1
|
Arce LP, Pavan MF, Bok M, Gutiérrez SE, Estein SM, Santos AT, Condorí WE, Uhart MM, Parreño V, Vizoso-Pinto MG, Ibañez LI. A multispecies competitive nanobody-based ELISA for the detection of antibodies against hepatitis E virus. Sci Rep 2023; 13:15448. [PMID: 37723180 PMCID: PMC10507121 DOI: 10.1038/s41598-023-41955-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/04/2023] [Indexed: 09/20/2023] Open
Abstract
The hepatitis E virus (HEV) is an emergent zoonotic virus causing viral hepatitis worldwide. Clinically, hepatitis E is not easily distinguished from other types of acute viral hepatitis. There is a need for HEV diagnostic assays to detect and prevent interspecies transmission among susceptible populations. Nanobodies (Nbs) are expressed recombinantly in different systems, produced with high yields, and have superior physicochemical properties compared with conventional antibodies (Ab). Several Nbs against ORF2, the capsid protein and main antigen, were selected and produced in E. coli. Nb39 and Nb74 specifically recognized HEV ORF2 (genotypes 3 and 4). A competitive ELISA (cELISA) was developed and validated using a reference panel of human (n = 86) and swine sera (n = 116) tested in comparison with a commercial kit. The optimal cutoff values determined by ROC analysis were 69.16% (human) and 58.76% (swine); the sensitivity and specificity were high: 97.4% (95% CI 86.5-99.5%) and 95.8% (95% CI 86.0-98.8%) for human vs. 100% (95% CI 93.5-100%) and 98.3% (95% CI 91.0-99.7%) for swine. Further, the cELISA detected total anti-HEV antibodies in wild boar, deer, and mice. To our knowledge, this is the first report of production of Nbs against HEV-3 ORF2 for diagnostic purposes.
Collapse
Affiliation(s)
- Lorena Paola Arce
- Infection Biology Laboratory, Faculty of Medicine and Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, T4000ILI, Tucumán, Argentina
- Laboratorio de Ingeniería de Anticuerpos, Instituto de Química, Física de los Materiales, Medio ambiente y Energía (INQUIMAE-CONICET), C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Florencia Pavan
- Laboratorio de Ingeniería de Anticuerpos, Instituto de Química, Física de los Materiales, Medio ambiente y Energía (INQUIMAE-CONICET), C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina
| | - Marina Bok
- IncuINTA, Instituto de Virología, Instituto Nacional de Tecnología Agropecuaria (INTA), 1686, Husrlingham, Argentina
| | - Silvina Elena Gutiérrez
- Universidad Nacional del Centro de la Provincia de Buenos Aires, Facultad de Ciencias Veterinarias, Núcleo SAMP, Centro de Investigación Veterinaria de Tandil (UNCPBA-CICPBA-CONICET), B7000GHG, Tandil, Buenos Aires, Argentina
| | - Silvia Marcela Estein
- Universidad Nacional del Centro de la Provincia de Buenos Aires, Facultad de Ciencias Veterinarias, Núcleo SAMP, Centro de Investigación Veterinaria de Tandil (UNCPBA-CICPBA-CONICET), B7000GHG, Tandil, Buenos Aires, Argentina
| | - Agostina Tammone Santos
- Universidad Nacional del Centro de la Provincia de Buenos Aires, Facultad de Ciencias Veterinarias, Núcleo SAMP, Centro de Investigación Veterinaria de Tandil (UNCPBA-CICPBA-CONICET), B7000GHG, Tandil, Buenos Aires, Argentina
| | - Walter Ezequiel Condorí
- Universidad Nacional del Centro de la Provincia de Buenos Aires, Facultad de Ciencias Veterinarias, Núcleo SAMP, Centro de Investigación Veterinaria de Tandil (UNCPBA-CICPBA-CONICET), B7000GHG, Tandil, Buenos Aires, Argentina
| | - Marcela María Uhart
- One Health Institute, School of Veterinary Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Viviana Parreño
- IncuINTA, Instituto de Virología, Instituto Nacional de Tecnología Agropecuaria (INTA), 1686, Husrlingham, Argentina
| | - María Guadalupe Vizoso-Pinto
- Infection Biology Laboratory, Faculty of Medicine and Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, T4000ILI, Tucumán, Argentina.
| | - Lorena Itatí Ibañez
- Laboratorio de Ingeniería de Anticuerpos, Instituto de Química, Física de los Materiales, Medio ambiente y Energía (INQUIMAE-CONICET), C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
2
|
Aziz AB, Øverbø J, Dudman S, Julin CH, Kwon YJG, Jahan Y, Ali M, Dembinski JL. Hepatitis E Virus (HEV) Synopsis: General Aspects and Focus on Bangladesh. Viruses 2022; 15:63. [PMID: 36680103 PMCID: PMC9866510 DOI: 10.3390/v15010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
HEV is the most common cause of acute hepatitis globally. This review summarizes the latest knowledge on the epidemiology, clinical characteristics, testing, and treatment of HEV infection. We also focused on Bangladesh to highlight the distinct challenges and the possible remedies. In low-income settings, the virus is mainly transmitted between people by fecal contamination of drinking water causing large outbreaks, and sporadic cases. The disease is usually mild and self-limiting acute hepatitis. Still, pregnant women and their offspring in low-income countries are at particular risk for severe disease, with up to 20% maternal mortality. Despite the high burden of the disease, HEV remains a relatively neglected virus, with detection hampered by costly tests and a lack of suitable treatments. Molecular PCR diagnostics, together with ELISA antibody tests, remain the preferred methods for diagnosis of HEV; however, rapid bedside diagnostics are available and could offer a practical alternative, especially in low-income countries. One vaccine (HEV 239) is only available in China and Pakistan, as efficacy against the other genotypes remains uncertain. The effectiveness trial conducted in Bangladesh might lead the way in gathering more efficacy data and could, together with improved surveillance and raised awareness, dramatically reduce the global burden of HEV.
Collapse
Affiliation(s)
- Asma Binte Aziz
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- International Vaccine Institute (IVI), Seoul 08800, Republic of Korea
| | - Joakim Øverbø
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Norwegian Institute of Public Health (NIPH), Division of Infection Control and Environmental Health, 0213 Oslo, Norway
| | - Susanne Dudman
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
| | - Cathinka Halle Julin
- Norwegian Institute of Public Health (NIPH), Division of Infection Control and Environmental Health, 0213 Oslo, Norway
| | | | - Yasmin Jahan
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-0046, Japan
| | - Mohammad Ali
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, MD 21205, USA
| | - Jennifer L. Dembinski
- Norwegian Institute of Public Health (NIPH), Division of Infection Control and Environmental Health, 0213 Oslo, Norway
| |
Collapse
|
3
|
Seroprevalence of hepatitis E virus in risk populations and blood donors in a referral hospital in the south of Brazil. Sci Rep 2021; 11:6011. [PMID: 33727656 PMCID: PMC7966736 DOI: 10.1038/s41598-021-85365-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 02/12/2021] [Indexed: 12/21/2022] Open
Abstract
The prevalence of anti-hepatitis E virus (HEV) antibodies has a high heterogeneity worldwide. South American data are still scarce. The aim of this study was to evaluate the prevalence of HEV in populations at risk in comparison to blood donors (BD). A cross-sectional study was carried out in adults of different risk populations including crack users (CK), residents in a low income area (LIA), cirrhotic (CIR) and liver transplant patients (LT) compared with BD. The WANTAI HEV ELISA test was used and real-time PCR (in-house for screening and ALTONA as confirmatory test) for HEV RNA screening. A total of 400 participants were included. Anti-HEV IgG was positive in 19.5% of the total sample, reaching the highest rate in the CIR group, 22.5%, followed by CK, LT, and LIA (20%, 18.7%, and 17.5%, respectively). The prevalence found in BD individuals was of 18.7% (p = NS). Anti-HEV IgM was positive in only 1.5% of the sample (6/400). No blood or stools samples were positive for HEV RNA. The seroprevalence reported is among the highest rates ever found in Brazil. Considering the intense diagnostic investigation, data show that HEV circulation is more common that might be expected in our country.
Collapse
|
4
|
Low prevalence of anti-hepatitis E virus IgG antibodies in Tepehuanos in Mexico. Ann Hepatol 2021; 19:186-189. [PMID: 31771821 DOI: 10.1016/j.aohep.2019.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023]
Abstract
INTRODUCTION AND OBJECTIVE The epidemiology of infection with hepatitis E virus (HEV) in Tepehuanos (a Mexican ethnic group living in rural areas) is largely unknown. This study aimed to determine the seroprevalence of and risk factors associated with HEV infection in Tepehuanos in Durango, Mexico, and to compare this seroprevalence with that in non-Tepehuanos. MATERIALS AND METHODS Through a case-control seroprevalence study, we studied 146 Tepehuanos and 146 age- and gender-matched control subjects of the general population from rural settings. The frequency of anti-HEV IgG antibodies was determined using an enzyme-linked immunoassay. Bivariate and multivariate analyses were used to assess the association between seropositivity and socio-demographic, clinical and behavioral characteristics of the Tepehuanos. RESULTS IgG antibodies against HEV were found in 5 (3.4%; 95% CI: 1.1-7.8) of 146 Tepehuanos and in 46 (31.5%; 95% CI: 24.1-39.7) of 146 control subjects (OR=0.01; 95% CI: 0.0007-0.20; P<0.000001). Bivariate analysis showed that HEV seropositivity was associated with age, consumption of meat from goat, sheep, boar, turkey and pigeon, and concrete flooring at home. However, these variables were no longer significant when analyzed by logistic regression. CONCLUSIONS This is first study on the epidemiology of HEV exposure in Tepehuanos. We demonstrated serological evidence of HEV infection in this ethnic group. The seroprevalence of HEV exposure in Tepehuanos is low as compared with that found in non-Tepehuano people living in rural Durango. Further studies to determine the risk factors associated with HEV exposure in Tepehuanos are needed.
Collapse
|