34700022 DOI: 10.1016/j.ibmb.2021.103672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
The silkworm (Bombyx mori) is a domesticated and economically important insect. During the whole growth period, silkworm suffers various pathogen infection. Nearly 80% of silk cocoon crop losses are attributed to viral diseases. The circular double-stranded DNA virus Bombyx mori nuclepolyhedrovirus (BmNPV) is the major viral pathogen responsible for massive silkworm death and huge economic losses in the sericulture industry. Up to now, almost all the new strategies for developing immunity against BmNPV are in laboratory strains because of the lack of transgenic technology in industrial silkworm strains. We previously demonstrated that modification of BmNPV genome DNA with the antivirus transgenic CRISPR/Cas9 system effectively improved the resistance of laboratory silkworm strains to viral pathogens. The industrial strains are monovoltine or bivoltine. It is very difficult to break the diapause before microinjection for genetic transformation. Here, we show that the anti-BmNPV transgenic CRISPR/Cas9 system also works in the industrial silkworm strain Jingsong. In this study, we successfully broke diapause and obtained generation-skipping embryos and constructed two TG Jingsong lines. Both lines exhibited significantly enhanced immunity to BmNPV without significant changes in most of the commercially important traits. These results demonstrate that the construction of TG silkworm lines carrying a heritable immune defense system against BmNPV could be an effective strategy to enhance the resistance of industrial silkworm strains to the most devastating DNA virus. The research opened a window for genetic modification of the important strains from laboratory strains to industrial strains.
Collapse
Affiliation(s)
- Xu Yang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China; University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiaoqian Zhang
- College of Forestry, Shandong Agricultural University, Taian Shandong, 271018, China
| | - Yujia Liu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China; University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Dehong Yang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China; University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zulian Liu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Kai Chen
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China; University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Linmeng Tang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China; University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Manli Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Shengxiang Zhang
- College of Forestry, Shandong Agricultural University, Taian Shandong, 271018, China.
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China.
| |
Collapse
|
17
|
Li JJ, Shi Y, Wu JN, Li H, Smagghe G, Liu TX. CRISPR/Cas9 in lepidopteran insects: Progress, application and prospects. JOURNAL OF INSECT PHYSIOLOGY 2021; 135:104325. [PMID: 34743972 DOI: 10.1016/j.jinsphys.2021.104325] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/26/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Clustered regularly spaced short palindrome repeats (CRISPR) structure family forms the acquired immune system in bacteria and archaea. Recent advances in CRISPR/Cas genome editing as derived from prokaryotes, confirmed the characteristics of robustness, high target specificity and programmability, and also revolutionized the insect sciences field. The successful application of CRISPR in a wide variety of lepidopteran insects, with a high genetic diversity, provided opportunities to explore gene functions, insect modification and pest control. In this review, we present a detailed overview on the recent progress of CRISPR in lepidopteran insects, and described the basic principles of the system and its application. Major interest is on wing development, pigmentation, mating, reproduction, sex determination, metamorphosis, resistance and silkworm breeding innovation. Finally, we outlined the limitations of CRISPR/Cas system and discussed its application prospects in lepidopteran insects.
Collapse
Affiliation(s)
- Jiang-Jie Li
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, PR China; Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Yan Shi
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, PR China; Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Ji-Nan Wu
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, PR China
| | - Hao Li
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, PR China
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Tong-Xian Liu
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, PR China.
| |
Collapse
|
18
|
Zhang Q, Wu YF, Chen P, Liu TH, Dong ZQ, Lu C, Pan MH. Bombyx mori cell division cycle protein 37 promotes the proliferation of BmNPV. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 178:104923. [PMID: 34446199 DOI: 10.1016/j.pestbp.2021.104923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/06/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
Cell division cycle protein 37 (Cdc37) is a molecular chaperone that actively participates in many intracellular physiological and biochemical processes as well as pathogen infection. However, the function of Cdc37 in silkworm cells under Bombyx mori nucleopolyhedrovirus (BmNPV) infection is unknown. We cloned and identified BmCdc37, a Cdc37 gene from B. mori, which is highly conserved among other species. After BmNPV infection, the expression level of the BmCdc37 gene was up-regulated and showed an expression pattern similar to the BmHsp90 gene, which relies on Cdc37 to stabilize and activate specific protein kinases. The immunofluorescence, bimolecular fluorescence complementation (BiFC), and co-immunoprecipitation (Co-IP) assays all indicated that BmCdc37 interacts with BmHsp90 in silkworm cells. Both BmCdc37 and BmHsp90 promote the reproduction of BmNPV. Co-expression of BmCdc37 and BmHsp90 was better at promoting virus proliferation than overexpression alone. These findings all indicate that BmCdc37 plays an active role in the proliferation of BmNPV.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| | - Yun-Fei Wu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| | - Tai-Hang Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Zhan-Qi Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China.
| | - Min-Hui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China.
| |
Collapse
|
19
|
Hu N, Dong ZQ, Long JQ, Zheng N, Hu CW, Wu Q, Chen P, Lu C, Pan MH. Transcriptome analysis reveals changes in silkworm energy metabolism during Nosema bombycis infection. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 174:104809. [PMID: 33838710 DOI: 10.1016/j.pestbp.2021.104809] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/18/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
Energy metabolism is important for the proliferation of microsporidia in infected host cells, but there is limited information on the host response. The energy metabolism response of silkworm (Bombyx mori) to microsporidia may help manage Nosema bombycis infections. We analyzed differentially expressed genes in the B.mori midgut transcriptome at two significant time points of microsporidia infection. A total of 1448 genes were up-regulated, while 315 genes were down-regulated. A high proportion of genes were involved in the phosphatidylinositol signaling system, protein processing in the endoplasmic reticulum, and glycerolipid metabolism at 48 h post infection (h p.i.), and a large number of genes were involved in the TCA cycle and protein processing at 120 h p.i. These results showed that the early stages of microsporidia infection affected the basic metabolism and biosynthesis processes of the silkworm. Knockout of Bm_nscaf2860_46 (Bombyx mori isocitrate dehydrogenase, BmIDH) and Bm_nscaf3027_062 (Bombyx mori hexokinase, BmHXK) reduced the production of ATP and inhibited microsporidia proliferation. Host fatty acid degradation, glycerol metabolism, glycolysis pathway, and TCA cycle response to microsporidia infection were also analyzed, and their importance to microsporidia proliferation was verified. These results increase our understanding of the molecular mechanisms involved in N. bombycis infection and provide new insights for research on microsporidia control. IMPORTANCE: Nosema bombycis can be vertically transmitted in silkworm eggs. The traditional prevention and control strategies for microsporidia are difficult and time-consuming, and this is a problem in silkworm culture. Research has mainly focused on host gene functions related to microsporidia infection and host immune responses after microsporidia infection. Little is known about the metabolic changes occurring in the host after infection. Understanding the metabolic changes in the silkworm host could aid in the recognition of host genes important for microsporidia infection and growth. We analyzed host metabolic changes and the main participating pathways at two time points after microsporidia infection and screened the microsporidia-dependent host energy metabolism genes BmIDH and BmHXK. The results revealed genes that are important for the proliferation of Nosema bombycis. These results illustrate how microsporidia hijack the host genome for their growth and reproduction.
Collapse
Affiliation(s)
- Nan Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Zhan-Qi Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Ministry of Agriculture and Rural Affairs, Chongqing 400716, China
| | - Jiang-Qiong Long
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Ning Zheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Cong-Wu Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Qin Wu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Ministry of Agriculture and Rural Affairs, Chongqing 400716, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Ministry of Agriculture and Rural Affairs, Chongqing 400716, China.
| | - Min-Hui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Ministry of Agriculture and Rural Affairs, Chongqing 400716, China.
| |
Collapse
|
20
|
Dong Z, Zheng N, Hu C, Huang X, Chen P, Wu Q, Deng B, Lu C, Pan M. Genetic bioengineering of overexpressed guanylate binding protein family BmAtlastin-n enhances silkworm resistance to Nosema bombycis. Int J Biol Macromol 2021; 172:223-230. [PMID: 33453252 DOI: 10.1016/j.ijbiomac.2021.01.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/25/2020] [Accepted: 01/04/2021] [Indexed: 11/15/2022]
Abstract
Microsporidia are obligate single-celled eukaryote parasites. Microsporidian infection can cause large economic losses to beneficial insects such as silkworms and honey bees. Identification of resistance biomacromolecules and breeding of transgenic lines resistant to the microsporidian Nosema bombycis are important for disease management. We previously used transcriptome analysis to identify a guanylate binding protein family BmAtlastin-n gene that was significantly upregulated after Nosema bombycis infection, and we determined that the molecule was highly expressed in resistance-related tissues such as the midgut, fat body and the epidermis. The transgenic silkworm line overexpressing BmAtlastin-n biomolecules had economic characters similar to those of non-transgenic lines. The transgenic OE-BmAtlastin-n lines had significantly improved survival after microspore infection. We used RT-PCR and H&E staining to show that the number of spores in the transgenic lines was significantly lower than in the control lines. In this study, we identified a BmAtlastin-n macromolecule with resistance to N. bombycis and developed a transgenic line. The results improved understanding of the GBP protein family and provided biomacromolecule material for the treatment and prevention of microsporidia.
Collapse
Affiliation(s)
- Zhanqi Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China
| | - Ning Zheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Congwu Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Xuhua Huang
- The General Extension Station of Sericulture Technology of Guangxi Zhuang Autonomous Region, Nanning 530007, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China
| | - Qin Wu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Boyuan Deng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China.
| | - Minhui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China.
| |
Collapse
|
21
|
Kumar P, Malik YS, Ganesh B, Rahangdale S, Saurabh S, Natesan S, Srivastava A, Sharun K, Yatoo MI, Tiwari R, Singh RK, Dhama K. CRISPR-Cas System: An Approach With Potentials for COVID-19 Diagnosis and Therapeutics. Front Cell Infect Microbiol 2020; 10:576875. [PMID: 33251158 PMCID: PMC7673385 DOI: 10.3389/fcimb.2020.576875] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022] Open
Abstract
COVID-19, the human coronavirus disease caused by SARS-CoV-2, was reported for the first time in Wuhan, China in late 2019. COVID-19 has no preventive vaccine or proven standard pharmacological treatment, and consequently, the outbreak swiftly became a pandemic affecting more than 215 countries around the world. For the diagnosis of COVID-19, the only reliable diagnostics is a qPCR assay. Among other diagnostic tools, the CRISPR-Cas system is being investigated for rapid and specific diagnosis of COVID-19. The CRISPR-Cas-based methods diagnose the SARS-CoV-2 infections within an hour. Apart from its diagnostic ability, CRISPR-Cas system is also being assessed for antiviral therapy development; however, till date, no CRISPR-based therapy has been approved for human use. The Prophylactic Antiviral CRISPR in huMAN cells (PAC-MAN), which is Cas 13 based strategy, has been developed against coronavirus. Although this strategy has the potential to be developed as a therapeutic modality, it may face significant challenges for approval in human clinical trials. This review is focused on describing potential use and challenges of CRISPR-Cas based approaches for the development of rapid and accurate diagnostic technique and/or a possible therapeutic alternative for combating COVID-19. The assessment of potential risks associated with use of CRISPR will be important for future clinical advancements.
Collapse
Affiliation(s)
- Prashant Kumar
- Amity Institute of Virology and Immunology, Amity University, Noida, India
| | - Yashpal Singh Malik
- Division of Biological Standardization, Indian Council of Agricultural Research-Indian Veterinary Research Institute, Bareilly, India
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Science University, Ludhiana, India
| | - Balasubramanian Ganesh
- Laboratory Division, Indian Council of Medical Research—National Institute of Epidemiology, Ministry of Health & Family Welfare, Chennai, India
| | - Somnath Rahangdale
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, India
- Plant Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India
| | - Sharad Saurabh
- Plant Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India
| | | | - Ashish Srivastava
- Amity Institute of Virology and Immunology, Amity University, Noida, India
| | - Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Mohd. Iqbal Yatoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, India
| | - Raj Kumar Singh
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
22
|
BmFoxO Gene Regulation of the Cell Cycle Induced by 20-Hydroxyecdysone in BmN-SWU1 Cells. INSECTS 2020; 11:insects11100700. [PMID: 33066376 PMCID: PMC7602224 DOI: 10.3390/insects11100700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
Simple Summary Ecdysteroid titer determines the state of the cell cycle in silkworm (Bombyx mori) metamorphosis. However, the mechanism of this process is unclear. In this study, we reported that 20-Hydroxyecdysone (20E) can promote BmFoxO (Bombyx mori Forkhead box protein O) gene expression and induce BmFoxO nuclear translocation in BmN-SWU1 cells. Overexpression of the BmFoxO gene affects cell cycle progression, which results in cell cycle arrest in the G0/G1 phase as well as inhibition of DNA replication. Further investigations showed that the effect of 20E was attenuated after BmFoxO gene knockdown. The findings of this study confirmed that BmFoxO is a key mediator in the cell cycle regulation pathway induced by 20E. This suggests a novel pathway for ecdysteroid-induced cell cycle regulation in the process of silkworm metamorphosis, and it is likely to be conserved between Lepidoptera insects. Abstract Ecdysteroid titer determines the state of the cell cycle in silkworm (Bombyxmori) metamorphosis. However, the mechanism of this process is unclear. In this study, we demonstrated that the BmFoxO gene participates in the regulation of the cell cycle induced by 20-Hydroxyecdysone (20E) in BmN-SWU1 cells. The 20E blocks the cell cycle in the G2/M phase through the ecdysone receptor (EcR) and inhibits DNA replication. The 20E can promote BmFoxO gene expression. Immunofluorescence and Western blot results indicated that 20E can induce BmFoxO nuclear translocation in BmN-SWU1 cells. Overexpression of the BmFoxO gene affects cell cycle progression, which results in cell cycle arrest in the G0/G1 phase as well as inhibition of DNA replication. Knockdown of the BmFoxO gene led to cell accumulation at the G2/M phase. The effect of 20E was attenuated after BmFoxO gene knockdown. These findings increase our understanding of the function of 20E in the regulation of the cell cycle in B. mori.
Collapse
|
23
|
Dong Z, Qin Q, Hu Z, Zhang X, Miao J, Huang L, Chen P, Lu C, Pan M. CRISPR/Cas12a Mediated Genome Editing Enhances Bombyx mori Resistance to BmNPV. Front Bioeng Biotechnol 2020; 8:841. [PMID: 32760714 PMCID: PMC7373793 DOI: 10.3389/fbioe.2020.00841] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/30/2020] [Indexed: 12/31/2022] Open
Abstract
CRISPR/Cas12a (Cpf1) is a single RNA-guided endonuclease that provides new opportunities for targeted genome engineering through the CRISPR/Cas9 system. Only AsCas12a has been developed for insect genome editing, and the novel Cas12a orthologs nucleases and editing efficiency require more study on insects. We compared three Cas12a orthologs nucleases, AsCas12a, FnCas12a, and LbCas12a, for their editing efficiencies and antiviral abilities. The three Cas12a efficiently edited the Bombyx mori nucleopolyhedrovirus (BmNPV) genome and inhibited BmNPV replication in BmN-SWU1 cells. The antiviral ability of the FnCas12a system was more efficient than that of the SpCas9 system after infection by BmNPV. We created FnCas12a × gIE1 and SpCas9 × sgIE1 transgenic hybrid lines and evaluated the gene-editing efficiency of different systems at the same target site. We improved the antiviral ability using the FnCas12a system in transgenic silkworm. This study demonstrated the use of the CRISPR/Cas12a system to achieve high editing efficiencies, and increase disease resistance in the silkworm.
Collapse
Affiliation(s)
- Zhanqi Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Qi Qin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Zhigang Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Xinling Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Jianghao Miao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Liang Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Minhui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| |
Collapse
|
24
|
Chen P, Kang TT, Bao XY, Dong ZQ, Zhu Y, Xiao WF, Pan MH, Lu C. Evolutionary and functional analyses of the interaction between the Bombyx mori inhibitor of apoptosis (IAP) and nucleopolyhedrovirus IAPs. INSECT SCIENCE 2020; 27:463-474. [PMID: 30697933 DOI: 10.1111/1744-7917.12664] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
As an important insect immune response, apoptosis plays a critical role in the interaction between baculoviruses and insect hosts. Previous reports have identified inhibitor of apoptosis (IAP) proteins in both insects and baculoviruses, but the relationship between these proteins is still not clearly understood. Here, we found that insect IAP proteins were clustered with baculovirus IAP3, suggesting that the baculovirus iap3 gene might be derived from the Lepidoptera or Diptera. We demonstrated that Bombyx mori inhibitor of apoptosis (Bmiap) gene had an inhibitory effect on apoptosis in silkworm cells. Further analysis of the effects of Bmiap genes on the proliferation of B. mori nucleopolyhedrovirus (BmNPV) showed that both the Bmiap and BmNPV iap genes increased BmNPV proliferation after BmNPV infected silkworm cells. Our results also indicated that BmNPV IAP1 and IAP2 directly interacted with BmIAP in silkworm cells, implying that the Bmiap gene might be hijacked by BmNPV iap genes during BmNPV infection. Taken together, our results provide important insights into the functional relationships of iap genes, and improve our knowledge of apoptosis in baculoviruses and insect hosts.
Collapse
Affiliation(s)
- Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Tao-Tao Kang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Xi-Yan Bao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Zhan-Qi Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Yan Zhu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Wen-Fu Xiao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Min-Hui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| |
Collapse
|
25
|
Kumar P, Malik YS, Ganesh B, Rahangdale S, Saurabh S, Natesan S, Srivastava A, Sharun K, Yatoo MI, Tiwari R, Singh RK, Dhama K. CRISPR-Cas System: An Approach With Potentials for COVID-19 Diagnosis and Therapeutics. Front Cell Infect Microbiol 2020. [PMID: 33251158 DOI: 10.3389/fcimb] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
COVID-19, the human coronavirus disease caused by SARS-CoV-2, was reported for the first time in Wuhan, China in late 2019. COVID-19 has no preventive vaccine or proven standard pharmacological treatment, and consequently, the outbreak swiftly became a pandemic affecting more than 215 countries around the world. For the diagnosis of COVID-19, the only reliable diagnostics is a qPCR assay. Among other diagnostic tools, the CRISPR-Cas system is being investigated for rapid and specific diagnosis of COVID-19. The CRISPR-Cas-based methods diagnose the SARS-CoV-2 infections within an hour. Apart from its diagnostic ability, CRISPR-Cas system is also being assessed for antiviral therapy development; however, till date, no CRISPR-based therapy has been approved for human use. The Prophylactic Antiviral CRISPR in huMAN cells (PAC-MAN), which is Cas 13 based strategy, has been developed against coronavirus. Although this strategy has the potential to be developed as a therapeutic modality, it may face significant challenges for approval in human clinical trials. This review is focused on describing potential use and challenges of CRISPR-Cas based approaches for the development of rapid and accurate diagnostic technique and/or a possible therapeutic alternative for combating COVID-19. The assessment of potential risks associated with use of CRISPR will be important for future clinical advancements.
Collapse
Affiliation(s)
- Prashant Kumar
- Amity Institute of Virology and Immunology, Amity University, Noida, India
| | - Yashpal Singh Malik
- Division of Biological Standardization, Indian Council of Agricultural Research-Indian Veterinary Research Institute, Bareilly, India
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Science University, Ludhiana, India
| | - Balasubramanian Ganesh
- Laboratory Division, Indian Council of Medical Research-National Institute of Epidemiology, Ministry of Health & Family Welfare, Chennai, India
| | - Somnath Rahangdale
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, India
- Plant Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India
| | - Sharad Saurabh
- Plant Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India
| | | | - Ashish Srivastava
- Amity Institute of Virology and Immunology, Amity University, Noida, India
| | - Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Mohd Iqbal Yatoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, India
| | - Raj Kumar Singh
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
26
|
Li Z, Fan Y, Wei J, Mei X, He Q, Zhang Y, Li T, Long M, Chen J, Bao J, Pan G, Li C, Zhou Z. Baculovirus Utilizes Cholesterol Transporter NIEMANN-Pick C1 for Host Cell Entry. Front Microbiol 2019; 10:2825. [PMID: 31866985 PMCID: PMC6906155 DOI: 10.3389/fmicb.2019.02825] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/21/2019] [Indexed: 01/31/2023] Open
Abstract
The dual roles of baculovirus for the control of natural insect populations as an insecticide, and as a tool for foreign gene expression and delivery, have called for a comprehensive understanding of the molecular mechanisms governing viral infection. Here, we demonstrate that the Bombyx mori Niemann-Pick C1 (BmNPC1) is essential for baculovirus infection in insect cells. Both pretreatment of B. mori embryonic cells (BmE) with NPC1 antagonists (imipramine or U18666A) and down-regulation of NPC1 expression resulted in a significant reduction in baculovirus BmNPV (B. mori nuclear polyhedrosis virus) infectivity. Disruption of BmNPC1 could decrease viral entry (2 hpi) rather than reduce the viral binding to the BmE cells. Furthermore, our results showed that NPC1 domain C binds directly and specifically to the viral glycoprotein GP64, which is responsible for both receptor binding and fusion. Antibody blocking assay also revealed that the domain C specific polyclonal antibody inhibited BmNPV infection, indicating that NPC1 domain C most likely plays a role during viral fusion in endosomal compartments. Our results, combined with previous studies identifying an essential role of human NPC1 (hNPC1) in filovirus infection, suggest that the glycoprotein of several enveloped viruses possess a shared strategy of exploiting host NPC1 proteins during virus intracellular entry events.
Collapse
Affiliation(s)
- Zhihong Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Department of Microbiology, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Youpeng Fan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Junhong Wei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - Xionge Mei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Qiang He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Yonghua Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Tian Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - Mengxian Long
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - Jie Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - Jialing Bao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - Guoqing Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - Chunfeng Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| |
Collapse
|
27
|
Ma SY, Smagghe G, Xia QY. Genome editing in Bombyx mori: New opportunities for silkworm functional genomics and the sericulture industry. INSECT SCIENCE 2019; 26:964-972. [PMID: 29845729 DOI: 10.1111/1744-7917.12609] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/29/2018] [Accepted: 05/07/2018] [Indexed: 06/08/2023]
Abstract
In recent years, research in life sciences has been remarkably revolutionized owing to the establishment, development and application of genome editing technologies. Genome editing has not only accelerated fundamental research but has also shown promising applications in agricultural breeding and therapy. In particular, the clustered, regularly interspaced, short palindromic repeat (CRISPR) technology has become an indispensable tool in molecular biology owing to its high efficacy and simplicity. Genome editing tools have also been established in silkworm (Bombyx mori), a model organism of Lepidoptera insects with high economic importance. This has remarkably improved the level and scope of silkworm research and could reveal new mechanisms or targets in basic entomology and pest management studies. In this review, we summarize the progress and potential of genome editing in silkworm and its applications in functional genomic studies for generating novel genetic materials.
Collapse
Affiliation(s)
- San-Yuan Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Qing-You Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| |
Collapse
|
28
|
Dong Z, Long J, Huang L, Hu Z, Chen P, Hu N, Zheng N, Huang X, Lu C, Pan M. Construction and application of an HSP70 promoter-inducible genome editing system in transgenic silkworm to induce resistance to Nosema bombycis. Appl Microbiol Biotechnol 2019; 103:9583-9592. [DOI: 10.1007/s00253-019-10135-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/19/2019] [Accepted: 09/10/2019] [Indexed: 01/08/2023]
|
29
|
Dong Z, Qin Q, Hu Z, Chen P, Huang L, Zhang X, Tian T, Lu C, Pan M. Construction of a One-Vector Multiplex CRISPR/Cas9 Editing System to Inhibit Nucleopolyhedrovirus Replication in Silkworms. Virol Sin 2019; 34:444-453. [PMID: 31218589 DOI: 10.1007/s12250-019-00121-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/25/2019] [Indexed: 12/15/2022] Open
Abstract
Recently the developed single guide (sg)RNA-guided clustered regularly interspaced short palindromic repeats/associated protein 9 nuclease (CRISPR/Cas9) technology has opened a new avenue for antiviral therapy. The CRISPR/Cas9 system uniquely allows targeting of multiple genome sites simultaneously. However, there are relatively few applications of CRISPR/Cas9 multigene editing to target insect viruses. To address the need for sustained delivery of a multiplex CRISPR/Cas9-based genome-editing vehicle against insect viruses, we developed a one-vector (pSL1180-Cas9-U6-sgRNA) system that expresses multiple sgRNA and Cas9 protein to excise Bombyx mori nucleopolyhedrovirus (BmNPV) in insect cells. We screened the immediate-early-1 gene (ie-1), the major envelope glycoprotein gene (gp64), and the late expression factor gene (lef-11), and identified multiple sgRNA editing sites through flow cytometry and viral DNA replication analysis. In addition, we constructed a multiplex editing vector (PSL1180-Cas9-sgIE1-sgLEF11-sgGP64, sgMultiple) to efficiently regulate multiplex gene-editing and inhibit BmNPV replication after viral infection. This is the first report of the application of a multiplex CRISPR/Cas9 system to inhibit insect virus replication. This multiplex system can significantly enhance the potential of CRISPR/Cas9-based multiplex genome engineering in insect virus.
Collapse
Affiliation(s)
- Zhanqi Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Qi Qin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Zhigang Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Liang Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Xinling Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Ting Tian
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China.
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, 400716, China.
| | - Minhui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China.
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
30
|
Xiao Q, Wang L, Zhou XL, Zhu Y, Dong ZQ, Chen P, Lu C, Pan MH. BmAtg13 promotes the replication and proliferation of Bombyx mori nucleopolyhedrovirus. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 157:143-151. [PMID: 31153462 DOI: 10.1016/j.pestbp.2019.03.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 03/12/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Autophagy is a cell adaptive response that involves the process of microbial infections. Our previous study has indicated that Bombyx mori nucleopolyhedrovirus (BmNPV) infection triggers the complete autophagic process in BmN-SWU1 cells, which is beneficial to the viral infection. Autophagy-related (ATG) protein ATG13, as part of the ULK complex (a serine-threonine kinase complex composed of ULK1, ULK2, ATG13, ATG101, and FIP200), is the most upstream component of the autophagy pathway, and how it affects virus infections will improve our understanding of the interaction between the virus and the host. This study has determined that the overexpression of the BmAtg13 gene promotes the expression of viral genes and increases viral production in BmN-SWU1 cells, whereas knocking down the BmAtg13 gene suppresses BmNPV replication. Moreover, the BmAtg13 overexpression transgenic line contributed to viral replication and increased mortality rate of BmNPV infection. In contrast, the BmAtg13 knockout transgenic line reduced viral replication 96 h post-infection. Furthermore, BmATG13 directly interacted with viral protein BRO-B, forming a protein complex. Taken together, the findings of this study suggest that BmATG13 may be utilized by the BRO-B protein to promote BmNPV replication and proliferation, which, in turn, provides important insights into the mechanism that autophagy influences viral infection.
Collapse
Affiliation(s)
- Qin Xiao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China
| | - La Wang
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guizhou 550002, China
| | - Xiao-Lin Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China
| | - Yan Zhu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China
| | - Zhan-Qi Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China.
| | - Min-Hui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China.
| |
Collapse
|
31
|
Dong Z, Hu Z, Qin Q, Dong F, Huang L, Long J, Chen P, Lu C, Pan M. CRISPR/Cas9-mediated disruption of the immediate early-0 and 2 as a therapeutic approach to Bombyx mori nucleopolyhedrovirus in transgenic silkworm. INSECT MOLECULAR BIOLOGY 2019; 28:112-122. [PMID: 30120848 DOI: 10.1111/imb.12529] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The CRISPR/Cas9 system is a powerful tool for the treatment of infectious diseases. In our previous study, we knocked out the Bombyx mori nucleopolyhedrovirus (BmNPV) key genes and BmNPV-dependent host factor to generate transgenic antiviral strains. To further expand the range of target genes for BmNPV and more effectively prevent and control pathogenic infections, we performed gene editing and antiviral analysis by constructing a target-directed baculovirus early transcriptional activator immediate early-0 (ie-0) and 2 (ie-2) transgenic silkworm line. We hybridized it with Cas9 transgenic line to produce a double-positive transgenic Cas9(+)/sgIE0-sgIE2(+) line that could activate the CRISPR gene editing system. We first demonstrated that the system is capable of efficiently editing target genes and resulting in fragment deletions in the BmNPV genome. Survival rate of the transgenic Cas9(+)/sgIE0-sgIE2(+) line reached 65% after inoculation with 1 × 106 occlusion bodies/larva. Molecular analysis showed that BmNPV DNA replication and viral gene expression level in the transgenic Cas9(+)/sgIE0-sgIE2(+) line were significantly inhibited compared with the control Cas9(-)/sgIE0-sgIE2(-) line. These results indicated that IE-0 and IE-2, as baculovirus early transcriptional activators, can be used as target sites for gene therapy and that multigene editing could expand the range of target sites for research to create silkworm resistance breeds.
Collapse
Affiliation(s)
- Z Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Z Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Q Qin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - F Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - L Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - J Long
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - P Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - C Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, 400716, China
| | - M Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, 400716, China
| |
Collapse
|
32
|
Dong ZQ, Hu ZG, Li HQ, Jiang YM, Cao MY, Chen P, Lu C, Pan MH. Construction and characterization of a synthetic Baculovirus-inducible 39K promoter. J Biol Eng 2018; 12:30. [PMID: 30534200 PMCID: PMC6280533 DOI: 10.1186/s13036-018-0121-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/19/2018] [Indexed: 01/27/2023] Open
Abstract
Background Silkworm genetic engineering is widely used in gene function, silk engineering and disease-resistant engineering in most of Asia. Some of the earliest promoter elements are used to control the development of silkworm transgenic expression and gene therapy. However, the low expression and specificity of natural promoters limit the applications of genetic engineering. To construct a highly efficient synthetic inducible promoter in the Bombyx mori (Lepidoptera), we analyzed the regulatory elements and functional regions of the B. mori nucleopolyhedrovirus 39 K promoter. Results Truncated mutation analysis of the 39 K promoter showed that the transcriptional regulatory region spanning positions - 573 to - 274 and + 1 to + 62 are essential for virus-inducible promoter activity. Further investigations using the electrophoretic mobility shift assay revealed that the baculovirus IE-1 protein binds to the 39 K promoter at the - 310 to - 355 region, and transcription activates the expression of 39 K promoter assay. Finally, we successfully constructed a synthetic inducible promoter that increased the virus-inducing activity of other promoters using the baculovirus-inducible transcriptional activation region that binds to specific core elements of 39 K (i.e., spanning the region - 310 to - 355). Conclusions In summary, we constructed a novel, synthetic, and highly efficient biological tool, namely, a virus-inducible 39 K promoter, which provides endless possibilities for future research on gene function, gene therapy, and pest control in genetic engineering.
Collapse
Affiliation(s)
- Zhan-Qi Dong
- 1State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 China
| | - Zhi-Gang Hu
- 1State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 China
| | - Hai-Qing Li
- 1State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 China
| | - Ya-Ming Jiang
- 1State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 China
| | - Ming-Ya Cao
- 3Joint National Laboratory for Antibody Drug Engineering, Institute of Immunology, Henan University School of Medicine, Kaifeng, 475004 China
| | - Peng Chen
- 1State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 China
| | - Cheng Lu
- 1State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 China.,2Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, 400716 China
| | - Min-Hui Pan
- 1State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 China.,2Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, 400716 China
| |
Collapse
|
33
|
Establishment of a baculovirus-inducible CRISPR/Cas9 system for antiviral research in transgenic silkworms. Appl Microbiol Biotechnol 2018; 102:9255-9265. [PMID: 30151606 DOI: 10.1007/s00253-018-9295-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 10/28/2022]
Abstract
The CRISPR/Cas9 system is a powerful genetic engineering technique that has been widely used in gene therapy, as well as in the development of novel antimicrobials and transgenic insects. However, several challenges, including the lack of effective host target genes and the off-target effects, limit the application of CRISPR/Cas9 in insects. To mitigate these difficulties, we established a highly efficient virus-inducible CRISPR/Cas9 system in transgenic silkworms. This system includes the baculovirus-inducible promoter 39K, which directs transcription of the gene encoding, the Cas9 protein, and the U6 promoter which targets the sgATAD3A site of the ATPase family AAA domain-containing protein 3 (ATAD3A) gene. The double-positive transgenic line sgATAD3A×39K-Cas9 (ATAD3A-KO) was obtained by hybridization; antiviral activity in this hybrid transgenic line is induced only after Bombyx mori nucleopolyhedrovirus (BmNPV) infection. The BmNPV-inducible system significantly reduced off-target effects and did not affect the economically important characteristics of the transgenic silkworms. Most importantly, this novel system efficiently and consistently edited target genes, inhibiting BmNPV replication after the transgenic silkworms were inoculated with occlusion bodies (OBs). The suppression of BmNPV by the virus-inducible system was comparable to that of the stably expressed CRISPR/Cas9 system. Therefore, we successfully established a highly efficient BmNPV-inducible ATAD3A-KO transgenic silkworm line, with improved gene targeting specificity and antiviral efficiency. Our study thereby provides insights into the treatment of infectious diseases and into the control of insect pests.
Collapse
|
34
|
Ma J, Fan Y, Zhou Y, Liu W, Jiang N, Zhang J, Zeng L. Efficient resistance to grass carp reovirus infection in JAM-A knockout cells using CRISPR/Cas9. FISH & SHELLFISH IMMUNOLOGY 2018; 76:206-215. [PMID: 29477498 DOI: 10.1016/j.fsi.2018.02.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/13/2018] [Accepted: 02/19/2018] [Indexed: 06/08/2023]
Abstract
The hemorrhagic disease of grass carp (Ctenopharyngodon idellus) induced by grass carp reovirus (GCRV) leads to huge economic losses in China and currently, there are no effective methods available for prevention and treatment. The various GCRV genotypes may be one of the major obstacles in the pursuit of an effective antiviral treatment. In this study, we exploited CRISPR/Cas9 gene editing to specifically knockout the DNA sequence of the grass carp Junctional Adhesion Molecule-A (gcJAM-A) and evaluated in vitro resistance against various GCRV genotypes. Our results show that CRISPR/Cas9 effectively knocked out gcJAM-A and reduced GCRV infection for two different genotypes in permissive grass carp kidney cells (CIK), as evidenced by suppressed cytopathic effect (CPE) and GCRV progeny production in infected cells. In addition, with ectopic expression of gcJAM-A in cells, non-permissive cells derived from Chinese giant salamander (Andrias davidianus) muscle (GSM) could be highly infected by both GCRV-JX0901 and Hubei grass carp disease reovirus (HGDRV) strains that have different genotypes. Taken together, the results demonstrate that gcJAM-A is necessary for GCRV infection, implying a potential approach for viral control in aquaculture.
Collapse
Affiliation(s)
- Jie Ma
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, PR China.
| | - Yuding Fan
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, PR China.
| | - Yong Zhou
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, PR China.
| | - Wenzhi Liu
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, PR China.
| | - Nan Jiang
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, PR China.
| | - Jieming Zhang
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, PR China.
| | - Lingbing Zeng
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, PR China.
| |
Collapse
|
35
|
Dong Z, Dong F, Yu X, Huang L, Jiang Y, Hu Z, Chen P, Lu C, Pan M. Excision of Nucleopolyhedrovirus Form Transgenic Silkworm Using the CRISPR/Cas9 System. Front Microbiol 2018; 9:209. [PMID: 29503634 PMCID: PMC5820291 DOI: 10.3389/fmicb.2018.00209] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/30/2018] [Indexed: 01/19/2023] Open
Abstract
The CRISPR/Cas9-mediated genome engineering has been shown to efficiently suppress infection by disrupting genes of the pathogen. We recently constructed transgenic lines expressing CRISPR/Cas9 and the double sgRNA target Bombyx mori nucleopolyhedrovirus (BmNPV) immediate early-1 (ie-1) gene in the silkworm, respectively, and obtained four transgenic hybrid lines by G1 generation hybridization: Cas9(-)/sgRNA(-), Cas9(+)/sgRNA(-), Cas9(-)/sgRNA(+), and Cas9(+)/sgRNA(+). We demonstrated that the Cas9(+)/sgRNA(+) transgenic lines effectively edited the target site of the BmNPV genome, and large fragment deletion was observed after BmNPV infection. Further antiviral analysis of the Cas9(+)/sgRNA(+) transgenic lines shows that the median lethal dose (LD50) is 1,000-fold higher than the normal lines after inoculation with occlusion bodies. The analysis of economic characters and off-target efficiency of Cas9(+)/sgRNA(+) transgenic hybrid line showed no significant difference compared with the normal lines. Our findings indicate that CRISPR/Cas9-mediated genome engineering more effectively targets the BmNPV genomes and could be utilized as an insect antiviral treatment.
Collapse
Affiliation(s)
- Zhanqi Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Feifan Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Xinbo Yu
- College of Biotechnology, Southwest University, Chongqing, China
| | - Liang Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yaming Jiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Zhigang Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Minhui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| |
Collapse
|
36
|
Peng F, Wang X, Sun Y, Dong G, Yang Y, Liu X, Bai Z. Efficient gene editing in Corynebacterium glutamicum using the CRISPR/Cas9 system. Microb Cell Fact 2017; 16:201. [PMID: 29137643 PMCID: PMC5686833 DOI: 10.1186/s12934-017-0814-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 11/08/2017] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Corynebacterium glutamicum (C. glutamicum) has traditionally been used as a microbial cell factory for the industrial production of many amino acids and other industrially important commodities. C. glutamicum has recently been established as a host for recombinant protein expression; however, some intrinsic disadvantages could be improved by genetic modification. Gene editing techniques, such as deletion, insertion, or replacement, are important tools for modifying chromosomes. RESULTS In this research, we report a CRISPR/Cas9 system in C. glutamicum for rapid and efficient genome editing, including gene deletion and insertion. The system consists of two plasmids: one containing a target-specific guide RNA and a homologous sequence to a target gene, the other expressing Cas9 protein. With high efficiency (up to 100%), this system was used to disrupt the porB, mepA, clpX and Ncgl0911 genes, which affect the ability to express proteins. The porB- and mepA-deletion strains had enhanced expression of green fluorescent protein, compared with the wild-type stain. This system can also be used to engineer point mutations and gene insertions. CONCLUSIONS In this study, we adapted the CRISPR/Cas9 system from S. pyogens to gene deletion, point mutations and insertion in C. glutamicum. Compared with published genome modification methods, methods based on the CRISPR/Cas9 system can rapidly and efficiently achieve genome editing. Our research provides a powerful tool for facilitating the study of gene function, metabolic pathways, and enhanced productivity in C. glutamicum.
Collapse
Affiliation(s)
- Feng Peng
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122 China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Xinyue Wang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122 China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Yang Sun
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122 China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Guibin Dong
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122 China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Yankun Yang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122 China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Xiuxia Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122 China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Zhonghu Bai
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122 China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| |
Collapse
|
37
|
In vivo RNA interference of BmNHR96 enhances the resistance of transgenic silkworm to BmNPV. Biochem Biophys Res Commun 2017; 493:332-339. [DOI: 10.1016/j.bbrc.2017.09.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 09/06/2017] [Indexed: 11/18/2022]
|
38
|
Dai X, Chen X, Fang Q, Li J, Bai Z. Inducible CRISPR genome-editing tool: classifications and future trends. Crit Rev Biotechnol 2017; 38:573-586. [DOI: 10.1080/07388551.2017.1378999] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xiaofeng Dai
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiao Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Qiuwu Fang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jia Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhonghu Bai
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
39
|
Sun D, Guo Z, Liu Y, Zhang Y. Progress and Prospects of CRISPR/Cas Systems in Insects and Other Arthropods. Front Physiol 2017; 8:608. [PMID: 28932198 PMCID: PMC5592444 DOI: 10.3389/fphys.2017.00608] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/07/2017] [Indexed: 01/03/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and the CRISPR-associated gene Cas9 represent an invaluable system for the precise editing of genes in diverse species. The CRISPR/Cas9 system is an adaptive mechanism that enables bacteria and archaeal species to resist invading viruses and phages or plasmids. Compared with zinc finger nucleases and transcription activator-like effector nucleases, the CRISPR/Cas9 system has the advantage of requiring less time and effort. This efficient technology has been used in many species, including diverse arthropods that are relevant to agriculture, forestry, fisheries, and public health; however, there is no review that systematically summarizes its successful application in the editing of both insect and non-insect arthropod genomes. Thus, this paper seeks to provide a comprehensive and impartial overview of the progress of the CRISPR/Cas9 system in different arthropods, reviewing not only fundamental studies related to gene function exploration and experimental optimization but also applied studies in areas such as insect modification and pest control. In addition, we also describe the latest research advances regarding two novel CRISPR/Cas systems (CRISPR/Cpf1 and CRISPR/C2c2) and discuss their future prospects for becoming crucial technologies in arthropods.
Collapse
Affiliation(s)
- Dan Sun
- Longping Branch, Graduate School of Hunan UniversityChangsha, China.,Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Zhaojiang Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yong Liu
- Longping Branch, Graduate School of Hunan UniversityChangsha, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| |
Collapse
|
40
|
Baculovirus LEF-11 Hijack Host ATPase ATAD3A to Promote Virus Multiplication in Bombyx mori cells. Sci Rep 2017; 7:46187. [PMID: 28393927 PMCID: PMC5385504 DOI: 10.1038/srep46187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/10/2017] [Indexed: 11/22/2022] Open
Abstract
Research on molecular mechanisms that viruses use to regulate the host apparatus is important in virus infection control and antiviral therapy exploration. Our previous research showed that the Bombyx mori nucleopolyhedrovirus (BmNPV) LEF-11 localized to dense regions of the cell nucleus and is required for viral DNA replication. Herein, we examined the mechanism of LEF-11 on BmNPV multiplication and demonstrated that baculovirus LEF-11 interacts with Bombyx mori ATAD3A and HSPD1 (HSP60) protein. Furthermore, we showed that LEF-11 has the ability to induce and up-regulate the expression of ATAD3A and HSPD1, phenomena that were both reversed upon knockdown of lef-11. Our findings showed that ATAD3A and HSPD1 were necessary and contributed to BmNPV multiplication in Bombyx mori cells. Moreover, ATAD3A was found to directly interact with HSPD1. Interestingly, ATAD3A was required for the expression of HSPD1, while the knockdown of HSPD1 had no obvious effect on the expression level of ATAD3A. Taken together, the data presented in the current study demonstrated that baculovirus LEF-11 hijacks the host ATPase family members, ATAD3A and HSPD1, efficiently promote the multiplication of the virus. This study furthers our understanding of how baculovirus modulates energy metabolism of the host and provides a new insight into the molecular mechanisms of antiviral research.
Collapse
|
41
|
Taning CNT, Van Eynde B, Yu N, Ma S, Smagghe G. CRISPR/Cas9 in insects: Applications, best practices and biosafety concerns. JOURNAL OF INSECT PHYSIOLOGY 2017; 98:245-257. [PMID: 28108316 DOI: 10.1016/j.jinsphys.2017.01.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/28/2016] [Accepted: 01/12/2017] [Indexed: 05/13/2023]
Abstract
Discovered as a bacterial adaptive immune system, CRISPR/Cas9 (clustered, regularly interspaced, short palindromic repeat/CRISPR associated) is being developed as an attractive tool in genome editing. Due to its high specificity and applicability, CRISPR/Cas9-mediated gene editing has been employed in a multitude of organisms and cells, including insects, for not only fundamental research such as gene function studies, but also applied research such as modification of organisms of economic importance. Despite the rapid increase in the use of CRISPR in insect genome editing, results still differ from each study, principally due to existing differences in experimental parameters, such as the Cas9 and guide RNA form, the delivery method, the target gene and off-target effects. Here, we review current reports on the successes of CRISPR/Cas9 applications in diverse insects and insect cells. We furthermore summarize several best practices to give a useful checklist of CRISPR/Cas9 experimental setup in insects for beginners. Lastly, we discuss the biosafety concerns related to the release of CRISPR/Cas9-edited insects into the environment.
Collapse
Affiliation(s)
- Clauvis Nji Tizi Taning
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Benigna Van Eynde
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Na Yu
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Sanyuan Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
42
|
Doerflinger M, Forsyth W, Ebert G, Pellegrini M, Herold MJ. CRISPR/Cas9-The ultimate weapon to battle infectious diseases? Cell Microbiol 2016; 19. [PMID: 27860197 DOI: 10.1111/cmi.12693] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 10/30/2016] [Accepted: 11/04/2016] [Indexed: 12/12/2022]
Abstract
Infectious diseases are a leading cause of death worldwide. Novel therapeutics are urgently required to treat multidrug-resistant organisms such as Mycobacterium tuberculosis and to mitigate morbidity and mortality caused by acute infections such as malaria and dengue fever virus as well as chronic infections such as human immunodeficiency virus-1 and hepatitis B virus. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system, which has revolutionized biomedical research, holds great promise for the identification and validation of novel drug targets. Since its discovery as an adaptive immune system in prokaryotes, the CRISPR/Cas9 system has been developed into a multi-faceted genetic modification tool, which can now be used to induce gene deletions or specific gene insertions, such as conditional alleles or endogenous reporters in virtually any organism. The generation of CRISPR/Cas9 libraries that can be used to perform phenotypic whole genome screens provides an important new tool that will aid in the identification of critical host factors involved in the pathogenesis of infectious diseases. In this review, we will discuss the development and recent applications of the CRISPR/Cas9 system used to identify novel regulators, which might become important in the fight against infectious diseases.
Collapse
Affiliation(s)
- M Doerflinger
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - W Forsyth
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - G Ebert
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - M Pellegrini
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - M J Herold
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
43
|
Schaeffer SM, Nakata PA. The expanding footprint of CRISPR/Cas9 in the plant sciences. PLANT CELL REPORTS 2016; 35:1451-68. [PMID: 27137209 DOI: 10.1007/s00299-016-1987-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 04/19/2016] [Indexed: 05/18/2023]
Abstract
CRISPR/Cas9 has evolved and transformed the field of biology at an unprecedented pace. From the initial purpose of introducing a site specific mutation within a genome of choice, this technology has morphed into enabling a wide array of molecular applications, including site-specific transgene insertion and multiplexing for the simultaneous induction of multiple cleavage events. Efficiency, specificity, and flexibility are key attributes that have solidified CRISPR/Cas9 as the genome-editing tool of choice by scientists from all areas of biology. Within the field of plant biology, several CRISPR/Cas9 technologies, developed in other biological systems, have been successfully implemented to probe plant gene function and to modify specific crop traits. It is anticipated that this trend will persist and lead to the development of new applications and modifications of the CRISPR technology, adding to an ever-expanding collection of genome-editing tools. We envision that these tools will bestow plant researchers with new utilities to alter genome complexity, engineer site-specific integration events, control gene expression, generate transgene-free edited crops, and prevent or cure plant viral disease. The successful implementation of such utilities will represent a new frontier in plant biotechnology.
Collapse
Affiliation(s)
- Scott M Schaeffer
- Department of Pediatrics, Baylor College of Medicine, USDA/ARS Children's Nutrition Research Center, 1100 Bates St., Houston, TX, 77030-2600, USA
| | - Paul A Nakata
- Department of Pediatrics, Baylor College of Medicine, USDA/ARS Children's Nutrition Research Center, 1100 Bates St., Houston, TX, 77030-2600, USA.
| |
Collapse
|