1
|
Mamun TI, Sultana S, Aovi FI, Kumar N, Vijay D, Fulco UL, Al-Dies AAM, Hassan HM, Al-Emam A, Oliveira JIN. Identification of novel influenza virus H3N2 nucleoprotein inhibitors using most promising epicatechin derivatives. Comput Biol Chem 2025; 115:108293. [PMID: 39642540 DOI: 10.1016/j.compbiolchem.2024.108293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/23/2024] [Accepted: 11/24/2024] [Indexed: 12/09/2024]
Abstract
Influenza A virus is a leading cause of acute respiratory tract infections, posing a significant global health threat. Current treatment options are limited and increasingly ineffective due to viral mutations. This study aimed to identify potential drug candidates targeting the nucleoprotein of the H3N2 subtype of Influenza A virus. We focused on epicatechin derivatives and employed a series of computational approaches, including ADMET profiling, drug-likeness evaluation, PASS predictions, molecular docking, molecular dynamics simulations, Principal Component Analysis (PCA), dynamic cross-correlation matrix (DCCM) analyses, and free energy landscape assessments. Molecular docking and dynamics simulations revealed strong and stable binding interactions between the derivatives and the target protein, with complexes 01 and 81 exhibiting the highest binding affinities. Additionally, ADMET profiling indicated favorable pharmacokinetic properties for these compounds, supporting their potential as effective antiviral agents. Compound 81 demonstrated exceptional quantum chemical descriptors, including a small HOMO-LUMO energy gap, high electronegativity, and significant softness, suggesting high chemical reactivity and strong electron-accepting capabilities. These properties enhance Compound 81's potential to interact effectively with the H3N2 nucleoprotein. Experimental validation is strongly recommended to advance these compounds toward the development of novel antiviral therapies to address the global threat of influenza.
Collapse
Affiliation(s)
- Tajul Islam Mamun
- Department of Epidemiology and Public Health, Sylhet Agricultural University, Sylhet 3100, Bangladesh.
| | - Sharifa Sultana
- Computational Biology research laboratory, Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Farjana Islam Aovi
- Computational Biology research laboratory, Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Neeraj Kumar
- Department of Pharmaceutical Chemistry, Bhupal Nobles' College of Pharmacy Udaipur, Rajasthan 313001, India
| | - Dharmarpu Vijay
- Molecular Spectroscopy Laboratory, Department of Physics, D.N.R. College (A), Bhimavaram 534202, India
| | - Umberto Laino Fulco
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Al-Anood M Al-Dies
- Chemistry Department, Umm Al-Qura University, Al-Qunfudah University College, Saudi Arabia
| | - Hesham M Hassan
- Department of Pathology, College of Medicine, King Khalid University, Asir 61421, Saudi Arabia; Department of pathology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ahmed Al-Emam
- Department of Pathology, College of Medicine, King Khalid University, Asir 61421, Saudi Arabia
| | - Jonas Ivan Nobre Oliveira
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
2
|
Tang J, Zou SM, Zhou JF, Gao RB, Xin L, Zeng XX, Huang WJ, Li XY, Cheng YH, Liu LQ, Xiao N, Wang DY. R229I substitution from oseltamivir induction in HA1 region significantly increased the fitness of a H7N9 virus bearing NA 292K. Emerg Microbes Infect 2024; 13:2373314. [PMID: 38922326 PMCID: PMC467099 DOI: 10.1080/22221751.2024.2373314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/22/2024] [Indexed: 06/27/2024]
Abstract
The proportion of human isolates with reduced neuraminidase inhibitors (NAIs) susceptibility in highly pathogenic avian influenza (HPAI) H7N9 virus was high. These drug-resistant strains showed good replication capacity without serious loss of fitness. In the presence of oseltamivir, R229I substitution were found in HA1 region of the HPAI H7N9 virus before NA R292K appeared. HPAI H7N9 or H7N9/PR8 recombinant viruses were developed to study whether HA R229I could increase the fitness of the H7N9 virus bearing NA 292K. Replication efficiency was assessed in MDCK or A549 cells. Neuraminidase enzyme activity and receptor-binding ability were analyzed. Pathogenicity in C57 mice was evaluated. Antigenicity analysis was conducted through a two-way HI test, in which the antiserum was obtained from immunized ferrets. Transcriptomic analysis of MDCK infected with HPAI H7N9 24hpi was done. It turned out that HA R229I substitution from oseltamivir induction in HA1 region increased (1) replication ability in MDCK(P < 0.05) and A549(P < 0.05), (2) neuraminidase enzyme activity, (3) binding ability to both α2,3 and α2,6 receptor, (4) pathogenicity to mice(more weight loss; shorter mean survival day; viral titer in respiratory tract, P < 0.05; Pathological changes in pneumonia), (5) transcriptome response of MDCK, of the H7N9 virus bearing NA 292K. Besides, HA R229I substitution changed the antigenicity of H7N9/PR8 virus (>4-fold difference of HI titre). It indicated that through the fine-tuning of HA-NA balance, R229I increased the fitness and changed the antigenicity of H7N9 virus bearing NA 292K. Public health attention to this mechanism needs to be drawn.
Collapse
MESH Headings
- Animals
- Oseltamivir/pharmacology
- Influenza A Virus, H7N9 Subtype/genetics
- Influenza A Virus, H7N9 Subtype/drug effects
- Influenza A Virus, H7N9 Subtype/pathogenicity
- Influenza A Virus, H7N9 Subtype/immunology
- Influenza A Virus, H7N9 Subtype/physiology
- Neuraminidase/genetics
- Neuraminidase/metabolism
- Dogs
- Virus Replication/drug effects
- Antiviral Agents/pharmacology
- Humans
- Mice
- Orthomyxoviridae Infections/virology
- Madin Darby Canine Kidney Cells
- A549 Cells
- Mice, Inbred C57BL
- Drug Resistance, Viral/genetics
- Amino Acid Substitution
- Influenza, Human/virology
- Ferrets
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/metabolism
- Female
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Jing Tang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Shu-Mei Zou
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Jian-Fang Zhou
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Rong-Bao Gao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Li Xin
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Xiao-Xu Zeng
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Wei-Juan Huang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Xi-Yan Li
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Yan-Hui Cheng
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Li-Qi Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Ning Xiao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Da-Yan Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| |
Collapse
|
3
|
Xu J, Luo Q, Huang Y, Li J, Ye W, Yan R, Zhou X, He Z, Liu G, Zhu Q. Influenza neuraminidase mutations and resistance to neuraminidase inhibitors. Emerg Microbes Infect 2024; 13:2429627. [PMID: 39530458 PMCID: PMC11600549 DOI: 10.1080/22221751.2024.2429627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/22/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Mutations in influenza virus neuraminidase (NA) can lead to viral resistance to NA inhibitors (NAIs). To update global influenza NA mutations and resistance to NAIs, we investigated epidemic information from global regions for NAIs-resistant influenza strains and analyzed their NA mutations. Drug-resistant mutations in NA, especially new mutations occurred in 2016-2024, were updated. The H274Y mutation in N1, a major contributor to NAI resistance, peaked in 2008, significantly impacting public health in countries like Japan and the USA. Three main mechanisms of NAI resistance were identified: catalytic site mutations, structural hindrance, and monomer stability changes. Although global resistance rates of H1N1pdm09, H3N2, and influenza B have remained stable at around 1%, sporadic emergence of resistant strains highlights the need for continued vigilance. The evolution of drug-resistant, transmissible strains through compensatory mutations underscores the urgency of new antiviral strategies. Strengthening global surveillance and adjusting public health policies, such as improving vaccine coverage and prudent antiviral use, remain essential to mitigating future risks.
Collapse
Affiliation(s)
- Jiapeng Xu
- College of Pharmacy, Shenzhen Technology University, Shenzhen, People’s Republic of China
- School of Pharmaceutical Sciences, Shenzhen University, Shenzhen, People’s Republic of China
| | - Qiting Luo
- College of Pharmacy, Shenzhen Technology University, Shenzhen, People’s Republic of China
| | - Yuanyuan Huang
- College of Pharmacy, Shenzhen Technology University, Shenzhen, People’s Republic of China
| | - Jieyu Li
- College of Pharmacy, Shenzhen Technology University, Shenzhen, People’s Republic of China
| | - Wei Ye
- College of Pharmacy, Shenzhen Technology University, Shenzhen, People’s Republic of China
| | - Ran Yan
- College of Pharmacy, Shenzhen Technology University, Shenzhen, People’s Republic of China
- School of Pharmaceutical Sciences, Shenzhen University, Shenzhen, People’s Republic of China
| | - Xinrui Zhou
- College of Pharmacy, Shenzhen Technology University, Shenzhen, People’s Republic of China
| | - Zhendan He
- College of Pharmacy, Shenzhen Technology University, Shenzhen, People’s Republic of China
| | - Ge Liu
- College of Pharmacy, Shenzhen Technology University, Shenzhen, People’s Republic of China
| | - Qinchang Zhu
- College of Pharmacy, Shenzhen Technology University, Shenzhen, People’s Republic of China
- School of Pharmaceutical Sciences, Shenzhen University, Shenzhen, People’s Republic of China
| |
Collapse
|
4
|
Ridgway H, Apostolopoulos V, Moore GJ, Gadanec LK, Zulli A, Swiderski J, Tsiodras S, Kelaidonis K, Chasapis CT, Matsoukas JM. Computational Evidence for Bisartan Arginine Blockers as Next-Generation Pan-Antiviral Therapeutics Targeting SARS-CoV-2, Influenza, and Respiratory Syncytial Viruses. Viruses 2024; 16:1776. [PMID: 39599890 PMCID: PMC11599072 DOI: 10.3390/v16111776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza, and respiratory syncytial virus (RSV) are significant global health threats. The need for low-cost, easily synthesized oral drugs for rapid deployment during outbreaks is crucial. Broad-spectrum therapeutics, or pan-antivirals, are designed to target multiple viral pathogens simultaneously by focusing on shared molecular features, such as common metal cofactors or conserved residues in viral catalytic domains. This study introduces a new generation of potent sartans, known as bisartans, engineered in our laboratories with negative charges from carboxylate or tetrazolate groups. These anionic tetrazoles interact strongly with cationic arginine residues or metal cations (e.g., Zn2+) within viral and host target sites, including the SARS-CoV-2 ACE2 receptor, influenza H1N1 neuraminidases, and the RSV fusion protein. Using virtual ligand docking and molecular dynamics, we investigated how bisartans and their analogs bind to these viral receptors, potentially blocking infection through a pan-antiviral mechanism. Bisartan, ACC519TT, demonstrated stable and high-affinity docking to key catalytic domains of the SARS-CoV-2 NSP3, H1N1 neuraminidase, and RSV fusion protein, outperforming FDA-approved drugs like Paxlovid and oseltamivir. It also showed strong binding to the arginine-rich furin cleavage sites S1/S2 and S2', suggesting interference with SARS-CoV-2's spike protein cleavage. The results highlight the potential of tetrazole-based bisartans as promising candidates for developing broad-spectrum antiviral therapies.
Collapse
Affiliation(s)
- Harry Ridgway
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, VIC 8001, Australia;
- THERAmolecular, LLC, Rodeo, NM 88056, USA
| | - Vasso Apostolopoulos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC 3083, Australia;
- Institute for Health and Sport, Immunology and Translational Research Group, Victoria University, Werribee, Melbourne, VIC 3030, Australia; (A.Z.); (J.S.)
| | - Graham J. Moore
- Pepmetics Inc., 772 Murphy Place, Victoria, BC V6Y 3H4, Canada;
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Laura Kate Gadanec
- Institute for Health and Sport, Immunology and Translational Research Group, Victoria University, Werribee, Melbourne, VIC 3030, Australia; (A.Z.); (J.S.)
| | - Anthony Zulli
- Institute for Health and Sport, Immunology and Translational Research Group, Victoria University, Werribee, Melbourne, VIC 3030, Australia; (A.Z.); (J.S.)
| | - Jordan Swiderski
- Institute for Health and Sport, Immunology and Translational Research Group, Victoria University, Werribee, Melbourne, VIC 3030, Australia; (A.Z.); (J.S.)
| | - Sotirios Tsiodras
- 4th Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | | | - Christos T. Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece;
| | - John M. Matsoukas
- Institute for Health and Sport, Immunology and Translational Research Group, Victoria University, Werribee, Melbourne, VIC 3030, Australia; (A.Z.); (J.S.)
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- NewDrug PC, Patras Science Park, 26504 Patras, Greece;
- Department of Chemistry, University of Patras, 26504 Patras, Greece
| |
Collapse
|
5
|
Duwe SC, Milde J, Heider A, Wedde M, Schweiger B, Dürrwald R. Increase of Synergistic Secondary Antiviral Mutations in the Evolution of A(H1N1)pdm09 Influenza Virus Neuraminidases. Viruses 2024; 16:1109. [PMID: 39066271 PMCID: PMC11281601 DOI: 10.3390/v16071109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
The unexpected emergence of oseltamivir-resistant A(H1N1) viruses in 2008 was facilitated in part by the establishment of permissive secondary neuraminidase (NA) substitutions that compensated for the fitness loss due to the NA-H275Y resistance substitution. These viruses were replaced in 2009 by oseltamivir-susceptible A(H1N1)pdm09 influenza viruses. Genetic analysis and screening of A(H1N1)pdm09 viruses circulating in Germany between 2009 and 2024 were conducted to identify any potentially synergistic or resistance-associated NA substitutions. Selected viruses were then subjected to further characterization in vitro. In the NA gene of circulating A(H1N1)pdm09 viruses, two secondary substitutions, NA-V241I and NA-N369K, were identified. These substitutions demonstrated a stable lineage in phylogenetic analysis since the 2010-2011 influenza season. The data indicate a slight increase in viral NA bearing two additional potentially synergistic substitutions, NA-I223V and NA-S247N, in the 2023-2024 season, which both result in a slight reduction in susceptibility to NA inhibitors. The accumulation of secondary synergistic substitutions in the NA of A(H1N1)pdm09 viruses increases the probability of the emergence of antiviral-resistant viruses. Therefore, it is crucial to closely monitor the evolution of circulating influenza viruses and to develop additional antiviral drugs against different target proteins.
Collapse
Affiliation(s)
- Susanne C. Duwe
- Unit 17 Influenza and Other Respiratory Viruses, Department 1 Infectious Diseases, Robert Koch-Institute, 13353 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
6
|
Franco-May DA, Gómez-Carballo J, Barrera-Badillo G, Cruz-Ortíz MN, Núñez-García TE, Arellano-Suárez DS, Wong-Arámbula C, López-Martínez I, Wong-Chew RM, Ayora-Talavera G. Low antiviral resistance in Influenza A and B viruses isolated in Mexico from 2010 to 2023. Antiviral Res 2024; 227:105918. [PMID: 38795911 DOI: 10.1016/j.antiviral.2024.105918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
The most widely used class of antivirals available for Influenza treatment are the neuraminidase inhibitors (NAI) Oseltamivir and Zanamivir. However, amino acid (AA) substitutions in the neuraminidase may cause reduced inhibition or high antiviral resistance. In Mexico, the current state of knowledge about NAI susceptibility is scarce, in this study we report the results of 14 years of Influenza surveillance by phenotypic and genotypic methods. A total of 255 isolates were assessed with the NAI assay, including Influenza A(H1N1)pdm09, A(H3N2) and Influenza B (IBV). Furthermore, 827 sequences contained in the GISAID platform were analyzed in search of relevant mutations.Overall, five isolates showed highly reduced inhibition or reduced inhibition to Oseltamivir, and two showed reduced inhibition to Zanamivir in the NAI assays. Additionally, five A(H1N1)pdm09 sequences from the GISAID possessed AA substitutions associated to reduced inhibition to Oseltamivir and none to Zanamivir. Oseltamivir resistant A(H1N1)pdm09 harbored the H275Y mutation. No genetic mutations were identified in Influenza A(H3N2) and IBV. Overall, these results show that in Mexico the rate of NAI resistance is low (0.6%), but it is essential to continue the Influenza surveillance in order to understand the drug susceptibility of circulating strains.
Collapse
MESH Headings
- Drug Resistance, Viral/genetics
- Antiviral Agents/pharmacology
- Mexico/epidemiology
- Humans
- Influenza B virus/drug effects
- Influenza B virus/genetics
- Influenza, Human/virology
- Influenza, Human/drug therapy
- Influenza, Human/epidemiology
- Oseltamivir/pharmacology
- Zanamivir/pharmacology
- Neuraminidase/genetics
- Neuraminidase/antagonists & inhibitors
- Influenza A Virus, H1N1 Subtype/drug effects
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/isolation & purification
- Mutation
- Influenza A Virus, H3N2 Subtype/drug effects
- Influenza A Virus, H3N2 Subtype/genetics
- Adult
- Influenza A virus/drug effects
- Influenza A virus/genetics
- Adolescent
- Child
- Amino Acid Substitution
- Young Adult
- Middle Aged
- Female
- Child, Preschool
- Genotype
- Male
- Aged
- Microbial Sensitivity Tests
- Viral Proteins/genetics
Collapse
Affiliation(s)
- Diana A Franco-May
- Laboratorio de Virología, Centro de Investigaciones Regionales Dr, Hideyo Noguchi, Universidad Autónoma de Yucatán, 97225, Yucatan, Mexico
| | - Jesús Gómez-Carballo
- Laboratorio de Virología, Centro de Investigaciones Regionales Dr, Hideyo Noguchi, Universidad Autónoma de Yucatán, 97225, Yucatan, Mexico
| | - Gisela Barrera-Badillo
- Instituto de Diagnóstico y Referencia Epidemiológicos "Dr. Manuel Martínez Baez", 01480, Mexico city, Mexico
| | - María N Cruz-Ortíz
- Instituto de Diagnóstico y Referencia Epidemiológicos "Dr. Manuel Martínez Baez", 01480, Mexico city, Mexico
| | - Tatiana E Núñez-García
- Instituto de Diagnóstico y Referencia Epidemiológicos "Dr. Manuel Martínez Baez", 01480, Mexico city, Mexico
| | - Dayanira S Arellano-Suárez
- Instituto de Diagnóstico y Referencia Epidemiológicos "Dr. Manuel Martínez Baez", 01480, Mexico city, Mexico
| | - Claudia Wong-Arámbula
- Instituto de Diagnóstico y Referencia Epidemiológicos "Dr. Manuel Martínez Baez", 01480, Mexico city, Mexico
| | - Irma López-Martínez
- Instituto de Diagnóstico y Referencia Epidemiológicos "Dr. Manuel Martínez Baez", 01480, Mexico city, Mexico
| | - Rosa M Wong-Chew
- División de Investigación, Facultad de Medicina, Universidad Autónoma de México (UNAM), 04510, Mexico city, Mexico.
| | - Guadalupe Ayora-Talavera
- Laboratorio de Virología, Centro de Investigaciones Regionales Dr, Hideyo Noguchi, Universidad Autónoma de Yucatán, 97225, Yucatan, Mexico.
| |
Collapse
|
7
|
Liu D, Leung KY, Lam HY, Zhang R, Fan Y, Xie X, Chan KH, Hung IFN. Interaction and antiviral treatment of coinfection between SARS-CoV-2 and influenza in vitro. Virus Res 2024; 345:199371. [PMID: 38621598 PMCID: PMC11047751 DOI: 10.1016/j.virusres.2024.199371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/18/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has lasted for three years. Coinfection with seasonal influenza may occur resulting in more severe diseases. The interaction between these two viruses for infection and the effect of antiviral treatment remains unclear. METHODS A SARS-CoV-2 and influenza H1N1 coinfection model on Calu-3 cell line was established, upon which the simultaneous and sequential coinfection was evaluated by comparing the viral load. The efficacy of molnupiravir and baloxavir against individual virus and coinfection were also studied. RESULTS The replication of SARS-CoV-2 was significantly interfered when the influenza virus was infected simultaneously or in advance (p < 0.05). On the contrary, the replication of the influenza virus was not affected by the SARS-CoV-2. Molnupiravir monotherapy had significant inhibitory effect on SARS-CoV-2 when the concentration reached to 6.25 μM but did not show any significant anti-influenza activity. Baloxavir was effective against influenza within the dosage range and showed significant effect of anti-SARS-CoV-2 at 16 μM. In the treatment of coinfection, molnupiravir had significant effect for SARS-CoV-2 from 6.25 μM to 100 μM and inhibited H1N1 at 100 μM (p < 0.05). The tested dosage range of baloxavir can inhibit H1N1 significantly (p < 0.05), while at the highest concentration of baloxavir did not further inhibit SARS-CoV-2, and the replication of SARS-CoV-2 significantly increased in lower concentrations. Combination treatment can effectively inhibit influenza H1N1 and SARS-CoV-2 replication during coinfection. Compared with molnupiravir or baloxavir monotherapy, combination therapy was more effective in less dosage to inhibit the replication of both viruses. CONCLUSIONS In coinfection, the replication of SARS-CoV-2 would be interfered by influenza H1N1. Compared with molnupiravir or baloxavir monotherapy, treatment with a combination of molnupiravir and baloxavir should be considered for early treatment in patients with SARS-CoV-2 and influenza coinfection.
Collapse
Affiliation(s)
- Danlei Liu
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Ka-Yi Leung
- Department of Microbiology, Li Ka Shing faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Hoi-Yan Lam
- Department of Microbiology, Li Ka Shing faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Ruiqi Zhang
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Yujing Fan
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Xiaochun Xie
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Kwok-Hung Chan
- Department of Microbiology, Li Ka Shing faculty of Medicine, University of Hong Kong, Hong Kong, China; State Key Laboratory for Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China; Carol Yu Centre for Infection, Li Ka Shing faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Ivan Fan-Ngai Hung
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China; State Key Laboratory for Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China; Carol Yu Centre for Infection, Li Ka Shing faculty of Medicine, University of Hong Kong, Hong Kong, China.
| |
Collapse
|
8
|
Kim DH, Kim JH, Lim KB, Lee JB, Park SY, Song CS, Lee SW, Lee DH, Choi IS. Antiviral activity of adenoviral vector expressing human interferon lambda-4 against influenza virus. J Med Virol 2024; 96:e29605. [PMID: 38634474 DOI: 10.1002/jmv.29605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/13/2024] [Accepted: 04/04/2024] [Indexed: 04/19/2024]
Abstract
Interferon lambda (IFNλ), classified as a type III IFN, is a representative cytokine that plays an important role in innate immunity along with type I IFN. IFNλ can elicit antiviral states by inducing peculiar sets of IFN-stimulated genes (ISGs). In this study, an adenoviral vector expression system with a tetracycline operator system was used to express human IFNλ4 in cells and mice. The formation of recombinant adenovirus (rAd-huIFNλ4) was confirmed using immunohistochemistry assays and transmission electron microscopy. Its purity was verified by quantifying host cell DNA and host cell proteins, as well as by confirming the absence of the replication-competent adenovirus. The transduction of rAd-huIFNλ4 induced ISGs and inhibited four subtypes of the influenza virus in both mouse-derived (LA-4) and human-derived cells (A549). The antiviral state was confirmed in BALB/c mice following intranasal inoculation with 109 PFU of rAd-huIFNλ4, which led to the inhibition of four subtypes of the influenza virus in mouse lungs, with reduced inflammatory lesions. These results imply that human IFNλ4 could induce antiviral status by modulating ISG expression in mice.
Collapse
Affiliation(s)
- Dong-Hwi Kim
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul, Republic of Korea
| | - Jae-Hyeong Kim
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul, Republic of Korea
| | - Kyu-Beom Lim
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul, Republic of Korea
| | - Joong-Bok Lee
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul, Republic of Korea
- Konkuk University Zoonotic Diseases Research Center, Konkuk University, Gwangjin-gu, Seoul, Republic of Korea
| | - Seung-Yong Park
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul, Republic of Korea
- Konkuk University Zoonotic Diseases Research Center, Konkuk University, Gwangjin-gu, Seoul, Republic of Korea
| | - Chang-Seon Song
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul, Republic of Korea
- Konkuk University Zoonotic Diseases Research Center, Konkuk University, Gwangjin-gu, Seoul, Republic of Korea
| | - Sang-Won Lee
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul, Republic of Korea
- Konkuk University Zoonotic Diseases Research Center, Konkuk University, Gwangjin-gu, Seoul, Republic of Korea
| | - Dong-Hun Lee
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul, Republic of Korea
- Konkuk University Zoonotic Diseases Research Center, Konkuk University, Gwangjin-gu, Seoul, Republic of Korea
| | - In-Soo Choi
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul, Republic of Korea
- Konkuk University Zoonotic Diseases Research Center, Konkuk University, Gwangjin-gu, Seoul, Republic of Korea
- KU Center for Animal Blood Medical Science, Konkuk University, Gwangjin-gu, Seoul, Republic of Korea
| |
Collapse
|
9
|
Hallmann E, Masny A, Poznańska A, Pozo F, Casas I, Brydak LB. Molecular Determinants of Drug Resistance and Mutation Patterns in Influenza Viruses Circulating in Poland Across Multiple Epidemic Seasons: Implications for Vaccination Strategies. Med Sci Monit 2024; 30:e942125. [PMID: 38446736 PMCID: PMC10926709 DOI: 10.12659/msm.942125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/15/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND According to the WHO, up to 650 000 people die each year from seasonal flu-related respiratory illnesses. The most effective method of fighting the virus is seasonal vaccination. However, if an infection does occur, antiviral medications should be used as soon as possible. No studies of drug resistance in influenza viruses circulating in Poland have been systematically conducted. Therefore, the aim of the present study was to investigate the drug resistance and genetic diversity of influenza virus strains circulating in Poland by determining the presence of mutations in the neuraminidase gene. MATERIAL AND METHODS A total of 258 clinical specimens were collected during the 2016-2017, 2017-2018, and 2018-2019 epidemic seasons. The samples containing influenza A and B were analyzed by RT-PCR and Sanger sequencing. RESULTS Differences were found between the influenza virus strains detected in different epidemic seasons, demonstrating the occurrence of mutations. Influenza A virus was found to be more genetically variable than influenza B virus (P<0.001, Kruskal-Wallis test). However, there was no significant difference in the resistance prevalence between the influenza A subtypes A/H1N1/pdm09 (4.8%) and A/H3N2/ (6.1%). In contrast, more mutations of drug-resistance genes were found in the influenza B virus (P<0.001, chi-square test). In addition, resistance mutations appeared en masse in vaccine strains circulating in unvaccinated populations. CONCLUSIONS It seems important to determine whether the influenza virus strains tested for drug resistance as part of global influenza surveillance are equally representative of viruses circulating in populations with high and low vaccination rates, for all countries. Our results suggest that countries with low levels of influenza immunization may constitute reservoirs of drug-resistant influenza viruses.
Collapse
Affiliation(s)
- Ewelina Hallmann
- Department of Virology, National Institute of Public Health NIH – National Research Institute, Warsaw, Poland
| | - Aleksander Masny
- Department of Virology, National Institute of Public Health NIH – National Research Institute, Warsaw, Poland
| | - Anna Poznańska
- Department of Population Health Monitoring and Analysis, National Institute of Public Health NIH – National Research Institute, Warsaw, Poland
| | - Francisco Pozo
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Inmaculada Casas
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Lidia Bernadeta Brydak
- Department of Virology, National Institute of Public Health NIH – National Research Institute, Warsaw, Poland
| |
Collapse
|
10
|
Harish G, Shetty U, Varamballi P, Mukhopadhyay C, Jagadesh A. Optimization of an allelic discrimination real-time RT-PCR assay for detection of H275Y oseltamivir resistance gene mutation among influenza A(H1N1)pdm09 patients from 2020 to 2022. J Med Virol 2024; 96:e29427. [PMID: 38288882 DOI: 10.1002/jmv.29427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/06/2024] [Accepted: 01/14/2024] [Indexed: 02/01/2024]
Abstract
Influenza virus is known to cause mild to severe respiratory infections and is also prone to genetic mutations. Of all the mutations, neuraminidase (NA) gene mutations are a matter of concern, as most approved antivirals target this protein. During the 2020 influenza season, an emergence of mutation in the NA gene, affecting the binding of the World Health Organization (WHO)-recommended probes to the specific site of the NA gene, was reported by our group. As a result of this mutation, the WHO-recommended allelic discrimination real-time reverse transcriptase polymerase chain reaction (RT-PCR) assay was unable to detect wild-type (H275) or mutant oseltamivir-resistant (Y275) strains of influenza A(H1N1)pmd09 viruses. In the current study, the WHO-recommended probes were redesigned according to the mutation in the probe binding site. Fifty undetermined samples (2020-2021) from the previous study were retested with the newly designed probes and found to be positive for H275 and/or Y275. The results obtained were similar to the Sanger sequencing results from the previous study, suggesting that the redesigned probes were efficient in discriminating between wild-type and mutant-type viruses. Furthermore, 133 samples from 2022, making a total of 183 samples (2020-2022), were tested using improved allelic discrimination real-time RT-PCR, and the overall prevalence rate of oseltamivir resistance in 2020-2022 was found to be 0.54%.
Collapse
Affiliation(s)
- Gandhapu Harish
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, India
| | - Ujwal Shetty
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, India
| | - Prasad Varamballi
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, India
| | | | - Anitha Jagadesh
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
11
|
Zhang M, Zhou J, Ni R, Zhao X, Chen Y, Sun Y, Liu Z, Han X, Luo C, Fu X, Shao Y. Genomic Analyses Uncover Evolutionary Features of Influenza A/H3N2 Viruses in Yunnan Province, China, from 2017 to 2022. Viruses 2024; 16:138. [PMID: 38257838 PMCID: PMC10820241 DOI: 10.3390/v16010138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Influenza A viruses evolve at a high rate of nucleotide substitution, thereby requiring continuous monitoring to determine the efficacy of vaccines and antiviral drugs. In the current study, we performed whole-genome sequencing analyses of 253 influenza A/H3N2 strains from Yunnan Province, China, during 2017-2022. The hemagglutinin (HA) segments of Yunnan A/H3N2 strains isolated during 2017-2018 harbored a high genetic diversity due to heterogeneous distribution across branches. The mutation regularity of the predominant antigenic epitopes of HA segments in Yunnan was inconsistent in different years. Some important functional mutations in gene segments associated with viral adaptation and drug tolerance were revealed. The rapid genomic evolution of Yunnan A/H3N2 strains from 2017 to 2022 mainly concentrated on segments, i.e., matrix protein 2 (M2), non-structural protein 1 (NS1), neuraminidase (NA), NS2, and HA, with a high overall non-synonymous/synonymous substitution ratio (dN/dS). Our results highlighted a decline in vaccine efficacy against the A/H3N2 circulating strains, particularly against the Yunnan 2021-2022 A/H3N2 strains. These findings aid our understanding of evolutionary characteristics and epidemiological monitoring of the A/H3N2 viruses and provide in-depth insights into the protective efficacy of influenza vaccines.
Collapse
Affiliation(s)
- Meiling Zhang
- Department of Acute Infectious Diseases Control and Prevention, Yunnan Center for Disease Control and Prevention, Kunming 650022, China; (M.Z.); (J.Z.); (R.N.); (X.Z.); (Y.C.); (Y.S.); (Z.L.); (X.H.); (C.L.)
| | - Jienan Zhou
- Department of Acute Infectious Diseases Control and Prevention, Yunnan Center for Disease Control and Prevention, Kunming 650022, China; (M.Z.); (J.Z.); (R.N.); (X.Z.); (Y.C.); (Y.S.); (Z.L.); (X.H.); (C.L.)
| | - Ruize Ni
- Department of Acute Infectious Diseases Control and Prevention, Yunnan Center for Disease Control and Prevention, Kunming 650022, China; (M.Z.); (J.Z.); (R.N.); (X.Z.); (Y.C.); (Y.S.); (Z.L.); (X.H.); (C.L.)
| | - Xiaonan Zhao
- Department of Acute Infectious Diseases Control and Prevention, Yunnan Center for Disease Control and Prevention, Kunming 650022, China; (M.Z.); (J.Z.); (R.N.); (X.Z.); (Y.C.); (Y.S.); (Z.L.); (X.H.); (C.L.)
| | - Yaoyao Chen
- Department of Acute Infectious Diseases Control and Prevention, Yunnan Center for Disease Control and Prevention, Kunming 650022, China; (M.Z.); (J.Z.); (R.N.); (X.Z.); (Y.C.); (Y.S.); (Z.L.); (X.H.); (C.L.)
| | - Yanhong Sun
- Department of Acute Infectious Diseases Control and Prevention, Yunnan Center for Disease Control and Prevention, Kunming 650022, China; (M.Z.); (J.Z.); (R.N.); (X.Z.); (Y.C.); (Y.S.); (Z.L.); (X.H.); (C.L.)
| | - Zhaosheng Liu
- Department of Acute Infectious Diseases Control and Prevention, Yunnan Center for Disease Control and Prevention, Kunming 650022, China; (M.Z.); (J.Z.); (R.N.); (X.Z.); (Y.C.); (Y.S.); (Z.L.); (X.H.); (C.L.)
| | - Xiaoyu Han
- Department of Acute Infectious Diseases Control and Prevention, Yunnan Center for Disease Control and Prevention, Kunming 650022, China; (M.Z.); (J.Z.); (R.N.); (X.Z.); (Y.C.); (Y.S.); (Z.L.); (X.H.); (C.L.)
| | - Chunrui Luo
- Department of Acute Infectious Diseases Control and Prevention, Yunnan Center for Disease Control and Prevention, Kunming 650022, China; (M.Z.); (J.Z.); (R.N.); (X.Z.); (Y.C.); (Y.S.); (Z.L.); (X.H.); (C.L.)
| | - Xiaoqing Fu
- Department of Acute Infectious Diseases Control and Prevention, Yunnan Center for Disease Control and Prevention, Kunming 650022, China; (M.Z.); (J.Z.); (R.N.); (X.Z.); (Y.C.); (Y.S.); (Z.L.); (X.H.); (C.L.)
| | - Yong Shao
- State Key Laboratory of Genetic Resources and Evolution, Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming 650201, China
| |
Collapse
|
12
|
Dong M, Wang Y, Li P, Chen Z, Anirudhan V, Cui Q, Rong L, Du R. Allopregnanolone targets nucleoprotein as a novel influenza virus inhibitor. Virol Sin 2023; 38:931-939. [PMID: 37741571 PMCID: PMC10786660 DOI: 10.1016/j.virs.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/19/2023] [Indexed: 09/25/2023] Open
Abstract
Influenza A virus (IAV) poses a global public health concern and remains an imminent threat to human health. Emerging antiviral resistance to the currently approved influenza drugs emphasizes the urgent need for new therapeutic entities against IAV. Allopregnanolone (ALLO) is a natural product that has been approved as an antidepressant drug. In the present study, we repurposed ALLO as a novel inhibitor against IAVs. Mechanistic studies demonstrated that ALLO inhibited virus replication by interfering with the nucleus translocation of viral nucleoprotein (NP). In addition, ALLO showed significant synergistic activity with compound 16, a hemagglutinin inhibitor of IAVs. In summary, we have identified ALLO as a novel influenza virus inhibitor targeting NP, providing a promising candidate that deserves further investigation as a useful anti-influenza strategy in the future.
Collapse
Affiliation(s)
- Meiyue Dong
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yanyan Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Ping Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zinuo Chen
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Varada Anirudhan
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, 60612, USA
| | - Qinghua Cui
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266122, China.
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, 60612, USA.
| | - Ruikun Du
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266122, China.
| |
Collapse
|
13
|
Chan-Zapata I, Borges-Argáez R, Ayora-Talavera G. Quinones as Promising Compounds against Respiratory Viruses: A Review. Molecules 2023; 28:1981. [PMID: 36838969 PMCID: PMC9967002 DOI: 10.3390/molecules28041981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Respiratory viruses represent a world public health problem, giving rise to annual seasonal epidemics and several pandemics caused by some of these viruses, including the COVID-19 pandemic caused by the novel SARS-CoV-2, which continues to date. Some antiviral drugs have been licensed for the treatment of influenza, but they cause side effects and lead to resistant viral strains. Likewise, aerosolized ribavirin is the only drug approved for the therapy of infections by the respiratory syncytial virus, but it possesses various limitations. On the other hand, no specific drugs are licensed to treat other viral respiratory diseases. In this sense, natural products and their derivatives have appeared as promising alternatives in searching for new compounds with antiviral activity. Besides their chemical properties, quinones have demonstrated interesting biological activities, including activity against respiratory viruses. This review summarizes the activity against respiratory viruses and their molecular targets by the different types of quinones (both natural and synthetic). Thus, the present work offers a general overview of the importance of quinones as an option for the future pharmacological treatment of viral respiratory infections, subject to additional studies that support their effectiveness and safety.
Collapse
Affiliation(s)
- Ivan Chan-Zapata
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Chuburná de Hidalgo, Merida 97205, Mexico
| | - Rocío Borges-Argáez
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Chuburná de Hidalgo, Merida 97205, Mexico
| | - Guadalupe Ayora-Talavera
- Departamento de Virología, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi”, Universidad Autónoma de Yucatán, Paseo de Las Fuentes, Merida 97225, Mexico
| |
Collapse
|
14
|
Oh DY, Milde J, Ham Y, Ramos Calderón JP, Wedde M, Dürrwald R, Duwe SC. Preparing for the Next Influenza Season: Monitoring the Emergence and Spread of Antiviral Resistance. Infect Drug Resist 2023; 16:949-959. [PMID: 36814825 PMCID: PMC9939793 DOI: 10.2147/idr.s389263] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/16/2023] [Indexed: 02/17/2023] Open
Abstract
Purpose The relaxation of pandemic restrictions in 2022 has led to a reemergence of respiratory virus circulation worldwide and anticipation of substantial influenza waves for the 2022/2023 Northern Hemisphere winter. Therefore, the antiviral susceptibility profiles of human influenza viruses circulating in Germany were characterized. Methods Between October 2019 (week 40/2019) and March 2022 (week 12/2022), nasal swabs from untreated patients with acute respiratory symptoms were collected in the national German influenza surveillance system. A total of 598 influenza viruses were isolated and analyzed for susceptibility to oseltamivir, zanamivir and peramivir, using a neuraminidase (NA) inhibition assay. In addition, next-generation sequencing was applied to assess molecular markers of resistance to NA, cap-dependent endonuclease (PA) and M2 ion channel inhibitors (NAI, PAI, M2I) in 367 primary clinical samples. Furthermore, a genotyping assay based on RT-PCR and pyrosequencing to rapidly assess the molecular resistance marker PA-I38X in PA genes was designed and established. Results While NAI resistance in the strict sense, defined by a ≥ 10-fold (influenza A) or ≥5-fold (influenza B) increase of NAI IC50, was not detected, a subtype A(H1N1)pdm09 isolate displayed 2.3- to 7.5-fold IC50 increase for all three NAI. This isolate carried the NA-S247N substitution, which is known to enhance NAI resistance induced by NA-H275Y. All sequenced influenza A viruses carried the M2-S31N substitution, which confers resistance to M2I. Of note, one A(H3N2) virus displayed the PA-I38M substitution, which is associated with reduced susceptibility to the PAI baloxavir marboxil. Pyrosequencing analysis confirmed these findings in the original clinical specimen and in cultured virus isolate, suggesting sufficient replicative fitness of this virus mutant. Conclusion Over the last three influenza seasons, the vast majority of influenza viruses in this national-level sentinel were susceptible to NAIs and PAIs. These findings support the use of antivirals in the upcoming influenza season.
Collapse
Affiliation(s)
- Djin-Ye Oh
- Robert Koch Institute, Department 1: Infectious Diseases, Unit 17: Influenza and Other Respiratory Viruses, National Influenza Center, Berlin, Germany
| | - Jeanette Milde
- Robert Koch Institute, Department 1: Infectious Diseases, Unit 17: Influenza and Other Respiratory Viruses, National Influenza Center, Berlin, Germany
| | - Youngsun Ham
- Robert Koch Institute, Department 1: Infectious Diseases, Unit 17: Influenza and Other Respiratory Viruses, National Influenza Center, Berlin, Germany
| | - Julia Patricia Ramos Calderón
- Robert Koch Institute, Department 1: Infectious Diseases, Unit 17: Influenza and Other Respiratory Viruses, National Influenza Center, Berlin, Germany
| | - Marianne Wedde
- Robert Koch Institute, Department 1: Infectious Diseases, Unit 17: Influenza and Other Respiratory Viruses, National Influenza Center, Berlin, Germany
| | - Ralf Dürrwald
- Robert Koch Institute, Department 1: Infectious Diseases, Unit 17: Influenza and Other Respiratory Viruses, National Influenza Center, Berlin, Germany
| | - Susanne C Duwe
- Robert Koch Institute, Department 1: Infectious Diseases, Unit 17: Influenza and Other Respiratory Viruses, National Influenza Center, Berlin, Germany
- Correspondence: Susanne C Duwe, Robert Koch Institute, Department 1: Infectious Diseases, Unit 17: Influenza Viruses and Other Respiratory Viruses | National Influenza Center, Seestr. 10, Berlin, 13353, Germany, Tel +49 30 18754 2283, Fax +49 30 18754 2699, Email
| |
Collapse
|
15
|
Soga T, Duong C, Pattinson D, Sakai-Tagawa Y, Tokita A, Izumida N, Nishino T, Hagiwara H, Wada N, Miyamoto Y, Kuroki H, Hayashi Y, Seki M, Kasuya N, Koga M, Adachi E, Iwatsuki-Horimoto K, Yotsuyanagi H, Yamayoshi S, Kawaoka Y. Characterization of Influenza A(H1N1)pdm09 Viruses Isolated in the 2018-2019 and 2019-2020 Influenza Seasons in Japan. Viruses 2023; 15:v15020535. [PMID: 36851749 PMCID: PMC9968111 DOI: 10.3390/v15020535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
The influenza A(H1N1)pdm09 virus that emerged in 2009 causes seasonal epidemic worldwide. The virus acquired several amino acid substitutions that were responsible for antigenic drift until the 2018-2019 influenza season. Viruses possessing mutations in the NA and PA proteins that cause reduced susceptibility to NA inhibitors and baloxavir marboxil, respectively, have been detected after antiviral treatment, albeit infrequently. Here, we analyzed HA, NA, and PA sequences derived from A(H1N1)pdm09 viruses that were isolated during the 2018-2019 and 2019-2020 influenza seasons in Japan. We found that A(H1N1)pdm09 viruses possessing the D187A and Q189E substitutions in HA emerged and dominated during the 2019-2020 season; these substitutions in the antigenic site Sb, a high potency neutralizing antibody-eliciting site for humans, changed the antigenicity of A(H1N1)pdm09 viruses. Furthermore, we found that isolates possessing the N156K substitution, which was predicted to affect the antigenicity of A(H1N1)pdm09 virus at the laboratory level, were detected at a frequency of 1.0% in the 2018-2019 season but 10.1% in the 2019-2020 season. These findings indicate that two kinds of antigenically drifted viruses-N156K and D187A/Q189E viruses-co-circulated during the 2019-2020 influenza season in Japan.
Collapse
Affiliation(s)
- Takuma Soga
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Calvin Duong
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - David Pattinson
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yuko Sakai-Tagawa
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Akifumi Tokita
- Tokyo Pediatric Association Public Health Committee, Saitama 331-0815, Japan
- Clinic Bambini, Tokyo 108-0071, Japan
| | - Naomi Izumida
- Tokyo Pediatric Association Public Health Committee, Saitama 331-0815, Japan
- Akebonocho Clinic, Tokyo 120-0023, Japan
| | - Tamon Nishino
- Tokyo Pediatric Association Public Health Committee, Saitama 331-0815, Japan
- Alpaca Kids ENT Clinic, Tokyo 171-0052, Japan
| | - Haruhisa Hagiwara
- Tokyo Pediatric Association Public Health Committee, Saitama 331-0815, Japan
- Hagiwara Clinic, Tokyo 173-0016, Japan
| | - Noriyuki Wada
- Tokyo Pediatric Association Public Health Committee, Saitama 331-0815, Japan
- Wada Pediatric Clinic, Tokyo 121-0812, Japan
| | | | | | - Yuka Hayashi
- Saitama Citizens Medical Center, Saitama 331-0054, Japan
| | - Masafumi Seki
- Division of Infectious Diseases and Infection Control, Tohoku Medical and Pharmaceutical University, Sendai 983-8536, Japan
| | | | - Michiko Koga
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Eisuke Adachi
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of the Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | | | - Hiroshi Yotsuyanagi
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of the Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Seiya Yamayoshi
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
- Correspondence: (S.Y.); (Y.K.)
| | - Yoshihiro Kawaoka
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), Minato-ku, Tokyo 108-8639, Japan
- Correspondence: (S.Y.); (Y.K.)
| |
Collapse
|
16
|
Du R, Cui Q, Chen Z, Zhao X, Lin X, Rong L. Revisiting influenza A virus life cycle from a perspective of genome balance. Virol Sin 2023; 38:1-8. [PMID: 36309307 PMCID: PMC10006207 DOI: 10.1016/j.virs.2022.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Influenza A virus (IAV) genome comprises eight negative-sense RNA segments, of which the replication is well orchestrated and the delicate balance of multiple segments are dynamically regulated throughout IAV life cycle. However, previous studies seldom discuss these balances except for functional hemagglutinin-neuraminidase balance that is pivotal for both virus entry and release. Therefore, we attempt to revisit IAV life cycle by highlighting the critical role of "genome balance". Moreover, we raise a "balance regression" model of IAV evolution that the virus evolves to rebalance its genome after reassortment or interspecies transmission, and direct a "balance compensation" strategy to rectify the "genome imbalance" as a result of artificial modifications during creation of recombinant IAVs. This review not only improves our understanding of IAV life cycle, but also facilitates both basic and applied research of IAV in future.
Collapse
Affiliation(s)
- Ruikun Du
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266122, China.
| | - Qinghua Cui
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266122, China
| | - Zinuo Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xiujuan Zhao
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xiaojing Lin
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, 60612, USA.
| |
Collapse
|
17
|
Huang Y, Li Y, Chen Z, Chen L, Liang J, Zhang C, Zhang Z, Yang J. Nisoldipine Inhibits Influenza A Virus Infection by Interfering with Virus Internalization Process. Viruses 2022; 14:v14122738. [PMID: 36560742 PMCID: PMC9785492 DOI: 10.3390/v14122738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022] Open
Abstract
Influenza virus infections and the continuing spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are global public health concerns. As there are limited therapeutic options available in clinical practice, the rapid development of safe, effective and globally available antiviral drugs is crucial. Drug repurposing is a therapeutic strategy used in treatments for newly emerging and re-emerging infectious diseases. It has recently been shown that the voltage-dependent Ca2+ channel Cav1.2 is critical for influenza A virus entry, providing a potential target for antiviral strategies. Nisoldipine, a selective Ca2+ channel inhibitor, is commonly used in the treatment of hypertension. Here, we assessed the antiviral potential of nisoldipine against the influenza A virus and explored the mechanism of action of this compound. We found that nisoldipine treatment could potently inhibit infection with multiple influenza A virus strains. Mechanistic studies further revealed that nisoldipine impaired the internalization of the influenza virus into host cells. Overall, our findings demonstrate that nisoldipine exerts antiviral effects against influenza A virus infection and could serve as a lead compound in the design and development of new antivirals.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jie Yang
- Correspondence: ; Tel.: +86-020-6164-8590
| |
Collapse
|
18
|
Stannard HL, Mifsud EJ, Wildum S, Brown SK, Koszalka P, Shishido T, Kojima S, Omoto S, Baba K, Kuhlbusch K, Hurt AC, Barr IG. Assessing the fitness of a dual-antiviral drug resistant human influenza virus in the ferret model. Commun Biol 2022; 5:1026. [PMID: 36171475 PMCID: PMC9517990 DOI: 10.1038/s42003-022-04005-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/15/2022] [Indexed: 11/08/2022] Open
Abstract
Influenza antivirals are important tools in our fight against annual influenza epidemics and future influenza pandemics. Combinations of antivirals may reduce the likelihood of drug resistance and improve clinical outcomes. Previously, two hospitalised immunocompromised influenza patients, who received a combination of a neuraminidase inhibitor and baloxavir marboxil, shed influenza viruses resistant to both drugs. Here-in, the replicative fitness of one of these A(H1N1)pdm09 virus isolates with dual resistance mutations (NA-H275Y and PA-I38T) was similar to wild type virus (WT) in vitro, but reduced in the upper respiratory tracts of challenged ferrets. The dual-mutant virus transmitted well between ferrets in an airborne transmission model, but was outcompeted by the WT when the two viruses were co-administered. These results indicate the dual-mutant virus had a moderate loss of viral fitness compared to the WT virus, suggesting that while person-to-person transmission of the dual-resistant virus may be possible, widespread community transmission is unlikely.
Collapse
Affiliation(s)
- Harry L Stannard
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Edin J Mifsud
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | | | - Sook Kwan Brown
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Paulina Koszalka
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | | | | | | | | | | | | | - Ian G Barr
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
- Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and Immunity, the University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
19
|
Meineke R, Stelz S, Busch M, Werlein C, Kühnel M, Jonigk D, Rimmelzwaan GF, Elbahesh H. FDA-Approved Inhibitors of RTK/Raf Signaling Potently Impair Multiple Steps of In Vitro and Ex Vivo Influenza A Virus Infections. Viruses 2022; 14:2058. [PMID: 36146864 PMCID: PMC9504178 DOI: 10.3390/v14092058] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Influenza virus (IV) infections pose a burden on global public health with significant morbidity and mortality. The limited range of currently licensed IV antiviral drugs is susceptible to the rapid rise of resistant viruses. In contrast, FDA-approved kinase inhibitors can be repurposed as fast-tracked host-targeted antivirals with a higher barrier of resistance. Extending our recent studies, we screened 21 FDA-approved small-molecule kinase inhibitors (SMKIs) and identified seven candidates as potent inhibitors of pandemic and seasonal IV infections. These SMKIs were further validated in a biologically and clinically relevant ex vivo model of human precision-cut lung slices. We identified steps of the virus infection cycle affected by these inhibitors (entry, replication, egress) and found that most SMKIs affected both entry and egress. Based on defined and overlapping targets of these inhibitors, the candidate SMKIs target receptor tyrosine kinase (RTK)-mediated activation of Raf/MEK/ERK pathways to limit influenza A virus infection. Our data and the established safety profiles of these SMKIs support further clinical investigations and repurposing of these SMKIs as host-targeted influenza therapeutics.
Collapse
Affiliation(s)
- Robert Meineke
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine in Hannover (TiHo), Bünteweg 17, 30559 Hannover, Germany
| | - Sonja Stelz
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine in Hannover (TiHo), Bünteweg 17, 30559 Hannover, Germany
| | - Maximilian Busch
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine in Hannover (TiHo), Bünteweg 17, 30559 Hannover, Germany
| | - Christopher Werlein
- Institute of Pathology, Hannover Medical School (MHH), Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Mark Kühnel
- Institute of Pathology, Hannover Medical School (MHH), Carl-Neuberg-Straße 1, 30625 Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover Medical School (MHH), Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School (MHH), Carl-Neuberg-Straße 1, 30625 Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover Medical School (MHH), Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Guus F. Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine in Hannover (TiHo), Bünteweg 17, 30559 Hannover, Germany
| | - Husni Elbahesh
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine in Hannover (TiHo), Bünteweg 17, 30559 Hannover, Germany
| |
Collapse
|
20
|
Sousa TDC, Martins JSCC, Miranda MD, Garcia CC, Resende PC, Santos CA, Debur MDC, Rodrigues RR, Cavalcanti AC, Gregianini TS, Iani FCDM, Pereira FM, Fernandes SB, Ferreira JDA, Santos KCDO, Motta F, Brown D, de Almeida WAF, Siqueira MM, Matos ADR. Low prevalence of influenza A strains with resistance markers in Brazil during 2017-2019 seasons. Front Public Health 2022; 10:944277. [PMID: 36187691 PMCID: PMC9516282 DOI: 10.3389/fpubh.2022.944277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/15/2022] [Indexed: 01/21/2023] Open
Abstract
The influenza A virus (IAV) is of a major public health concern as it causes annual epidemics and has the potential to cause pandemics. At present, the neuraminidase inhibitors (NAIs) are the most widely used anti-influenza drugs, but, more recently, the drug baloxavir marboxil (BXM), a polymerase inhibitor, has also been licensed in some countries. Mutations in the viral genes that encode the antiviral targets can lead to treatment resistance. Worldwide, a low prevalence of antiviral resistant strains has been reported. Despite that, this situation can change rapidly, and resistant strain surveillance is a priority. Thus, the aim of this was to evaluate Brazilian IAVs antiviral resistance from 2017 to 2019 through the identification of viral mutations associated with reduced inhibition of the drugs and by testing the susceptibility of IAV isolates to oseltamivir (OST), the most widely used NAI drug in the country. Initially, we analyzed 282 influenza A(H1N1)pdm09 and 455 A(H3N2) genetic sequences available on GISAID. The amino acid substitution (AAS) NA:S247N was detected in one A(H1N1)pdm09 strain. We also identified NA:I222V (n = 6) and NA:N329K (n = 1) in A(H3N2) strains. In addition, we performed a molecular screening for NA:H275Y in 437 A(H1N1)pdm09 samples, by pyrosequencing, which revealed a single virus harboring this mutation. Furthermore, the determination of OST IC50 values for 222 A(H1N1)pdm09 and 83 A(H3N2) isolates revealed that all isolates presented a normal susceptibility profile to the drug. Interestingly, we detected one A(H3N2) virus presenting with PA:E119D AAS. Moreover, the majority of the IAV sequences had the M2:S31N adamantanes resistant marker. In conclusion, we show a low prevalence of Brazilian IAV strains with NAI resistance markers, in accordance with what is reported worldwide, indicating that NAIs still remain an option for the treatment of influenza infections in Brazil. However, surveillance of influenza resistance should be strengthened in the country for improving the representativeness of investigated viruses and the robustness of the analysis.
Collapse
Affiliation(s)
- Thiago das Chagas Sousa
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, FIOCRUZ Fundation, Rio de Janeiro, Brazil
| | | | - Milene Dias Miranda
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, FIOCRUZ Fundation, Rio de Janeiro, Brazil
| | - Cristiana Couto Garcia
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, FIOCRUZ Fundation, Rio de Janeiro, Brazil
| | - Paola Cristina Resende
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, FIOCRUZ Fundation, Rio de Janeiro, Brazil
| | - Cliomar A. Santos
- Laboratório Central de Saúde Publica de Sergipe (LACEN-SE), Aracaju, Sergipe, Brazil
| | | | - Rodrigo Ribeiro Rodrigues
- Laboratório de Saúde Pública do Estado do Espírito Santo, Secretaria de Saúde do Estado do Espírito Santo (LACEN-ES), Vitória, Espirito Santo, Brazil,Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Espirito Santo, Brazil
| | - Andrea Cony Cavalcanti
- Laboratório Central de Saúde Pública do Rio de Janeiro (LACEN-RJ), Rio de Janeiro, Brazil
| | - Tatiana Schäffer Gregianini
- Laboratório Central de Saúde Pública da Secretaria de Saúde do estado do Rio Grande do Sul, (LACEN-RS)/CEVS/SES-RS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Felipe Campos de Melo Iani
- Laboratório Central de Saúde Pública de Minas Gerais (LACEN-MG), Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | - Fernando Motta
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, FIOCRUZ Fundation, Rio de Janeiro, Brazil
| | - David Brown
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, FIOCRUZ Fundation, Rio de Janeiro, Brazil
| | - Walquiria Aparecida Ferreira de Almeida
- Departamento de Imunização e Doenças Transmissíveis (DEIDT)/Secretaria de Vigilância em Saúde (SVS)/Ministério da Saúde (MS), Brasília, Distrito Federal, Brazil
| | - Marilda Mendonça Siqueira
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, FIOCRUZ Fundation, Rio de Janeiro, Brazil
| | - Aline da Rocha Matos
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, FIOCRUZ Fundation, Rio de Janeiro, Brazil,*Correspondence: Aline da Rocha Matos
| |
Collapse
|
21
|
Liao H, Li Y, Yu L, Wu Z, Yang J, Zhu Q. Design, synthesis and structure-activity relationship of dihydrobenzoquinolines as novel inhibitors against influenza A virus. Eur J Med Chem 2022; 244:114799. [DOI: 10.1016/j.ejmech.2022.114799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/14/2022] [Accepted: 09/25/2022] [Indexed: 11/28/2022]
|
22
|
Li L, Lan LYL, Huang L, Ye C, Andrade J, Wilson PC. Selecting Representative Samples From Complex Biological Datasets Using K-Medoids Clustering. Front Genet 2022; 13:954024. [PMID: 35910222 PMCID: PMC9335369 DOI: 10.3389/fgene.2022.954024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Rapid growth of single-cell sequencing techniques enables researchers to investigate almost millions of cells with diverse properties in a single experiment. Meanwhile, it also presents great challenges for selecting representative samples from massive single-cell populations for further experimental characterization, which requires a robust and compact sampling with balancing diverse properties of different priority levels. The conventional sampling methods fail to generate representative and generalizable subsets from a massive single-cell population or more complicated ensembles. Here, we present a toolkit called Cookie which can efficiently select out the most representative samples from a massive single-cell population with diverse properties. This method quantifies the relationships/similarities among samples using their Manhattan distances by vectorizing all given properties and then determines an appropriate sample size by evaluating the coverage of key properties from multiple candidate sizes, following by a k-medoids clustering to group samples into several clusters and selects centers from each cluster as the most representatives. Comparison of Cookie with conventional sampling methods using a single-cell atlas dataset, epidemiology surveillance data, and a simulated dataset shows the high efficacy, efficiency, and flexibly of Cookie. The Cookie toolkit is implemented in R and is freely available at https://wilsonimmunologylab.github.io/Cookie/.
Collapse
Affiliation(s)
- Lei Li
- University of Chicago Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL, United States
- Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, United States
| | - Linda Yu-Ling Lan
- University of Chicago Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL, United States
- Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, United States
| | - Lei Huang
- Center for Research Informatics, University of Chicago, Chicago, IL, United States
| | - Congting Ye
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Jorge Andrade
- Center for Research Informatics, University of Chicago, Chicago, IL, United States
- Department of Pediatrics, University of Chicago, Chicago, IL, United States
| | - Patrick C. Wilson
- University of Chicago Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL, United States
- Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, United States
- *Correspondence: Patrick C. Wilson,
| |
Collapse
|
23
|
Predicting Permissive Mutations That Improve the Fitness of A(H1N1)pdm09 Viruses Bearing the H275Y Neuraminidase Substitution. J Virol 2022; 96:e0091822. [PMID: 35867563 PMCID: PMC9364793 DOI: 10.1128/jvi.00918-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Oseltamivir-resistant influenza viruses arise due to amino acid mutations in key residues of the viral neuraminidase (NA). These changes often come at a fitness cost; however, it is known that permissive mutations in the viral NA can overcome this cost. This result was observed in former seasonal A(H1N1) viruses in 2007 which expressed the H275Y substitution (N1 numbering) with no apparent fitness cost and lead to widespread oseltamivir resistance. Therefore, this study aims to predict permissive mutations that may similarly enable fit H275Y variants to arise in currently circulating A(H1N1)pdm09 viruses. The first approach in this study utilized in silico analyses to predict potentially permissive mutations. The second approach involved the generation of a virus library which encompassed all possible NA mutations while keeping H275Y fixed. Fit variants were then selected by serially passaging the virus library either through ferrets by transmission or passaging once in vitro. The fitness impact of selected substitutions was further evaluated experimentally. The computational approach predicted three candidate permissive NA mutations which, in combination with each other, restored the replicative fitness of an H275Y variant. The second approach identified a stringent bottleneck during transmission between ferrets; however, three further substitutions were identified which may improve transmissibility. A comparison of fit H275Y variants in vitro and in experimentally infected animals showed a statistically significant correlation in the variants that were positively selected. Overall, this study provides valuable tools and insights into potential permissive mutations that may facilitate the emergence of a fit H275Y A(H1N1)pdm09 variant. IMPORTANCE Oseltamivir (Tamiflu) is the most widely used antiviral for the treatment of influenza infections. Therefore, resistance to oseltamivir is a public health concern. This study is important as it explores the different evolutionary pathways available to current circulating influenza viruses that may lead to widespread oseltamivir resistance. Specifically, this study develops valuable experimental and computational tools to evaluate the fitness landscape of circulating A(H1N1)pmd09 influenza viruses bearing the H275Y mutation. The H275Y substitution is most commonly reported to confer oseltamivir resistance but also leads to loss of virus replication and transmission fitness, which limits its spread. However, it is known from previous influenza seasons that influenza viruses can evolve to overcome this loss of fitness. Therefore, this study aims to prospectively predict how contemporary A(H1N1)pmd09 influenza viruses may evolve to overcome the fitness cost of bearing the H275Y NA substitution, which could result in widespread oseltamivir resistance.
Collapse
|
24
|
Li XG, Chen J, Wang W, Lin F, Li L, Liang JJ, Deng ZH, Zhang BY, Jia Y, Su YB, Kang YF, Du J, Liu YQ, Xu J, Lu QB. Oseltamivir Treatment for Influenza During the Flu Season of 2018-2019: A Longitudinal Study. Front Microbiol 2022; 13:865001. [PMID: 35620096 PMCID: PMC9127596 DOI: 10.3389/fmicb.2022.865001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/04/2022] [Indexed: 11/17/2022] Open
Abstract
Background Oseltamivir resistance in influenza virus (IFV) has been of widespread concern. An increase in the frequency of viruses with reduced inhibition was observed. Whether oseltamivir is effective is uncertain. We conducted this study to understand the real-world situation in northern China and the clinical efficacy for patients with IFV infection after the use of oseltamivir. Methods The longitudinal study was performed on influenza-like illness (ILI) cases in a tertiary general hospital in Beijing, China during the flu season of 2018–2019. All ILI cases (≥18 years) were recruited into the study. We analyzed the effect of the oseltamivir therapy on the number of clinic visits, hospitalization frequency, and the duration of fever and cough. Results A total of 689 ILI patients were recruited in this study with 355 in the oseltamivir therapy group and 334 in the supportive therapy group. Among the ILI patients, 388 patients were detected for IFV infection (364 IFV-A and 24 IFV-B) and divided into two groups with or without the oseltamivir therapy (302 vs. 86). There were no significant differences in the basic characteristics between the oseltamivir and supportive therapy groups in the ILI patients or in the IFV positive patients (all p < 0.05). After adjusting for the potential confounders, oseltamivir therapy reduced the times of clinic visits in the ILI and IFV positive patients (p = 0.043 and p = 0.011). No effectiveness with oseltamivir therapy was observed in the outcomes of hospitalization frequency, and the duration of fever and cough. Conclusion Oseltamivir use may reduce the times of clinic visits. However, we did not observe the differences in the duration of fever, cough, and the frequency of hospitalization between oseltamivir therapy and supportive therapy.
Collapse
Affiliation(s)
- Xiao-Guang Li
- Department of Infectious Diseases, Peking University Third Hospital, Beijing, China
| | - Jing Chen
- Department of Infectious Diseases, Peking University Third Hospital, Beijing, China
| | - Wei Wang
- Department of Infectious Diseases, Peking University Third Hospital, Beijing, China
| | - Fei Lin
- Department of Infectious Diseases, Peking University Third Hospital, Beijing, China
| | - Lu Li
- Department of Infectious Diseases, Peking University Third Hospital, Beijing, China
| | - Jing-Jin Liang
- Department of Infectious Diseases, Peking University Third Hospital, Beijing, China
| | - Zhong-Hua Deng
- Department of Infectious Diseases, Peking University Third Hospital, Beijing, China
| | - Bi-Ying Zhang
- Department of Infectious Diseases, Peking University Third Hospital, Beijing, China
| | - Ying Jia
- Department of Infectious Diseases, Peking University Third Hospital, Beijing, China
| | - Yuan-Bo Su
- Department of Infectious Diseases, Peking University Third Hospital, Beijing, China
| | - Yong-Feng Kang
- Department of Infectious Diseases, Peking University Third Hospital, Beijing, China
| | - Juan Du
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing, China
| | - Ya-Qiong Liu
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing, China
| | - Jie Xu
- Department of Infectious Diseases, Peking University Third Hospital, Beijing, China
| | - Qing-Bin Lu
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing, China
| |
Collapse
|
25
|
Hou L, Zhang Y, Ju H, Cherukupalli S, Jia R, Zhang J, Huang B, Loregian A, Liu X, Zhan P. Contemporary medicinal chemistry strategies for the discovery and optimization of influenza inhibitors targeting vRNP constituent proteins. Acta Pharm Sin B 2022; 12:1805-1824. [PMID: 35847499 PMCID: PMC9279641 DOI: 10.1016/j.apsb.2021.11.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/02/2021] [Accepted: 11/12/2021] [Indexed: 11/21/2022] Open
Abstract
Influenza is an acute respiratory infectious disease caused by the influenza virus, affecting people globally and causing significant social and economic losses. Due to the inevitable limitations of vaccines and approved drugs, there is an urgent need to discover new anti-influenza drugs with different mechanisms. The viral ribonucleoprotein complex (vRNP) plays an essential role in the life cycle of influenza viruses, representing an attractive target for drug design. In recent years, the functional area of constituent proteins in vRNP are widely used as targets for drug discovery, especially the PA endonuclease active site, the RNA-binding site of PB1, the cap-binding site of PB2 and the nuclear export signal of NP protein. Encouragingly, the PA inhibitor baloxavir has been marketed in Japan and the United States, and several drug candidates have also entered clinical trials, such as favipiravir. This article reviews the compositions and functions of the influenza virus vRNP and the research progress on vRNP inhibitors, and discusses the representative drug discovery and optimization strategies pursued.
Collapse
|
26
|
Characterization of influenza B viruses with reduced susceptibility to influenza neuraminidase inhibitors. Antiviral Res 2022; 200:105280. [PMID: 35304163 DOI: 10.1016/j.antiviral.2022.105280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/11/2022] [Accepted: 03/07/2022] [Indexed: 01/22/2023]
Abstract
A total of 3425 influenza B viruses collected from the Asia-Pacific region were tested against the four registered neuraminidase inhibitors (NAIs) (oseltamivir carboxylate, zanamivir, peramivir and laninamivir) as part of the routine surveillance work at the WHO Collaborating Centre for Research and Reference on Influenza, Melbourne between 2016 and 2020. Forty-five influenza B viruses with reduced susceptibility to one or more NAIs were identified. While the majority of these had neuraminidase (NA) mutations that were known to confer NAIs resistance, fifteen had NA mutations that had not been confirmed as being responsible for reduced NAIs susceptibility. Eleven of these NA mutations of concern were investigated using reverse genetics (RG) techniques to verify that these mutations were the cause of the reduced NAI susceptibility. All mutations were introduced separately into the NA of B/Brisbane/27/2016 (a B Victoria-lineage virus) or B/Yamanashi/166/98 (a B Yamagata-lineage virus) and the effects of these were analysed by an in vitro NAI assay. The T146K substitution in the NA of B Victoria and Yamagata-lineages resulted in a large increase in the IC50 for peramivir (>1000-fold increase in the mean IC50 of sensitive viruses with T146) with smaller increases for zanamivir and oseltamivir. A proline substitution (T146P) had a slightly lower (>700-fold) effect on the peramivir IC50 and also on the other NAIs. The presence of a second NA mutation at N169S combined with the T146P further increased the IC50 of peramivir (>7000-fold) and the other NAIs. A synergistic effect was also confirmed for dual NA mutations with G247D + I361V which showed a modest increase in the IC50 for oseltamivir (6-fold). Only one of two RG-viruses with the mutation G108E could be rescued and it had a high IC50 against zanamivir (>4000-fold) and laninamivir (>7000-fold), but a lower IC50 against oseltamivir (>200-fold). NA mutations H101L, A200T, D432G, H439P and H439R were also confirmed to somewhat reduce the in vitro susceptibility of influenza B viruses to the NAIs. Overall, this study identifies the potential impact of selected mutations on the clinical performance of NAIs when used to treat influenza B infection in humans.
Collapse
|
27
|
Świerczyńska M, Mirowska-Guzel DM, Pindelska E. Antiviral Drugs in Influenza. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19053018. [PMID: 35270708 PMCID: PMC8910682 DOI: 10.3390/ijerph19053018] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 11/30/2022]
Abstract
Flu is a serious health, medical, and economic problem, but no therapy is yet available that has satisfactory results and reduces the occurrence of these problems. Nearly 20 years after the registration of the previous therapy, baloxavir marboxil, a drug with a new mechanism of action, recently appeared on the market. This is a promising step in the fight against the influenza virus. This article presents the possibilities of using all available antiviral drugs specific for influenza A and B. We compare all currently recommended anti-influenza medications, considering their mechanisms of action, administration, indications, target groups, effectiveness, and safety profiles. We demonstrate that baloxavir marboxil presents a similar safety and efficacy profile to those of drugs already used in the treatment of influenza. Further research on combination therapy is highly recommended and may have promising results.
Collapse
Affiliation(s)
- Magdalena Świerczyńska
- Centre for Preclinical Research and Technology CePT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
| | - Dagmara M. Mirowska-Guzel
- Centre for Preclinical Research and Technology CePT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
- Correspondence: ; Tel.: +48-22-116-6160; Fax: +48-22-116-6202
| | - Edyta Pindelska
- Department of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, 02-093 Warsaw, Poland;
| |
Collapse
|
28
|
Govorkova EA, Takashita E, Daniels RS, Fujisaki S, Presser LD, Patel MC, Huang W, Lackenby A, Nguyen HT, Pereyaslov D, Rattigan A, Brown SK, Samaan M, Subbarao K, Wong S, Wang D, Webby RJ, Yen HL, Zhang W, Meijer A, Gubareva LV. Global update on the susceptibilities of human influenza viruses to neuraminidase inhibitors and the cap-dependent endonuclease inhibitor baloxavir, 2018–2020. Antiviral Res 2022; 200:105281. [PMID: 35292289 PMCID: PMC9254721 DOI: 10.1016/j.antiviral.2022.105281] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 12/19/2022]
Abstract
Global analysis of the susceptibility of influenza viruses to neuraminidase (NA) inhibitors (NAIs) and the polymerase acidic (PA) inhibitor (PAI) baloxavir was conducted by five World Health Organization Collaborating Centres for Reference and Research on Influenza during two periods (May 2018–May 2019 and May 2019–May 2020). Combined phenotypic and NA sequence-based analysis revealed that the global frequency of viruses displaying reduced or highly reduced inhibition (RI or HRI) or potential to show RI/HRI by NAIs remained low, 0.5% (165/35045) and 0.6% (159/26010) for the 2018–2019 and 2019–2020 periods, respectively. The most common amino acid substitution was NA-H275Y (N1 numbering) conferring HRI by oseltamivir and peramivir in A(H1N1)pdm09 viruses. Combined phenotypic and PA sequence-based analysis showed that the global frequency of viruses showing reduced susceptibility to baloxavir or carrying substitutions associated with reduced susceptibility was low, 0.5% (72/15906) and 0.1% (18/15692) for the 2018–2019 and 2019–2020 periods, respectively. Most (n = 61) of these viruses had I38→T/F/M/S/L/V PA amino acid substitutions. In Japan, where baloxavir use was highest, the rate was 4.5% (41/919) in the 2018–2019 period and most of the viruses (n = 32) had PA-I38T. Zoonotic viruses isolated from humans (n = 32) in different countries did not contain substitutions in NA associated with NAI RI/HRI phenotypes. One A(H5N6) virus had a dual substitution PA-I38V + PA-E199G, which may reduce susceptibility to baloxavir. Therefore, NAIs and baloxavir remain appropriate choices for the treatment of influenza virus infections, but close monitoring of antiviral susceptibility is warranted.
Collapse
Affiliation(s)
- Elena A Govorkova
- WHO Collaborating Centre for Studies on the Ecology of Influenza in Animals and Birds, St. Jude Children's Research Hospital, Memphis, TN, 38105-3678, USA.
| | - Emi Takashita
- WHO Collaborating Centre for Reference and Research on Influenza, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama, Tokyo, 208-0011, Japan
| | - Rod S Daniels
- WHO Collaborating Centre for Reference and Research on Influenza, The Francis Crick Institute, Worldwide Influenza Centre, 1 Midland Road, London, NW1 1AT, United Kingdom
| | - Seiichiro Fujisaki
- WHO Collaborating Centre for Reference and Research on Influenza, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama, Tokyo, 208-0011, Japan
| | - Lance D Presser
- National Institute for Public Health and the Environment, PO Box 1, 3720, BA, Bilthoven, the Netherlands
| | - Mira C Patel
- WHO Collaborating Centre for Surveillance, Epidemiology and Control of Influenza, Centres for Disease Control and Prevention, 1600 Clifton RD NE, MS H17-5, Atlanta, GA, 30329, USA
| | - Weijuan Huang
- WHO Collaborating Centre for Reference and Research on Influenza, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Angie Lackenby
- National Infection Service, Public Health England, London, NW9 5HT, United Kingdom
| | - Ha T Nguyen
- WHO Collaborating Centre for Surveillance, Epidemiology and Control of Influenza, Centres for Disease Control and Prevention, 1600 Clifton RD NE, MS H17-5, Atlanta, GA, 30329, USA
| | - Dmitriy Pereyaslov
- Global Influenza Programme, World Health Organization, Avenue Appia 20, 1211, Geneva, 27, Switzerland
| | - Aine Rattigan
- WHO Collaborating Centre for Reference and Research on Influenza, The Francis Crick Institute, Worldwide Influenza Centre, 1 Midland Road, London, NW1 1AT, United Kingdom
| | - Sook Kwan Brown
- WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Magdi Samaan
- Global Influenza Programme, World Health Organization, Avenue Appia 20, 1211, Geneva, 27, Switzerland
| | - Kanta Subbarao
- WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Sun Wong
- Public Health Laboratory Centre, 382 Nam Cheong Street, Hong Kong, China
| | - Dayan Wang
- WHO Collaborating Centre for Reference and Research on Influenza, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Richard J Webby
- WHO Collaborating Centre for Studies on the Ecology of Influenza in Animals and Birds, St. Jude Children's Research Hospital, Memphis, TN, 38105-3678, USA
| | - Hui-Ling Yen
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wenqing Zhang
- Global Influenza Programme, World Health Organization, Avenue Appia 20, 1211, Geneva, 27, Switzerland
| | - Adam Meijer
- National Institute for Public Health and the Environment, PO Box 1, 3720, BA, Bilthoven, the Netherlands
| | - Larisa V Gubareva
- WHO Collaborating Centre for Surveillance, Epidemiology and Control of Influenza, Centres for Disease Control and Prevention, 1600 Clifton RD NE, MS H17-5, Atlanta, GA, 30329, USA
| |
Collapse
|
29
|
Munting A, Manuel O. Viral infections in lung transplantation. J Thorac Dis 2022; 13:6673-6694. [PMID: 34992844 PMCID: PMC8662465 DOI: 10.21037/jtd-2021-24] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022]
Abstract
Viral infections account for up to 30% of all infectious complications in lung transplant recipients, remaining a significant cause of morbidity and even mortality. Impact of viral infections is not only due to the direct effects of viral replication, but also to immunologically-mediated lung injury that may lead to acute rejection and chronic lung allograft dysfunction. This has particularly been seen in infections caused by herpesviruses and respiratory viruses. The implementation of universal preventive measures against cytomegalovirus (CMV) and influenza (by means of antiviral prophylaxis and vaccination, respectively) and administration of early antiviral treatment have reduced the burden of these diseases and potentially their role in affecting allograft outcomes. New antivirals against CMV for prophylaxis and for treatment of antiviral-resistant CMV infection are currently being evaluated in transplant recipients, and may continue to improve the management of CMV in lung transplant recipients. However, new therapeutic and preventive strategies are highly needed for other viruses such as respiratory syncytial virus (RSV) or parainfluenza virus (PIV), including new antivirals and vaccines. This is particularly important in the advent of the COVID-19 pandemic, for which several unanswered questions remain, in particular on the best antiviral and immunomodulatory regimen for decreasing mortality specifically in lung transplant recipients. In conclusion, the appropriate management of viral complications after transplantation remain an essential step to continue improving survival and quality of life of lung transplant recipients.
Collapse
Affiliation(s)
- Aline Munting
- Infectious Diseases Service, Lausanne University Hospital, Lausanne, Switzerland
| | - Oriol Manuel
- Infectious Diseases Service, Lausanne University Hospital, Lausanne, Switzerland.,Transplantation Center, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
30
|
Abstract
The neuraminidase (NA) of influenza A and B viruses plays a distinct role in viral replication and has a highly conserved catalytic site. Numerous sialic (neuraminic) acid analogs that competitively bind to the NA active site and potently inhibit enzyme activity have been synthesized and tested. Four NA inhibitors are now licensed in various parts of the world (zanamivir, oseltamivir, peramivir, and laninamivir) to treat influenza A and B infections. NA changes, naturally occurring or acquired under selective pressure, have been shown to reduce drug binding, thereby affecting the effectiveness of NA inhibitors. Drug resistance and other drawbacks have prompted the search for the next-generation NA-targeting therapeutics. One of the promising approaches is the identification of monoclonal antibodies (mAbs) targeting the conserved NA epitopes. Anti-NA mAbs demonstrate Fab-based antiviral activity supplemented with Fc-mediated immune effector functions. Antiviral Fc-conjugates offer another cutting-edge strategy that is based on a multimodal mechanism of action. These novel antiviral agents are composed of a small-molecule NA inhibitor and an Fc-region that simultaneously engages the immune system. The significant advancements made in recent years further support the value of NA as an attractive target for the antiviral development.
Collapse
Affiliation(s)
- Larisa Gubareva
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30329-4027, USA
| | - Teena Mohan
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30329-4027, USA
| |
Collapse
|
31
|
Takashita E. Assays for Determining the Sialidase Activity of Influenza Viruses and Monitoring Influenza Virus Susceptibility to Neuraminidase Inhibitors. Methods Mol Biol 2022; 2556:287-302. [PMID: 36175640 DOI: 10.1007/978-1-0716-2635-1_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Three types of assays--colorimetric, fluorescent, and chemiluminescent--are used to determine the sialidase (neuraminidase: NA) activity of influenza viruses. The fluorescent assay is cost-effective and applicable for many laboratories and is, therefore, commonly used for global monitoring of the NA inhibitor susceptibility of influenza viruses. Here, I describe, in detail, protocols for the fluorescence-based NA activity assay and the NA inhibition assay, which are used to determine the NA activity and NA inhibitor susceptibility, respectively, of influenza viruses.
Collapse
Affiliation(s)
- Emi Takashita
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Tokyo, Japan.
| |
Collapse
|
32
|
Wang-Jairaj J, Miller I, Joshi A, Jayabalan T, Peppercorn A, Zammit-Tabona P, Oliver A. Zanamivir aqueous solution in severe influenza: A global Compassionate Use Program, 2009-2019. Influenza Other Respir Viruses 2021; 16:542-551. [PMID: 34939702 PMCID: PMC8983904 DOI: 10.1111/irv.12947] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Zanamivir is a neuraminidase inhibitor effective against influenza A and B viruses. In 2009, GlaxoSmithKline (GSK) began clinical development of intravenous (IV) zanamivir and initiated a global Compassionate Use Program (CUP) in response to the evolving H1N1 global pandemic. The goal of the CUP was to provide zanamivir to critically ill patients with limited treatment options. METHODS Zanamivir was administered to patients with suspected or confirmed influenza infection who were not suitable for other approved antiviral treatments. Reporting of serious adverse events (SAEs) was mandatory and recorded in the GSK safety database. A master summary tracking sheet captured requests and patient characteristics. A case report form was available for detailing medical conditions, dosing, treatment duration, and clinical outcomes. RESULTS In total, 4,033 requests were made for zanamivir treatment of hospitalized patients from 38 countries between 2009 and 2019; ≥95% patients received zanamivir via the IV route. Europe had the highest number of requests (n = 3,051) followed by North America (n = 713). At least 20 patients were aged ≤6 months, of whom 12 were born prematurely. The GSK safety database included 466 patients with ≥1 SAE, of whom 374 (80%) had a fatal outcome. Drug-related SAEs were reported in 41 (11%) patients, including hepatic failure (n = 6 [2%]) and acute kidney injury (n = 5 [1%)]. CONCLUSIONS The CUP facilitated global access to zanamivir prior to product approval. No new safety concerns were identified in the CUP compared with IV zanamivir clinical studies.
Collapse
Affiliation(s)
| | - Irene Miller
- Safety and Medical Governance, R&D Global Medical, GSK, Brentford, Middlesex, UK
| | - Aditya Joshi
- Development Biostatistics, GSK, Bangalore, India
| | - Tharaka Jayabalan
- Safety and Medical Governance, R&D Global Medical, GSK, Brentford, Middlesex, UK
| | | | - Peter Zammit-Tabona
- Global Clinical Science and Delivery, R&D, GSK, Collegeville, Pennsylvania, USA
| | | |
Collapse
|
33
|
Matheeussen V, Loens K, Kuijstermans M, Jacobs K, Coenen S, van der Velden AW, Bongard E, Butler CC, Verheij TJ, Goossens H, Ieven M. Diagnostic performance of the Idylla™ respiratory panel for molecular detection of influenza A/B in patients presenting to primary care with influenza-like illness during 3 consecutive influenza seasons. J Clin Virol 2021; 144:104998. [PMID: 34653942 DOI: 10.1016/j.jcv.2021.104998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Influenza virus (IFV) is often encountered in primary care. Implementation of a rapid diagnostic test for its detection at the point-of-care would enable discrimination from other viral causes of influenza-like-illness (ILI) and might be helpful in individual patient management. In this study, the diagnostic performance of such a point-of-care platform was evaluated. METHODS Respiratory samples (n = 1490) from ILI-patients in primary care in 15 European countries were collected as part of a prospective clinical trial. Both children (n = 252) and adults (n = 1238) were sampled during 3 consecutive periods of high IFV endemicity. Samples were analysed in a central laboratory, after storage at -70 °C, with the Idylla™ Respiratory Panel, detecting both IFV and RSV, on the Idylla™ platform. The Fast Track Diagnostics (FTD) Respiratory Pathogens 21 plus assay was used as reference. A subset of samples (n = 192) was analysed both fresh and after being frozen. RESULTS The reference method detected IFV-A in 42% and IFV-B in 13% of the samples. Sensitivity of the Idylla for detection of IFV-A and IFV-B was 98.2% and 92.3% and specificity 97.7% and 98.4% respectively. False negative samples contained significantly lower viral loads than true positive samples (FTD mean Ct-value 30.7 versus 26.1 for IFV-A and 30.4 versus 25.1 for IFV-B, p < 0.001). Comparable results were obtained for Idylla analysis using fresh and frozen samples. CONCLUSIONS The Idylla Respiratory Panel is a promising point-of-care test for detection of IFV in ILI patients due to its excellent diagnostic performance, minimal training requirements and limited hands-on time.
Collapse
Affiliation(s)
- Veerle Matheeussen
- Department of Medical Microbiology, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium; Department of Microbiology, University Hospital Antwerp, Edegem, Belgium; Department of Medical Biochemistry, University of Antwerp, Wilrijk, Belgium.
| | - Katherine Loens
- Department of Medical Microbiology, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium; Department of Microbiology, University Hospital Antwerp, Edegem, Belgium
| | - Mandy Kuijstermans
- Department of Medical Microbiology, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium
| | - Kevin Jacobs
- Department of Medical Microbiology, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium
| | - Samuel Coenen
- Department of Medical Microbiology, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium
| | - Alike W van der Velden
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Emily Bongard
- The Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - Chris C Butler
- The Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - Theo Jm Verheij
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Herman Goossens
- Department of Medical Microbiology, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium; Department of Microbiology, University Hospital Antwerp, Edegem, Belgium
| | - Margareta Ieven
- Department of Medical Microbiology, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium; Department of Microbiology, University Hospital Antwerp, Edegem, Belgium
| |
Collapse
|
34
|
Hussain S, Daniels RS, Wharton SA, Howell S, Halai C, Kunzelmann S, Whittaker L, McCauley JW. Reduced sialidase activity of influenza A(H3N2) neuraminidase associated with positively charged amino acid substitutions. J Gen Virol 2021; 102. [PMID: 34596510 DOI: 10.1099/jgv.0.001648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neuraminidase (NA) inhibitors (NAI), oseltamivir and zanamivir, are the main antiviral medications for influenza and monitoring of susceptibility to these antivirals is routinely done by determining 50 % inhibitory concentrations (IC50) with MUNANA substrate. During 2010-2019, levels of A(H3N2) viruses presenting reduced NAI inhibition (RI) were low (~0.75 %) but varied year-on-year. The highest proportions of viruses showing RI were observed during the 2013-2014, 2016-2017 and 2017-2018 Northern Hemisphere seasons. The majority of RI viruses were found to contain positively charged NA amino acid substitutions of N329K, K/S329R, S331R or S334R, being notably higher during the 2016-2017 season. Sialidase activity kinetics were determined for viruses of RI phenotype and contemporary wild-type (WT) viruses showing close genetic relatedness and displaying normal inhibition (NI). RI phenotypes resulted from reduced sialidase activity compared to relevant WT viruses. Those containing S329R or N329K or S331R showed markedly higher Km for the substrate and Ki values for NAIs, while those with S334R showed smaller effects. Substitutions at N329 and S331 disrupt a glycosylation sequon (NDS), confirmed to be utilised by mass spectrometry. However, gain of positive charge at all three positions was the major factor influencing the kinetic effects, not loss of glycosylation. Because of the altered enzyme characteristics NAs carrying these substitutions cannot be assessed reliably for susceptibility to NAIs using standard MUNANA-based assays due to reductions in the affinity of the enzyme for its substrate and the concentration of the substrate usually used.
Collapse
Affiliation(s)
- Saira Hussain
- Worldwide Influenza Centre, The Francis Crick Institute, London, NW1 1AT, UK
| | - Rodney S Daniels
- Worldwide Influenza Centre, The Francis Crick Institute, London, NW1 1AT, UK
| | - Stephen A Wharton
- Worldwide Influenza Centre, The Francis Crick Institute, London, NW1 1AT, UK
| | - Steven Howell
- Protein Analysis and Proteomics Science Technology Platform, The Francis Crick Institute, London, NW1 1AT, UK
| | - Chandrika Halai
- Worldwide Influenza Centre, The Francis Crick Institute, London, NW1 1AT, UK
| | - Simone Kunzelmann
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, NW1 1AT, UK
| | - Lynne Whittaker
- Worldwide Influenza Centre, The Francis Crick Institute, London, NW1 1AT, UK
| | - John W McCauley
- Worldwide Influenza Centre, The Francis Crick Institute, London, NW1 1AT, UK
| |
Collapse
|
35
|
Ison MG, Hayden FG, Hay AJ, Gubareva LV, Govorkova EA, Takashita E, McKimm-Breschkin JL. Influenza polymerase inhibitor resistance: Assessment of the current state of the art - A report of the isirv Antiviral group. Antiviral Res 2021; 194:105158. [PMID: 34363859 PMCID: PMC9012257 DOI: 10.1016/j.antiviral.2021.105158] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/31/2022]
Abstract
It is more than 20 years since the neuraminidase inhibitors, oseltamivir and zanamivir were approved for the treatment and prevention of influenza. Guidelines for global surveillance and methods for evaluating resistance were established initially by the Neuraminidase Inhibitor Susceptibility Network (NISN), which merged 10 years ago with the International Society for influenza and other Respiratory Virus Diseases (isirv) to become the isirv-Antiviral Group (isirv-AVG). With the ongoing development of new influenza polymerase inhibitors and recent approval of baloxavir marboxil, the isirv-AVG held a closed meeting in August 2019 to discuss the impact of resistance to these inhibitors. Following this meeting and review of the current literature, this article is intended to summarize current knowledge regarding the clinical impact of resistance to polymerase inhibitors and approaches for surveillance and methods for laboratory evaluation of resistance, both in vitro and in animal models. We highlight limitations and gaps in current knowledge and suggest some strategies for addressing these gaps, including the need for additional clinical studies of influenza antiviral drug combinations. Lessons learned from influenza resistance monitoring may also be helpful for establishing future drug susceptibility surveillance and testing for SARS-CoV-2.
Collapse
Affiliation(s)
- Michael G Ison
- Divisions of Infectious Diseases and Organ Transplantation, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| | - Frederick G Hayden
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, VA, USA.
| | - Alan J Hay
- The Francis Crick Institute, London, UK.
| | - Larisa V Gubareva
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Elena A Govorkova
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA.
| | - Emi Takashita
- National Institute of Infectious Diseases, Tokyo, Japan.
| | - Jennifer L McKimm-Breschkin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia.
| |
Collapse
|
36
|
Cell culture-based production of defective interfering influenza A virus particles in perfusion mode using an alternating tangential flow filtration system. Appl Microbiol Biotechnol 2021; 105:7251-7264. [PMID: 34519855 PMCID: PMC8437742 DOI: 10.1007/s00253-021-11561-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 10/27/2022]
Abstract
Respiratory diseases including influenza A virus (IAV) infections represent a major threat to human health. While the development of a vaccine requires a lot of time, a fast countermeasure could be the use of defective interfering particles (DIPs) for antiviral therapy. IAV DIPs are usually characterized by a large internal deletion in one viral RNA segment. Consequentially, DIPs can only propagate in presence of infectious standard viruses (STVs), compensating the missing gene function. Here, they interfere with and suppress the STV replication and might act "universally" against many IAV subtypes. We recently reported a production system for purely clonal DIPs utilizing genetically modified cells. In the present study, we established an automated perfusion process for production of a DIP, called DI244, using an alternating tangential flow filtration (ATF) system for cell retention. Viable cell concentrations and DIP titers more than 10 times higher than for a previously reported batch cultivation were observed. Furthermore, we investigated a novel tubular cell retention device for its potential for continuous virus harvesting into the permeate. Very comparable performances to typically used hollow fiber membranes were found during the cell growth phase. During the virus replication phase, the tubular membrane, in contrast to the hollow fiber membrane, allowed 100% of the produced virus particles to pass through. To our knowledge, this is the first time a continuous virus harvest was shown for a membrane-based perfusion process. Overall, the process established offers interesting possibilities for advanced process integration strategies for next-generation virus particle and virus vector manufacturing.Key points• An automated perfusion process for production of IAV DIPs was established.• DIP titers of 7.40E + 9 plaque forming units per mL were reached.• A novel tubular cell retention device enabled continuous virus harvesting.
Collapse
|
37
|
Xu Y, Lewandowski K, Downs LO, Kavanagh J, Hender T, Lumley S, Jeffery K, Foster D, Sanderson ND, Vaughan A, Morgan M, Vipond R, Carroll M, Peto T, Crook D, Walker AS, Matthews PC, Pullan ST. Nanopore metagenomic sequencing of influenza virus directly from respiratory samples: diagnosis, drug resistance and nosocomial transmission, United Kingdom, 2018/19 influenza season. ACTA ACUST UNITED AC 2021; 26. [PMID: 34240696 PMCID: PMC8268652 DOI: 10.2807/1560-7917.es.2021.26.27.2000004] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BackgroundInfluenza virus presents a considerable challenge to public health by causing seasonal epidemics and occasional pandemics. Nanopore metagenomic sequencing has the potential to be deployed for near-patient testing, providing rapid infection diagnosis, rationalising antimicrobial therapy, and supporting infection-control interventions.AimTo evaluate the applicability of this sequencing approach as a routine laboratory test for influenza in clinical settings.MethodsWe conducted Oxford Nanopore Technologies (Oxford, United Kingdom (UK)) metagenomic sequencing for 180 respiratory samples from a UK hospital during the 2018/19 influenza season, and compared results to routine molecular diagnostic standards (Xpert Xpress Flu/RSV assay; BioFire FilmArray Respiratory Panel 2 assay). We investigated drug resistance, genetic diversity, and nosocomial transmission using influenza sequence data.ResultsCompared to standard testing, Nanopore metagenomic sequencing was 83% (75/90) sensitive and 93% (84/90) specific for detecting influenza A viruses. Of 59 samples with haemagglutinin subtype determined, 40 were H1 and 19 H3. We identified an influenza A(H3N2) genome encoding the oseltamivir resistance S331R mutation in neuraminidase, potentially associated with an emerging distinct intra-subtype reassortant. Whole genome phylogeny refuted suspicions of a transmission cluster in a ward, but identified two other clusters that likely reflected nosocomial transmission, associated with a predominant community-circulating strain. We also detected other potentially pathogenic viruses and bacteria from the metagenome.ConclusionNanopore metagenomic sequencing can detect the emergence of novel variants and drug resistance, providing timely insights into antimicrobial stewardship and vaccine design. Full genome generation can help investigate and manage nosocomial outbreaks.
Collapse
Affiliation(s)
- Yifei Xu
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Kuiama Lewandowski
- Public Health England, National Infection Service, Porton Down, Salisbury, United Kingdom
| | - Louise O Downs
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom.,Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - James Kavanagh
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Thomas Hender
- Public Health England, National Infection Service, Porton Down, Salisbury, United Kingdom
| | - Sheila Lumley
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom.,Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Katie Jeffery
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Dona Foster
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Nicholas D Sanderson
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Ali Vaughan
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Marcus Morgan
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Richard Vipond
- Public Health England, National Infection Service, Porton Down, Salisbury, United Kingdom
| | - Miles Carroll
- Public Health England, National Infection Service, Porton Down, Salisbury, United Kingdom
| | - Timothy Peto
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom.,Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Derrick Crook
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom.,Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - A Sarah Walker
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Philippa C Matthews
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom.,Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom.,Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Steven T Pullan
- Public Health England, National Infection Service, Porton Down, Salisbury, United Kingdom
| |
Collapse
|
38
|
Chong CS, Limviphuvadh V, Maurer-Stroh S. Global spectrum of population-specific common missense variation in cytochrome P450 pharmacogenes. Hum Mutat 2021; 42:1107-1123. [PMID: 34153149 DOI: 10.1002/humu.24243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/12/2021] [Accepted: 06/08/2021] [Indexed: 11/06/2022]
Abstract
Next-generation sequencing technology has afforded the discovery of many novel variants that are of significance to inheritable pharmacogenomics (PGx) traits but a large proportion of them have unknown consequences. These include missense variants resulting in single amino acid substitutions in cytochrome P450 (CYP) proteins that can impair enzyme function, leading to altered drug efficacy and toxicity. While most unknown variants are rare, an overlooked minority are variants that are collectively rare but enriched in specific populations. Here, we analyzed sequence variation data in 141,456 individuals from across eight study populations in gnomAD for 38 CYP genes to identify such variants in addition to common variants. By further comparison with data from two PGx-specific databases (PharmVar and PharmGKB) and ClinVar, we identified 234 missense variants in 35 CYP genes, of which 107 were unknown to these databases. Most unknown variants (n = 83) were population-specific common variants and several (n = 7) were found in important CYP pharmacogenes (CYP2D6, CYP4F2, and CYP2C19). Overall, 29% (n = 31) of 107 unknown variants were predicted to affect CYP enzyme function although further biochemical characterization is necessary. These variants may elucidate part of the unexplained interpopulation differences observed in drug response.
Collapse
Affiliation(s)
- Cheng-Shoong Chong
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Innovations in Food and Chemical Safety Programme (IFCS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,National University of Singapore Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, Singapore, Singapore
| | - Vachiranee Limviphuvadh
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Innovations in Food and Chemical Safety Programme (IFCS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Innovations in Food and Chemical Safety Programme (IFCS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,National University of Singapore Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
39
|
Chen Z, Cui Q, Caffrey M, Rong L, Du R. Small Molecule Inhibitors of Influenza Virus Entry. Pharmaceuticals (Basel) 2021; 14:ph14060587. [PMID: 34207368 PMCID: PMC8234048 DOI: 10.3390/ph14060587] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 12/16/2022] Open
Abstract
Hemagglutinin (HA) plays a critical role during influenza virus receptor binding and subsequent membrane fusion process, thus HA has become a promising drug target. For the past several decades, we and other researchers have discovered a series of HA inhibitors mainly targeting its fusion machinery. In this review, we summarize the advances in HA-targeted development of small molecule inhibitors. Moreover, we discuss the structural basis and mode of action of these inhibitors, and speculate upon future directions toward more potent inhibitors of membrane fusion and potential anti-influenza drugs.
Collapse
Affiliation(s)
- Zhaoyu Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Z.C.); (Q.C.)
| | - Qinghua Cui
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Z.C.); (Q.C.)
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266122, China
| | - Michael Caffrey
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA;
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Correspondence: (L.R.); (R.D.); Tel.: +1-312-355-0203 (L.R.); +86-0531-89628505 (R.D.)
| | - Ruikun Du
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Z.C.); (Q.C.)
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266122, China
- Correspondence: (L.R.); (R.D.); Tel.: +1-312-355-0203 (L.R.); +86-0531-89628505 (R.D.)
| |
Collapse
|
40
|
Goldhill DH, Yan A, Frise R, Zhou J, Shelley J, Gallego Cortés A, Miah S, Akinbami O, Galiano M, Zambon M, Lackenby A, Barclay WS. Favipiravir-resistant influenza A virus shows potential for transmission. PLoS Pathog 2021; 17:e1008937. [PMID: 34061908 PMCID: PMC8195362 DOI: 10.1371/journal.ppat.1008937] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 06/11/2021] [Accepted: 05/03/2021] [Indexed: 12/11/2022] Open
Abstract
Favipiravir is a nucleoside analogue which has been licensed to treat influenza in the event of a new pandemic. We previously described a favipiravir resistant influenza A virus generated by in vitro passage in presence of drug with two mutations: K229R in PB1, which conferred resistance at a cost to polymerase activity, and P653L in PA, which compensated for the cost of polymerase activity. However, the clinical relevance of these mutations is unclear as the mutations have not been found in natural isolates and it is unknown whether viruses harbouring these mutations would replicate or transmit in vivo. Here, we infected ferrets with a mix of wild type p(H1N1) 2009 and corresponding favipiravir-resistant virus and tested for replication and transmission in the absence of drug. Favipiravir-resistant virus successfully infected ferrets and was transmitted by both contact transmission and respiratory droplet routes. However, sequencing revealed the mutation that conferred resistance, K229R, decreased in frequency over time within ferrets. Modelling revealed that due to a fitness advantage for the PA P653L mutant, reassortment with the wild-type virus to gain wild-type PB1 segment in vivo resulted in the loss of the PB1 resistance mutation K229R. We demonstrated that this fitness advantage of PA P653L in the background of our starting virus A/England/195/2009 was due to a maladapted PA in first wave isolates from the 2009 pandemic. We show there is no fitness advantage of P653L in more recent pH1N1 influenza A viruses. Therefore, whilst favipiravir-resistant virus can transmit in vivo, the likelihood that the resistance mutation is retained in the absence of drug pressure may vary depending on the genetic background of the starting viral strain.
Collapse
Affiliation(s)
- Daniel H. Goldhill
- Department of Infectious Disease, Imperial College, London, United Kingdom
| | - Ada Yan
- Department of Infectious Disease Epidemiology, Imperial College, London, United Kingdom
| | - Rebecca Frise
- Department of Infectious Disease, Imperial College, London, United Kingdom
| | - Jie Zhou
- Department of Infectious Disease, Imperial College, London, United Kingdom
| | - Jennifer Shelley
- Department of Infectious Disease, Imperial College, London, United Kingdom
| | - Ana Gallego Cortés
- Department of Infectious Disease, Imperial College, London, United Kingdom
| | | | | | | | | | | | - Wendy S. Barclay
- Department of Infectious Disease, Imperial College, London, United Kingdom
| |
Collapse
|
41
|
Kim H, Kang H, Kim HN, Kim H, Moon J, Guk K, Park H, Yong D, Bae PK, Park HG, Lim EK, Kang T, Jung J. Development of 6E3 antibody-mediated SERS immunoassay for drug-resistant influenza virus. Biosens Bioelectron 2021; 187:113324. [PMID: 34020222 DOI: 10.1016/j.bios.2021.113324] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/18/2021] [Accepted: 05/06/2021] [Indexed: 01/04/2023]
Abstract
Influenza viruses are responsible for several pandemics and seasonal epidemics and pose a major public health threat. Even after a major outbreak, the emergence of drug-resistant influenza viruses can pose disease control problems. Here we report a novel 6E3 monoclonal antibody capable of recognizing and binding to the H275Y neuraminidase (NA) mutation, which has been associated with reduced susceptibility of influenza viruses to NA inhibitors. The 6E3 antibody had a KD of 72.74 μM for wild-type NA and 32.76 pM for H275Y NA, suggesting that it can identify drug-resistant pandemic H1N1 (pH1N1) influenza virus. Molecular modeling studies also suggest the high-affinity binding of this antibody to pH1N1 H275Y NA. This antibody was also subject to dot-blot, enzyme-linked immunosorbent assay, bare-eye detection, and lateral flow assay to demonstrate its specificity to drug-resistant pH1N1. Furthermore, it was immobilized on Au nanoplate and nanoparticles, enabling surface-enhanced Raman scattering (SERS)-based detection of the H275Y mutant pH1N1. Using 6E3 antibody-mediated SERS immunoassay, the drug-resistant influenza virus can be detected at a low concentration of 102 plaque-forming units/mL. We also detected pH1N1 in human nasopharyngeal aspirate samples, suggesting that the 6E3-mediated SERS assay has the potential for diagnostic application. We anticipate that this newly developed antibody and SERS-based immunoassay will contribute to the diagnosis of drug-resistant influenza viruses and improve treatment strategies for influenza patients.
Collapse
Affiliation(s)
- Hyeran Kim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyunju Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hye-Nan Kim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hongki Kim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jeong Moon
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Department of Chemical and Biomolecular Engineering (BK 21+ Program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Kyeonghye Guk
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hwangseo Park
- Department of Bioscience and Biotechnology, Sejong University, 209 Neungdong-ro, Kwangjin-gu, Seoul, 05006, Republic of Korea
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Pan Kee Bae
- BioNano Health Guard Research Center, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Eun-Kyung Lim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Juyeon Jung
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
42
|
Lee LY, Zhou J, Koszalka P, Frise R, Farrukee R, Baba K, Miah S, Shishido T, Galiano M, Hashimoto T, Omoto S, Uehara T, Mifsud EJ, Collinson N, Kuhlbusch K, Clinch B, Wildum S, Barclay WS, Hurt AC. Evaluating the fitness of PA/I38T-substituted influenza A viruses with reduced baloxavir susceptibility in a competitive mixtures ferret model. PLoS Pathog 2021; 17:e1009527. [PMID: 33956888 PMCID: PMC8130947 DOI: 10.1371/journal.ppat.1009527] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 05/18/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022] Open
Abstract
Baloxavir is approved in several countries for the treatment of uncomplicated influenza in otherwise-healthy and high-risk patients. Treatment-emergent viruses with reduced susceptibility to baloxavir have been detected in clinical trials, but the likelihood of widespread occurrence depends on replication capacity and onward transmission. We evaluated the fitness of A/H3N2 and A/H1N1pdm09 viruses with the polymerase acidic (PA) I38T-variant conferring reduced susceptibility to baloxavir relative to wild-type (WT) viruses, using a competitive mixture ferret model, recombinant viruses and patient-derived virus isolates. The A/H3N2 PA/I38T virus showed a reduction in within-host fitness but comparable between-host fitness to the WT virus, while the A/H1N1pdm09 PA/I38T virus had broadly similar within-host fitness but substantially lower between-host fitness. Although PA/I38T viruses replicate and transmit between ferrets, our data suggest that viruses with this amino acid substitution have lower fitness relative to WT and this relative fitness cost was greater in A/H1N1pdm09 viruses than in A/H3N2 viruses. Influenza viruses are associated with considerable disease burden and circulate annually causing seasonal epidemics. Antiviral drugs can be used to treat influenza infections and help reduce the disease burden. Occasionally, treatment can lead to the emergence of viruses with reduced antiviral susceptibility. Normally such viruses have reduced ‘fitness’, meaning they do not tend to spread or transmit widely, however on rare occasions, oseltamivir-resistant variants have become widespread in the community, thereby reducing the utility of the drug for treatment. Baloxavir is an antiviral recently licensed in many parts of the world for the treatment of influenza. Viruses with reduced susceptibility to baloxavir have been observed in clinical trials, but the frequency of such variants in the community has remained low (<0.1% globally since 2017–2018). We evaluated the fitness of viruses in ferrets and found that although A/H1N1 and A/H3N2 viruses with reduced baloxavir susceptibility were able to replicate and transmit among ferrets, they had a moderate reduction in fitness compared to normal ‘wild-type’ viruses, suggesting a reduced likelihood of spread. Surveillance to monitor for the frequency of viruses with reduced baloxavir susceptibility remains important.
Collapse
Affiliation(s)
- Leo Y Lee
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jie Zhou
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Paulina Koszalka
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.,Biomedicine Discovery Institute & Department of Microbiology, Monash University, Victoria, Australia
| | - Rebecca Frise
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Rubaiyea Farrukee
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Australia
| | | | | | | | | | | | | | | | - Edin J Mifsud
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.,Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Australia
| | | | | | - Barry Clinch
- Roche Products Ltd, Welwyn Garden City, United Kingdom
| | | | - Wendy S Barclay
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.,Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Australia.,F. Hoffmann-La Roche Ltd, Basel, Switzerland
| |
Collapse
|
43
|
Hein MD, Arora P, Marichal-Gallardo P, Winkler M, Genzel Y, Pöhlmann S, Schughart K, Kupke SY, Reichl U. Cell culture-based production and in vivo characterization of purely clonal defective interfering influenza virus particles. BMC Biol 2021; 19:91. [PMID: 33941189 PMCID: PMC8091782 DOI: 10.1186/s12915-021-01020-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 04/01/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Infections with influenza A virus (IAV) cause high morbidity and mortality in humans. Additional to vaccination, antiviral drugs are a treatment option. Besides FDA-approved drugs such as oseltamivir or zanamivir, virus-derived defective interfering (DI) particles (DIPs) are considered promising new agents. IAV DIPs typically contain a large internal deletion in one of their eight genomic viral RNA (vRNA) segments. Consequently, DIPs miss the genetic information necessary for replication and can usually only propagate by co-infection with infectious standard virus (STV), compensating for their defect. In such a co-infection scenario, DIPs interfere with and suppress STV replication, which constitutes their antiviral potential. RESULTS In the present study, we generated a genetically engineered MDCK suspension cell line for production of a purely clonal DIP preparation that has a large deletion in its segment 1 (DI244) and is not contaminated with infectious STV as egg-derived material. First, the impact of the multiplicity of DIP (MODIP) per cell on DI244 yield was investigated in batch cultivations in shake flasks. Here, the highest interfering efficacy was observed for material produced at a MODIP of 1E-2 using an in vitro interference assay. Results of RT-PCR suggested that DI244 material produced was hardly contaminated with other defective particles. Next, the process was successfully transferred to a stirred tank bioreactor (500 mL working volume) with a yield of 6.0E+8 PFU/mL determined in genetically modified adherent MDCK cells. The produced material was purified and concentrated about 40-fold by membrane-based steric exclusion chromatography (SXC). The DI244 yield was 92.3% with a host cell DNA clearance of 97.1% (99.95% with nuclease digestion prior to SXC) and a total protein reduction of 97.2%. Finally, the DIP material was tested in animal experiments in D2(B6).A2G-Mx1r/r mice. Mice infected with a lethal dose of IAV and treated with DIP material showed a reduced body weight loss and all animals survived. CONCLUSION In summary, experiments not only demonstrated that purely clonal influenza virus DIP preparations can be obtained with high titers from animal cell cultures but confirmed the potential of cell culture-derived DIPs as an antiviral agent.
Collapse
Affiliation(s)
- Marc D Hein
- Otto-von-Guericke-University Magdeburg, Chair of Bioprocess Engineering, Magdeburg, Germany
| | - Prerna Arora
- German Primate Center-Leibniz Institute for Primate Research, Infection Biology Unit, Göttingen, Germany.,University Göttingen, Faculty of Biology and Psychology, Göttingen, Germany
| | - Pavel Marichal-Gallardo
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Michael Winkler
- German Primate Center-Leibniz Institute for Primate Research, Infection Biology Unit, Göttingen, Germany.,University Göttingen, Faculty of Biology and Psychology, Göttingen, Germany
| | - Yvonne Genzel
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Stefan Pöhlmann
- German Primate Center-Leibniz Institute for Primate Research, Infection Biology Unit, Göttingen, Germany.,University Göttingen, Faculty of Biology and Psychology, Göttingen, Germany
| | - Klaus Schughart
- Helmholtz Centre for Infection Research, Department of Infection Genetics, Braunschweig, Germany.,University of Veterinary Medicine Hannover, Hannover, Germany.,University of Tennessee Health Science Center, Department of Microbiology, Immunology and Biochemistry, Memphis, TN, USA
| | - Sascha Y Kupke
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany.
| | - Udo Reichl
- Otto-von-Guericke-University Magdeburg, Chair of Bioprocess Engineering, Magdeburg, Germany.,Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| |
Collapse
|
44
|
Duwe SC, Schmidt B, Gärtner BC, Timm J, Adams O, Fickenscher H, Schmidtke M. Prophylaxis and treatment of influenza: options, antiviral susceptibility, and existing recommendations. GMS INFECTIOUS DISEASES 2021; 9:Doc02. [PMID: 34113534 PMCID: PMC8165743 DOI: 10.3205/id000071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Influenza viruses of types A and B attack 5-10% of adults and 20-30% of children, thereby causing millions of acute respiratory infections in Germany annually. A significant number of these infections are associated with complications such as pneumonia and bacterial superinfections that need hospitalization and might lead to death. In addition to vaccines, drugs were developed that might support influenza prevention and that can be used to treat influenza patients. The timely application of anti-influenza drugs can inhibit virus replication, help reduce and shorten the symptoms, and prevent death as well as virus transmission. This review concisely describes the mechanism of action, the potential for prophylactic and therapeutic use, and the knowledge on resistance of anti-influenza drugs approved today. However, the main aim is to give an overview on the recommendations available in Germany for the proper use of these drugs. In doing so, the recommendations published in statements and guidelines of medical societies as well as the German influenza pandemic preparedness plan are summarized with the consideration of specific circumstances and groups of patients.
Collapse
Affiliation(s)
- Susanne C Duwe
- Robert Koch Institute, Unit 17: Influenza and Other Respiratory Viruses, National Reference Centre for Influenza, Berlin, Germany
| | - Barbara Schmidt
- Institute for Clinical Microbiology and Hygiene, Regensburg University Hospital, Regensburg, Germany
| | - Barbara C Gärtner
- Institute of Medical Microbiology & Hygiene, Saarland University Medical Center, Homburg, Germany
| | - Jörg Timm
- Institute for Virology, University Hospital Düsseldorf, Faculty of Medicine, University Düsseldorf, Germany
| | - Ortwin Adams
- Institute for Virology, University Hospital Düsseldorf, Faculty of Medicine, University Düsseldorf, Germany
| | - Helmut Fickenscher
- Institute for Infection Medicine, University of Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Michaela Schmidtke
- Section Experimental Virology, Department of Medical Microbiology, Jena University Hospital, Germany
| |
Collapse
|
45
|
Sato M, Takashita E, Katayose M, Nemoto K, Sakai N, Fujisaki S, Hashimoto K, Hosoya M. Detection of variants with reduced baloxavir marboxil and oseltamivir susceptibility in children with influenza A during the 2019-2020 influenza season. J Infect Dis 2021; 224:1735-1741. [PMID: 33837427 DOI: 10.1093/infdis/jiab196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/05/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND We aimed to detect influenza variants with reduced susceptibility to baloxavir marboxil (baloxavir) and oseltamivir and identify differences in the clinical course between children with and without these variants after anti-viral treatment. METHODS During the 2019-2020 influenza season, we enrolled children with confirmed influenza A (20 treated with baloxavir and 16 with oseltamivir). We analyzed patients' sequential viral RNA loads and infectious virus titers, the drug susceptibilities of clinical isolates, and amino acid substitutions in the viral polymerase acidic protein subunits or neuraminidase. We assessed patients' clinical information using questionnaires. RESULTS All viral RNA loads and virus titers were significantly decreased after treatment, but we detected baloxavir-resistant and the oseltamivir-resistant variants in 5 of 20 and 3 of 16 patients, respectively. The duration of fever was similar between patients with and without the variants, but infectious viral shedding lasted 3 days longer in patients with baloxavir-resistant variants. In addition, the duration to improvement of clinical symptoms was longer in these patients (75.0 h vs. 29.5 h; p = 0.106). CONCLUSIONS After anti-viral treatment, the emergence of baloxavir-resistant variants may affect the patients' clinical course, but oseltamivir-resistant variants had no clinical impact.
Collapse
Affiliation(s)
- Masatoki Sato
- Department of Pediatrics, Fukushima Medical University, Fukushima, Japan
| | - Emi Takashita
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | | | - Seiichiro Fujisaki
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Koichi Hashimoto
- Department of Pediatrics, Fukushima Medical University, Fukushima, Japan
| | - Mitsuaki Hosoya
- Department of Pediatrics, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
46
|
Antivirals Targeting the Surface Glycoproteins of Influenza Virus: Mechanisms of Action and Resistance. Viruses 2021; 13:v13040624. [PMID: 33917376 PMCID: PMC8067422 DOI: 10.3390/v13040624] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/25/2022] Open
Abstract
Hemagglutinin and neuraminidase, which constitute the glycoprotein spikes expressed on the surface of influenza A and B viruses, are the most exposed parts of the virus and play critical roles in the viral lifecycle. As such, they make prominent targets for the immune response and antiviral drugs. Neuraminidase inhibitors, particularly oseltamivir, constitute the most commonly used antivirals against influenza viruses, and they have proved their clinical utility against seasonal and emerging influenza viruses. However, the emergence of resistant strains remains a constant threat and consideration. Antivirals targeting the hemagglutinin protein are relatively new and have yet to gain global use but are proving to be effective additions to the antiviral repertoire, with a relatively high threshold for the emergence of resistance. Here we review antiviral drugs, both approved for clinical use and under investigation, that target the influenza virus hemagglutinin and neuraminidase proteins, focusing on their mechanisms of action and the emergence of resistance to them.
Collapse
|
47
|
Tripp RA, Stambas J. Intervention Strategies for Seasonal and Emerging Respiratory Viruses with Drugs and Vaccines Targeting Viral Surface Glycoproteins. Viruses 2021; 13:v13040625. [PMID: 33917411 PMCID: PMC8067509 DOI: 10.3390/v13040625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 12/12/2022] Open
Abstract
Vaccines and therapeutics targeting viral surface glycoproteins are a major component of disease prevention for respiratory viral diseases. Over the years, vaccines have proven to be the most successful intervention for preventing disease. Technological advances in vaccine platforms that focus on viral surface glycoproteins have provided solutions for current and emerging pathogens like SARS-CoV-2, and our understanding of the structural basis for antibody neutralization is guiding the selection of other vaccine targets for respiratory viruses like RSV. This review discusses the role of viral surface glycoproteins in disease intervention approaches.
Collapse
Affiliation(s)
- Ralph A. Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30605, USA
- Correspondence:
| | - John Stambas
- School of Medicine, Geelong Waurn Ponds, Deakin University, Melbourne, VIC 3125, Australia;
| |
Collapse
|
48
|
Beigel JH, Hayden FG. Influenza Therapeutics in Clinical Practice-Challenges and Recent Advances. Cold Spring Harb Perspect Med 2021; 11:a038463. [PMID: 32041763 PMCID: PMC8015700 DOI: 10.1101/cshperspect.a038463] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the last few years, several new direct-acting influenza antivirals have been licensed, and others have advanced in clinical development. The increasing diversity of antiviral classes should allow an adequate public health response should a resistant virus to one agent or class widely circulate. One new antiviral, baloxavir marboxil, has been approved in the United States for treatment of influenza in those at high risk of developing influenza-related complications. Except for intravenous zanamivir in European Union countries, no antivirals have been licensed specifically for the indication of severe influenza or hospitalized influenza. This review addresses recent clinical developments involving selected polymerase inhibitors, neuraminidase inhibitors, antibody-based therapeutics, and host-directed therapies. There are many knowledge gaps for most of these agents because some data are not published and multiple pivotal studies are in progress at present. This review also considers important clinical research issues, including regulatory pathways, study designs, endpoints, and target populations encountered during the clinical development of novel therapeutics.
Collapse
Affiliation(s)
- John H Beigel
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20892-9826, USA
| | - Frederick G Hayden
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| |
Collapse
|
49
|
Du R, Cheng H, Cui Q, Peet NP, Gaisina IN, Rong L. Identification of a novel inhibitor targeting influenza A virus group 2 hemagglutinins. Antiviral Res 2021; 186:105013. [PMID: 33428962 DOI: 10.1016/j.antiviral.2021.105013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/29/2020] [Accepted: 01/02/2021] [Indexed: 10/22/2022]
Abstract
Influenza A virus (IAV) causes seasonal epidemics and occasional but devastating pandemics, which are major public health concerns. The putative antiviral therapeutics are useful for the treatment of influenza, however, the emerging resistant strains necessitate a constant search for new drug candidates. Here we report the discovery of a novel antiviral agent, compound CBS1194, which was identified by a parallel high-throughput screening (HTS) campaign using two retroviral pseudotypes bearing H7 or H5 hemagglutinins (HAs). Subsequent analyses demonstrated that CBS1194 is specific to IAVs of group 2, while it has no effect against those of group 1. In a time-of-addition assay, CBS1194 showed a significant inhibitory effect during the early phase of viral infection. In addition, HA-mediated hemolysis can be inhibited by CBS1194 treatment, indicating that this compound may target the HA stalk region, which is responsible for membrane fusion. Escape mutant analyses and in silico docking further revealed that CBS1194 fits into a pocket near the fusion peptide, causing steric hindrance that blocks the low-pH induced rearrangement of HA. In summary, our study identifies a novel fusion inhibitor of group 2 IAVs, which has the potential as lead compound for further development.
Collapse
Affiliation(s)
- Ruikun Du
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Han Cheng
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Qinghua Cui
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Norton P Peet
- Chicago BioSolutions Inc., 2242 W Harrison Street, Chicago, IL, 60612, United States
| | - Irina N Gaisina
- Chicago BioSolutions Inc., 2242 W Harrison Street, Chicago, IL, 60612, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
50
|
Hein MD, Kollmus H, Marichal-Gallardo P, Püttker S, Benndorf D, Genzel Y, Schughart K, Kupke SY, Reichl U. OP7, a novel influenza A virus defective interfering particle: production, purification, and animal experiments demonstrating antiviral potential. Appl Microbiol Biotechnol 2020; 105:129-146. [PMID: 33275160 PMCID: PMC7778630 DOI: 10.1007/s00253-020-11029-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/14/2020] [Accepted: 11/22/2020] [Indexed: 11/24/2022]
Abstract
Abstract The novel influenza A virus (IAV) defective interfering particle “OP7” inhibits IAV replication in a co-infection and was previously suggested as a promising antiviral agent. Here, we report a batch-mode cell culture-based production process for OP7. In the present study, a seed virus containing standard virus (STV) and OP7 was used. The yield of OP7 strongly depended on the production multiplicity of infection. To inactivate infectious STV in the OP7 material, which may cause harm in a potential application, UV irradiation was used. The efficacy of OP7 in this material was preserved, as shown by an in vitro interference assay. Next, steric exclusion chromatography was used to purify and to concentrate (~ 13-fold) the UV-treated material. Finally, administration of produced OP7 material in mice did not show any toxic effects. Furthermore, all mice infected with a lethal dose of IAV survived the infection upon OP7 co-treatment. Thus, the feasibility of a production workflow for OP7 and its potential for antiviral treatment was demonstrated. Key points • OP7 efficacy strongly depended on the multiplicity of infection used for production • Purification by steric exclusion chromatography increased OP7 efficacy • OP7-treated mice were protected against a lethal infection with IAV Supplementary Information The online version contains supplementary material available at 10.1007/s00253-020-11029-5.
Collapse
Affiliation(s)
- Marc D Hein
- Bioprocess Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Heike Kollmus
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Pavel Marichal-Gallardo
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Sebastian Püttker
- Bioprocess Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Dirk Benndorf
- Bioprocess Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Yvonne Genzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Klaus Schughart
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany.,University of Veterinary Medicine Hannover, Hannover, Germany.,Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Sascha Y Kupke
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
| | - Udo Reichl
- Bioprocess Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| |
Collapse
|