1
|
Khan A, Zakirullah, Wahab S, Hong ST. Advances in antiviral strategies targeting mosquito-borne viruses: cellular, viral, and immune-related approaches. Virol J 2025; 22:26. [PMID: 39905499 DOI: 10.1186/s12985-025-02622-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/03/2025] [Indexed: 02/06/2025] Open
Abstract
Mosquito-borne viruses (MBVs) are a major global health threat, causing significant morbidity and mortality. MBVs belong to several distinct viral families, each with unique characteristics. The primary families include Flaviviridae (e.g., Dengue, Zika, West Nile, Yellow Fever, Japanese Encephalitis), transmitted predominantly by Aedes and Culex mosquitoes; Togaviridae, which consists of the genus Alphavirus (e.g., Chikungunya, Eastern and Western Equine Encephalitis viruses), also transmitted by Aedes and Culex; Bunyaviridae (recently reorganized), containing viruses like Rift Valley Fever and Oropouche virus, transmitted by mosquitoes and sometimes sandflies; and Reoviridae, which includes the genus Orbivirus (e.g., West Nile and Bluetongue viruses), primarily affecting animals and transmitted by mosquitoes and sandflies. Despite extensive research, effective antiviral treatments for MBVs remain scarce, and current therapies mainly provide symptomatic relief and supportive care. This review examines the viral components and cellular and immune factors involved in the life cycle of MBVs. It also highlights recent advances in antiviral strategies targeting host factors such as lipid metabolism, ion channels, and proteasomes, as well as viral targets like NS2B-NS3 proteases and nonstructural proteins. Additionally, it explores immunomodulatory therapies to enhance antiviral responses and emphasizes the potential of drug repurposing, bioinformatics, artificial intelligence, and deep learning in identifying novel antiviral candidates. Continued research is crucial in mitigating MBVs' impact and preventing future outbreaks.
Collapse
Affiliation(s)
- Ayyaz Khan
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, 54907, South Korea
| | - Zakirullah
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shahid Wahab
- Department of Agriculture, Jeonbuk National University, Jeonju-si, Republic of Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, 54907, South Korea.
| |
Collapse
|
2
|
Adeyinka OS, Barrera MD, Metibemu DS, Boghdeh N, Anderson CA, Baha H, Crown O, Falode JA, Bleach JL, Bliss AR, Hampton TP, Ojobor JFC, Alem F, Narayanan A, Ogungbe IV. nsP2 Protease Inhibitor Blocks the Replication of New World Alphaviruses and Offer Protection in Mice. ACS Infect Dis 2025; 11:181-196. [PMID: 39737550 DOI: 10.1021/acsinfecdis.4c00701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2025]
Abstract
New World alphaviruses, including Venezuelan equine encephalitis virus (VEEV), eastern equine encephalitis virus (EEEV), and western equine encephalitis virus (WEEV), are mosquito-transmitted viruses that cause disease in humans. These viruses are endemic to the western hemisphere, and disease in humans may lead to encephalitis and long-term neurological sequelae. There are currently no FDA-approved vaccines or antiviral therapeutics available for the prevention or treatment of diseases caused by these viruses. The alphavirus nonstructural protein 2 (nsP2) functions as a protease, which is critical for the establishment of a productive viral infection by enabling accurate processing of the nsP123 polyprotein. Owing to the essential role played by nsP2 in the alphavirus infectious process, it is also a valuable therapeutic target. In this article, we report the synthesis and evaluation of novel small molecule inhibitors that target the alphavirus nsP2 protease via a covalent mode of action. The two lead compounds demonstrated robust inhibition of viral replication in vitro. These inhibitors interfered with the processing of the nsP123 polyprotein as determined using VEEV TC-83 as a model pathogen and are active against EEEV and WEEV. The compounds were found to be nontoxic in two different mouse strains and demonstrated antiviral activity in a VEEV TC-83 lethal challenge mouse model. Cumulatively, the outcomes of this study provide a compelling rationale for the preclinical development of nsP2 protease inhibitors as direct-acting antiviral therapeutics against alphaviruses.
Collapse
Affiliation(s)
- Olawale S Adeyinka
- Chemistry and Biotechnology Science and Engineering Program, College of Science, The University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Michael D Barrera
- Department of Biology, College of Science, George Mason University, Fairfax, Virginia 22030, United States
- School of Systems Biology, College of Science, George Mason University, Fairfax, Virginia 22030, United States
| | - Damilohun S Metibemu
- Chemistry and Biotechnology Science and Engineering Program, College of Science, The University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Niloufar Boghdeh
- School of Systems Biology, College of Science, George Mason University, Fairfax, Virginia 22030, United States
- Biomedical Research Laboratory, Institute for Biohealth Innovation, George Mason University, Manassas, Virginia 20109, United States
| | - Carol A Anderson
- Department of Biology, College of Science, George Mason University, Fairfax, Virginia 22030, United States
- School of Systems Biology, College of Science, George Mason University, Fairfax, Virginia 22030, United States
| | - Haseebullah Baha
- School of Systems Biology, College of Science, George Mason University, Fairfax, Virginia 22030, United States
| | - Olamide Crown
- Chemistry and Biotechnology Science and Engineering Program, College of Science, The University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - John Adeolu Falode
- Chemistry and Biotechnology Science and Engineering Program, College of Science, The University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Janard L Bleach
- School of Systems Biology, College of Science, George Mason University, Fairfax, Virginia 22030, United States
- Biomedical Research Laboratory, Institute for Biohealth Innovation, George Mason University, Manassas, Virginia 20109, United States
| | - Amanda R Bliss
- School of Systems Biology, College of Science, George Mason University, Fairfax, Virginia 22030, United States
- Biomedical Research Laboratory, Institute for Biohealth Innovation, George Mason University, Manassas, Virginia 20109, United States
| | - Tamia P Hampton
- Chemistry and Biotechnology Science and Engineering Program, College of Science, The University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Jane-Frances Chinenye Ojobor
- Chemistry and Biotechnology Science and Engineering Program, College of Science, The University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Farhang Alem
- Biomedical Research Laboratory, Institute for Biohealth Innovation, George Mason University, Manassas, Virginia 20109, United States
| | - Aarthi Narayanan
- Department of Biology, College of Science, George Mason University, Fairfax, Virginia 22030, United States
| | - Ifedayo Victor Ogungbe
- Chemistry and Biotechnology Science and Engineering Program, College of Science, The University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| |
Collapse
|
3
|
VanderGiessen M, de Jager C, Leighton J, Xie H, Theus M, Johnson E, Kehn-Hall K. Neurological manifestations of encephalitic alphaviruses, traumatic brain injuries, and organophosphorus nerve agent exposure. Front Neurosci 2024; 18:1514940. [PMID: 39734493 PMCID: PMC11671522 DOI: 10.3389/fnins.2024.1514940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/20/2024] [Indexed: 12/31/2024] Open
Abstract
Encephalitic alphaviruses (EEVs), Traumatic Brain Injuries (TBI), and organophosphorus nerve agents (NAs) are three diverse biological, physical, and chemical injuries that can lead to long-term neurological deficits in humans. EEVs include Venezuelan, eastern, and western equine encephalitis viruses. This review describes the current understanding of neurological pathology during these three conditions, provides a comparative review of case studies vs. animal models, and summarizes current therapeutics. While epidemiological data on clinical and pathological manifestations of these conditions are known in humans, much of our current mechanistic understanding relies upon animal models. Here we review the animal models findings for EEVs, TBIs, and NAs and compare these with what is known from human case studies. Additionally, research on NAs and EEVs is limited due to their classification as high-risk pathogens (BSL-3) and/or select agents; therefore, we leverage commonalities with TBI to develop a further understanding of the mechanisms of neurological damage. Furthermore, we discuss overlapping neurological damage mechanisms between TBI, NAs, and EEVs that highlight novel medical countermeasure opportunities. We describe current treatment methods for reducing neurological damage induced by individual conditions and general neuroprotective treatment options. Finally, we discuss perspectives on the future of neuroprotective drug development against long-term neurological sequelae of EEVs, TBIs, and NAs.
Collapse
Affiliation(s)
- Morgen VanderGiessen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Caroline de Jager
- Translational Biology Medicine and Health Graduate Program, Virginia Tech, Blacksburg, VA, United States
| | - Julia Leighton
- Neuroscience Department, Medical Toxicology Division, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Hehuang Xie
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Michelle Theus
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Erik Johnson
- Neuroscience Department, Medical Toxicology Division, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Kylene Kehn-Hall
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
4
|
Alejandro B, Kim EJ, Hwang JY, Park JW, Smith M, Chung D. Genetic and phenotypic changes to Venezuelan equine encephalitis virus following treatment with β-D-N4-hydroxycytidine, an RNA mutagen. Sci Rep 2024; 14:25265. [PMID: 39448734 PMCID: PMC11502654 DOI: 10.1038/s41598-024-76788-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
The high mutation rate of RNA viruses provides viral populations with the ability to adapt to new environments but also makes them vulnerable to extinction due to the deleterious effects of mutations, which is the conceptual basis for the antiviral activity of RNA mutagens. However, there are still gaps in the quantitative understanding of the dynamics between the mutations induced by an RNA mutagen and its effects on viral fitness. To address this, we used Venezuelan Equine Encephalitis Virus (VEEV) and the potent RNA mutagen β-d-N4-hydroxycytidine (NHC) as a model to analyze virus replication competency and mutation frequency following treatment in the total and replication-competent viral populations separately. We found that NHC induced transition mutations in a concentration dependent manner in the total population, while the replication-competent population maintained itself within an increased, yet narrow, mutation spectrum. The incorporation of NHC mainly happened during the positive sense RNA synthesis of VEEV. A growth kinetic analysis of VEEV population treated with NHC pointed to a lower but more diverse distribution in mutational fitness, demonstrating that NHC-induced mutations negatively and broadly affect the fitness of the virus. Together, our study provides mechanistic insight into how RNA mutagens affect viral population landscape and the potential of RNA mutagens as an antiviral strategy for alphaviruses.
Collapse
Affiliation(s)
- Brian Alejandro
- Center for Predictive Medicine, University of Louisville, Louisville, KY, USA
| | - Eun Jung Kim
- Center for Predictive Medicine, University of Louisville, Louisville, KY, USA
| | - Jae Yeon Hwang
- Department of Medicine, University of Louisville, Louisville, KY, USA
- Brown Cancer Center Bioinformatics Core, University of Louisville, Louisville, KY, USA
| | - Juw Won Park
- Department of Medicine, University of Louisville, Louisville, KY, USA
- Brown Cancer Center Bioinformatics Core, University of Louisville, Louisville, KY, USA
| | - Melissa Smith
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Donghoon Chung
- Center for Predictive Medicine, University of Louisville, Louisville, KY, USA.
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
5
|
Cao X, Yang D, Parvathareddy J, Chu YK, Kim EJ, Fitz-Henley JN, Li X, Lukka PB, Parmar KR, Temrikar ZH, Dhole P, Adcock RS, Gabbard J, Bansal S, Lee J, Zalduondo L, Hayes E, Stabenow J, Meibohm B, Fitzpatrick EA, Bailey K, Campos RK, Julander JG, Rossi SL, Chung D, Jonsson CB, Golden JE. Efficacy of a brain-penetrant antiviral in lethal Venezuelan and eastern equine encephalitis mouse models. Sci Transl Med 2023; 15:eabl9344. [PMID: 37043558 PMCID: PMC11577637 DOI: 10.1126/scitranslmed.abl9344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 03/24/2023] [Indexed: 04/14/2023]
Abstract
Venezuelan and eastern equine encephalitis viruses (VEEV and EEEV, respectively) are mosquito-borne, neuroinvasive human pathogens for which no FDA-approved therapeutic exists. Besides the biothreat posed by these viruses when aerosolized, arthropod transmission presents serious health risks to humans, as demonstrated by the 2019 outbreak of EEE disease in the United States that resulted in 38 confirmed cases, 19 deaths, and neurological effects in survivors. Here, we describe the discovery of a 2-pyrrolidinoquinazolinone scaffold, efficiently synthesized in two to five steps, whose structural optimization resulted in profound antiviral activity. The lead quinazolinone, BDGR-49, potently reduced cellular VEEV and EEEV titers by >7 log at 1 μM and exhibited suitable intravenous and oral pharmacokinetic profiles in BALB/c mice to achieve excellent brain exposure. Outstanding in vivo efficacy was observed in several lethal, subcutaneous infection mouse models using an 8-day dosing regimen. Prophylactically administered BDGR-49 at 25 mg kg-1 per day fully protected against a 10× LD50 VEEV Trinidad donkey (TrD) challenge in BALB/c mice. Similarly, we observed 70% protection when 10× LD50 EEEV FL93-939-infected C57BL/6 mice were treated prophylactically with BDGR-49 at 50 mg kg-1 per day. Last, we observed 100% therapeutic efficacy when mice, challenged with 10× LD50 VEEV TrD, were dosed at 48 hours after infection with BDGR-49 at 25 mg kg-1 per day. Mouse brain viral titers at 96 hours after infection were reduced to values near the limit of detection. Collectively, these results underscore the substantial development potential of a well-tolerated, brain-penetrant lead compound that shows promise in preventing and treating encephalitic alphavirus disease.
Collapse
Affiliation(s)
- Xufeng Cao
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Dong Yang
- Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jyothi Parvathareddy
- Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Yong-Kyu Chu
- Center for Predictive Medicine, Department of Microbiology Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Eun Jung Kim
- Center for Predictive Medicine, Department of Microbiology Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Jhewelle N Fitz-Henley
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Xiaoyu Li
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Pradeep B Lukka
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Keyur R Parmar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Zaid H Temrikar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Priya Dhole
- Center for Predictive Medicine, Department of Microbiology Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Robert Scott Adcock
- Center for Predictive Medicine, Department of Microbiology Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Jon Gabbard
- Center for Predictive Medicine, Department of Microbiology Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Shruti Bansal
- Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jasper Lee
- Departments of Microbiology, Immunology, Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Lillian Zalduondo
- Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ernestine Hayes
- Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jennifer Stabenow
- Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Elizabeth A Fitzpatrick
- Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Departments of Microbiology, Immunology, Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Kevin Bailey
- Institute for Antiviral Research, Utah State University, Logan, UT 84322, USA
| | - Rafael K Campos
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Justin G Julander
- Institute for Antiviral Research, Utah State University, Logan, UT 84322, USA
| | - Shannan L Rossi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Donghoon Chung
- Center for Predictive Medicine, Department of Microbiology Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Colleen B Jonsson
- Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Departments of Microbiology, Immunology, Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jennifer E Golden
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
6
|
Ogorek TJ, Golden JE. Advances in the Development of Small Molecule Antivirals against Equine Encephalitic Viruses. Viruses 2023; 15:413. [PMID: 36851628 PMCID: PMC9958955 DOI: 10.3390/v15020413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Venezuelan, western, and eastern equine encephalitic alphaviruses (VEEV, WEEV, and EEEV, respectively) are arboviruses that are highly pathogenic to equines and cause significant harm to infected humans. Currently, human alphavirus infection and the resulting diseases caused by them are unmitigated due to the absence of approved vaccines or therapeutics for general use. These circumstances, combined with the unpredictability of outbreaks-as exemplified by a 2019 EEE surge in the United States that claimed 19 patient lives-emphasize the risks posed by these viruses, especially for aerosolized VEEV and EEEV which are potential biothreats. Herein, small molecule inhibitors of VEEV, WEEV, and EEEV are reviewed that have been identified or advanced in the last five years since a comprehensive review was last performed. We organize structures according to host- versus virus-targeted mechanisms, highlight cellular and animal data that are milestones in the development pipeline, and provide a perspective on key considerations for the progression of compounds at early and later stages of advancement.
Collapse
Affiliation(s)
- Tyler J. Ogorek
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jennifer E. Golden
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
7
|
Targeting the alphavirus virus replication process for antiviral development. Antiviral Res 2023; 210:105494. [PMID: 36574906 DOI: 10.1016/j.antiviral.2022.105494] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/25/2022]
Abstract
Many alphaviruses, including chikungunya virus (CHIKV) are known human pathogens that lack specific and effective antivirals or vaccines available. The upstream portion of the positive-sense single-stranded RNA genome of alphaviruses encodes four nonstructural proteins: nsP1 to nsP4. They are expressed and autoprocessed to nonstructural proteins which assemble into a replication complex (RC) playing multiple essential roles on viral RNA replication and communication with the host components. The assembly of alphavirus RC and its RNA genome initiates the membrane-derived ultrastructure known as spherule which facilitates viral RNA synthesis protected from host immune responses. Recent advances in the molecular understanding of the high-resolution CHIKV RC heteromeric ultrastructure have provided new insights into the viral replication process. Hence, alphavirus RC presents as an ideal multi-enzyme target for the development of structure-based antiviral drugs. Moreover, the alphavirus RC has therapeutic potential in the form of self-amplifying RNA technology against both infectious and non-infectious diseases.
Collapse
|
8
|
Skidmore AM, Bradfute SB. The life cycle of the alphaviruses: From an antiviral perspective. Antiviral Res 2023; 209:105476. [PMID: 36436722 PMCID: PMC9840710 DOI: 10.1016/j.antiviral.2022.105476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
The alphaviruses are a widely distributed group of positive-sense, single stranded, RNA viruses. These viruses are largely arthropod-borne and can be found on all populated continents. These viruses cause significant human disease, and recently have begun to spread into new populations, such as the expansion of Chikungunya virus into southern Europe and the Caribbean, where it has established itself as endemic. The study of alphaviruses is an active and expanding field, due to their impacts on human health, their effects on agriculture, and the threat that some pose as potential agents of biological warfare and terrorism. In this systematic review we will summarize both historic knowledge in the field as well as recently published data that has potential to shift current theories in how alphaviruses are able to function. This review is comprehensive, covering all parts of the alphaviral life cycle as well as a brief overview of their pathology and the current state of research in regards to vaccines and therapeutics for alphaviral disease.
Collapse
Affiliation(s)
- Andrew M Skidmore
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, 915 Camino de Salud, IDTC Room 3245, Albuquerque, NM, 87131, USA.
| | - Steven B Bradfute
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, 915 Camino de Salud, IDTC Room 3330A, Albuquerque, NM, 87131, USA.
| |
Collapse
|
9
|
Kehn-Hall K, Bradfute SB. Understanding host responses to equine encephalitis virus infection: implications for therapeutic development. Expert Rev Anti Infect Ther 2022; 20:1551-1566. [PMID: 36305549 DOI: 10.1080/14787210.2022.2141224] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Venezuelan, eastern, and western equine encephalitis viruses (VEEV, EEEV, and WEEV) are mosquito-borne New World alphaviruses that cause encephalitis in equids and humans. These viruses can cause severe disease and death, as well as long-term severe neurological symptoms in survivors. Despite the pathogenesis and weaponization of these viruses, there are no approved therapeutics for treating infection. AREAS COVERED In this review, we describe the molecular pathogenesis of these viruses, discuss host-pathogen interactions needed for viral replication, and highlight new avenues for drug development with a focus on host-targeted approaches. EXPERT OPINION Current approaches have yielded some promising therapeutics, but additional emphasis should be placed on advanced development of existing small molecules and pursuit of pan-encephalitic alphavirus drugs. More research should be conducted on EEEV and WEEV, given their high lethality rates.
Collapse
Affiliation(s)
- Kylene Kehn-Hall
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA.,Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, USA
| | - Steven B Bradfute
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|
10
|
Abstract
Alphaviruses are positive-strand RNA viruses, typically transmitted by mosquitoes between vertebrate hosts. They encode four essential replication proteins, the non-structural proteins nsP1-4, which possess the enzymatic activities of RNA capping, RNA helicase, site-specific protease, ADP-ribosyl removal and RNA polymerase. Alphaviruses have been key models in the study of membrane-associated RNA replication, which is a conserved feature among the positive-strand RNA viruses of animals and plants. We review new structural and functional information on the nsPs and their interaction with host proteins and membranes, as well as with viral RNA sequences. The dodecameric ring structure of nsP1 is likely to be one of the evolutionary innovations that facilitated the success of the progenitors of current positive-strand RNA viruses.
Collapse
Affiliation(s)
- Tero Ahola
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Gerald McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu, Estonia.
| |
Collapse
|
11
|
Zhang H, Harmon M, Radoshitzky SR, Soloveva V, Kane CD, Duplantier AJ, Ogungbe IV. Vinyl Sulfone-Based Inhibitors of Nonstructural Protein 2 Block the Replication of Venezuelan Equine Encephalitis Virus. ACS Med Chem Lett 2020; 11:2139-2145. [PMID: 33214821 DOI: 10.1021/acsmedchemlett.0c00215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 09/02/2020] [Indexed: 01/01/2023] Open
Abstract
Emerging infectious diseases like those caused by arboviruses such as Venezuelan equine encephalitis virus (VEEV) pose a serious threat to public health systems. Development of medical countermeasures against emerging infectious diseases are of utmost importance. In this work, an acrylate and vinyl sulfone-based chemical series was investigated as promising starting scaffolds against VEEV and as inhibitors of the cysteine protease domain of VEEV's nonstructural protein 2 (nsP2). Primary screen and dose response studies were performed to evaluate the potency and cytotoxicity of the compounds. The results provide structural insights into a new class of potent nonpeptidic covalent inhibitors of nsP2 cysteine protease represented by compound 11 (VEEV TrD, EC50 = 2.4 μM (HeLa), 1.6 μM (Vero E6)). These results may facilitate the evolution of the compounds into selective and broad-spectrum anti-alphaviral drug leads.
Collapse
Affiliation(s)
- Huaisheng Zhang
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, Mississippi 39217-0095, United States
| | - Moeshia Harmon
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, Mississippi 39217-0095, United States
| | - Sheli R. Radoshitzky
- The Geneva Foundation, Countermeasure Development Division, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, Maryland 21702-5011, United States
| | - Veronica Soloveva
- Cherokee Nation Assurance, Countermeasure Development Division, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, Maryland 21702-5011, United States
| | - Christopher D. Kane
- Research Program Office, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, Maryland 21702-5011, United States
| | - Allen J. Duplantier
- Cherokee Nation Assurance, Countermeasure Development Division, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, Maryland 21702-5011, United States
| | - Ifedayo Victor Ogungbe
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, Mississippi 39217-0095, United States
| |
Collapse
|
12
|
Lee J, Parvathareddy J, Yang D, Bansal S, O'Connell K, Golden JE, Jonsson CB. Emergence and Magnitude of ML336 Resistance in Venezuelan Equine Encephalitis Virus Depend on the Microenvironment. J Virol 2020; 94:e00317-20. [PMID: 32878897 PMCID: PMC7592223 DOI: 10.1128/jvi.00317-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/21/2020] [Indexed: 12/22/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is a New World Alphavirus that can cause neurological disease and death in humans and equines following transmission from infected mosquitoes. Despite the continued epidemic threat of VEEV, and its potential use as a bioterrorism agent, there are no FDA-approved antivirals or vaccines for treatment or prevention. Previously, we reported the discovery of a small molecule, ML336, with potent antiviral activity against VEEV. To further explore the population-level resistance profiles of ML336, we developed a whole-genome next-generation sequencing (NGS) approach to examine single nucleotide polymorphisms (SNPs) from virus passaged in dose escalation studies in a nonhuman primate kidney epithelial and a human astrocyte cell line, Vero 76 and SVGA, respectively. We passaged VEEV TC-83 in these two cell lines over seven concentrations of ML336, starting at 50 nM. NGS revealed several prominent mutations in the nonstructural protein (nsP) 3 and nsP4 genes that emerged consistently in these two distinct in vitro environments-notably, a mutation at Q210 in nsP4. Several of these mutations were stable following passaging in the absence of ML336 in Vero 76 cells. Network analyses showed that the trajectory of resistance differed between Vero and SVGA. Moreover, the penetration of SNPs was lower in SVGA. In conclusion, we show that the microenvironment influenced the SNP profile of VEEV TC-83. Understanding the dynamics of resistance in VEEV against newly developed antiviral compounds will guide the design of optimal drug candidates and dosing regimens for minimizing the emergence of resistant viruses.IMPORTANCE RNA viruses, including Venezuelan equine encephalitis virus (VEEV), have high mutation rates that allow for rapid adaptation to selective pressures in their environment. Antiviral compounds exert one such pressure on virus populations during infections. Next-generation sequencing allows for examination of viruses at the population level, which enables tracking of low levels of single-nucleotide polymorphisms in the population over time. Therefore, the timing and extent of the emergence of resistance to antivirals can be tracked and assessed. We show here that in VEEV, the trajectory and penetration of antiviral resistance reflected the microenvironment in which the virus population replicates. In summary, we show the diversity of VEEV within a single population under antiviral pressure and two distinct cell types, and we show that population dynamics in these viruses can be examined to better understand how they evolve over time.
Collapse
Affiliation(s)
- Jasper Lee
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jyothi Parvathareddy
- Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Dong Yang
- Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Shruti Bansal
- Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Kathryn O'Connell
- Laboratory Animal Care Unit, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jennifer E Golden
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Colleen B Jonsson
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|