1
|
Moianos D, Makri M, Prifti GM, Chiotellis A, Pappas A, Woodson ME, Tajwar R, Tavis JE, Zoidis G. N-Hydroxypiridinedione: A Privileged Heterocycle for Targeting the HBV RNase H. Molecules 2024; 29:2942. [PMID: 38931006 PMCID: PMC11206691 DOI: 10.3390/molecules29122942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/12/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Hepatitis B virus (HBV) remains a global health threat. Ribonuclease H (RNase H), part of the virus polymerase protein, cleaves the pgRNA template during viral genome replication. Inhibition of RNase H activity prevents (+) DNA strand synthesis and results in the accumulation of non-functional genomes, terminating the viral replication cycle. RNase H, though promising, remains an under-explored drug target against HBV. We previously reported the identification of a series of N-hydroxypyridinedione (HPD) imines that effectively inhibit the HBV RNase H. In our effort to further explore the HPD scaffold, we designed, synthesized, and evaluated 18 novel HPD oximes, as well as 4 structurally related minoxidil derivatives and 2 barbituric acid counterparts. The new analogs were docked on the RNase H active site and all proved able to coordinate the two Mg2+ ions in the catalytic site. All of the new HPDs effectively inhibited the viral replication in cell assays exhibiting EC50 values in the low μM range (1.1-7.7 μM) with low cytotoxicity, resulting in selectivity indexes (SI) of up to 92, one of the highest reported to date among HBV RNase H inhibitors. Our findings expand the structure-activity relationships on the HPD scaffold, facilitating the development of even more potent anti-HBV agents.
Collapse
Affiliation(s)
- Dimitrios Moianos
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (D.M.); (M.M.); (G.-M.P.)
| | - Maria Makri
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (D.M.); (M.M.); (G.-M.P.)
| | - Georgia-Myrto Prifti
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (D.M.); (M.M.); (G.-M.P.)
| | - Aristeidis Chiotellis
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research “Demokritos”, 15310 Athens, Greece; (A.C.); (A.P.)
| | - Alexandros Pappas
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research “Demokritos”, 15310 Athens, Greece; (A.C.); (A.P.)
| | - Molly E. Woodson
- Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA; (M.E.W.); (R.T.); (J.E.T.)
| | - Razia Tajwar
- Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA; (M.E.W.); (R.T.); (J.E.T.)
| | - John E. Tavis
- Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA; (M.E.W.); (R.T.); (J.E.T.)
| | - Grigoris Zoidis
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (D.M.); (M.M.); (G.-M.P.)
| |
Collapse
|
2
|
Giannakopoulou E, Pardali V, Edwards TC, Woodson M, Tajwar R, Tavis JE, Zoidis G. Identification and assessment of the 1,6-dihydroxy-pyridin-2-one moiety as privileged scaffold for HBV ribonuclease H inhibition. Antiviral Res 2024; 223:105833. [PMID: 38325606 PMCID: PMC11533872 DOI: 10.1016/j.antiviral.2024.105833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/20/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
The Hepatitis B Virus (HBV) ribonuclease H (RNase H) although promising remains an unexploited therapeutic target. HBV RNase H inhibition causes premature termination of viral minus-polarity DNA strands, prevents the synthesis of the viral positive-polarity DNA strand, and causes accumulation of RNA:DNA heteroduplexes within viral capsids. As part of our ongoing research to develop more potent anti-HBV RNase H inhibitors, we designed, synthesized and analyzed a library of 18 novel compounds (17 N-hydroyxpyridinedione (HPD) imine derivatives and 1 barbituric acid analogue) as potential leads for HBV treatment development. In cell assays, fourteen HPDs showed significant anti-HBV activity with EC50s from 1.1 to 2.5 μM and selectivity indices (SI) of up to 58. Three of them exhibited more than 3-fold improvement in the SI over the best previous HPD imine (SI = 13). To gain insight to the interaction between the tested compounds and the active site of HBV RNase H, docking experiments were undertaken. In almost all binding poses, the novel HPDs coordinated both active site Mg2+ ions via their oxygen trident. Furthermore, the novel HPDs displayed high cell permeability and solubility as well as good drug-like properties. These results reveal that HPD imines can be significantly active and selective HBV inhibitors, and that the HPD scaffold merits further development towards anti-HBV agents.
Collapse
Affiliation(s)
- Erofili Giannakopoulou
- School of Health Sciences, Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Vasiliki Pardali
- School of Health Sciences, Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Tiffany C Edwards
- Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, United States
| | - Molly Woodson
- Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, United States
| | - Razia Tajwar
- Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, United States
| | - John E Tavis
- Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, United States
| | - Grigoris Zoidis
- School of Health Sciences, Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece.
| |
Collapse
|
3
|
Olenginski LT, Attionu SK, Henninger EN, LeBlanc RM, Longhini AP, Dayie TK. Hepatitis B Virus Epsilon (ε) RNA Element: Dynamic Regulator of Viral Replication and Attractive Therapeutic Target. Viruses 2023; 15:1913. [PMID: 37766319 PMCID: PMC10534774 DOI: 10.3390/v15091913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Hepatitis B virus (HBV) chronically infects millions of people worldwide, which underscores the importance of discovering and designing novel anti-HBV therapeutics to complement current treatment strategies. An underexploited but attractive therapeutic target is ε, a cis-acting regulatory stem-loop RNA situated within the HBV pregenomic RNA (pgRNA). The binding of ε to the viral polymerase protein (P) is pivotal, as it triggers the packaging of pgRNA and P, as well as the reverse transcription of the viral genome. Consequently, small molecules capable of disrupting this interaction hold the potential to inhibit the early stages of HBV replication. The rational design of such ligands necessitates high-resolution structural information for the ε-P complex or its individual components. While these data are currently unavailable for P, our recent structural elucidation of ε through solution nuclear magnetic resonance spectroscopy marks a significant advancement in this area. In this review, we provide a brief overview of HBV replication and some of the therapeutic strategies to combat chronic HBV infection. These descriptions are intended to contextualize our recent experimental efforts to characterize ε and identify ε-targeting ligands, with the ultimate goal of developing novel anti-HBV therapeutics.
Collapse
Affiliation(s)
- Lukasz T. Olenginski
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA (R.M.L.)
- Department of Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | - Solomon K. Attionu
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA (R.M.L.)
| | - Erica N. Henninger
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA (R.M.L.)
| | - Regan M. LeBlanc
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA (R.M.L.)
| | - Andrew P. Longhini
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA (R.M.L.)
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Theodore K. Dayie
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA (R.M.L.)
| |
Collapse
|
4
|
Abstract
Hepatitis B virus (HBV) is a hepatotropic, partially double-stranded DNA virus that replicates by reverse transcription and is a major cause of chronic liver disease and hepatocellular carcinoma. Reverse transcription is catalyzed by the four-domain multifunctional HBV polymerase (P) protein that has protein-priming, RNA- and DNA-dependent DNA synthesis (i.e., reverse transcriptase), and ribonuclease H activities. P also likely promotes the three strand transfers that occur during reverse transcription, and it may participate in immune evasion by HBV. Reverse transcription is primed by a tyrosine residue in the amino-terminal domain of P, and P remains covalently attached to the product DNA throughout reverse transcription. The reverse transcriptase activity of P is the target for the nucleos(t)ide analog drugs that dominate HBV treatment, and P is the target of ongoing efforts to develop new drugs against both the reverse transcriptase and ribonuclease H activities. Despite the unusual reverse transcription pathway catalyzed by P and the importance of P to HBV therapy, understanding the enzymology and structure of HBV P severely lags that of the retroviral reverse transcriptases due to substantial technical challenges to studying the enzyme. Obtaining a better understanding of P will broaden our appreciation of the diversity among reverse transcribing elements in nature, and will help improve treatment for people chronically infected with HBV.
Collapse
Affiliation(s)
- Daniel N Clark
- Department of Microbiology, Weber State University, Ogden, UT, United States
| | - Razia Tajwar
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - Jianming Hu
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - John E Tavis
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, United States.
| |
Collapse
|
5
|
Prifti GM, Moianos D, Giannakopoulou E, Pardali V, Tavis JE, Zoidis G. Recent Advances in Hepatitis B Treatment. Pharmaceuticals (Basel) 2021; 14:417. [PMID: 34062711 PMCID: PMC8147224 DOI: 10.3390/ph14050417] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 01/10/2023] Open
Abstract
Hepatitis B virus infection affects over 250 million chronic carriers, causing more than 800,000 deaths annually, although a safe and effective vaccine is available. Currently used antiviral agents, pegylated interferon and nucleos(t)ide analogues, have major drawbacks and fail to completely eradicate the virus from infected cells. Thus, achieving a "functional cure" of the infection remains a real challenge. Recent findings concerning the viral replication cycle have led to development of novel therapeutic approaches including viral entry inhibitors, epigenetic control of cccDNA, immune modulators, RNA interference techniques, ribonuclease H inhibitors, and capsid assembly modulators. Promising preclinical results have been obtained, and the leading molecules under development have entered clinical evaluation. This review summarizes the key steps of the HBV life cycle, examines the currently approved anti-HBV drugs, and analyzes novel HBV treatment regimens.
Collapse
Affiliation(s)
- Georgia-Myrto Prifti
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (G.-M.P.); (D.M.); (E.G.); (V.P.)
| | - Dimitrios Moianos
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (G.-M.P.); (D.M.); (E.G.); (V.P.)
| | - Erofili Giannakopoulou
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (G.-M.P.); (D.M.); (E.G.); (V.P.)
| | - Vasiliki Pardali
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (G.-M.P.); (D.M.); (E.G.); (V.P.)
| | - John E. Tavis
- Molecular Microbiology and Immunology, Saint Louis University, Saint Louis, MO 63104, USA;
| | - Grigoris Zoidis
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (G.-M.P.); (D.M.); (E.G.); (V.P.)
| |
Collapse
|
6
|
Rybicka M, Bielawski KP. Recent Advances in Understanding, Diagnosing, and Treating Hepatitis B Virus Infection. Microorganisms 2020; 8:E1416. [PMID: 32942584 PMCID: PMC7565763 DOI: 10.3390/microorganisms8091416] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection affects 292 million people worldwide and is associated with a broad range of clinical manifestations including cirrhosis, liver failure, and hepatocellular carcinoma (HCC). Despite the availability of an effective vaccine HBV still causes nearly 900,000 deaths every year. Current treatment options keep HBV under control, but they do not offer a cure as they cannot completely clear HBV from infected hepatocytes. The recent development of reliable cell culture systems allowed for a better understanding of the host and viral mechanisms affecting HBV replication and persistence. Recent advances into the understanding of HBV biology, new potential diagnostic markers of hepatitis B infection, as well as novel antivirals targeting different steps in the HBV replication cycle are summarized in this review article.
Collapse
Affiliation(s)
- Magda Rybicka
- Department of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland;
| | | |
Collapse
|
7
|
Pierra Rouviere C, Dousson CB, Tavis JE. HBV replication inhibitors. Antiviral Res 2020; 179:104815. [PMID: 32380149 PMCID: PMC7293572 DOI: 10.1016/j.antiviral.2020.104815] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/22/2020] [Accepted: 04/28/2020] [Indexed: 12/21/2022]
Abstract
Chronic Hepatitis B Virus infections afflict >250 million people and kill nearly 1 million annually. Current non-curative therapies are dominated by nucleos(t)ide analogs (NAs) that profoundly but incompletely suppress DNA synthesis by the viral reverse transcriptase. Residual HBV replication during NA therapy contributes to maintenance of the critical nuclear reservoir of the HBV genome, the covalently-closed circular DNA, and to ongoing infection of naive cells. Identification of next-generation NAs with improved efficacy and safety profiles, often through novel prodrug approaches, is the primary thrust of ongoing efforts to improve HBV replication inhibitors. Inhibitors of the HBV ribonuclease H, the other viral enzymatic activity essential for viral genomic replication, are in preclinical development. The complexity of HBV's reverse transcription pathway offers many other potential targets. HBV's protein-priming of reverse transcription has been briefly explored as a potential target, as have the host chaperones necessary for function of the HBV reverse transcriptase. Improved inhibitors of HBV reverse transcription would reduce HBV's replication-dependent persistence mechanisms and are therefore expected to become a backbone of future curative combination anti-HBV therapies.
Collapse
Affiliation(s)
| | - Cyril B Dousson
- Ai-biopharma, Medicinal Chemistry Department, Montpellier, France.
| | - John E Tavis
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
8
|
Li Q, Lomonosova E, Donlin MJ, Cao F, O'Dea A, Milleson B, Berkowitz AJ, Baucom JC, Stasiak JP, Schiavone DV, Abdelmessih RG, Lyubimova A, Fraboni AJ, Bejcek LP, Villa JA, Gallicchio E, Murelli RP, Tavis JE. Amide-containing α-hydroxytropolones as inhibitors of hepatitis B virus replication. Antiviral Res 2020; 177:104777. [PMID: 32217151 PMCID: PMC7199283 DOI: 10.1016/j.antiviral.2020.104777] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 12/19/2022]
Abstract
The Hepatitis B Virus (HBV) ribonuclease H (RNaseH) is a promising but unexploited drug target. Here, we synthesized and analyzed a library of 57 amide-containing α-hydroxytropolones (αHTs) as potential leads for HBV drug development. Fifty percent effective concentrations ranged from 0.31 to 54 μM, with selectivity indexes in cell culture of up to 80. Activity against the HBV RNaseH was confirmed in semi-quantitative enzymatic assays with recombinant HBV RNaseH. The compounds were overall poorly active against human ribonuclease H1, with 50% inhibitory concentrations of 5.1 to >1,000 μM. The αHTs had modest activity against growth of the fungal pathogen Cryptococcus neoformans, but had very limited activity against growth of the Gram - bacterium Escherichia coli and the Gram + bacterium Staphylococcus aureus, indicating substantial selectivity for HBV. A molecular model of the HBV RNaseH templated against the Ty3 RNaseH was generated. Docking the compounds to the RNaseH revealed the anticipated binding pose with the divalent cation coordinating motif on the compounds chelating the two Mn++ ions modeled into the active site. These studies reveal that that amide αHTs can be strong, specific HBV inhibitors that merit further assessment toward becoming anti-HBV drugs.
Collapse
Affiliation(s)
- Qilan Li
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 S. Grand Blvd, Saint Louis, MO, 63104, USA
| | - Elena Lomonosova
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 S. Grand Blvd, Saint Louis, MO, 63104, USA.
| | - Maureen J Donlin
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 S. Grand Blvd, Saint Louis, MO, 63104, USA.
| | - Feng Cao
- John Cochran Division, Department of Veterans Affairs Medical Center, Saint Louis, MO, USA.
| | - Austin O'Dea
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 S. Grand Blvd, Saint Louis, MO, 63104, USA.
| | - Brienna Milleson
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 S. Grand Blvd, Saint Louis, MO, 63104, USA
| | - Alex J Berkowitz
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA; Program in Chemistry, The Graduate Center of The City University of New York, New York, NY, 11210, USA.
| | - John-Charles Baucom
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA; Program in Chemistry, The Graduate Center of The City University of New York, New York, NY, 11210, USA.
| | - John P Stasiak
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA.
| | - Daniel V Schiavone
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA; Program in Chemistry, The Graduate Center of The City University of New York, New York, NY, 11210, USA.
| | - Rudolf G Abdelmessih
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA.
| | - Anastasiya Lyubimova
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA.
| | - Americo J Fraboni
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA.
| | - Lauren P Bejcek
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA; Program in Chemistry, The Graduate Center of The City University of New York, New York, NY, 11210, USA.
| | - Juan A Villa
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 S. Grand Blvd, Saint Louis, MO, 63104, USA.
| | - Emilio Gallicchio
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA; Program in Chemistry, The Graduate Center of The City University of New York, New York, NY, 11210, USA; Program in Biochemistry, The Graduate Center of The City University of New York, New York, NY, 11210, USA.
| | - Ryan P Murelli
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA; Program in Chemistry, The Graduate Center of The City University of New York, New York, NY, 11210, USA; Program in Biochemistry, The Graduate Center of The City University of New York, New York, NY, 11210, USA.
| | - John E Tavis
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 S. Grand Blvd, Saint Louis, MO, 63104, USA.
| |
Collapse
|
9
|
Toyoda T, Wang Y, Wen Y, Tanaka Y. Fluorescence-based biochemical analysis of human hepatitis B virus reverse transcriptase activity. Anal Biochem 2020; 597:113642. [PMID: 32171777 DOI: 10.1016/j.ab.2020.113642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/04/2020] [Accepted: 02/18/2020] [Indexed: 12/14/2022]
Abstract
Although the unique mechanism by which hepatitis B virus (HBV) polymerase primes reverse transcription is now well-characterized, the subsequent elongation process remains poorly understood. Reverse transcriptase (RT)-RNase H sequences from polymerase amino acid 304 (the C-terminal part of spacer domain) to 843 were expressed in Escherichia coli and purified partially. RT elongation activity was investigated using the fluorescent-tagged primer and homopolymeric RNA templates. RT elongation activity depended on both Mg2+ and Mn2+, and had low affinity for purine deoxynucleotides, which may be related with the success of adefovir, tenofovir, and entecavir. However, the polymerization rate was lower than that of human immunodeficiency virus RT. All HBV genotypes displayed similar RT activity, except for genotype B, which demonstrated increased elongation activity.
Collapse
Affiliation(s)
- Tetsuya Toyoda
- Choju Medical Institute, Fukushimura Hospital, 19-14 Azayamanaka, Noyori-Cho, Toyohashi, Aichi, 441-8124, Japan.
| | - Yongxiang Wang
- Key Laboratory of Medical Molecular Virology, Institute of Medical Microbiology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Yumei Wen
- Key Laboratory of Medical Molecular Virology, Institute of Medical Microbiology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Yasuhito Tanaka
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
10
|
Edwards TC, Ponzar NL, Tavis JE. Shedding light on RNaseH: a promising target for hepatitis B virus (HBV). Expert Opin Ther Targets 2019; 23:559-563. [PMID: 31084514 DOI: 10.1080/14728222.2019.1619697] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Tiffany C Edwards
- a Department of Molecular Microbiology and Immunology , Saint Louis University Liver Center, Saint Louis University School of Medicine , Saint Louis , MO , USA
| | - Nathan L Ponzar
- a Department of Molecular Microbiology and Immunology , Saint Louis University Liver Center, Saint Louis University School of Medicine , Saint Louis , MO , USA
| | - John E Tavis
- a Department of Molecular Microbiology and Immunology , Saint Louis University Liver Center, Saint Louis University School of Medicine , Saint Louis , MO , USA
| |
Collapse
|
11
|
Edwards TC, Mani N, Dorsey B, Kakarla R, Rijnbrand R, Sofia MJ, Tavis JE. Inhibition of HBV replication by N-hydroxyisoquinolinedione and N-hydroxypyridinedione ribonuclease H inhibitors. Antiviral Res 2019; 164:70-80. [PMID: 30768944 PMCID: PMC10587990 DOI: 10.1016/j.antiviral.2019.02.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/20/2018] [Accepted: 02/05/2019] [Indexed: 12/12/2022]
Abstract
We recently developed a screening system capable of identifying and evaluating inhibitors of the Hepatitis B virus (HBV) ribonuclease H (RNaseH), which is the only HBV enzyme not targeted by current anti-HBV therapies. Inhibiting the HBV RNaseH blocks synthesis of the positive-polarity DNA strand, causing early termination of negative-polarity DNA synthesis and accumulation of RNA:DNA heteroduplexes. We previously reported inhibition of HBV replication by N-hydroxyisoquinolinediones (HID) and N-hydroxypyridinediones (HPD) in human hepatoma cells. Here, we report results from our ongoing efforts to develop more potent anti-HBV RNaseH inhibitors in the HID/HPD compound classes. We synthesized and screened additional HIDs and HPDs for preferential suppression of positive-polarity DNA in cells replicating HBV. Three of seven new HIDs inhibited HBV replication, however, the therapeutic indexes (TI = CC50/EC50) did not improve over what we previously reported. All nine of the HPDs inhibited HBV replication with EC50s ranging from 110 nM to 4 μM. Cellular cytotoxicity was evaluated by four assays and CC50s ranged from 15 to >100 μM. The best compounds have a calculated TI of >300, which is a 16-fold improvement over the primary HPD hit. These studies indicate that the HPD compound class holds potential for antiviral discovery.
Collapse
Affiliation(s)
- Tiffany C Edwards
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA; Saint Louis University Liver Center, Saint Louis University School of Medicine, St. Louis, MO, USA.
| | - Nagraj Mani
- Arbutus Biopharma Incorporated, Warminster, PA, USA.
| | - Bruce Dorsey
- Arbutus Biopharma Incorporated, Warminster, PA, USA.
| | | | | | | | - John E Tavis
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA; Saint Louis University Liver Center, Saint Louis University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
12
|
Xu P, Ganaie SS, Wang X, Wang Z, Kleiboeker S, Horton NC, Heier RF, Meyers MJ, Tavis JE, Qiu J. Endonuclease Activity Inhibition of the NS1 Protein of Parvovirus B19 as a Novel Target for Antiviral Drug Development. Antimicrob Agents Chemother 2019; 63:e01879-18. [PMID: 30530599 PMCID: PMC6395930 DOI: 10.1128/aac.01879-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/30/2018] [Indexed: 12/27/2022] Open
Abstract
Human parvovirus B19 (B19V), a member of the genus Erythroparvovirus of the family Parvoviridae, is a small nonenveloped virus that has a single-stranded DNA (ssDNA) genome of 5.6 kb with two inverted terminal repeats (ITRs). B19V infection often results in severe hematological disorders and fetal death in humans. B19V replication follows a model of rolling hairpin-dependent DNA replication, in which the large nonstructural protein NS1 introduces a site-specific single-strand nick in the viral DNA replication origins, which locate at the ITRs. NS1 executes endonuclease activity through the N-terminal origin-binding domain. Nicking of the viral replication origin is a pivotal step in rolling hairpin-dependent viral DNA replication. Here, we developed a fluorophore-based in vitro nicking assay of the replication origin using the origin-binding domain of NS1 and compared it with the radioactive in vitro nicking assay. We used both assays to screen a set of small-molecule compounds (n = 96) that have potential antinuclease activity. We found that the fluorophore-based in vitro nicking assay demonstrates sensitivity and specificity values as high as those of the radioactive assay. Among the 96 compounds, we identified 8 which have an inhibition of >80% at 10 µM in both the fluorophore-based and radioactive in vitro nicking assays. We further tested 3 compounds that have a flavonoid-like structure and an in vitro 50% inhibitory concentration that fell in the range of 1 to 3 µM. Importantly, they also exhibited inhibition of B19V DNA replication in UT7/Epo-S1 cells and ex vivo-expanded human erythroid progenitor cells.
Collapse
Affiliation(s)
- Peng Xu
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Safder S Ganaie
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Xiaomei Wang
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Zekun Wang
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | - Nancy C Horton
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Richard F Heier
- Center for World Health and Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - Marvin J Meyers
- Center for World Health and Medicine, Saint Louis University, St. Louis, Missouri, USA
- Department of Chemistry, Saint Louis University, St. Louis, Missouri, USA
| | - John E Tavis
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, Missouri, USA
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
13
|
Long KR, Lomonosova E, Li Q, Ponzar NL, Villa JA, Touchette E, Rapp S, Liley RM, Murelli RP, Grigoryan A, Buller RM, Wilson L, Bial J, Sagartz JE, Tavis JE. Efficacy of hepatitis B virus ribonuclease H inhibitors, a new class of replication antagonists, in FRG human liver chimeric mice. Antiviral Res 2018; 149:41-47. [PMID: 29129708 PMCID: PMC5743599 DOI: 10.1016/j.antiviral.2017.11.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/11/2017] [Accepted: 11/07/2017] [Indexed: 12/20/2022]
Abstract
Chronic hepatitis B virus infection cannot be cured by current therapies, so new treatments are urgently needed. We recently identified novel inhibitors of the hepatitis B virus ribonuclease H that suppress viral replication in cell culture. Here, we employed immunodeficient FRG KO mice whose livers had been engrafted with primary human hepatocytes to ask whether ribonuclease H inhibitors can suppress hepatitis B virus replication in vivo. Humanized FRG KO mice infected with hepatitis B virus were treated for two weeks with the ribonuclease H inhibitors #110, an α-hydroxytropolone, and #208, an N-hydroxypyridinedione. Hepatitis B virus viral titers and S and e antigen plasma levels were measured. Treatment with #110 and #208 caused significant reductions in plasma viremia without affecting hepatitis B virus S or e antigen levels, and viral titers rebounded following treatment cessation. This is the expected pattern for inhibitors of viral DNA synthesis. Compound #208 suppressed viral titers of both hepatitis B virus genotype A and C isolates. These data indicate that Hepatitis B virus replication can be suppressed during infection in an animal by inhibiting the viral ribonuclease H, validating the ribonuclease H as a novel target for antiviral drug development.
Collapse
Affiliation(s)
- Kelly R Long
- Seventh Wave Laboratories LLC, 19 Worthington Access Drive, Maryland Heights, MO 63043, USA.
| | - Elena Lomonosova
- Department of Molecular Microbiology and Immunology & the Saint Louis University Liver Center, Saint Louis University School of Medicine, 1100 S. Grand Blvd., St. Louis, MO 63104, USA.
| | - Qilan Li
- Department of Molecular Microbiology and Immunology & the Saint Louis University Liver Center, Saint Louis University School of Medicine, 1100 S. Grand Blvd., St. Louis, MO 63104, USA.
| | - Nathan L Ponzar
- Department of Molecular Microbiology and Immunology & the Saint Louis University Liver Center, Saint Louis University School of Medicine, 1100 S. Grand Blvd., St. Louis, MO 63104, USA.
| | - Juan A Villa
- Department of Molecular Microbiology and Immunology & the Saint Louis University Liver Center, Saint Louis University School of Medicine, 1100 S. Grand Blvd., St. Louis, MO 63104, USA.
| | - Erin Touchette
- Seventh Wave Laboratories LLC, 19 Worthington Access Drive, Maryland Heights, MO 63043, USA.
| | - Stephen Rapp
- Seventh Wave Laboratories LLC, 19 Worthington Access Drive, Maryland Heights, MO 63043, USA.
| | - R Matt Liley
- Seventh Wave Laboratories LLC, 19 Worthington Access Drive, Maryland Heights, MO 63043, USA.
| | - Ryan P Murelli
- Brookyln College & PhD Program in Chemistry at the Graduate Center of the City University of New York, NY 11210, USA.
| | - Alexandre Grigoryan
- Brookyln College & PhD Program in Chemistry at the Graduate Center of the City University of New York, NY 11210, USA.
| | - R Mark Buller
- Department of Molecular Microbiology and Immunology & the Saint Louis University Liver Center, Saint Louis University School of Medicine, 1100 S. Grand Blvd., St. Louis, MO 63104, USA
| | - Lisa Wilson
- Yecuris Corporation, P.O. Box 4645, Tualatin, OR 97062, USA.
| | - John Bial
- Yecuris Corporation, P.O. Box 4645, Tualatin, OR 97062, USA.
| | - John E Sagartz
- Seventh Wave Laboratories LLC, 19 Worthington Access Drive, Maryland Heights, MO 63043, USA.
| | - John E Tavis
- Department of Molecular Microbiology and Immunology & the Saint Louis University Liver Center, Saint Louis University School of Medicine, 1100 S. Grand Blvd., St. Louis, MO 63104, USA.
| |
Collapse
|
14
|
Synergistic Interactions between Hepatitis B Virus RNase H Antagonists and Other Inhibitors. Antimicrob Agents Chemother 2017; 61:AAC.02441-16. [PMID: 27956427 DOI: 10.1128/aac.02441-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 12/07/2016] [Indexed: 12/15/2022] Open
Abstract
Combination therapies are standard for management of human immunodeficiency virus (HIV) and hepatitis C virus (HCV) infections; however, no such therapies are established for human hepatitis B virus (HBV). Recently, we identified several promising inhibitors of HBV RNase H (here simply RNase H) activity that have significant activity against viral replication in vitro Here, we investigated the in vitro antiviral efficacy of combinations of two RNase H inhibitors with the current anti-HBV drug nucleoside analog lamivudine, with HAP12, an experimental core protein allosteric modulator, and with each other. Anti-HBV activities of the compounds were tested in a HepG2-derived cell line by monitoring intracellular core particle DNA levels, and cytotoxicity was assessed by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay. The antiviral efficiencies of the drug combinations were evaluated using the median-effect equation derived from the mass-action law principle and combination index theorem of Chou and Talalay. We found that combinations of two RNase H inhibitors from different chemical classes were synergistic with lamivudine against HBV DNA synthesis. Significant synergism was also observed for the combination of the two RNase H inhibitors. Combinations of RNase H inhibitors with HAP12 had additive antiviral effects. Enhanced cytotoxicity was not observed in the combination experiments. Because of these synergistic and additive effects, the antiviral activity of combinations of RNase H inhibitors with drugs that act by two different mechanisms and with each other can be achieved by administering the compounds in combination at doses below the respective single drug doses.
Collapse
|