1
|
Sousa TDC, Martins JSCC, Miranda MD, Garcia CC, Resende PC, Santos CA, Debur MDC, Rodrigues RR, Cavalcanti AC, Gregianini TS, Iani FCDM, Pereira FM, Fernandes SB, Ferreira JDA, Santos KCDO, Motta F, Brown D, de Almeida WAF, Siqueira MM, Matos ADR. Low prevalence of influenza A strains with resistance markers in Brazil during 2017-2019 seasons. Front Public Health 2022; 10:944277. [PMID: 36187691 PMCID: PMC9516282 DOI: 10.3389/fpubh.2022.944277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/15/2022] [Indexed: 01/21/2023] Open
Abstract
The influenza A virus (IAV) is of a major public health concern as it causes annual epidemics and has the potential to cause pandemics. At present, the neuraminidase inhibitors (NAIs) are the most widely used anti-influenza drugs, but, more recently, the drug baloxavir marboxil (BXM), a polymerase inhibitor, has also been licensed in some countries. Mutations in the viral genes that encode the antiviral targets can lead to treatment resistance. Worldwide, a low prevalence of antiviral resistant strains has been reported. Despite that, this situation can change rapidly, and resistant strain surveillance is a priority. Thus, the aim of this was to evaluate Brazilian IAVs antiviral resistance from 2017 to 2019 through the identification of viral mutations associated with reduced inhibition of the drugs and by testing the susceptibility of IAV isolates to oseltamivir (OST), the most widely used NAI drug in the country. Initially, we analyzed 282 influenza A(H1N1)pdm09 and 455 A(H3N2) genetic sequences available on GISAID. The amino acid substitution (AAS) NA:S247N was detected in one A(H1N1)pdm09 strain. We also identified NA:I222V (n = 6) and NA:N329K (n = 1) in A(H3N2) strains. In addition, we performed a molecular screening for NA:H275Y in 437 A(H1N1)pdm09 samples, by pyrosequencing, which revealed a single virus harboring this mutation. Furthermore, the determination of OST IC50 values for 222 A(H1N1)pdm09 and 83 A(H3N2) isolates revealed that all isolates presented a normal susceptibility profile to the drug. Interestingly, we detected one A(H3N2) virus presenting with PA:E119D AAS. Moreover, the majority of the IAV sequences had the M2:S31N adamantanes resistant marker. In conclusion, we show a low prevalence of Brazilian IAV strains with NAI resistance markers, in accordance with what is reported worldwide, indicating that NAIs still remain an option for the treatment of influenza infections in Brazil. However, surveillance of influenza resistance should be strengthened in the country for improving the representativeness of investigated viruses and the robustness of the analysis.
Collapse
Affiliation(s)
- Thiago das Chagas Sousa
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, FIOCRUZ Fundation, Rio de Janeiro, Brazil
| | | | - Milene Dias Miranda
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, FIOCRUZ Fundation, Rio de Janeiro, Brazil
| | - Cristiana Couto Garcia
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, FIOCRUZ Fundation, Rio de Janeiro, Brazil
| | - Paola Cristina Resende
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, FIOCRUZ Fundation, Rio de Janeiro, Brazil
| | - Cliomar A. Santos
- Laboratório Central de Saúde Publica de Sergipe (LACEN-SE), Aracaju, Sergipe, Brazil
| | | | - Rodrigo Ribeiro Rodrigues
- Laboratório de Saúde Pública do Estado do Espírito Santo, Secretaria de Saúde do Estado do Espírito Santo (LACEN-ES), Vitória, Espirito Santo, Brazil,Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Espirito Santo, Brazil
| | - Andrea Cony Cavalcanti
- Laboratório Central de Saúde Pública do Rio de Janeiro (LACEN-RJ), Rio de Janeiro, Brazil
| | - Tatiana Schäffer Gregianini
- Laboratório Central de Saúde Pública da Secretaria de Saúde do estado do Rio Grande do Sul, (LACEN-RS)/CEVS/SES-RS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Felipe Campos de Melo Iani
- Laboratório Central de Saúde Pública de Minas Gerais (LACEN-MG), Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | - Fernando Motta
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, FIOCRUZ Fundation, Rio de Janeiro, Brazil
| | - David Brown
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, FIOCRUZ Fundation, Rio de Janeiro, Brazil
| | - Walquiria Aparecida Ferreira de Almeida
- Departamento de Imunização e Doenças Transmissíveis (DEIDT)/Secretaria de Vigilância em Saúde (SVS)/Ministério da Saúde (MS), Brasília, Distrito Federal, Brazil
| | - Marilda Mendonça Siqueira
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, FIOCRUZ Fundation, Rio de Janeiro, Brazil
| | - Aline da Rocha Matos
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, FIOCRUZ Fundation, Rio de Janeiro, Brazil,*Correspondence: Aline da Rocha Matos
| |
Collapse
|
2
|
Lin CY, Yang ZS, Wang WH, Urbina AN, Lin YT, Huang JC, Liu FT, Wang SF. The Antiviral Role of Galectins toward Influenza A Virus Infection-An Alternative Strategy for Influenza Therapy. Pharmaceuticals (Basel) 2021; 14:490. [PMID: 34065500 PMCID: PMC8160607 DOI: 10.3390/ph14050490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 12/27/2022] Open
Abstract
Animal lectins are proteins with carbohydrate recognition activity. Galectins, the β-galactoside binding lectins, are expressed in various cells and have been reported to regulate several immunological and physiological responses. Recently, some galectins have been reported to regulate some viral infections, including influenza A virus (IAV); however, the mechanism is still not fully understood. Thus, we aim to review systemically the roles of galectins in their antiviral functions against IAVs. The PRISMA guidelines were used to select the eligible articles. Results indicated that only Galectin-1, Galectin-3, and Galectin-9 were reported to play a regulatory role in IAV infection. These regulatory effects occur extracellularly, through their carbohydrate recognition domain (CRD) interacting with glycans expressed on the virus surface, as well as endogenously, in a cell-cell interaction manner. The inhibition effects induced by galectins on IAV infection were through blocking virus-host receptors interaction, activation of NLRP-3 inflammasome, augment expression of antiviral genes and related cytokines, as well as stimulation of Tim-3 related signaling to enhance virus-specific T cells and humoral immune response. Combined, this study concludes that currently, only three galectins have reported antiviral capabilities against IAV infection, thereby having the potential to be applied as an alternative anti-influenza therapeutic strategy.
Collapse
Affiliation(s)
- Chih-Yen Lin
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-Y.L.); (Z.-S.Y.); (W.-H.W.); (A.N.U.)
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Zih-Syuan Yang
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-Y.L.); (Z.-S.Y.); (W.-H.W.); (A.N.U.)
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Wen-Hung Wang
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-Y.L.); (Z.-S.Y.); (W.-H.W.); (A.N.U.)
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical, University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Aspiro Nayim Urbina
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-Y.L.); (Z.-S.Y.); (W.-H.W.); (A.N.U.)
| | - Yu-Ting Lin
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Jason C. Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112304, Taiwan;
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan;
| | - Sheng-Fan Wang
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-Y.L.); (Z.-S.Y.); (W.-H.W.); (A.N.U.)
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
3
|
Yang ZS, Lin CY, Huang SW, Wang WH, Urbina AN, Tseng SP, Lu PL, Chen YH, Wang SF. Regulatory roles of galectins on influenza A virus and their potential as a therapeutic strategy. Biomed Pharmacother 2021; 139:111713. [PMID: 34243634 DOI: 10.1016/j.biopha.2021.111713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 11/19/2022] Open
Abstract
Galectins, are β-galactoside binding lectins expressed in numerous cells and are known to regulate various immune responses and cellular physiological functions. Galectins have been reported to participate in the regulation of several viral infections via carbohydrate‑dependent/independent manner. Galectins have displayed various regulatory functions on viral infection, however, the detailed mechanism remains unclear. More recently, some members of galectins have been reported to regulate influenza A virus (IAV) infection. In this review, we aim to analyze and summarize current findings regarding the role of galectins in IAV infection and their antiviral potential therapeutic application in the treatment of IAVs. The eligible articles were selected according to the PRISMA guidelines. Results indicate that Galectin-1(Gal-1), Galectin-3(Gal-3) and Galectin-9 (Gal-9) were found as the predominant galectins reported to participate in the regulation of IAVs infection. The inhibitory regulation of IAVs by these galectins occurred mainly through extracellular binding to glycosylated envelope proteins, further blocking the interaction between influenza envelope and sialic acid receptor, interacting with ligands or receptors on immune cells to trigger immunol or cellular response against IAVs, and endogenously interacting cellular components in the cytoplasm to activate inflammasome and autophagy. This study offers information regarding the multiple roles of galectins observed in IAVs infection and suggest that galectins has the potential to be used as therapeutic agents for IAVs.
Collapse
Affiliation(s)
- Zih-Syuan Yang
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chih-Yen Lin
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Szu-Wei Huang
- Model Development Section, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Wen-Hung Wang
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical, University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Aspiro Nayim Urbina
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Sung-Pin Tseng
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Po-Liang Lu
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical, University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yen-Hsu Chen
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical, University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Sheng-Fan Wang
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
4
|
Boff L, Schreiber A, da Rocha Matos A, Del Sarto J, Brunotte L, Munkert J, Melo Ottoni F, Silva Ramos G, Kreis W, Castro Braga F, José Alves R, Maia de Pádua R, Maria Oliveira Simões C, Ludwig S. Semisynthetic Cardenolides Acting as Antiviral Inhibitors of Influenza A Virus Replication by Preventing Polymerase Complex Formation. Molecules 2020; 25:molecules25204853. [PMID: 33096707 PMCID: PMC7587960 DOI: 10.3390/molecules25204853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 02/05/2023] Open
Abstract
Influenza virus infections represent a major public health issue by causing annual epidemics and occasional pandemics that affect thousands of people worldwide. Vaccination is the main prophylaxis to prevent these epidemics/pandemics, although the effectiveness of licensed vaccines is rather limited due to the constant mutations of influenza virus antigenic characteristics. The available anti-influenza drugs are still restricted and there is an increasing viral resistance to these compounds, thus highlighting the need for research and development of new antiviral drugs. In this work, two semisynthetic derivatives of digitoxigenin, namely C10 (3β-((N-(2-hydroxyethyl)aminoacetyl)amino-3-deoxydigitoxigenin) and C11 (3β-(hydroxyacetyl)amino-3-deoxydigitoxigenin), showed anti-influenza A virus activity by affecting the expression of viral proteins at the early and late stages of replication cycle, and altering the transcription and synthesis of new viral proteins, thereby inhibiting the formation of new virions. Such antiviral action occurred due to the interference in the assembly of viral polymerase, resulting in an impaired polymerase activity and, therefore, reducing viral replication. Confirming the in vitro results, a clinically relevant ex vivo model of influenza virus infection of human tumor-free lung tissues corroborated the potential of these compounds, especially C10, to completely abrogate influenza A virus replication at the highest concentration tested (2.0 µM). Taken together, these promising results demonstrated that C10 and C11 can be considered as potential new anti-influenza drug candidates.
Collapse
Affiliation(s)
- Laurita Boff
- Institute of Virology (IVM), Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms University (WWU), 48149 Münster, Germany; (L.B.); (A.S.); (A.d.R.M.); (J.D.S.); (L.B.); (S.L.)
- Laboratory of Applied Virology, Department of Pharmaceutical Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina 88040-900, Brazil
| | - André Schreiber
- Institute of Virology (IVM), Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms University (WWU), 48149 Münster, Germany; (L.B.); (A.S.); (A.d.R.M.); (J.D.S.); (L.B.); (S.L.)
| | - Aline da Rocha Matos
- Institute of Virology (IVM), Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms University (WWU), 48149 Münster, Germany; (L.B.); (A.S.); (A.d.R.M.); (J.D.S.); (L.B.); (S.L.)
- Respiratory Viruses and Measles Laboratory, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 22775-051, Brazil
| | - Juliana Del Sarto
- Institute of Virology (IVM), Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms University (WWU), 48149 Münster, Germany; (L.B.); (A.S.); (A.d.R.M.); (J.D.S.); (L.B.); (S.L.)
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (F.M.O.); (G.S.R.); (F.C.B.); (R.J.A.); (R.M.d.P.)
| | - Linda Brunotte
- Institute of Virology (IVM), Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms University (WWU), 48149 Münster, Germany; (L.B.); (A.S.); (A.d.R.M.); (J.D.S.); (L.B.); (S.L.)
| | - Jennifer Munkert
- Pharmaceutical Biology, Department of Biology, Friedrich-Alexander-University, 91054 Erlangen-Nuremberg, Germany; (J.M.); (W.K.)
| | - Flaviano Melo Ottoni
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (F.M.O.); (G.S.R.); (F.C.B.); (R.J.A.); (R.M.d.P.)
| | - Gabriela Silva Ramos
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (F.M.O.); (G.S.R.); (F.C.B.); (R.J.A.); (R.M.d.P.)
| | - Wolfgang Kreis
- Pharmaceutical Biology, Department of Biology, Friedrich-Alexander-University, 91054 Erlangen-Nuremberg, Germany; (J.M.); (W.K.)
| | - Fernão Castro Braga
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (F.M.O.); (G.S.R.); (F.C.B.); (R.J.A.); (R.M.d.P.)
| | - Ricardo José Alves
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (F.M.O.); (G.S.R.); (F.C.B.); (R.J.A.); (R.M.d.P.)
| | - Rodrigo Maia de Pádua
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (F.M.O.); (G.S.R.); (F.C.B.); (R.J.A.); (R.M.d.P.)
| | - Cláudia Maria Oliveira Simões
- Laboratory of Applied Virology, Department of Pharmaceutical Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina 88040-900, Brazil
- Correspondence:
| | - Stephan Ludwig
- Institute of Virology (IVM), Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms University (WWU), 48149 Münster, Germany; (L.B.); (A.S.); (A.d.R.M.); (J.D.S.); (L.B.); (S.L.)
| |
Collapse
|
5
|
Martins JSC, Oliveira MLA, Garcia CC, Siqueira MM, Matos AR. Investigation of Human IFITM3 Polymorphisms rs34481144A and rs12252C and Risk for Influenza A(H1N1)pdm09 Severity in a Brazilian Cohort. Front Cell Infect Microbiol 2020; 10:352. [PMID: 32754450 PMCID: PMC7366732 DOI: 10.3389/fcimb.2020.00352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Influenza is a major public health problem that causes acute respiratory infection in humans. Identification of host factors influencing in disease outcome is critical for recognition of individuals with increased risk. Investigations on the role of rs34481144A and rs12252C IFITM3 polymorphisms in influenza A(H1N1)pdm09 severity is not yet conclusively determined. This study aimed to evaluate such polymorphisms frequencies and IFITM3 levels in an infected Brazilian cohort of 314 influenza A(H1N1)pdm09 cases and its putative association with clinical, epidemiological and virological data. Individuals were clinically classified into mild, severe and fatal cases. IFITM3 polymorphisms were detected by specific Taqman probes in real time PCR reactions. IFITM3 levels were determined by quantitative real time PCR. Thus, the different clinical groups presented similar distribution of rs34481144 and rs12252 genotypes and allelic frequencies. There was no significant association between the polymorphisms with severity of disease by using distinct genetic models. Additionally, geographic distribution of mutants showed that rs34481144A allele was more predominant in Brazilian Southern region. In contrast, rs12252C allele presented similar frequencies in all regions. Individuals with the distinct rs34481144 and rs12252 genotypes showed similar levels of IFITM3 and viral load in their respiratory specimens. Furthermore, IFITM3 levels were comparable in the distinct clinical groups and were not correlated with influenza viral load in analyzed samples. Thereby, rs34481144A and rs12252C polymorphisms were not associated with severity or mortality of influenza A(H1N1)pdm09 infection nor with IFITM3 transcript levels and influenza viral load in upper respiratory tract samples in a Brazilian cohort.
Collapse
Affiliation(s)
- Jéssica S. C. Martins
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Maria L. A. Oliveira
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Cristiana C. Garcia
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Marilda M. Siqueira
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Aline R. Matos
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| |
Collapse
|