1
|
Guan H, Nuth M, Scott RW, Parker MH, Strobel ED, Reitz AB, Kulp JL, Ricciardi RP. Potency of a small molecule that targets the molluscum contagiosum virus processivity factor increases when conjugated to a tripeptide. Antiviral Res 2024; 226:105899. [PMID: 38705201 DOI: 10.1016/j.antiviral.2024.105899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
We recently developed compound FC-7269 for targeting the Molluscum contagiosum virus processivity factor (mD4) and demonstrated its ability to inhibit viral processive DNA synthesis in vitro and cellular infection of an mD4-dependent virus (Antiviral Res 211, 2023,105520). However, despite a thorough medicinal chemistry campaign we were unable to generate a potent second analog as a requisite for drug development. We overcame this impasse, by conjugating a short hydrophobic trivaline peptide to FC-7269 to produce FC-TriVal-7269 which significantly increased antiviral potency and reduced cellular toxicity.
Collapse
Affiliation(s)
- Hancheng Guan
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, USA
| | - Manunya Nuth
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, USA
| | | | | | | | | | - John L Kulp
- Conifer Point Pharmaceuticals, Doylestown, PA, USA
| | - Robert P Ricciardi
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, USA; Abramson Cancer Center, School of Medicine, University of Pennsylvania, USA.
| |
Collapse
|
2
|
Alagarsamy V, Shyam Sundar P, Raja Solomon V, Narendhar B, Sulthana MT, Rohitha K, Dhanwar S, Dharshini Aishwarya A, Murugesan S. Pharmacophore modelling-based drug repurposing approaches for monkeypox therapeutics. J Biomol Struct Dyn 2023; 41:10678-10689. [PMID: 36905675 DOI: 10.1080/07391102.2023.2188428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/05/2022] [Indexed: 03/13/2023]
Abstract
Monkeypox is a zoonotic viral disease that mainly affects tropical rainforest regions of central and west Africa, with sporadic exportations to other places. Since there is no cure, treating monkeypox with an antiviral drug developed for smallpox is currently acceptable. Our study mainly focused on finding new therapeutics to target monkeypox from existing compounds or medications. It is a successful method for discovering or developing medicinal compounds with novel pharmacological or therapeutic applications. In this study, homology modelling developed the Monkeypox VarTMPK (IMNR) structure. Ligand-based pharmacophore was generated using the best docking pose of standard ticovirimat. Further, molecular docking analysis showed compounds, tetrahydroxycurcumin, procyanidin, rutin, vicenin-2, kaempferol 3-(6''-malonylglucoside) were the top five binding energy compounds against VarTMPK (1MNR). Furthermore, we carried out MD simulations for 100 ns for the six compounds, including reference based on the binding energies and interactions. MD studies revealed that as ticovirimat interacted with residues Lys17, Ser18, and Arg45, all the above five compounds interacted with the same amino acids at the active site during docking and simulation studies. Among all the compounds, ZINC4649679 (Tetrahydroxycurcumin) was shown to have the highest binding energy -9.7 kcal/mol and also observed stable protein-ligand complex during MD studies. ADMET profile estimation showed that the docked phytochemicals were safe. However, further biological assessment through a wet lab is essential to measure the efficacy and safety of the compounds.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- V Alagarsamy
- Medicinal Chemistry Research Laboratory, MNR College of Pharmacy, Sangareddy, Hyderabad, India
| | - P Shyam Sundar
- Medicinal Chemistry Research Laboratory, MNR College of Pharmacy, Sangareddy, Hyderabad, India
| | - V Raja Solomon
- Medicinal Chemistry Research Laboratory, MNR College of Pharmacy, Sangareddy, Hyderabad, India
| | - B Narendhar
- Medicinal Chemistry Research Laboratory, MNR College of Pharmacy, Sangareddy, Hyderabad, India
| | - M T Sulthana
- Medicinal Chemistry Research Laboratory, MNR College of Pharmacy, Sangareddy, Hyderabad, India
| | - Kotha Rohitha
- Medicinal Chemistry Research Laboratory, MNR College of Pharmacy, Sangareddy, Hyderabad, India
| | - Sangeeta Dhanwar
- Medicinal Chemistry Research Laboratory, MNR College of Pharmacy, Sangareddy, Hyderabad, India
| | - A Dharshini Aishwarya
- Medicinal Chemistry Research Laboratory, MNR College of Pharmacy, Sangareddy, Hyderabad, India
| | - S Murugesan
- Department of Pharmacy, BITS, Pilani, Pilani, Rajasthan, India
| |
Collapse
|
3
|
Diatlova EA, Mechetin GV, Yudkina AV, Zharkov VD, Torgasheva NA, Endutkin AV, Shulenina OV, Konevega AL, Gileva IP, Shchelkunov SN, Zharkov DO. Correlated Target Search by Vaccinia Virus Uracil-DNA Glycosylase, a DNA Repair Enzyme and a Processivity Factor of Viral Replication Machinery. Int J Mol Sci 2023; 24:ijms24119113. [PMID: 37298065 DOI: 10.3390/ijms24119113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/13/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
The protein encoded by the vaccinia virus D4R gene has base excision repair uracil-DNA N-glycosylase (vvUNG) activity and also acts as a processivity factor in the viral replication complex. The use of a protein unlike PolN/PCNA sliding clamps is a unique feature of orthopoxviral replication, providing an attractive target for drug design. However, the intrinsic processivity of vvUNG has never been estimated, leaving open the question whether it is sufficient to impart processivity to the viral polymerase. Here, we use the correlated cleavage assay to characterize the translocation of vvUNG along DNA between two uracil residues. The salt dependence of the correlated cleavage, together with the similar affinity of vvUNG for damaged and undamaged DNA, support the one-dimensional diffusion mechanism of lesion search. Unlike short gaps, covalent adducts partly block vvUNG translocation. Kinetic experiments show that once a lesion is found it is excised with a probability ~0.76. Varying the distance between two uracils, we use a random walk model to estimate the mean number of steps per association with DNA at ~4200, which is consistent with vvUNG playing a role as a processivity factor. Finally, we show that inhibitors carrying a tetrahydro-2,4,6-trioxopyrimidinylidene moiety can suppress the processivity of vvUNG.
Collapse
Affiliation(s)
- Evgeniia A Diatlova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Grigory V Mechetin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Anna V Yudkina
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Vasily D Zharkov
- Biology Department, Tomsk State University, 634050 Tomsk, Russia
| | - Natalia A Torgasheva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Anton V Endutkin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Olga V Shulenina
- NRC "Kurchatov Institute"-B. P. Konstantinov Petersburg Nuclear Physics Institute, Leningrad Region, 188300 Gatchina, Russia
| | - Andrey L Konevega
- NRC "Kurchatov Institute"-B. P. Konstantinov Petersburg Nuclear Physics Institute, Leningrad Region, 188300 Gatchina, Russia
| | - Irina P Gileva
- State Research Center of Virology and Biotechnology Vector, Novosibirsk Region, 630559 Koltsovo, Russia
| | - Sergei N Shchelkunov
- State Research Center of Virology and Biotechnology Vector, Novosibirsk Region, 630559 Koltsovo, Russia
| | - Dmitry O Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| |
Collapse
|
4
|
Wang J, Shahed-Ai-Mahmud M, Chen A, Li K, Tan H, Joyce R. An Overview of Antivirals against Monkeypox Virus and Other Orthopoxviruses. J Med Chem 2023; 66:4468-4490. [PMID: 36961984 DOI: 10.1021/acs.jmedchem.3c00069] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
The current monkeypox outbreaks during the COVID-19 pandemic have reignited interest in orthopoxvirus antivirals. Monkeypox belongs to the Orthopoxvirus genus of the Poxviridae family, which also includes the variola virus, vaccinia virus, and cowpox virus. Two orally bioavailable drugs, tecovirimat and brincidofovir, have been approved for treating smallpox infections. Given their human safety profiles and in vivo antiviral efficacy in animal models, both drugs have also been recommended to treat monkeypox infection. To facilitate the development of additional orthopoxvirus antivirals, we summarize the antiviral activity, mechanism of action, and mechanism of resistance of orthopoxvirus antivirals. This perspective covers both direct-acting and host-targeting antivirals with an emphasis on drug candidates showing in vivo antiviral efficacy in animal models. We hope to speed the orthopoxvirus antiviral drug discovery by providing medicinal chemists with insights into prioritizing proper drug targets and hits for further development.
Collapse
Affiliation(s)
- Jun Wang
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Md Shahed-Ai-Mahmud
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Angelo Chen
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Kan Li
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Haozhou Tan
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Ryan Joyce
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
5
|
Guan H, Nuth M, Isaacs SN, Xiao Y, Scott RW, Parker MH, Strobel ED, Kulp JL, Bailey TR, Reitz AB, Ricciardi RP. A small molecule that targets the processivity factor of molluscum contagiosum virus has therapeutic potential. Antiviral Res 2023; 211:105520. [PMID: 36603771 PMCID: PMC10209390 DOI: 10.1016/j.antiviral.2022.105520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023]
Abstract
Molluscum contagiosum (MC) is an infectious disease that occurs only in humans with a tropism that is narrowly restricted to the outermost epidermal layer of the skin. Molluscum contagiosum virus (MCV) is the causative agent of MC which produces skin lesions that can persist for months to several years. MCV is efficiently transmitted by direct physical contact or by indirect contact with fomites. MC is most prevalent in children and immune compromised patients. The failure to develop a drug that targets MCV replication has been hampered for decades by the inability to propagate MCV in cell culture. To address this dilemma, we recently engineered a surrogate poxvirus expressing the MCV processivity factor (mD4) as the drug target. The mD4 protein is essential for viral replication by keeping the viral polymerase tethered to the DNA template. In this study we have designed and synthesized a lead compound (7269) that is able to prevent mD4 dependent processive DNA synthesis in vitro (IC50 = 6.8 μM) and effectively inhibit propagation of the mD4-VV surrogate virus in BSC-1 cells (EC50 = 13.2 μM) with negligible cytotoxicity. In human liver microsomes, 7269 was shown to be stable for almost 2 h. When tested for penetration into human cadaver skin in a formulated gel, the level of 7269 in the epidermal layer was nearly 100 times the concentration (EC50) needed to inhibit propagation of the mD4-VV surrogate virus in BSC-1 cells. The gel formulated 7269 was scored as a non-irritant on skin and shown to have a shelf-life that was completely stable after several months. In summary, 7269 is a potential Lead for becoming the first MCV anti-viral compound to treat MC and thereby, addresses this unmet medical need that has persisted for many decades.
Collapse
Affiliation(s)
- Hancheng Guan
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, USA
| | - Manunya Nuth
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, USA
| | - Stuart N Isaacs
- Perelman School of Medicine, University of Pennsylvania, USA
| | - Yuhong Xiao
- Perelman School of Medicine, University of Pennsylvania, USA
| | | | | | | | - John L Kulp
- Conifer Point Pharmaceuticals, Doylestown, PA, USA
| | | | | | - Robert P Ricciardi
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, USA; Abramson Cancer Center, School of Medicine, University of Pennsylvania, USA.
| |
Collapse
|
6
|
Nuth M, Benakanakere MR, Ricciardi RP. Discovery of a potent cytotoxic agent that promotes G 2/M phase cell cycle arrest and apoptosis in a malignant human pharyngeal squamous carcinoma cell line. Int J Oncol 2022; 60:41. [PMID: 35211767 DOI: 10.3892/ijo.2022.5331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/31/2022] [Indexed: 12/09/2022] Open
Abstract
Squamous cell carcinoma is the major form of malignancy that arises in head and neck cancer. The modest improvement in the 5‑year survival rate underpins its complex etiology and provides the impetus for the discovery of new therapeutics. The present study describes the discovery of an indole‑based small molecule (24a) that was a potent cytotoxic agent with antiproliferative and pro‑apoptotic properties against a pharyngeal carcinoma cell line, Detroit 562, effectively killing the cells at a half‑maximal inhibitory concentration of 0.03 µM, as demonstrated using cell proliferation studies. The antiproliferative property of 24a was demonstrated by its ability to promote G2/M blockade, as assessed by cell cycle analysis using flow cytometry and the monitoring of real‑time cell cycle progression by the fluorescence ubiquitination‑based cell cycle indicator. This pro‑apoptotic property is supported by the promotion of TUNEL‑staining and increase in the activities of caspases‑3/7 and ‑6, in addition to the expression of death receptors and the cleavage of poly (ADP‑ribose) polymerase 1 protein as demonstrated by western blotting. Given that Detroit 562 lacks functional p53, it is suggested that 24a acts independently of the tumor suppressor.
Collapse
Affiliation(s)
- Manunya Nuth
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Manjunatha R Benakanakere
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert P Ricciardi
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
7
|
Garcia DR, Souza FR, Guimarães AP, Valis M, Pavelek Z, Kuca K, Ramalho TC, França TCC. In Silico Studies of Potential Selective Inhibitors of Thymidylate Kinase from Variola virus. Pharmaceuticals (Basel) 2021; 14:ph14101027. [PMID: 34681251 PMCID: PMC8537287 DOI: 10.3390/ph14101027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/22/2021] [Accepted: 09/30/2021] [Indexed: 11/17/2022] Open
Abstract
Continuing the work developed by our research group, in the present manuscript, we performed a theoretical study of 10 new structures derived from the antivirals cidofovir and ribavirin, as inhibitor prototypes for the enzyme thymidylate kinase from Variola virus (VarTMPK). The proposed structures were subjected to docking calculations, molecular dynamics simulations, and free energy calculations, using the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method, inside the active sites of VarTMPK and human TMPK (HssTMPK). The docking and molecular dynamic studies pointed to structures 2, 3, 4, 6, and 9 as more selective towards VarTMPK. In addition, the free energy data calculated through the MM-PBSA method, corroborated these results. This suggests that these compounds are potential selective inhibitors of VarTMPK and, thus, can be considered as template molecules to be synthesized and experimentally evaluated against smallpox.
Collapse
Affiliation(s)
- Danielle R. Garcia
- Laboratory of Molecular Modeling Applied to Chemical and Biological Defense, Military Institute of Engineering, Praça General Tiburcio 80, Urca, Rio de Janeiro 22290-270, Brazil;
| | - Felipe R. Souza
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro 22541-041, Brazil;
| | - Ana P. Guimarães
- Department of Chemistry, Federal University of Viçosa, Avenida P. H. Rolfs, s/n, Centro, Viçosa 36570-000, MG, Brazil;
| | - Martin Valis
- Department of Neurology of the Medical Faculty of Charles University and University Hospital in Hradec Kralove, Sokolska 581, 50005 Hradec Kralove, Czech Republic; (M.V.); (Z.P.)
| | - Zbyšek Pavelek
- Department of Neurology of the Medical Faculty of Charles University and University Hospital in Hradec Kralove, Sokolska 581, 50005 Hradec Kralove, Czech Republic; (M.V.); (Z.P.)
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic;
- Biomedical Research Center, University Hospital in Hradec Kralove, Sokolska 581, 50005 Hradec Kralove, Czech Republic
- Correspondence: (K.K.); (T.C.C.F.)
| | - Teodorico C. Ramalho
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic;
- Laboratory of Computational Chemistry, Department of Chemistry, UFLA, Lavras 37200-000, MG, Brazil
| | - Tanos C. C. França
- Laboratory of Molecular Modeling Applied to Chemical and Biological Defense, Military Institute of Engineering, Praça General Tiburcio 80, Urca, Rio de Janeiro 22290-270, Brazil;
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic;
- Correspondence: (K.K.); (T.C.C.F.)
| |
Collapse
|
8
|
Bugert JJ, Hucke F, Zanetta P, Bassetto M, Brancale A. Antivirals in medical biodefense. Virus Genes 2020; 56:150-167. [PMID: 32076918 PMCID: PMC7089181 DOI: 10.1007/s11262-020-01737-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 01/20/2020] [Indexed: 02/07/2023]
Abstract
The viruses historically implicated or currently considered as candidates for misuse in bioterrorist events are poxviruses, filoviruses, bunyaviruses, orthomyxoviruses, paramyxoviruses and a number of arboviruses causing encephalitis, including alpha- and flaviviruses. All these viruses are of concern for public health services when they occur in natural outbreaks or emerge in unvaccinated populations. Recent events and intelligence reports point to a growing risk of dangerous biological agents being used for nefarious purposes. Public health responses effective in natural outbreaks of infectious disease may not be sufficient to deal with the severe consequences of a deliberate release of such agents. One important aspect of countermeasures against viral biothreat agents are the antiviral treatment options available for use in post-exposure prophylaxis. These issues were adressed by the organizers of the 16th Medical Biodefense Conference, held in Munich in 2018, in a special session on the development of drugs to treat infections with viruses currently perceived as a threat to societies or associated with a potential for misuse as biothreat agents. This review will outline the state-of-the-art methods in antivirals research discussed and provide an overview of antiviral compounds in the pipeline that are already approved for use or still under development.
Collapse
Affiliation(s)
- J J Bugert
- Bundeswehr Institute for Microbiology, Neuherbergstraße 11, 80937, Munich, Germany.
| | - F Hucke
- Bundeswehr Institute for Microbiology, Neuherbergstraße 11, 80937, Munich, Germany
| | - P Zanetta
- Bundeswehr Institute for Microbiology, Neuherbergstraße 11, 80937, Munich, Germany
| | - M Bassetto
- Department of Chemistry, Swansea University, Swansea, SA2 8PP, UK
| | - A Brancale
- Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, UK
| |
Collapse
|