1
|
Amtaghri S, Eddouks M. Pharmacological and phytochemical properties of the genus Buxus: A review. Fitoterapia 2024; 177:106081. [PMID: 38936673 DOI: 10.1016/j.fitote.2024.106081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/07/2024] [Accepted: 06/16/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Buxus plants have been used in traditional medicine for a very long time. The Buxus genus has been used to cure a variety of illnesses. OBJECTIVE This review aimed to provide a literature review on the genus Buxus including its biological and phytochemical properties. MATERIALS AND METHODS The current study was conducted using several scientific databases. Correct plant names were verified from plantlist.org. The results of this search were interpreted, analyzed, and documented based on the obtained bibliographic information. RESULTS Within all the species of the family Buxaceae, 5 species of the genus Buxus are reported to be antibacterial, 3 species have been found to be antioxidant, 5 species are cytotoxic, 1 species is anti-inflammatory, 1 species is antidiabetic, and 4 species are antifungal. Alkaloids, terpenoids, tannins, flavonoids, peptides, and phenolic compounds are the main chemical components of this genus. The study of >11 Buxuss pecies has identified >201 compounds. Pharmacological research has demonstrated that crude extracts and some pure compounds obtained from Buxus have several pharmacological activities such as antibacterial, antioxidant, cytotoxic, anti-inflammatory, antidiabetic, and antifungal. Based on the study of the phytochemistry of Buxus species, it was concluded that all the studied plants have active compounds, among which 55 molecules showed interesting activities. CONCLUSIONS The numerous traditional uses of Buxus species have been supported by several studies. Before Buxus plants can be fully employed clinically, further research is necessary.
Collapse
Affiliation(s)
- Smail Amtaghri
- Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, BP 509, Boutalamine, Errachidia 52000, Morocco; Energy, materials and sustainable development (EMDD) Team- Higher School of Technology-SALE, Center for Water, Natural Resources Environment and Sustainable Development (CERNE2D), Mohammed V University in Rabat, Rabat, Morocco
| | - Mohamed Eddouks
- Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, BP 509, Boutalamine, Errachidia 52000, Morocco.
| |
Collapse
|
2
|
Safarpour-Dehkordi M, Chabok O, Asgari M, Khademi R, Doosti A. A comprehensive investigation of the medicinal efficacy of antimicrobial fusion peptides expressed in probiotic bacteria for the treatment of pan drug-resistant (PDR) infections. Arch Microbiol 2024; 206:93. [PMID: 38329629 DOI: 10.1007/s00203-023-03823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 02/09/2024]
Abstract
The present work aimed to examine the intracellular antibacterial efficacy of Recombinant Lactobacillus acidophilus/antimicrobial peptides (AMPs) Melittin and Alyteserin-1a, specifically targeting Gram-negative bacteria. The first assessment was to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of Recombinant L. acidophilus/AMPs versus Gram-negative and Gram-positive bacteria. In addition, the researchers examined the in vitro viability and safety of AMPs generated by L. acidophilus. The experiments included exposing the AMPs to elevated temperatures, proteases, cationic salts at physiological levels, and specific pH settings. The safety aspect was evaluated using hemolytic analysis utilizing sheep erythrocytes; cytotoxicity assays employing cell lines, and experiments on beneficial gut lactobacilli. An experiment was done using a time-kill method to assess the intracellular antibacterial efficacy of Recombinant L. acidophilus/AMPs compared to pathogenic varieties in HEp-2 cells. Previous investigations have shown that the MBC levels of recombinant L. acidophilus/AMPs were consistently two to four times higher than the equivalent MIC values when evaluated versus Gram-negative bacteria. Furthermore, the stability of the Recombinant L. acidophilus/AMPs showed variability when exposed to elevated temperatures (70 and 90 ℃), treated with protease enzymes (proteinase K, lysozyme), exposed to higher concentrations of physiological salts (150 mM NaCl and 2 mM MgCl2), and varying pH levels (ranging from 4.0 to 9.0). The recombinant L. acidophilus/AMPs are non-hemolytic towards sheep erythrocytes, exhibit little cytotoxicity in RAW 264.7 and HEp-2 cells, and are considered safe when compared to beneficial gut lactobacilli. The research examined the intracellular bacteriostatic effects of recombinant L. acidophilus/AMPs on Gram-negative bacteria inside HEp-2 cells. Nevertheless, no notable bactericidal impact was seen on Gram-positive bacteria (P > 0.05). The research shows that recombinant L. acidophilus/AMPs, namely (L. acidophilus/melittin/Alyteserin-1a) as the focus of the investigation, effectively eliminate Gram-negative bacteria. Therefore, more investigation is necessary to elaborate on these discoveries.
Collapse
Affiliation(s)
- Maryam Safarpour-Dehkordi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Omid Chabok
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mohsen Asgari
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Reyhaneh Khademi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| |
Collapse
|
3
|
Al Bataineh MT, Alazzam A. Transforming medical device biofilm control with surface treatment using microfabrication techniques. PLoS One 2023; 18:e0292647. [PMID: 38032880 PMCID: PMC10688649 DOI: 10.1371/journal.pone.0292647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/25/2023] [Indexed: 12/02/2023] Open
Abstract
Biofilm deposition on indwelling medical devices and implanted biomaterials is frequently attributed to the prevalence of resistant infections in humans. Further, the nature of persistent infections is widely believed to have a biofilm etiology. In this study, the wettability of commercially available indwelling medical devices was explored for the first time, and its effect on the formation of biofilm was determined in vitro. Surprisingly, all tested indwelling devices were found to be hydrophilic, with surface water contact angles ranging from 60° to 75°. First, we established a thriving Candida albicans biofilm growth at 24 hours. in YEPD at 30°C and 37°C plus serum in vitro at Cyclic olefin copolymer (COC) modified surface, which was subsequently confirmed via scanning electron microscopy, while their cellular metabolic function was assessed using the XTT cell viability assay. Surfaces with patterned wettability show that a contact angle of 110° (hydrophobic) inhibits C. albicans planktonic and biofilm formation completely compared to robust growth at a contact angle of 40° (hydrophilic). This finding may provide a novel antimicrobial strategy to prevent biofilm growth and antimicrobial resistance on indwelling devices and prosthetic implants. Overall, this study provides valuable insights into the surface characteristics of medical devices and their potential impact on biofilm formation, leading to the development of improved approaches to control and prevent microbial biofilms and re-infections.
Collapse
Affiliation(s)
- Mohammad T. Al Bataineh
- Center for Biotechnology, Department of Molecular Biology and Genetics, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Anas Alazzam
- System on Chip Lab, Department of Mechanical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
4
|
Lin S, Wu F, Zhang Y, Chen H, Guo H, Chen Y, Liu J. Surface-modified bacteria: synthesis, functionalization and biomedical applications. Chem Soc Rev 2023; 52:6617-6643. [PMID: 37724854 DOI: 10.1039/d3cs00369h] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The past decade has witnessed a great leap forward in bacteria-based living agents, including imageable probes, diagnostic reagents, and therapeutics, by virtue of their unique characteristics, such as genetic manipulation, rapid proliferation, colonization capability, and disease site targeting specificity. However, successful translation of bacterial bioagents to clinical applications remains challenging, due largely to their inherent susceptibility to environmental insults, unavoidable toxic side effects, and limited accumulation at the sites of interest. Cell surface components, which play critical roles in shaping bacterial behaviors, provide an opportunity to chemically modify bacteria and introduce different exogenous functions that are naturally unachievable. With the help of surface modification, a wide range of functionalized bacteria have been prepared over the past years and exhibit great potential in various biomedical applications. In this article, we mainly review the synthesis, functionalization, and biomedical applications of surface-modified bacteria. We first introduce the approaches of chemical modification based on the bacterial surface structure and then highlight several advanced functions achieved by modifying specific components on the surface. We also summarize the advantages as well as limitations of surface chemically modified bacteria in the applications of bioimaging, diagnosis, and therapy and further discuss the current challenges and possible solutions in the future. This work will inspire innovative design thinking for the development of chemical strategies for preparing next-generation biomedical bacterial agents.
Collapse
Affiliation(s)
- Sisi Lin
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Feng Wu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Yifan Zhang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Huan Chen
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Haiyan Guo
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Yanmei Chen
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
5
|
Charirak P, Prajantasan R, Premprayoon K, Srikacha N, Ratananikom K. In Vitro Antibacterial Activity and Mode of Action of Piper betle Extracts against Soft Rot Disease-Causing Bacteria. SCIENTIFICA 2023; 2023:5806841. [PMID: 37766936 PMCID: PMC10522424 DOI: 10.1155/2023/5806841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 08/06/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
Soft rot disease affects a range of crops in the field and also during transit and storage, resulting in significant yield losses and negative economic impacts. This study evaluated the in vitro antibacterial activities and mode of action of Piper betle extracts against the soft rot disease-causing bacteria, Erwinia caratovora subsp. caratovora (ECC). Dried leaves of P. betle were extracted with water, ethanol, and hexane solvents and evaluated for their antibacterial activity. The results showed the highest antibacterial activity against ECC in the ethanol extract, followed by hexane and water extracts with minimum inhibitory concentration (MIC) 1.562, 6.25, and more than 12.50 mg/mL, respectively. The time-kill assay indicated a bactericidal mode of action. ECC growth was destroyed within 6 and 8 hours after treatment with the ethanol extract at 4-fold MIC and 2-fold MIC, respectively. The ethanol extract of P. betle showed promising activity against ECC, with the potential for further development as a novel alternative treatment to control phytobacteria.
Collapse
Affiliation(s)
- Punyisa Charirak
- Department of Plant Production Technology, Faculty of Agricultural Technology, Kalasin University, Kalasin, Thailand
| | - Rapeepun Prajantasan
- Department of Science and Mathematics, Faculty of Science and Health Technology, Kalasin University, Kalasin, Thailand
| | - Kantapon Premprayoon
- Department of Agricultural Machinery Engineering, Faculty of Engineering, Rajamangala University of Technology Isan, Khon Kaen Campus, Khon Kaen, Thailand
| | - Nikom Srikacha
- Department of Animal Science, Faculty of Natural Resources, Rajamangala University of Technology Isan, Sakon Nakhon Campus, Sakon Nakhon, Thailand
| | - Khakhanang Ratananikom
- Department of Science and Mathematics, Faculty of Science and Health Technology, Kalasin University, Kalasin, Thailand
| |
Collapse
|
6
|
Kurćubić VS, Raketić SV, Mašković JM, Mašković PZ, Kurćubić LV, Heinz V, Tomasevic IB. Evaluation of Antimicrobial Activity of Kitaibelia vitifolia Extract against Proven Antibiotic-Susceptible and Multidrug-Resistant (MDR) Strains of Bacteria of Clinical Origin. PLANTS (BASEL, SWITZERLAND) 2023; 12:3236. [PMID: 37765400 PMCID: PMC10537753 DOI: 10.3390/plants12183236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023]
Abstract
The goal of the present research was to screen the antimicrobial activity of an ethanolic extract of Kitaibelia vitifolia against 30 multidrug-resistant (MDR) bacterial strains isolated from healthcare-associated infections. Minimum inhibitory concentrations (MICs) of the samples against the tested bacteria were determined using the microdilution method. MDR bacterial strains were characterized using standard biochemical tests and the commercial identification systems API 20 NE and API 20 E as: Klebsiella spp. (18 isolates-I); methicillin-resistant Staphylococcus aureus (MRSA)-3; Acinetobacter spp.-3; Pseudomonas aeruginosa-5; vancomycin-resistant Enterococcus (VRE)-1. The sensitivity of isolated bacterial strains was determined using the disc diffusion method against 25 commonly used antibiotics. The highest level of sensitivity to K. vitifolia extract was confirmed in 88.89% of Klebsiella spp. isolates, E. coli ATCC 25922, two strains of MRSA (1726, 1063), Acinetobacter spp. strain 1578, and VRE strain 30, like Enterococcus faecalis ATCC 29212 (MIC =< 2.44 μg/mL). The lowest sensitivity was exhibited by 75.00% of Acinetobacter spp. (strains 1577 and 6401), where the highest values for MICs were noted (1250 μg/mL). The results indicate that the extract of K. vitifolia could be a possible source for creating new, efficient, and effective natural medicines for combat against MDR strains of bacteria.
Collapse
Affiliation(s)
- Vladimir S. Kurćubić
- Department of Food Technology, Faculty of Agronomy, University of Kragujevac, Cara Dušana 34, 32000 Čačak, Serbia;
| | - Svetlana V. Raketić
- Microbiology Laboratory for Food and Water, Public Health Institute Čačak, Veselina Milikića 7, 32000 Čačak, Serbia;
| | - Jelena M. Mašković
- Department of Chemistry and Chemical Engineering, Faculty of Agronomy, University of Kragujevac, Cara Dušana 34, 32000 Čačak, Serbia; (J.M.M.); (P.Z.M.)
| | - Pavle Z. Mašković
- Department of Chemistry and Chemical Engineering, Faculty of Agronomy, University of Kragujevac, Cara Dušana 34, 32000 Čačak, Serbia; (J.M.M.); (P.Z.M.)
| | - Luka V. Kurćubić
- Department of Medical Microbiology, University Clinical Center of Serbia, Pasterova 2, 11000 Beograd, Serbia;
| | - Volker Heinz
- DIL German Institute of Food Technology, Prof.-von-Klitzing-Str. 7, D-49610 Quakenbrück, Germany;
| | - Igor B. Tomasevic
- DIL German Institute of Food Technology, Prof.-von-Klitzing-Str. 7, D-49610 Quakenbrück, Germany;
- Department of Animal Source Food Technology, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| |
Collapse
|
7
|
Low ZY, Wong KH, Wen Yip AJ, Choo WS. The convergent evolution of influenza A virus: Implications, therapeutic strategies and what we need to know. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 5:100202. [PMID: 37700857 PMCID: PMC10493511 DOI: 10.1016/j.crmicr.2023.100202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Influenza virus infection, more commonly known as the 'cold flu', is an etiological agent that gives rise to recurrent annual flu and many pandemics. Dated back to the 1918- Spanish Flu, the influenza infection has caused the loss of many human lives and significantly impacted the economy and daily lives. Influenza virus can be classified into four different genera: influenza A-D, with the former two, influenza A and B, relevant to humans. The capacity of antigenic drift and shift in Influenza A has given rise to many novel variants, rendering vaccines and antiviral therapies useless. In light of the emergence of a novel betacoronavirus, the SARS-CoV-2, unravelling the underpinning mechanisms that support the recurrent influenza epidemics and pandemics is essential. Given the symptom similarities between influenza and covid infection, it is crucial to reiterate what we know about the influenza infection. This review aims to describe the origin and evolution of influenza infection. Apart from that, the risk factors entail the implication of co-infections, especially regarding the COVID-19 pandemic is further discussed. In addition, antiviral strategies, including the potential of drug repositioning, are discussed in this context. The diagnostic approach is also critically discussed in an effort to understand better and prepare for upcoming variants and potential influenza pandemics in the future. Lastly, this review encapsulates the challenges in curbing the influenza spread and provides insights for future directions in influenza management.
Collapse
Affiliation(s)
- Zheng Yao Low
- School of Science, Monash University Malaysia, 47500 Subang Jaya, Selangor, Malaysia
| | - Ka Heng Wong
- School of Science, Monash University Malaysia, 47500 Subang Jaya, Selangor, Malaysia
| | - Ashley Jia Wen Yip
- School of Science, Monash University Malaysia, 47500 Subang Jaya, Selangor, Malaysia
| | - Wee Sim Choo
- School of Science, Monash University Malaysia, 47500 Subang Jaya, Selangor, Malaysia
| |
Collapse
|
8
|
Ephedra foeminea as a Novel Source of Antimicrobial and Anti-Biofilm Compounds to Fight Multidrug Resistance Phenotype. Int J Mol Sci 2023; 24:ijms24043284. [PMID: 36834695 PMCID: PMC9965181 DOI: 10.3390/ijms24043284] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Plants are considered a wealthy resource of novel natural drugs effective in the treatment of multidrug-resistant infections. Here, a bioguided purification of Ephedra foeminea extracts was performed to identify bioactive compounds. The determination of antimicrobial properties was achieved by broth microdilution assays to evaluate minimal inhibitory concentration (MIC) values and by crystal violet staining and confocal laser scanning microscopy analyses (CLSM) to investigate the antibiofilm capacity of the isolated compounds. Assays were performed on a panel of three gram-positive and three gram-negative bacterial strains. Six compounds were isolated from E. foeminea extracts for the first time. They were identified by nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) analyses as the well-known monoterpenoid phenols carvacrol and thymol and as four acylated kaempferol glycosides. Among them, the compound kaempferol-3-O-α-L-(2″,4″-di-E-p-coumaroyl)-rhamnopyranoside was found to be endowed with strong antibacterial properties and significant antibiofilm activity against S. aureus bacterial strains. Moreover, molecular docking studies on this compound suggested that the antibacterial activity of the tested ligand against S. aureus strains might be correlated to the inhibition of Sortase A and/or of tyrosyl tRNA synthase. Collectively, the results achieved open interesting perspectives to kaempferol-3-O-α-L-(2″,4″-di-E-p-coumaroyl)-rhamnopyranoside applicability in different fields, such as biomedical applications and biotechnological purposes such as food preservation and active packaging.
Collapse
|
9
|
Herman A, Herman AP. Herbal Products and Their Active Constituents Used Alone and in Combination with Antibiotics against Multidrug-Resistant Bacteria. PLANTA MEDICA 2023; 89:168-182. [PMID: 35995069 DOI: 10.1055/a-1890-5559] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The purpose of this review is to summarize the current knowledge acquired on herbal products and their active constituents with antimicrobial activity used alone and in combination with antibiotics against multidrug-resistant bacteria. The most promising herbal products and active constituents used alone against multidrug-resistant bacteria are Piper betle (methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus, extended-spectrum beta-lactamase, Acinetobacter baumannii, Pseudomonas aeruginosa), Glycyrrhiza glabra (methicillin-resistant S. aureus, vancomycin-resistant Enterococcus, P. aeruginosa), and berberine (methicillin-resistant S. aureus, A. baumannii, P. aeruginosa), respectively. The synergistic effect of the combination of herbal products and their active constituents with antibiotics against multidrug-resistant bacteria are also described. These natural antibacterial agents can be promising sources of inhibitors, which can modulate antibiotic activity against multidrug-resistant bacteria, especially as efflux pump inhibitors. Other possible mechanisms of action of herbal therapy against multidrug-resistant bacteria including modification of the bacterial cell wall and/or membrane, inhibition of the cell division protein filamenting temperature sensitive Z-ring, and inhibition of protein synthesis and gene expression, all of which will also be discussed. Our review suggests that combination herbal therapy and antibiotics can be effectively used to expand the spectrum of their antimicrobial action. Therefore, combination therapy against multidrug-resistant bacteria may enable new choices for the treatment of infectious diseases and represents a potential area for future research.
Collapse
Affiliation(s)
- Anna Herman
- Faculty of Health Sciences, Warsaw School of Engineering and Health, Warsaw, Poland
| | - Andrzej P Herman
- Department of Genetic Engineering, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna near Warsaw, Poland
| |
Collapse
|
10
|
In Vitro Antimicrobial Activity of Piper betle Leaf Extract and Some Topical Agents against Methicillin-Resistant and Methicillin-Susceptible Staphylococcus Strains from Canine Pyoderma. Animals (Basel) 2022; 12:ani12223203. [PMID: 36428430 PMCID: PMC9686986 DOI: 10.3390/ani12223203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/01/2022] [Accepted: 11/12/2022] [Indexed: 11/22/2022] Open
Abstract
As multidrug-resistant methicillin-resistant staphylococci (MRS) is becoming more prevalent in canine pyoderma, the discovery of new therapeutic options is required. This study aimed to test the antimicrobial activity of crude Piper betle leaf extract and some topical antimicrobial agents against canine Staphylococcus clinical strains by determining the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC). The results showed that the mean MICs of chlorhexidine, miconazole, crude P. betle leaf extract, azelaic acid, and benzoyl peroxide against Staphylococcus strains were 1.41, 1.62, 252.78, 963.49, and 1342.70 mg/L, respectively. Therefore, betel leaf extract demonstrated a superior efficacy to azelaic acid and benzoyl peroxide. Furthermore, the ratio of MBC/MIC of betel leaf extract was 1.75, indicating its bactericidal action. When applied to methicillin-resistant S. pseudintermedius (MRSP) and methicillin-susceptible S. pseudintermedius (MSSP), betel leaf extract was equally efficient towards both groups. S. pseudintermedius strains were more susceptible to betel leaf extract than S. schleiferi subsp. coagulans. In gas chromatography-mass spectrometry analysis, eugenol and hydroxychavicol appeared to be the major components of betel leaf extract. Given its efficacy, dogs with pyoderma could benefit from the use of betel leaf extract as a topical antimicrobial alternative.
Collapse
|
11
|
Ngamsurach P, Praipipat P. Comparative antibacterial activities of Garcinia cowa and Piper sarmentosum extracts against Staphylococcus aureus and Escherichia coli with studying on disc diffusion assay, material characterizations, and batch experiments. Heliyon 2022; 8:e11704. [DOI: 10.1016/j.heliyon.2022.e11704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/18/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
|
12
|
Phytochemical and In Vitro Cytotoxic Screening of Chloroform Extract of Ehretia microphylla Lamk. STRESSES 2022. [DOI: 10.3390/stresses2040027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ehretia microphylla of the Boraginaceae family has been extensively used as a folklore remedy for the treatment of a wide range of ailments such as cough, cancer, allergies, and gastrointestinal and venereal disorders. Extensive literature review reports have revealed these findings due to the presence of numerous phytomolecules. To validate traditional claims for cytotoxic activity of E. microphylla, the present study was undertaken. Dried leaves of the plant were powdered and defatted with petroleum ether followed by hot continuous extraction with chloroform. The chloroform extract was subjected to in vitro cytotoxic screening against a panel of human cancer cell lines such as HCT-116 (colon), MCF-7 (breast), PC-3 (prostate), A-549 (lung), HL-60 (leukemia) and MiaPaCa-2 (pancreatic) at 50 µM using SRB assay. The extract exhibited noteworthy cytotoxicity activity against breast and lung cancer. It exhibited 85.55% and 77.93% inhibition against MCF-7 and A-549 cancer cell lines, respectively. The mechanism behind cell death was determined using the DAPI staining method, which induces alteration in nuclear morphology in MCF-7 cell lines evidenced through DAPI staining. Phytochemical screening of E. microphylla extract showed the presence of saponins, steroids, lipids, tannins and triterpenoids. The chemoprofile of the chloroform extract of E. microphylla leaves was established using an n-hexane:ethyl acetate solvent system in a ratio of 6:4. The developed chromatogram showed five spots both in visible and UV light at 254 nm. The information provided in the present study will enable further studies on the isolation and characterization of bioactive compounds/fractions by following bioactivity-guided fractionation, and thus, the plant has the potential to reduce proliferation and may induce cell death via apoptosis in breast cancer cells.
Collapse
|
13
|
Ngamsurach P, Praipipat P. Antibacterial activities against Staphylococcus aureus and Escherichia coli of extracted Piper betle leaf materials by disc diffusion assay and batch experiments. RSC Adv 2022; 12:26435-26454. [PMID: 36275084 PMCID: PMC9480620 DOI: 10.1039/d2ra04611c] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/02/2022] [Indexed: 02/05/2023] Open
Abstract
The use of contaminated water by bacteria may cause many diseases, and thus clean water is needed. Chlorine is normally used for the disinfection of wastewater treatment; however, it produces unwanted odors. Using extracted Piper betle (P. betle) is an interesting choice because it is a good chemical compound for bacterial inhibitions. This study attempted to extract P. betle leaf and synthesize P. betle beads (PBB) to characterize materials and investigate antibacterial efficiencies by disc diffusion assay, batch tests, adsorption isotherms, kinetics, and material reusability. The results demonstrated the successful extraction and synthesis of the materials of P. betle. P. betle powder (PBP) had porous and rough surfaces, whereas PBB had a spherical shape with a coarse surface. The four main chemical elements and functional groups of PBP and PBB were carbon, oxygen, calcium, chlorine, and O-H, C-H, N-H, C-O, respectively. The extraction yield and total phenolic, flavonoid, and tannin contents of P. betle were 11.30%, 201.55 ± 0.31 mg GAE per g, 56.86 ± 0.14 mg RE per g, and 41.76 ± 1.32 mg CE per g, respectively. The six main compounds of eugenol, quercetin, apigenin, kaempferol, ascorbic acid, and hydroxychavicol were detected by HPLC analysis. The results of the disc diffusion assay confirmed antibacterial efficiencies of PBB, and the batch tests examined high antibacterial efficiencies of PBB for 100% on Staphylococcus aureus and Escherichia coli. The adsorption isotherms and kinetics of PBB corresponded to Freundlich model and pseudo-second order kinetic model, and the desorption experiments confirmed the reusability of PBB. Therefore, PBB can be possibly applied for an antibacterial purpose in wastewater treatment systems.
Collapse
Affiliation(s)
- Pimploy Ngamsurach
- Department of Environmental Science, Khon Kaen University Khon Kaen 40002 Thailand +66 818774991
- Environmental Applications of Recycled and Natural Materials (EARN) Laboratory, Khon Kaen University Khon Kaen 40002 Thailand
| | - Pornsawai Praipipat
- Department of Environmental Science, Khon Kaen University Khon Kaen 40002 Thailand +66 818774991
- Environmental Applications of Recycled and Natural Materials (EARN) Laboratory, Khon Kaen University Khon Kaen 40002 Thailand
| |
Collapse
|
14
|
Bouymajane A, Rhazi Filali F, Oulad El Majdoub Y, Ouadik M, Abdelilah R, Cavò E, Miceli N, Taviano MF, Mondello L, Cacciola F. Phenolic compounds, antioxidant and antibacterial activities of extracts from aerial parts of Thymus zygis subsp. gracilis, Mentha suaveolens and Sideritis incana from Morocco. Chem Biodivers 2022; 19:e202101018. [PMID: 35104048 DOI: 10.1002/cbdv.202101018] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/31/2022] [Indexed: 11/11/2022]
Abstract
Thymus zygis subsp. gracilis , Mentha suaveolens and Sideritis incana (Lamiaceae family) are well recognized for their medicinal, pharmaceutical and aromatic properties. The present study aimed to investigate for the first time the polyphenolic composition, the antioxidant and antibacterial properties of the extracts obtained from the aerial parts of these species collected from the Ifrane region of Morocco. The polyphenolic compounds were determined using high-performance liquid chromatography coupled to photodiode array and electrospray ionization mass spectrometry (HPLC-PDA-ESI/MS). The antioxidant activity was investigated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, reducing power and ferrous ion chelating assays. The antibacterial activity was evaluated against three Gram-negative bacteria ( Escherichia coli, Pseudomonas aeruginosa and Salmonella typhimurium ) and three Gram-positive bacteria ( Staphylococcus aureus, Enterococcus faecalis and Listeria monocytogenes ). A total of thirty-three, sixteen and thirteen polyphenolic compounds were positively identified and characterized in T. zygis subsp. gracilis , M. suaveolens and S. incana extracts, respectively. Among the extracts, M. suaveolens exhibited the highest antioxidant activity, followed by S. incana and T. zygis subsp. gracilis in both DPPH and reducing power assays; all extracts showed the lowest activity in the chelating assay. In addition, all extracts demonstrated a bactericidal effect against Gram-positive bacteria and bacteriostatic effect against Gram-negative bacteria. Therefore, the aerial parts of Moroccan T. zygis subsp. gracilis , M. suaveolens and S. incana might be considered as a valuable source of natural antioxidant and antibacterial agents with potential application in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Aziz Bouymajane
- Moulay Ismail University: Universite Moulay Ismail, Faculty of Sciences, -, Zitoune Meknes, MOROCCO
| | - Fouzia Rhazi Filali
- Moulay Ismail University: Universite Moulay Ismail, Faculty of Sciences, -, Zitoune Meknes, MOROCCO
| | - Yassine Oulad El Majdoub
- University of Messina: Universita degli Studi di Messina, CHIBIOFARAM, Viale Annunziata, Messina, ITALY
| | - Mohamed Ouadik
- Moulay Ismail University: Universite Moulay Ismail, Faculty of Sciences, -, Zitoune Meknes, MOROCCO
| | - Rahou Abdelilah
- Moulay Ismail University: Universite Moulay Ismail, Faculty of Sciences, -, Zitoune Meknes, MOROCCO
| | - Emilia Cavò
- University of Messina: Universita degli Studi di Messina, CHIBIOFARAM, Viale Annunziata, 98168, Messina, ITALY
| | - Natalizia Miceli
- University of Messina: Universita degli Studi di Messina, CHIBIOFARAM, Viale Annunziata, 98168, Messina, ITALY
| | - Maria Fernanda Taviano
- University of Messina: Universita degli Studi di Messina, CHIBIOFARAM, Viale Annunziata, 98168, Messina, ITALY
| | - Luigi Mondello
- University of Messina: Universita degli Studi di Messina, CHIBIOFARAM, Viale Annunziata, 98168, Messina, ITALY
| | - Francesco Cacciola
- University of Messina: Universita degli Studi di Messina, BIOMORF, Via Consolare Valeria, 98125, Messina, ITALY
| |
Collapse
|
15
|
Antibacterial, antibiofilm, and anti-adhesion activities of Piper betle leaf extract against Avian pathogenic Escherichia coli. Arch Microbiol 2021; 204:49. [DOI: 10.1007/s00203-021-02701-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
|
16
|
Ngamsurach P, Praipipat P. Modified Alginate Beads with Ethanol Extraction of Cratoxylum formosum and Polygonum odoratum for Antibacterial Activities. ACS OMEGA 2021; 6:32215-32230. [PMID: 34870042 PMCID: PMC8638294 DOI: 10.1021/acsomega.1c05056] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Bacteria contaminations in water are concerned as environmental effects including human health, so water treatment is required before use. Although using extracted plant is interesting because of their good chemical compounds for bacterial inhibitions, no study has applied the extracted plant in bead materials for disinfection in wastewater. The current research attempted to extract Cratoxylum formosum and Polygonum odoratum for the synthesis of C. formosum beads (CFB) and P. odoratum beads (POB), and their antibacterial efficiencies were investigated by agar diffusion tests, antibacterial batch tests, adsorption isotherm and kinetics, and material reusability. C. formosum and P. odoratum leaves were ethanol-extracted, and their bead materials (CFB and POB) were synthesized. Furthermore, their characterizations of surface area, chemical compositions, and chemical functional groups were investigated. For field emission scanning electron microscopy and focused ion beam (FESEM-FIB) analysis, CFB and POB had spherical shapes with coarse surfaces. Energy-dispersive X-ray spectrometry (EDX) analysis of CFB and POB illustrated five main chemical compositions, which were carbon (C), oxygen (O), calcium (Ca), chlorine (Cl), and sodium (Na), whereas Fourier transform infrared (FTIR) spectroscopy analysis identified seven main chemical functional groups, which were O-H, C-H, C=O, C=C, N-H, C-O, and C-Cl. Agar diffusion tests confirmed the abilities of CFB and POB to inhibit both Staphylococcus aureus and Escherichia coli, and batch experiments examined high antibacterial efficiencies of CFB of almost 100% on both bacterial types. The adsorption isotherm of CFB corresponded to the Freundlich model, which is related to the physiochemical adsorption process with multilayer or heterogeneous adsorption, and the adsorption kinetics of CFB was correlated to the pseudo-second-order kinetic model, which involved chemisorption relating to physiochemical interaction. Moreover, the desorption experiment confirmed the reusability of CFB. Therefore, CFB is a potential material to possibly apply for disinfection of wastewater.
Collapse
Affiliation(s)
- Pimploy Ngamsurach
- Department
of Environmental Science, Khon Kaen University, Khon Kaen 40002, Thailand
- Environmental
Applications of Recycled and Natural Materials (EARN) Laboratory, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Pornsawai Praipipat
- Department
of Environmental Science, Khon Kaen University, Khon Kaen 40002, Thailand
- Environmental
Applications of Recycled and Natural Materials (EARN) Laboratory, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
17
|
Meena A, Sukhadia V, Sharma R. Solid State Kinetics and Antimicrobial Studies for Copper (II) Sesame and Copper (II) Groundnut Complexes with Substituted Benzothiazole Ligand. LETT ORG CHEM 2021. [DOI: 10.2174/1570178617999200812134745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this manuscript is to give an overview of new findings in the field of thermal
degradation and antimicrobial studies for copper (II) sesame and copper (II) groundnut complexes with
substituted benzothiazole ligand. Solid state kinetics and thermal degradation have gained the attention
of the scientific community not only due to their numerous applications in environment, energy,
wastewater treatment, pollution control and green chemistry but also due to their wide range of biological
activities. This work aims to explore the study of chemical steps of the investigated degradation
and the evaluation of the kinetic and thermodynamic parameters of the newly synthesized biologically
active complexes (CSBe and CGBe) derived from two different edible oils, i.e., sesame and groundnut
and ligand containing nitrogen, oxygen and sulphur atoms, i.e., 2-amino-6-ethoxy benzothiazole. The
studies include Coats-Redfern equation (CRE), Horowitz-Metzger equation (HME), Broido equation
(BE) and Piloyan-Novikova equation (PNE) for the analysis of the degradation and energetics for each
step using kinetic data. The observation suggests that CGBe takes a longer time and higher temperature
to decompose completely than CSBe. Antimicrobial activities against Staphylococcus aureus of these
compounds have also been analysed which may provide an important account of information about
their industrial utilization. The TGA study reveals that CSBe and CGBe complexes undergo stepwise
thermal degradation of the ligand-soap bond of complex and saturated and unsaturated fatty acid components
of edible oils, i.e., sesame and groundnut. The order of antimicrobial activities of the two complexes
studied is – CSBe > CGBe. These results reveal that the nature of different nitrogen, oxygen and sulphur
containing ligands coordinated with copper ion plays a significant role in the inhibition activity.
Collapse
Affiliation(s)
- Asha Meena
- Department of Chemistry, S. D. Government College, Beawar-305901, Rajasthan,India
| | - Vandana Sukhadia
- Department of Chemistry, S. D. Government College, Beawar-305901, Rajasthan,India
| | - Rashmi Sharma
- Department of Chemistry, S.P.C. Government College, Ajmer-305001, Rajasthan,India
| |
Collapse
|
18
|
Nayaka NMDMW, Sasadara MMV, Sanjaya DA, Yuda PESK, Dewi NLKAA, Cahyaningsih E, Hartati R. Piper betle (L): Recent Review of Antibacterial and Antifungal Properties, Safety Profiles, and Commercial Applications. Molecules 2021; 26:molecules26082321. [PMID: 33923576 PMCID: PMC8073370 DOI: 10.3390/molecules26082321] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Piper betle (L) is a popular medicinal plant in Asia. Plant leaves have been used as a traditional medicine to treat various health conditions. It is highly abundant and inexpensive, therefore promoting further research and industrialization development, including in the food and pharmaceutical industries. Articles published from 2010 to 2020 were reviewed in detail to show recent updates on the antibacterial and antifungal properties of betel leaves. This current review showed that betel leaves extract, essential oil, preparations, and isolates could inhibit microbial growth and kill various Gram-negative and Gram-positive bacteria as well as fungal species, including those that are multidrug-resistant and cause serious infectious diseases. P. betle leaves displayed high efficiency on Gram-negative bacteria such as Escherichia coli and Pseudomonas aeruginosa, Gram-positive bacteria such as Staphylococcus aureus, and Candida albicans. The ratio of MBC/MIC indicated bactericidal and bacteriostatic effects of P. betle leaves, while MFC/MIC values showed fungicidal and fungistatic effects. This review also provides a list of phytochemical compounds in betel leaves extracts and essential oils, safety profiles, and value-added products of betel leaves. Some studies also showed that the combination of betel leaves extract and essential oil with antibiotics (streptomycin, chloramphenicol and gentamicin) could provide potentiating antibacterial properties. Moreover, this review delivers a scientific resume for researchers in respected areas and manufacturers who want to develop betel leaves-based products.
Collapse
Affiliation(s)
- Ni Made Dwi Mara Widyani Nayaka
- Department of Natural Medicine, Mahasaraswati University of Denpasar, Denpasar 80233, Indonesia; (M.M.V.S.); or (D.A.S.); (P.E.S.K.Y.); (N.L.K.A.A.D.); or (E.C.)
- Correspondence: or
| | - Maria Malida Vernandes Sasadara
- Department of Natural Medicine, Mahasaraswati University of Denpasar, Denpasar 80233, Indonesia; (M.M.V.S.); or (D.A.S.); (P.E.S.K.Y.); (N.L.K.A.A.D.); or (E.C.)
| | - Dwi Arymbhi Sanjaya
- Department of Natural Medicine, Mahasaraswati University of Denpasar, Denpasar 80233, Indonesia; (M.M.V.S.); or (D.A.S.); (P.E.S.K.Y.); (N.L.K.A.A.D.); or (E.C.)
| | - Putu Era Sandhi Kusuma Yuda
- Department of Natural Medicine, Mahasaraswati University of Denpasar, Denpasar 80233, Indonesia; (M.M.V.S.); or (D.A.S.); (P.E.S.K.Y.); (N.L.K.A.A.D.); or (E.C.)
| | - Ni Luh Kade Arman Anita Dewi
- Department of Natural Medicine, Mahasaraswati University of Denpasar, Denpasar 80233, Indonesia; (M.M.V.S.); or (D.A.S.); (P.E.S.K.Y.); (N.L.K.A.A.D.); or (E.C.)
| | - Erna Cahyaningsih
- Department of Natural Medicine, Mahasaraswati University of Denpasar, Denpasar 80233, Indonesia; (M.M.V.S.); or (D.A.S.); (P.E.S.K.Y.); (N.L.K.A.A.D.); or (E.C.)
| | - Rika Hartati
- Pharmaceutical Biology Department, Bandung Institute of Technology, Bandung 40132, Indonesia;
| |
Collapse
|
19
|
Bhatia P, Sharma A, George AJ, Anvitha D, Kumar P, Dwivedi VP, Chandra NS. Antibacterial activity of medicinal plants against ESKAPE: An update. Heliyon 2021; 7:e06310. [PMID: 33718642 PMCID: PMC7920328 DOI: 10.1016/j.heliyon.2021.e06310] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/28/2020] [Accepted: 02/15/2021] [Indexed: 12/25/2022] Open
Abstract
Antibiotic resistance has emerged as a threat to global health, food security, and development today. Antibiotic resistance can occur naturally but mainly due to misuse or overuse of antibiotics, which results in recalcitrant infections and Antimicrobial Resistance (AMR) among bacterial pathogens. These mainly include the MDR strains (multi-drug resistant) of ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species). These bacterial pathogens have the potential to “escape” antibiotics and other traditional therapies. These bacterial pathogens are responsible for the major cases of Hospital-Acquired Infections (HAI) globally. ESKAPE Pathogens have been placed in the list of 12 bacteria by World Health Organisation (WHO), against which development of new antibiotics is vital. It not only results in prolonged hospital stays but also higher medical costs and higher mortality. Therefore, new antimicrobials need to be developed to battle the rapidly evolving pathogens. Plants are known to synthesize an array of secondary metabolites referred as phytochemicals that have disease prevention properties. Potential efficacy and minimum to no side effects are the key advantages of plant-derived products, making them suitable choices for medical treatments. Hence, this review attempts to highlight and discuss the application of plant-derived compounds and extracts against ESKAPE Pathogens.
Collapse
Affiliation(s)
- Priya Bhatia
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi 110021, India
| | - Anushka Sharma
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi 110021, India
| | - Abhilash J George
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi 110021, India
| | - D Anvitha
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi 110021, India
| | - Pragya Kumar
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi 110021, India
| | - Ved Prakash Dwivedi
- Immunobiology Group, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Nidhi S Chandra
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi 110021, India
| |
Collapse
|
20
|
Silva SG, de Oliveira MS, Cruz JN, da Costa WA, da Silva SHM, Barreto Maia AA, de Sousa RL, Carvalho Junior RN, de Aguiar Andrade EH. Supercritical CO2 extraction to obtain Lippia thymoides Mart. & Schauer (Verbenaceae) essential oil rich in thymol and evaluation of its antimicrobial activity. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2020.105064] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Garg S, Roy A. A Current Perspective of Plants as an Antibacterial Agent: A Review. Curr Pharm Biotechnol 2021; 21:1588-1602. [PMID: 32568018 DOI: 10.2174/1389201021666200622121249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/15/2020] [Accepted: 06/03/2020] [Indexed: 11/22/2022]
Abstract
With the emergence and evolution of bacterial strains, it is now becoming difficult for pharmaceutical industries to provide remedies required for the betterment of mankind. Continuous exposure with available medication leads to the development of new strains with a significant amount of resistance, due to which pharmaceutical industries are facing various challenges. Antimicrobial resistance is the phenomenon causing a challenge in new drug development through conventional methods. Therefore, the requirement of alternative medicine is in high demand. Recently, allopathic medicines have seen a disinterest and people are preferring natural solutions due to their fewer side effects comparable to conventional medicine. Worldwide plants are utilized for various disease treatments such as bacterial infection, skin disorders, cancer, asthma, respiratory problems, etc. The presence of a wide range of phytocompounds in different plants provides an alternative to the pharmaceutical industries to counter the problem of bacterial infections. Different plants contain various phytochemicals that possess numerous therapeutic activities and provide a remedy to suppress various bacterial strains. Therefore, in this review, an overview of various plants and their phytocompounds which are responsible for antibacterial activity has been discussed.
Collapse
Affiliation(s)
- Saksham Garg
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Arpita Roy
- Department of Biotechnology, Delhi Technological University, Delhi, India.,Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, India
| |
Collapse
|
22
|
Pharmacotherapy of resistant enteric pathogens in combination with medicinal plants extracts and antibiotics. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01409-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Antimicrobial activity of three plant species against multi-drug resistant E. coli causing urinary tract infection. J Herb Med 2020. [DOI: 10.1016/j.hermed.2020.100352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Girard M, Hu D, Pradervand N, Neuenschwander S, Bee G. Chestnut extract but not sodium salicylate decreases the severity of diarrhea and enterotoxigenic Escherichia coli F4 shedding in artificially infected piglets. PLoS One 2020; 15:e0214267. [PMID: 32106264 PMCID: PMC7046202 DOI: 10.1371/journal.pone.0214267] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 01/16/2020] [Indexed: 01/16/2023] Open
Abstract
The development of alternatives to antibiotics is crucial to limiting the incidence of antimicrobial resistance, especially in prophylactic and metaphylactic use to control post-weaning diarrhea (PWD). Feed additives, including bioactive compounds, could be a promising alternative. This study aimed to test two bioactive compounds, sodium salicylate (SA) and a chestnut extract (CE) containing hydrolysable tannins, on the occurrence of PWD. At weaning, 72 piglets were assigned to four treatments that combined two factors: CE supplementation (with 2% of CE (CE+) or without (CE-)) and SA supplementation (with 35 mg/kg BW of SA (SA+) or without (SA-)). Then, 4 days after weaning, all piglets were infected with a suspension at 108 CFU/ml of enterotoxigenic Escherichia coli (ETEC F4ac). Each piglet had free access to an electrolyte solution containing, or not, SA. This SA supplementation was administered for 5 days (i.e., from the day of infection (day 0) to 4 days post-infection (day 4). During the 2 weeks post-infection, supplementation with SA had no effect (P > 0.05) on growth performances nor on fecal scores. A significant SA × time interaction (P < 0.01) for fecal scores and the percentage of diarrhea indicated that piglets with SA did not recover faster and did have a second episode of diarrhea. In contrast to SA treatment, inclusion of CE increased (P < 0.05) growth performances and feed intake. In the first week post-infection, CE decreased (P < 0.001) the overall fecal scores, the percentage of piglets with diarrhea, the days in diarrhea, and ETEC shedding in the feces. There was a SA×CE interaction (P < 0.05) for ETEC shedding, suggesting a negative effect of combining SA with CE. This study highlighted that, in contrast to SA, CE could represent a promising alternative to antibiotics immediately after weaning for improving growth performance and reducing PWD.
Collapse
Affiliation(s)
- M. Girard
- Agroscope, Posieux, Fribourg, Switzerland
| | - D. Hu
- Institute of Agricultural Sciences, ETH Zürich, Zürich, Switzerland
| | | | | | - G. Bee
- Agroscope, Posieux, Fribourg, Switzerland
- * E-mail:
| |
Collapse
|
25
|
Mulat M, Khan F, Muluneh G, Pandita A. Phytochemical Profile and Antimicrobial Effects of Different Medicinal Plant: Current Knowledge and Future Perspectives. CURRENT TRADITIONAL MEDICINE 2020. [DOI: 10.2174/2215083805666190730151118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The application of medicinal plants for combating various human ailments, as a
food fortificant and additive have been adapted from ancient routine custom. Currently,
developing countries use plants as a major source of primary health care. Besides, the emerging
drug resistant pathogenic microbes encourage the utilization of medicinal plants as
preeminent alternative sources of new bioactive substances. Extensive research findings
have been reported in the last three decades. But methods to investigate the phytoconstituent
and their biological effects are limited. This review contains brief explanations about the selection
of medicinal plants, procedure for obtaining the crude as well as essential oil extracts,
phytochemical screening, and in-vitro evaluation of antimicrobial activity. Furthermore, the
antimicrobial activity of medicinal plant extracts reported from their respective solvent
fractionated and non-fractionated in-vitro analysis has also been described in the present paper.
The bioactive substances from medicinal plant along with chemical structure and biological
effects are highlighted in the content.
Collapse
Affiliation(s)
- Mulugeta Mulat
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201306, U.P., India
| | - Fazlurrahman Khan
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201306, U.P., India
| | - Gizachew Muluneh
- Division of Microbiology, College of Natural Science, Wollo University, Dessie, Ethiopia
| | - Archana Pandita
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201306, U.P., India
| |
Collapse
|
26
|
SAKHRI AFAF, CHAOUCHE NOREDDINEKACEM, CATANIA MARIAROSARIA, RITIENI ALBERTO, SANTINI ANTONELLO. Chemical Composition of Aspergillus creber Extract and Evaluation of its Antimicrobial and Antioxidant Activities. Pol J Microbiol 2019; 68:309-316. [PMID: 31880876 PMCID: PMC7256719 DOI: 10.33073/pjm-2019-033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/26/2019] [Accepted: 05/07/2019] [Indexed: 11/10/2022] Open
Abstract
Among the species belonging to the Aspergillus section Versicolores, Aspergillus creber has been poorly studied and still unexplored for its biological activities. The present study was undertaken to analyze A. creber extract and to evaluate its in vitro antimicrobial and anti-oxidant activities. UHPLC-MS/MS analysis of A. creber extract allowed the characterization of five known fungal metabolites including: asperlactone, emodin, sterigmatocystin, deoxybrevianamide E, and norsolorinic acid. The highest antimicrobial activity was displayed against Candida albicans, with a mean strongest inhibition zone of 20.6 ± 0.8 mm, followed by Gram-positive drug-resistant bacteria. The MIC values of A. creber extract varied from 0.325 mg/ml to 5 mg/ml. A. creber extract was shown a potent antioxidant activity and a high level of phenolic compounds by recording 89.28% scavenging effect for DPPH free radical, 92.93% in ABTS assay, and 85.76 mg gallic acid equivalents/g extract in Folin-Ciocalteu assay. To our knowledge, this is the first study concerning biological and chemical activities of A. creber species. Based on the obtained results, A. creber could be a promising source of natural antimicrobial and antioxidant compounds. Among the species belonging to the Aspergillus section Versicolores, Aspergillus creber has been poorly studied and still unexplored for its biological activities. The present study was undertaken to analyze A. creber extract and to evaluate its in vitro antimicrobial and anti-oxidant activities. UHPLC-MS/MS analysis of A. creber extract allowed the characterization of five known fungal metabolites including: asperlactone, emodin, sterigmatocystin, deoxybrevianamide E, and norsolorinic acid. The highest antimicrobial activity was displayed against Candida albicans, with a mean strongest inhibition zone of 20.6 ± 0.8 mm, followed by Gram-positive drug-resistant bacteria. The MIC values of A. creber extract varied from 0.325 mg/ml to 5 mg/ml. A. creber extract was shown a potent antioxidant activity and a high level of phenolic compounds by recording 89.28% scavenging effect for DPPH free radical, 92.93% in ABTS assay, and 85.76 mg gallic acid equivalents/g extract in Folin-Ciocalteu assay. To our knowledge, this is the first study concerning biological and chemical activities of A. creber species. Based on the obtained results, A. creber could be a promising source of natural antimicrobial and antioxidant compounds.
Collapse
Affiliation(s)
- AFAF SAKHRI
- Laboratoire de Mycologie, de Biotechnologie et de l’Activité Microbienne (LaMyBAM), Département de Biologie Appliquée, Université des Frères Mentouri Constantine-1, Constantine, Algeria
- Department of Medicine, University of Batna 2, Batna, Algeria
| | - NOREDDINE KACEM CHAOUCHE
- Laboratoire de Mycologie, de Biotechnologie et de l’Activité Microbienne (LaMyBAM), Département de Biologie Appliquée, Université des Frères Mentouri Constantine-1, Constantine, Algeria
| | - MARIA ROSARIA CATANIA
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli Federico II, Naples, Italy
| | - ALBERTO RITIENI
- Department of Pharmacy, University of Napoli Federico II, Naples, Italy
| | - ANTONELLO SANTINI
- Department of Pharmacy, University of Napoli Federico II, Naples, Italy
| |
Collapse
|
27
|
Galbraith P, Henry R, McCarthy DT. Rise of the killer plants: investigating the antimicrobial activity of Australian plants to enhance biofilter-mediated pathogen removal. J Biol Eng 2019; 13:52. [PMID: 31182974 PMCID: PMC6555726 DOI: 10.1186/s13036-019-0175-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/06/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biofilters are soil-plant based passive stormwater treatment systems which demonstrate promising, although inconsistent, removal of faecal microorganisms. Antimicrobial-producing plants represent a safe, inexpensive yet under-researched biofilter design component that may enhance treatment reliability. The mechanisms underlying plant-mediated microbial removal in biofilters have not been fully elucidated, particularly with respect to antimicrobial production. The aim of this study was therefore to inform biofilter vegetation selection guidelines for optimal pathogen treatment by conducting antimicrobial screening of biofilter-suitable plant species. This involved: (1) selecting native plants suitable for biofilters (17 species) in a Victorian context (southeast Australia); and (2) conducting antimicrobial susceptibility testing of selected plant methanolic extracts (≥ 5 biological replicates/species; 86 total) against reference stormwater faecal bacteria (Salmonella enterica subsp. enterica ser. Typhimurium, Enterococcus faecalis and Escherichia coli). RESULTS The present study represents the first report on the inhibitory activity of polar alcoholic extracts from multiple tested species. Extracts of plants in the Myrtaceae family, reputed for their production of antimicrobial oils, demonstrated significantly lower minimum inhibitory concentrations (MICs) than non-myrtaceous candidates (p < 0.0001). Melaleuca fulgens (median MIC: 8 mg/mL; range: [4-16 mg/mL]), Callistemon viminalis (16 mg/mL, [2-16 mg/mL]) and Leptospermum lanigerum (8 mg/mL, [4-16 mg/mL]) exhibited the strongest inhibitory activity against the selected bacteria (p < 0.05 compared to each tested non-myrtaceous candidate). In contrast, the Australian biofilter gold standard Carex appressa demonstrated eight-fold lower activity than the highest performer M. fulgens (64 mg/mL, [32-64 mg/mL]). CONCLUSION Our results suggest that myrtaceous plants, particularly M. fulgens, may be more effective than the current vegetation gold standard in mediating antibiosis and thus improving pathogen treatment within biofilters. Further investigation of these plants in biofilter contexts is recommended to refine biofilter vegetation selection guidelines.
Collapse
Affiliation(s)
- P. Galbraith
- Environmental and Public Health Microbiology Laboratory (EPHM Lab), Monash Water for Liveability, Department of Civil Engineering, Monash University, Wellington Road, Clayton, Victoria 3800 Australia
| | - R. Henry
- Environmental and Public Health Microbiology Laboratory (EPHM Lab), Monash Water for Liveability, Department of Civil Engineering, Monash University, Wellington Road, Clayton, Victoria 3800 Australia
| | - D. T. McCarthy
- Environmental and Public Health Microbiology Laboratory (EPHM Lab), Monash Water for Liveability, Department of Civil Engineering, Monash University, Wellington Road, Clayton, Victoria 3800 Australia
| |
Collapse
|
28
|
Smida I, Pentelescu C, Pentelescu O, Sweidan A, Oliviero N, Meuric V, Martin B, Colceriu L, Bonnaure‐Mallet M, Tamanai‐Shacoori Z. Benefits of sea buckthorn (Hippophae rhamnoides) pulp oil‐based mouthwash on oral health. J Appl Microbiol 2019; 126:1594-1605. [DOI: 10.1111/jam.14210] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 11/20/2018] [Accepted: 01/14/2019] [Indexed: 11/27/2022]
Affiliation(s)
- I. Smida
- INSERM U 1241 INRA Université de Rennes 1 Université Bretagne Loire Nutrition Metabolism and Cancer Rennes France
| | - C. Pentelescu
- Odontology Department School of Dentistry University of Medicine and Pharmacy “Iuliu Hatieganu” Cluj‐Napoca Romania
| | - O. Pentelescu
- Department of Animal Science University of Agricultural Sciences and Veterinary Medicine Cluj‐Napoca Romania
| | - A. Sweidan
- INSERM U 1241 INRA Université de Rennes 1 Université Bretagne Loire Nutrition Metabolism and Cancer Rennes France
| | - N. Oliviero
- INSERM U 1241 INRA Université de Rennes 1 Université Bretagne Loire Nutrition Metabolism and Cancer Rennes France
| | - V. Meuric
- INSERM U 1241 INRA Université de Rennes 1 Université Bretagne Loire Nutrition Metabolism and Cancer Rennes France
- CHU Rennes Rennes France
| | - B. Martin
- INSERM U 1241 INRA Université de Rennes 1 Université Bretagne Loire Nutrition Metabolism and Cancer Rennes France
| | - L. Colceriu
- Odontology Department School of Dentistry University of Medicine and Pharmacy “Iuliu Hatieganu” Cluj‐Napoca Romania
| | - M. Bonnaure‐Mallet
- INSERM U 1241 INRA Université de Rennes 1 Université Bretagne Loire Nutrition Metabolism and Cancer Rennes France
- CHU Rennes Rennes France
| | - Z. Tamanai‐Shacoori
- INSERM U 1241 INRA Université de Rennes 1 Université Bretagne Loire Nutrition Metabolism and Cancer Rennes France
| |
Collapse
|
29
|
Ramachandran G, Rajivgandhi G, Maruthupandy M, Manoharan N. Extraction and partial purification of secondary metabolites from endophytic actinomycetes of marine green algae Caulerpa racemosa against multi drug resistant uropathogens. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.01.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
30
|
Sharma A, Singh S, Tewari R, Bhatt V, Sharma J, Maurya I. Phytochemical analysis and mode of action against Candida glabrata of Paeonia emodi extracts. J Mycol Med 2018; 28:443-451. [DOI: 10.1016/j.mycmed.2018.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/22/2018] [Accepted: 04/27/2018] [Indexed: 01/26/2023]
|
31
|
Mbaveng AT, Manekeng HT, Nguenang GS, Dzotam JK, Kuete V, Efferth T. Cytotoxicity of 18 Cameroonian medicinal plants against drug sensitive and multi-factorial drug resistant cancer cells. JOURNAL OF ETHNOPHARMACOLOGY 2018; 222:21-33. [PMID: 29709646 DOI: 10.1016/j.jep.2018.04.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/22/2018] [Accepted: 04/24/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Recommendations have been made stating that ethnopharmacological usages such as immune and skin disorders, inflammatory, infectious, parasitic and viral diseases should be taken into account if selecting plants for anticancer screening, since these reflect disease states bearing relevance to cancer or cancer-like symptoms. Cameroonian medicinal plants investigated in this work are traditionally used to treat cancer or ailments with relevance to cancer or cancer-like symptoms. AIM OF THE STUDY In this study, 21 methanol extracts from 18 Cameroonian medicinal plants were tested in leukemia CCRF-CEM cells, and the best extracts were further tested on a panel of human cancer cell lines, including various multi-drug-resistant (MDR) phenotypes. Mechanistic studies were performed with the three best extracts. MATERIALS AND METHODS Resazurin reduction assay was used to evaluate cytotoxicity and ferroptotic effects of methanol extracts from different plants. Flow cytometry was used to analyze cell cycle, apoptosis, mitochondrial membrane potential (MMP), and reactive oxygen species (ROS) of extracts from Curcuma longa rhizomes (CLR), Lycopersicon esculentum leaves (LEL), and Psidium guajava bark (PGB). RESULTS In a pre-screening of all extracts, 13 out of 21 (61.9%) had IC50 values below 80 µg/mL. Six of these active extracts displayed IC50 values below 30 µg/mL: Cola pachycarpa leaves (CPL), Curcuma longa rhizomes (CLR), Lycopersicon esculentum leaves, Persea americana bark (PAB), Physalis peruviana twigs (PPT) and Psidium guajava bark (PGB). The best extracts displayed IC50 values from 6.25 µg/mL (against HCT116 p53-/-) to 10.29 µg/mL (towards breast adenocarcinoma MDA-MB-231-BCRP cells) for CLR, from 9.64 µg/mL (against breast adenocarcinoma MDA-MB-231 cells) to 57.74 µg/mL (against HepG2 cells) for LEL and from 1.29 µg/mL (towards CEM/ADR5000 cells) to 62.64 µg/mL (towards MDA-MB-231 cells) for PGB. CLR and PGB induced apoptosis in CCRF-CEM cells via caspases activation, MMP depletion and increase ROS production whilst LEL induced apoptosis mediated by caspases activation and increase ROS production. CONCLUSION The best botanicals tested were CLR and LEL, which are worth to be explored in more detail to fight cancers including MDR phenotypes.
Collapse
Affiliation(s)
- Armelle T Mbaveng
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany; Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon.
| | - Hermione T Manekeng
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon.
| | - Gaelle S Nguenang
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon.
| | - Joachim K Dzotam
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon.
| | - Victor Kuete
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany; Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
32
|
Assis FVDE, Siqueira FL, Gonçalves IE, Lacerda RP, Nascimento RA, Araújo SG, Andrade JT, Herrera KMS, Lima LARS, Ferreira JMS. Antibacterial activity of Lamiaceae plant extracts in clinical isolates of multidrug-resistant bacteria. AN ACAD BRAS CIENC 2018; 90:1665-1670. [PMID: 29668795 DOI: 10.1590/0001-3765201820160870] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 12/20/2017] [Indexed: 01/23/2023] Open
Abstract
The antibacterial activity of plant extracts of the Lamiaceae family was evaluated against clinical isolates of multi-resistant Gram-negative bacteria by broth microdilution technique. Promising results were obtained considering that all extracts were active for at least two bacterial species with MIC ranging from 0.5 to 2.0 mg/mL.
Collapse
Affiliation(s)
- Felipe V DE Assis
- Laboratório de Microbiologia, Universidade Federal de São João del-Rei/UFSJ, Campus Centro Oeste Dona Lindu, Avenida Sebastião Gonçalves Coelho, 400, 35501-296 Divinópolis, MG, Brazil
| | - Flávia L Siqueira
- Laboratório de Microbiologia, Universidade Federal de São João del-Rei/UFSJ, Campus Centro Oeste Dona Lindu, Avenida Sebastião Gonçalves Coelho, 400, 35501-296 Divinópolis, MG, Brazil
| | - Isabela E Gonçalves
- Laboratório de Microbiologia, Universidade Federal de São João del-Rei/UFSJ, Campus Centro Oeste Dona Lindu, Avenida Sebastião Gonçalves Coelho, 400, 35501-296 Divinópolis, MG, Brazil
| | - Rafael P Lacerda
- Laboratório de Microbiologia, Universidade Federal de São João del-Rei/UFSJ, Campus Centro Oeste Dona Lindu, Avenida Sebastião Gonçalves Coelho, 400, 35501-296 Divinópolis, MG, Brazil
| | - Rafaela A Nascimento
- Laboratório de Microbiologia, Universidade Federal de São João del-Rei/UFSJ, Campus Centro Oeste Dona Lindu, Avenida Sebastião Gonçalves Coelho, 400, 35501-296 Divinópolis, MG, Brazil
| | - Sthéfane G Araújo
- Laboratório de Fitoquímica, Universidade Federal de São João del-Rei/UFSJ, Campus Centro Oeste Dona Lindu, Avenida Sebastião Gonçalves Coelho, 400, 35501-296 Divinópolis, MG, Brazil
| | - Jéssica T Andrade
- Laboratório de Microbiologia, Universidade Federal de São João del-Rei/UFSJ, Campus Centro Oeste Dona Lindu, Avenida Sebastião Gonçalves Coelho, 400, 35501-296 Divinópolis, MG, Brazil
| | - Karina M S Herrera
- Laboratório de Microbiologia, Universidade Federal de São João del-Rei/UFSJ, Campus Centro Oeste Dona Lindu, Avenida Sebastião Gonçalves Coelho, 400, 35501-296 Divinópolis, MG, Brazil
| | - Luciana A R S Lima
- Laboratório de Fitoquímica, Universidade Federal de São João del-Rei/UFSJ, Campus Centro Oeste Dona Lindu, Avenida Sebastião Gonçalves Coelho, 400, 35501-296 Divinópolis, MG, Brazil
| | - Jaqueline M S Ferreira
- Laboratório de Microbiologia, Universidade Federal de São João del-Rei/UFSJ, Campus Centro Oeste Dona Lindu, Avenida Sebastião Gonçalves Coelho, 400, 35501-296 Divinópolis, MG, Brazil
| |
Collapse
|
33
|
Anantaworasakul P, Hamamoto H, Sekimizu K, Okonogi S. In vitro antibacterial activity and in vivo therapeutic effect of Sesbania grandiflora in bacterial infected silkworms. PHARMACEUTICAL BIOLOGY 2017; 55:1256-1262. [PMID: 28253823 PMCID: PMC6130637 DOI: 10.1080/13880209.2017.1297467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/08/2016] [Accepted: 02/16/2017] [Indexed: 06/06/2023]
Abstract
CONTEXT Antibiotic resistance is a serious problem worldwide. Searching for new potential agents is, therefore, essential. The bark of Sesbania grandiflora (L.) Pers. (Fabaceae) has been used in folk medicine against various diseases. OBJECTIVE To investigate the antibacterial activity of S. grandiflora bark and explore the therapeutic effect of the highest potent fraction. MATERIALS AND METHODS Bacteria and healthy silkworms were exposed to three fractionated extracts (3.1-400 mg/mL) of S. grandiflora bark from hexane (HXF), chloroform (CFF), and ethyl acetate (EAF). The sets of bacteria were incubated at 37 °C while silkworms were kept at 27 °C for 24 h. To evaluate the therapeutic effect, silkworms infected with bacteria were exposed to the extracts (0.5-60 mg/mL) and incubated at 27 °C for 52 h. Qualitative analysis of the most potent extract was done using HPLC. RESULTS EAF showed the highest activity with MIC against methicillin resistant Staphylococcus aureus (MRSA) and vancomycin resistant enterococci (VRE) of 1.6 and 0.4 mg/mL, respectively, and against Gram-negative Escherichia coli and Pseudomonas aeruginosa of 6.2 and 3.1 mg/mL, respectively. It is nontoxic to silkworms with LC50 >400 mg/mL and has high therapeutic effect on infected silkworms with EC50 of 1.9 mg/mL. EAF consists of at least five major compounds, one of them is gallic acid. The activity of EAF is higher than the sum of individual activities of separated compounds. DISCUSSION AND CONCLUSION These results suggest that EAF is a promising antibacterial extract, suitable for further investigation in rodents infected with drug resistant bacteria.
Collapse
Affiliation(s)
- Pimporn Anantaworasakul
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Hiroshi Hamamoto
- Institute of Medical Mycobiology, Teikyo University, Tokyo, Japan
| | | | - Siriporn Okonogi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
34
|
Antibacterial and Antibiotic-Modifying Activity of Methanol Extracts from Six Cameroonian Food Plants against Multidrug-Resistant Enteric Bacteria. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1583510. [PMID: 28904944 PMCID: PMC5585599 DOI: 10.1155/2017/1583510] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/30/2017] [Accepted: 07/18/2017] [Indexed: 12/13/2022]
Abstract
The present work was designed to investigate the antibacterial activities of methanol extracts from six Cameroonian edible plants and their synergistic effects with some commonly used antibiotics against multidrug-resistant (MDR) Gram-negative bacteria expressing active efflux pumps. The extracts were subjected to qualitative phytochemical screening and the microdilution broth method was used for antibacterial assays. The results of phytochemical tests indicate that all tested crude extracts contained polyphenols, flavonoids, triterpenes, and steroids. Extracts displayed selective antibacterial activities with the minimal inhibitory concentration (MIC) values ranging from 32 to 1024 μg/mL. The lowest MIC value (32 μg/mL) was recorded with Coula edulis extract against E. coli AG102 and K. pneumoniae K2 and with Mangifera indica bark extract against P. aeruginosa PA01 and Citrus sinensis extract against E. coli W3110 which also displayed the best MBC (256 μg/mL) value against E. coli ATCC8739. In combination with antibiotics, extracts from M. indica leaves showed synergistic effects with 75% (6/8) of the tested antibiotics against more than 80% of the tested bacteria. The findings of the present work indicate that the tested plants may be used alone or in combination in the treatment of bacterial infections including the multidrug-resistant bacteria.
Collapse
|
35
|
Juríková T, Viczayová I, Hegedüsová A, Mlček J, Kontra J, Snopek L, Golian M. Comparative study on natural plant antibiotics - vegetable and their consumption among college students. POTRAVINARSTVO 2017. [DOI: 10.5219/778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The research study is aimed at evaluation of natural plant antibiotics utilization among college students (554) with different subject study (Pre-school and elementary education, Biology, Regional Tourism, Horticulture, Physical education) from 3 countries - Slovak Republic, Czech Republic and Hungary. The attention has been focused on natural antibiotics in plants - vegetables (garlic, onion and horse radish) and the frequency of their consumption among college students. From the research results there is evident that majority of students had basic knowledge about natural plant antibiotics (85% of respondents) and they utilize them in everyday life (60.3%). The prevailing number of students utilizes synthetic antibiotics only rarely - once a year (33.4%) or never (37.5%). From achieved results about exact plants (garlic, onion and horse radish) consumption, the majority of respondents consume garlic once a week (42.2%); on the daily base the highest usage was noticed in the group of Slovak students with the subject of Physical education (32.1%) that could be considered as statistically different in comparison with the rest of groups. On the contrary, the lowest garlic consumption was noticed for students of biology (23.5%) and only small amount of students (3.6%) claimed that they have never included garlic into their diet. As for the onion, the majority of respondents (42.10%) also consume this commodity once a week; everyday consumption was noticed again especially between Slovak students with the subject of Physical education (32.1%) and Horticulture (31.1%). The results of these groups significantly differed from results of other groups. Third studied vegetable, horse-radish, it has never been consumed by Slovak students of Pre-school and elementary education in Slovak language (47.9%) that has been significantly distinguishable from another groups. Also Hungarian students of Physical education consume this commodity rarely (30.6%) - only once a year. Major part of students (46%) consumes horse-radish once a month. Czech students of Horticulture prefer consummation of horse-radish only once a month (76.8%). The lowest utilization was noticed in groups MU/ H (76.8%) consumed this commodity only monthly. Similarly, students of UP/ PE (30.6%) consumed horse radish only once a year that was significantly lower value in comparison with the rest of evaluated groups.
Collapse
|
36
|
Kaur N, Kaur B, Sirhindi G. Phytochemistry and Pharmacology of Phyllanthus niruri L.: A Review. Phytother Res 2017; 31:980-1004. [PMID: 28512988 DOI: 10.1002/ptr.5825] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 01/11/2023]
Abstract
Phyllanthus niruri, a typical member of family Euphorbiaceae, is a small annual herb found throughout the tropical and subtropical regions of both hemispheres. The genus Phyllanthus has been used in traditional medicine for its wide range of pharmacological activities like antimicrobial, antioxidant, anticancer, antiinflammatory, antiplasmodial, antiviral, diuretic and hepatoprotective. This review summarizes the information about morphological, biochemical, ethanobotanical, pharmacological, biological and toxicological activities with special emphasis on mechanism of anticancer activity of P. niruri. Gaps in previous studies such as taxonomic inconsistency of P. niruri, novel phytochemicals and their therapeutic properties, especially mechanisms of anticancerous activity and market products available, have been looked into and addressed. Scientific information related to 83 phytochemicals (including many novel compounds detected recently by the authors) has been provided in a very comprehensive manner. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Navneet Kaur
- Department of Biotechnology, Punjabi University, Patiala-147002, India
| | - Baljinder Kaur
- Department of Biotechnology, Punjabi University, Patiala-147002, India
| | - Geetika Sirhindi
- Department of Botany, Punjabi University, Patiala, 147 002, Punjab, India
| |
Collapse
|
37
|
Antibacterial activity of Vitex parviflora A. Juss. and Cyanthillium cinereum (L.) H. Rob. against human pathogens. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2016. [DOI: 10.1016/s2222-1808(16)61173-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Thin Layer Chromatography-Bioautography and Gas Chromatography-Mass Spectrometry of Antimicrobial Leaf Extracts from Philippine Piper betle L. against Multidrug-Resistant Bacteria. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:4976791. [PMID: 27478476 PMCID: PMC4958450 DOI: 10.1155/2016/4976791] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/20/2016] [Accepted: 06/06/2016] [Indexed: 11/18/2022]
Abstract
This study isolated and identified the antimicrobial compounds of Philippine Piper betle L. leaf ethanol extracts by thin layer chromatography- (TLC-) bioautography and gas chromatography-mass spectrometry (GC-MS). Initially, TLC separation of the leaf ethanol extracts provided a maximum of eight compounds with Rf values of 0.92, 0.86, 0.76, 0.53, 0.40, 0.25, 0.13, and 0.013, best visualized when inspected under UV 366 nm. Agar-overlay bioautography of the isolated compounds demonstrated two spots with Rf values of 0.86 and 0.13 showing inhibitory activities against two Gram-positive multidrug-resistant (MDR) bacteria, namely, methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus. The compound with an Rf value of 0.86 also possessed inhibitory activity against Gram-negative MDR bacteria, namely, carbapenem-resistant Enterobacteriaceae-Klebsiella pneumoniae and metallo-β-lactamase-producing Acinetobacter baumannii. GC-MS was performed to identify the semivolatile and volatile compounds present in the leaf ethanol extracts. Six compounds were identified, four of which are new compounds that have not been mentioned in the medical literature. The chemical compounds isolated include ethyl diazoacetate, tris(trifluoromethyl)phosphine, heptafluorobutyrate, 3-fluoro-2-propynenitrite, 4-(2-propenyl)phenol, and eugenol. The results of this study could lead to the development of novel therapeutic agents capable of dealing with specific diseases that either have weakened reaction or are currently not responsive to existing drugs.
Collapse
|
39
|
Antimicrobial Activities of Methanol, Ethanol and Supercritical CO2 Extracts of Philippine Piper betle L. on Clinical Isolates of Gram Positive and Gram Negative Bacteria with Transferable Multiple Drug Resistance. PLoS One 2016; 11:e0146349. [PMID: 26741962 PMCID: PMC4704777 DOI: 10.1371/journal.pone.0146349] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/10/2015] [Indexed: 11/20/2022] Open
Abstract
Piper betle L. has traditionally been used in alternative medicine in different countries for various therapeutic purposes, including as an anti-infective agent. However, studies reported in the literature are mainly on its activities on drug susceptible bacterial strains. This study determined the antimicrobial activities of its ethanol, methanol, and supercritical CO2 extracts on clinical isolates of multiple drug resistant bacteria which have been identified by the Infectious Disease Society of America as among the currently more challenging strains in clinical management. Assay methods included the standard disc diffusion method and the broth microdilution method for the determination of the minimum inhibitory concentration (MIC) and the minimum bactericidal concentrations (MBC) of the extracts for the test microorganisms. This study revealed the bactericidal activities of all the P. betle leaf crude extracts on methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), extended spectrum β-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and metallo-β-lactamase-producing Pseudomonas aeruginosa and Acinetobacter baumannii, with minimum bactericidal concentrations that ranged from 19μg/ml to 1250 μg/ml. The extracts proved to be more potent against the Gram positive MRSA and VRE than for the Gram negative test bacteria. VRE isolates were more susceptible to all the extracts than the MRSA isolates. Generally, the ethanol extracts proved to be more potent than the methanol extracts and supercritical CO2 extracts as shown by their lower MICs for both the Gram positive and Gram negative MDRs. MTT cytotoxicity assay showed that the highest concentration (100 μg/ml) of P. betle ethanol extract tested was not toxic to normal human dermal fibroblasts (HDFn). Data from the study firmly established P. betle as an alternative source of anti-infectives against multiple drug resistant bacteria.
Collapse
|