1
|
Suparmaniam U, Lam MK, Lim JW, Rawindran H, Ho YC, Tan IS, Kansedo J, Lim S, Cheng YW, Raza Naqvi S. Enhancing high-density microalgae cultivation via exogenous supplementation of biostimulant derived from onion peel waste for sustainable biodiesel production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:120988. [PMID: 38701587 DOI: 10.1016/j.jenvman.2024.120988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/27/2024] [Accepted: 04/20/2024] [Indexed: 05/05/2024]
Abstract
Microalgae demonstrate significant potential as a source of liquid-based biofuels. However, increasing biomass productivity in existing cultivation systems is a critical prerequisite for their successful integration into large-scale operations. Thus, the current work aimed to accelerate the growth of C. vulgaris via exogenous supplementation of biostimulant derived from onion peel waste. Under the optimal growth conditions, which entailed a biostimulant dosage of 37.5% v/v, a pH of 3, an air flow rate of 0.4 L/min, and a 2% v/v inoculum harvested during the mid-log phase, yielded a maximum biomass concentration of 1.865 g/L. Under the arbitrarily optimized parameters, a comparable growth pattern was evident in the upscaled cultivation of C. vulgaris, underscoring the potential commercial viability of the biostimulant. The biostimulant, characterized through gas chromatography-mass spectrometry (GC-MS) analysis, revealed a composition rich in polyphenolic and organo-sulphur compounds, notably including allyl trisulfide (28.13%), methyl allyl trisulfide (23.04%), and allyl disulfide (20.78%), showcasing potent antioxidant properties. Additionally, microalgae treated with the biostimulant consistently retained their lipid content at 18.44% without any significant reduction. Furthermore, a significant rise in saturated fatty acid (SFA) content was observed, with C16:0 and C18:1 dominating both bench-scale (44.08% and 14.01%) and upscaled (51.12% and 13.07%) microalgae cultures, in contrast to the control group where C18:2 was prevalent. Consequently, SFA contents reached 54.35% and 65.43% in bench-scale and upscaled samples respectively, compared to 33.73% in the control culture. These compositional characteristics align well with the requirements for producing high-quality crude biodiesel.
Collapse
Affiliation(s)
- Uganeeswary Suparmaniam
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia; HICoE-Centre for Biofuel and Biochemical Research, Institute of Sustainable Energy, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia
| | - Man Kee Lam
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia; HICoE-Centre for Biofuel and Biochemical Research, Institute of Sustainable Energy, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia.
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Sustainable Energy, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia; Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia
| | - Hemamalini Rawindran
- Department of Chemistry, Faculty of Science, Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Yeek Chia Ho
- Centre for Urban Resource Sustainability, Institute of Smart and Sustainable Living, Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Inn Shi Tan
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT250, 98009, Miri, Sarawak, Malaysia
| | - Jibrail Kansedo
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT250, 98009, Miri, Sarawak, Malaysia
| | - Steven Lim
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 43000, Selangor, Malaysia
| | - Yoke Wang Cheng
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower, #15-02, 138602, Singapore, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2), Campus for Research Excellence and Technological Enterprise (CREATE), 138602, Singapore, Singapore
| | - Salman Raza Naqvi
- Department of Engineering and Chemical Sciences, Karlstad University, Sweden
| |
Collapse
|
2
|
Zamira D, Khaydarov K, Zafar M, Ramadan MF, Ahmad M, Aziza N, Ochilov U, Zebiniso U, Farzona D. Comprehensive study of allergenic tree species: Palynological insights enhanced by HPLC and GC-MS profiling. Biomed Chromatogr 2024; 38:e5774. [PMID: 37972935 DOI: 10.1002/bmc.5774] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
Considering the limited data available on tree species in Uzbekistan, this research aimed to provide new insights. We gathered plant samples from different locations within Samarkand city and thoughtfully selected 15 tree species that represent the country's flora. Using scanning electron microscopy, we conducted comprehensive analyses of pollen morphology, revealing a diverse range of variations in the shapes, dimensions, and surface characteristics displayed by pollen grains. Distinct ornamentations such as micro-echinate, reticulate, rugulate, gemmate-verrucate, and verrucate-scabrate patterns facilitated the differentiation of species. These scanning electron microscopy findings enhance our comprehension of tree species diversity, adaptation, and ecological roles. In addition, leaf extracts were analyzed using HPLC and GC-MS, revealing a plethora of bioactive compounds, including catechins, chlorogenic acid, vanillic acid, and others. Furthermore, GC-MS analysis revealed the presence of seven key compounds, including 1-hexadecyne, 2-chloroethanol, 1,6-heptadiene, 2-methyl-, 5-bromoadamantan-2-one, ethyl 3-(3-pyridyl) propenoate, bis (2-ethylhexyl) phthalate, and quercetin. This study demonstrates the effectiveness of this method in assessing the quality of leaf extracts from tree species by examining both microscopic characteristics and chemical composition. This multifaceted approach has deepened our understanding of the characteristics and chemical compositions of these trees, thus contributing to a more profound appreciation of their ecological significance and potential applications.
Collapse
Affiliation(s)
- Djumayeva Zamira
- Institute of Biochemistry, Samarkand State University, Samarkand, Uzbekistan
| | - Khislat Khaydarov
- Institute of Biochemistry, Samarkand State University, Samarkand, Uzbekistan
| | - Muhammad Zafar
- Institute of Biochemistry, Samarkand State University, Samarkand, Uzbekistan
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Mohamed Fawzy Ramadan
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Mushtaq Ahmad
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Nozimova Aziza
- Institute of Biochemistry, Samarkand State University, Samarkand, Uzbekistan
| | - Ulugbek Ochilov
- Institute of Biochemistry, Samarkand State University, Samarkand, Uzbekistan
| | - Umurzakova Zebiniso
- Institute of Biochemistry, Samarkand State University, Samarkand, Uzbekistan
| | | |
Collapse
|
3
|
Kamran SH, Ahmad M, Ishtiaq S, Ajaib M, Razashah SH, Shahwar DE. Metabolite profiling and biochemical investigation of the antidiabetic potential of Loranthus pulverulentus Wall n-butanol fraction in diabetic animal models. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116963. [PMID: 37495027 DOI: 10.1016/j.jep.2023.116963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/15/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Globally, 537 million individuals are estimated to have diabetes. The traditional use of herbs for ameliorating diabetes symptoms is a common practice in Pakistan and use of Loranthus pulverulentus Wall (L. pulverulentus) by local people in Azad Jammu and Kashmir has been reported. AIM OF THE STUDY In the present study, the antidiabetic potential of standardized n-butanol fraction of leaves of L. pulverulentus Wall, which is a parasite of Dalbergia sisso Roxb was assessed in both alloxan (ALX) and streptozotocin (STZ) diabetic animal models. MATERIALS AND METHODS Chemical characterization of BF was performed using HPLC, GCMS and UHPLC-MS. The effect of the fraction (250 mg/kg) on insulin, plasma free fatty acids, L-lactate, pyruvate, MDA, HbA1c and glycogen levels in ALX and STZ animal models was determined. Liver and renal profiles were analyzed in the STZ model. Toxicological studies were performed by hemolytic, Ames mutagenicity, DNA protection, and thrombolytic assays. Histopathological analysis of the pancreas, liver, and kidney was performed. RESULTS BF demonstrated highly significant (p < 0.001) antidiabetic potential in both diabetic models. BF significantly (p < 0.05) improved OGTT results in alloxanized diabetic mice and blocked the absorption of glucose from the gut. A significant (p < 0.001) increase in insulin levels and glycogen content in liver tissue and a decrease in plasma FFA, MDA, HbA1c, L-lactate, and pyruvate levels in STZ-diabetic mice were recorded. GC-MS and chromatographic analysis showed the presence of catechin, eugenol, longifolene, caryophyllene, Ar-tumerone and Geranyl-alpha-terpinene. Various metabolites with antidiabetic potential, including 4-hydroxycinnamyl alcohol 4-D-glucoside, zingerone glucoside, trans-trismethoxy resveratrol-d4, epigallocatechin 3-O-cinnamate, and β-glucogallin, were identified using UHPLC-MS. Animals treated with BF showed marked improvements in cellular structures of the pancreas, liver and kidneys. This fraction is non-mutagenic and protects the DNA. CONCLUSION The experimental fraction contained potential antidiabetic bioactive compounds responsible for alleviating diabetes-associated biochemical dysregulation. The fraction increased insulin levels and enhanced glycogen storage in muscles and the liver. It blocked glucose absorption from the intestine and substantially decreased HbA1c, lactate, pyruvate, free fatty acids, lipid, liver and kidney damage. Therefore, the use of BF for the treatment of type-2 diabetes may be beneficial.
Collapse
Affiliation(s)
- Sairah Hafeez Kamran
- Punjab University College of Pharmacy, University of the Punjab, Lahore, 54000, Punjab, Pakistan.
| | - Mobasher Ahmad
- Punjab University College of Pharmacy, University of the Punjab, Lahore, 54000, Punjab, Pakistan.
| | - Saiqa Ishtiaq
- Punjab University College of Pharmacy, University of the Punjab, Lahore, 54000, Punjab, Pakistan.
| | - Muhammad Ajaib
- Department of Botany, Mirpur University of Science and Technology (MUST), Mirpur, 10250, Azad Jammu and Kashmir, Pakistan.
| | | | - Durr-E Shahwar
- Department of Chemistry, Government College University, Lahore, 54000, Punjab, Pakistan.
| |
Collapse
|
4
|
Taraghikhah MR, Atıcı Ö. Investigating bioactive phytochemicals in bulb and shoot of Allium longisepalum Bertol. from Iran. Nat Prod Res 2024:1-9. [PMID: 38192189 DOI: 10.1080/14786419.2023.2301022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/24/2023] [Indexed: 01/10/2024]
Abstract
This study investigated a wide range of bioactive compounds in bulb and shoot of Allium longisepalum Bertol. from Iran. The organs were first extracted with methanol, followed by hexane, dichloromethane, chloroform, ethyl acetate, and butanol, and phytochemicals in fractions were analysed using GC/MS. Butanol exhibited the highest yield percentages in both organs. Palmitic and oleic acid were found in all fractions, while heptadecene-(8)-carboxylic acid, stearic acid, and myristic acid were detected in at least three fractions. Each fraction contained exclusively unique metabolites found only in itself. Hexane, dichloromethane, and chloroform fractions contained specific metabolites with potential antioxidant, allelopathic, antibacterial, and anti-inflammatory effects. Ethyl acetate and butanol fractions revealed significant compounds that have potential in terms of their anticarcinogenic, anti-inflammatory, hair growth-enhancing, and antimicrobial properties, in addition to containing compounds not previously identified in plants. The study analyzes bioactive compound profiles in A. longisepalum, highlighting its chemical diversity and therapeutic potential.
Collapse
Affiliation(s)
| | - Ökkeş Atıcı
- Department of Biology, Faculty of Science, Atatürk University, Erzurum, Turkey
| |
Collapse
|
5
|
Victor PP, Narayanaswamy R, Kadry S, Gurunathan B. Identification of novel inhibitor against human phosphoethanolamine cytidylyltransferase from phytochemicals of Citrus sinensis peel extract by in vitro and in silico approach. Biotechnol Appl Biochem 2023; 70:1565-1581. [PMID: 36824047 DOI: 10.1002/bab.2453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/02/2023] [Accepted: 02/11/2023] [Indexed: 02/25/2023]
Abstract
Kidney stone is a major global menace that demands research on nonsurgical treatment involving biological compounds for the benefit of the patients. Among the biological extracts, citric acid is traditionally used to dissolve kidney stones. The current research focuses on evaluating the in vitro anti-urolithiatic activity and in silico study of ethanolic extract of Citrus sinensis (ECS) peel against c: phosphoethanolamine cytidylyltransferase (PCYT). The diuretic activity was evaluated using in vitro model against the synthesized calcium oxalate crystals and cytotoxicity study in Madin-Darby canine kidney cell lines. The phytochemicals were identified using gas chromatography-mass spectroscopy. The interaction mechanism was studied using computational docking studies to confirm their involvement in the dissolution of calcium oxalate kidney stones. Further molecular properties, drug-likeness, ADME (absorption, distribution, metabolism, and excretion), and toxicity analysis were followed for the ligands using software tools. 5-Hydroxymethylfurfural, 2,4-di-tert-butylphenol, 2-methoxy-4-vinylphenol, 6-octen-1-ol, 3,7-dimethyl-, acetate (citronellyl acetate), 3',5'-dimethoxyacetophenone, and ethyl alpha-d-glucopyranoside showed good binding affinities against PCYT. Moreover, the docking studies showed the ligand 3',5'-dimethoxyacetophenone has the highest binding energy (-6.68 kcal/mol) for human CTP. The present investigation concludes that these compounds of C. sinensis peel extract compounds are responsible as novel inhibitors against human CTP and extend their use in the pharmaceutical drug development process.
Collapse
Affiliation(s)
| | | | - Seifedine Kadry
- Department of Applied Data Science, Noroff University College, Kristiansand, Norway
- Artificial Intelligence Research Center (AIRC), Ajman University, Ajman, United Arab Emirates
- Department of Electrical and Computer Engineering, Lebanese American University, Byblos, Lebanon
| | - Baskar Gurunathan
- Department of Applied Data Science, Noroff University College, Kristiansand, Norway
- Department of Biotechnology, St Joseph's College of Engineering, Chennai, India
| |
Collapse
|
6
|
Das S, Ghosh A, Upadhyay P, Sarker S, Bhattacharjee M, Gupta P, Chattopadhyay S, Ghosh S, Dhar P, Adhikary A. A mechanistic insight into the potential anti-cancerous property of Nigella sativa on breast cancer through micro-RNA regulation: An in vitro & in vivo study. Fitoterapia 2023; 169:105601. [PMID: 37406886 DOI: 10.1016/j.fitote.2023.105601] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
Cancer continues to threat mortal alongside scientific community with burgeoning grasp. Most efforts directed to tame Cancer such as radiotherapy or chemotherapy, all came at a cost of severe side effects. The plant derived bioactive compounds on the other hand carries an inevitable advantage of being safer, bioavailable & less toxic compared to contemporary chemotherapeutics. Our strategic approach employed solvent extraction of Black Seed Oil (BSO) to highlight the orchestrated use of its oil soluble phytochemicals - Thymoquinone, Carvacrol & Trans-Anethole when used in cohort. These anti-cancer agents in unbelievably modest amounts present in BSO shows better potential to delineate migratory properties in breast cancer cells as compared to when treated individually. BSO was also observed to have apoptotic calibre when investigated in MDA-MB-231 and MCF-7 cell lines. We performed chemical characterization of the individual phytochemical as well as the oil in-whole to demonstrate the bioactive oil-soluble entities present in whole extract. BSO was observed to have significant anti-cancerous properties in cumulative proportion that is reportedly higher than the individual three components. Besides, this study also reports micro-RNA regulation on BSO administration, thereby playing a pivotal role in breast cancer alleviation. Thus, synergistic action of the integrants serves better combat force against breast cancer in the form of whole extract, hence aiming at a more lucrative paradigm while significantly regulating microRNAs associated with breast cancer migration and apoptosis.
Collapse
Affiliation(s)
- Shaswati Das
- Centre for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector III, Salt Lake City, Kolkata 700106, India
| | - Avijit Ghosh
- Centre for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector III, Salt Lake City, Kolkata 700106, India
| | - Priyanka Upadhyay
- Centre for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector III, Salt Lake City, Kolkata 700106, India
| | - Sushmita Sarker
- Centre for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector III, Salt Lake City, Kolkata 700106, India
| | - Mousumi Bhattacharjee
- Centre for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector III, Salt Lake City, Kolkata 700106, India
| | - Payal Gupta
- Department of Physiology, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700009, WB, India
| | - Sreya Chattopadhyay
- Department of Physiology, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700009, WB, India
| | - Swatilekha Ghosh
- Amity Institute of Biotechnology, Amity University, Kolkata, Major Arterial Road (South-East), Action Area II, Newtown, Kolkata, West Bengal 700135, India
| | - Pubali Dhar
- Laboratory of Food Science and Technology, Food and Nutrition, Department of Home Science, University of Calcutta, 20, B Judges Court Road, Kolkata 700027 University, India
| | - Arghya Adhikary
- Department of Life science & Biotechnology, Jadavpur University, 188, Raja Subodh Chandra Mallick Rd, Jadavpur, Kolkata, West Bengal 700032, WB, India.
| |
Collapse
|
7
|
Gangaraj R, Kundu A, Rana VS, Das A, Chawla G, Prakash G, Debbarma R, Nagaraja A, Bainsla NK, Gupta NC, Kamil D. Metabolomic profiling and its association with the bio-efficacy of Aspergillus niger strain against Fusarium wilt of guava. Front Microbiol 2023; 14:1142144. [PMID: 37168123 PMCID: PMC10165087 DOI: 10.3389/fmicb.2023.1142144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/20/2023] [Indexed: 05/13/2023] Open
Abstract
Bio-control agents are the best alternative to chemicals for the successful management of plant diseases. The fungus Aspergillus niger is known to produce diverse metabolites with antifungal activity, attracting researchers to exploit it as a bio-control agent for plant disease control. In the present study, 11 A. niger strains were isolated and screened for their antagonism against the guava wilt pathogen under in vitro and in planta conditions. Strains were identified morphologically and molecularly by sequencing the internal transcribed spacer (ITS), β-tubulin, and calmodulin genes. The strains were evaluated through dual culture, volatile, and non-volatile methods under an in vitro study. AN-11, AN-6, and AN-2 inhibited the test pathogen Fusarium oxysporum f. sp. psidii (FOP) at 67.16%, 64.01%, and 60.48%, respectively. An in planta study was conducted under greenhouse conditions with 6 months old air-layered guava plants (var. Allahabad Safeda) by pre- and post-inoculation of FOP. The AN-11 strain was found to be effective under both pre- and post-inoculation trials. Furthermore, gas chromatography-mass spectrometry (GC-MS) analysis was carried out to characterize the volatile compounds of the most potential strain, A. niger. The hexane soluble fraction showed the appearance of characteristic peaks of hexadecenoic acid methyl ester (4.41%), 10-octadecanoic acid methyl ester (3.79%), dodecane (3.21%), undecane (3.19%), gibepyrone A (0.15%), 3-methylundecane (0.36%), and citroflex A (0.38%). The ethyl acetate fraction of the bio-control fungi revealed the occurrence of major antifungal compounds, such as acetic acid ethyl ester (17.32%), benzopyron-4-ol (12.17%), 1,2,6-hexanetriol (7.16%), 2-propenoic acid ethanediyl ester (2.95%), 1-(3-ethyloxiranyl)-ethenone (0.98%), 6-acetyl-8-methoxy dimethyl chromene (0.96%), 4-hexyl-2,5-dihydro dioxo furan acetic acid (0.19%), and octadecanoic acid (1.11%). Furthermore, bio-control abilities could be due to hyper-parasitism, the production of secondary metabolites, and competition for sites and nutrients. Indeed, the results will enrich the existing knowledge of metabolomic information and support perspectives on the bio-control mechanism of A. niger.
Collapse
Affiliation(s)
- R. Gangaraj
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Aditi Kundu
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Virendra Singh Rana
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Amrita Das
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Gautham Chawla
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - G. Prakash
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rubin Debbarma
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - A. Nagaraja
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Naresh Kumar Bainsla
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Deeba Kamil
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Deeba Kamil
| |
Collapse
|
8
|
Large-Scale In Vitro Multiplication and Phytochemical Analysis of Himantoglossum affine (Boiss.) Schltr.: An Endangered Euro-Mediterranean Terrestrial Orchid. DIVERSITY 2022. [DOI: 10.3390/d14121137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Himantoglossum affine is a threatened terrestrial orchid. We aimed to optimize asymbiotic seed germination and direct embryogenesis and to analyze the phytochemical profile and physico-biochemical analysis of leaf and tuber. The individual use of organic nitrogen compounds resulted in higher germination efficiencies, while the shortest times to germination were observed using coconut water plus casein hydrolysate. Plantlets grown on media supplemented with pineapple juice and peptone had the highest plantlet length and weight. For embryogenesis, the highest regeneration rate (44%) and embryo number/explant (10.12 ± 2.08) were observed in young protocorm-like body (PLB) explants with 0.5 mg/L naphthalene acetic acid (NAA) and 1 mg/L thidiazuron (TDZ). During the acclimatization process, the scattered vascular tubes converted to fully developed vascular tissues, ensuring maximum sap flux. Gas chromatography–mass spectrometry analysis identified 1,2,3-propanetriol, monoacetate, 4H-pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl, and 2-butenedioic acid, 2-methyl-, (E)- as the most prevalent compounds. We reported higher contents of total phenolics and flavonoids and antioxidant activity compared to other terrestrial orchids. The glucomannan content (36.96%) was also higher than starch content (31.31%), comparable to those reported in other tuberous orchids. Based on the fragmentation of H. affine populations in the Middle East and Euro-Mediterranean countries due to over-harvesting, climate change, and/or human impact, our procedure offers a tool for the re-introduction of in vitro-raised plants to threatened areas.
Collapse
|
9
|
Mazhar M, Afzal M, Naveed M. Phytochemical Profiling, Biological Activities and In Silico Virtual Screening of Bioactive Compounds of
Trichodesma Indicum
(L) R. Br. Extracts. ChemistrySelect 2022. [DOI: 10.1002/slct.202203821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Modasrah Mazhar
- Department of Basic and Applied Chemistry Faculty of Science and Technology University of Central Punjab Avenue 1, Khayaban-e-Jinnah Road, Johar Town Lahore Punjab Pakistan
| | - Muhammad Afzal
- Department of Basic and Applied Chemistry Faculty of Science and Technology University of Central Punjab Avenue 1, Khayaban-e-Jinnah Road, Johar Town Lahore Punjab Pakistan
| | - Muhammad Naveed
- Department of Biotechnology Faculty of Science and Technology University of Central Punjab Avenue 1, Khayaban-e-Jinnah Road, Johar Town Lahore Punjab Pakistan
| |
Collapse
|
10
|
Balkrishna A, Verma S, Tiwari D, Srivastava J, Varshney A. UPLC-QToF-MS based fingerprinting of polyphenolic metabolites in the bark extract of Boehmeria rugulosa Wedd. JOURNAL OF MASS SPECTROMETRY : JMS 2022; 57:e4890. [PMID: 36353856 DOI: 10.1002/jms.4890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/23/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Boehmeria rugulosa Wedd. is an evergreen tree of Urticaceae family. Its bark has been extensively used in ethno-medicinal system for various ailments such as bone fracture, sprain, snakebite, and wound healing. Phyto-metabolites, which are considered as the principle components for biological activities, have been least explored for this plant. The present work investigated metabolite profiling of the stem bark of B. rugulosa in water extract using Ultra Performance Liquid Chromatography Quadrupole Time of Flight Mass Spectrometry (UPLC-QToF-MS) technique coupled with the UNIFI platform. We identified, for the first time, 20 polyphenolic metabolites belonging to seven groups: caffeoylquinic acids, coumaroylquinic acids, flavan-3-ols, oligomeric flavonoids, caffeic acid derivatives, coumaric acid derivative, and flavone glycoside in the B. rugulosa extract. UNIFI informatics-coupled UPLC-QToF-MS platform aids in the quick identification and fragmentation pattern of metabolites, with higher degree of reproducibility. The present study provides a chemical and therapeutic basis for further exploration of B. rugulosa as a valuable source of phytochemicals that could be instrumental in deciphering its ethno-medicinal utility for various human diseases.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
- Department of Allied and Applied Sciences, University of Patanjali, Haridwar, India
- Patanjali Yog Peeth (UK) Trust, Glasgow, UK
| | - Sudeep Verma
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
| | - Deepti Tiwari
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
| | - Jyotish Srivastava
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
- Department of Allied and Applied Sciences, University of Patanjali, Haridwar, India
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
11
|
Mariyammal V, Sathiageetha V, Amalraj S, Gurav SS, Amiri-Ardekani E, Jeeva S, Ayyanar M. Chemical profiling of Aristolochia tagala Cham. leaf extracts by GC-MS analysis and evaluation of its antibacterial activity. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Khan S, Arshad S, Arif A, Tanveer R, Amin ZS, Abbas S, Maqsood A, Raza M, Munir A, Latif A, Habiba M, Afzal M. Trypsin Inhibitor Isolated From Glycine max (Soya Bean) Extraction, Purification, and Characterization. Dose Response 2022; 20:15593258221131462. [PMID: 36246168 PMCID: PMC9561660 DOI: 10.1177/15593258221131462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The current study aims to isolate, purify, and characterize the trypsin inhibitor
protein from seeds of soya beans, scientifically known as Glycine
max. Its seeds were ground, and the powder was soaked several times
using n-hexane. It was added to phosphate buffer saline (PBS) followed by
filtration and centrifugation of the PBS dissolved extract. The supernatant was
subjected to ammonium sulfate precipitation and about six fractions, 30% to 80%
were prepared. The centrifuged pellets obtained from each fraction were dialyzed
and run on SDS-PAGE. The trypsin inhibitor protein was precipitated and
characterized in 30% pellet and molecular weight was 21.5 kDa compared to
protein ladder (ThermoFisher 10-170 kDa). GC-MS analysis revealed the steroid
derivatives such as stigmasterol, campesterol, beta-sitosterol, and
gamma-tocopherol. Glycine max trypsin inhibitor could be used
as a plant-derived drug to overcome the over-activation of trypsin without its
real substrate (proteins) becoming activated and start auto digestion leading to
pancreatitis.
Collapse
Affiliation(s)
- Sabir Khan
- Tti Testing
Laboratories, Lahore, Pakistan
| | - Shafia Arshad
- UCCM, Faculty of Medicine and
Allied Health Sciences, Islamia
University Bahawalpur, Punjab ,
Pakistan,Shafia Arshad, University College of
Conventional Medicine, Faculty of Medicine and Allied Health Sciences, The
Islamia University of Bahawalpur, Bahawalpur, Punjab 63100, Pakistan.
| | - Amina Arif
- Faculty of Science and Technology,
University
of Central Punjab, Lahore,
Pakistan
| | - Rida Tanveer
- UCCM, Faculty of Medicine and
Allied Health Sciences, Islamia
University Bahawalpur, Punjab ,
Pakistan
| | | | - Saba Abbas
- School of Medical Lab Technology,
Minhaj
University, Lahore, Pakistan
| | - Amna Maqsood
- Faculty of Science and Technology,
University
of Central Punjab, Lahore,
Pakistan
| | - Muhammad Raza
- Diagnostic Laboratory Iqra
Hospital, Lahore, Pakistan
| | - Arooj Munir
- Faculty of Science and Technology,
University
of Central Punjab, Lahore,
Pakistan
| | - Amara Latif
- Faculty of Science and Technology,
University
of Central Punjab, Lahore,
Pakistan
| | - Maryam Habiba
- School of Chemistry, Minhaj
University, Lahore, Pakistan
| | - Muhammad Afzal
- Faculty of Science and Technology,
University
of Central Punjab, Lahore,
Pakistan
| |
Collapse
|
13
|
Chen Y, Wang L, Liu X, Wang F, An Y, Zhao W, Tian J, Kong D, Zhang W, Xu Y, Ba Y, Zhou H. The Genus Broussonetia: An Updated Review of Phytochemistry, Pharmacology and Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165344. [PMID: 36014582 PMCID: PMC9414938 DOI: 10.3390/molecules27165344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 02/05/2023]
Abstract
The Broussonetia genus (Moraceae), recognized for its value in many Chinese traditional herbs, mainly includes Broussonetia papyrifera (L.) L’Hér. ex Vent. (BP), Broussonetia kazinoki Siebold (BK), and Broussonetia luzonica (Blanco) Bureau (BL). Hitherto, researchers have found 338 compounds isolated from BP, BK, and BL, which included flavonoids, polyphenols, phenylpropanoids, alkaloids, terpenoids, steroids, and others. Moreover, its active compounds and extracts have exhibited a variety of pharmacological effects such as antitumor, antioxidant, anti-inflammatory, antidiabetic, anti-obesity, antibacterial, and antiviral properties, and its use against skin wrinkles. In this review, the phytochemistry and pharmacology of Broussonetia are updated systematically, after its applications are first summarized. In addition, this review also discusses the limitations of investigations and the potential direction of Broussonetia. This review can help to further understand the phytochemistry, pharmacology, and other applications of Broussonetia, which paves the way for future research.
Collapse
|
14
|
Dahibhate NL, Kumar K. Metabolite profiling of Bruguiera cylindrica reveals presence of potential bioactive compounds. PEERJ ANALYTICAL CHEMISTRY 2022. [DOI: 10.7717/peerj-achem.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bruguiera cylindrica parts are commonly used in Chinese and Indian traditional medicine to treat diarrhea, fever, and many ailments. The present study aims non targeted analysis of key secondary metabolites of B. cylindrica by gas chromatography mass spectrometry (GC-MS) and ultra-high performance liquid chromatography hybrid quadrupole-Exactive-Orbitrap high resolution mass spectrometry (UHPLC-Q-Exactive Orbitrap HRMS). GC-MS and UHPLC-Q-Exactive Orbitrap HRMS were utilized for metabolic profiling of ethyl acetate extract of B. cylindrica leaves. Key metabolites in the extract were identified and predicted based on chemical similarity using online databases such as ChemSpider and mzCloud. Thirty-six compounds belonging to different classes of secondary metabolites viz. flavonoids, fatty acids, fatty acid amides, carboxylic acids, and alkaloids were identified in the extract. Pentacyclic triterpenes like betulin, ursolic acid and a tropine, an alkaloid with potential pharmacological and therapeutic activities such as anticancer properties, neuromuscular blockers and antioxidants, were also identified. This study combined GC-MS and UHPLC-Q-Exactive Orbitrap HRMS with available online database for effective and rapid identification of bioactive metabolites in the ethyl acetate extract of mangrove without individual standard application. This is the first report on the HRMS based secondary metabolic profiling of B. cylindrica, with comprehensive map of its biologically important metabolites.
Collapse
|
15
|
Singh V, Lall N, Wadhwani A, Dhanabal SP. GC-MS analysis of curculigo orchiodes and medicinal herbs with cytotoxic, hepatoprotective attributes of ethanolic extract from Indian origin. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2022; 19:719-727. [PMID: 35320638 DOI: 10.1515/jcim-2020-0545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/27/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Liver illnesses are a major public health issue all over the world. Medicinal plants constituents a viable alternative for the development of phytopharmaceuticals with hepatoprotective activity in order to solve some of these health-related problems. The present study is focused on the phytochemical and biological investigation on Indian traditional medicinal plant extracts, for their cytotoxic and hepatoprotective activity. The isolated compounds showed the presence of phenolic constituents which lead to cytotoxicity and hepatoprotective activity of medicinal plant. Cancer causes about 13% of all human deaths in 2007 (7.6 million) (American Cancer Society and WHO December 2006-07). The American Cancer Society estimates that 12,990 new cases of cervical cancer will be diagnosed in the United States year 2016. Cancer-related deaths are expected to increase, with an estimated 11.4 million deaths in 2030. METHODS The ethanolic extracts of Centella asiatica, Myristica fragrans, Trichosanthes palmata, Woodfordia fruticosa, Curculigo orchioides were evaluated against HEP-G2 cell lines for hepatoprotective activity and Curculigo orchioides was further promoted for the isolation of secondary metabolites based on inhibitory concentration. RESULTS The ethanolic extracts of C. asiatica, M. fragrans, T. palmata, W. fruticosa, Curculigo orchioides shown significant cytotoxic activity (IC50≤100 μg/mL). The plant extracts also shown significant hepatoprotective activity in a dose dependent manner when tested against HEP-G2 cell lines and cytotoxicity studies against HeLa and HEP-G2 cells. CONCLUSIONS The extract of Curculigo orchiodes rhizome showed significant cytotoxicity results. Hence the Curculigo orchiodes rhizome was selected for further phytochemical studies to isolate active compounds and their Characterization by GCMS.
Collapse
Affiliation(s)
- Vedpal Singh
- Department of Pharmacognosy, College of Pharmacy, JSS Academy of Technical Education, Noida, UP, India
| | - Namrita Lall
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Ashish Wadhwani
- Department of Pharmaceutical Biotechnology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamilnadu, India.,School of Pharmacy, Faculty of Health Science, JSS Academy of Higher Education and Research, Mauritius campus. Droopnath Ramphul St, Vacoas-Phoenix, Mauritius
| | - Sangai P Dhanabal
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamilnadu, India
| |
Collapse
|
16
|
Situmorang RFR, Gurning K, Kaban VE, Butar-Butar MJ, Perangin-Angin SAB. Determination of Total Phenolic Content, Analysis of Bioactive Compound Components, and Antioxidant Activity of Ethyl Acetate Seri (Muntingia calabura L.) Leaves from North Sumatera Province, Indonesia. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Seri (Muntingia calabura L.) leaves are a plant that is often found and have not been used in various treatments even though it is reported to have various groups of bioactive compounds such as phenolic, flavonoids, tannins, saponins, steroids, and triterpenoids.
AIM: This study aimed to determine the total phenolic content, antioxidant activity and identify the content of potential bioactive compounds contained in the ethyl acetate fraction from M. calabura leaves.
METHODS: M. calabura L. leaves fraction was carried out by maceration method using ethanol followed by partition starting with n-hexane, chloroform, and finally ethyl acetate as solvent. The ethyl acetate fraction was continued for phytochemical screening for the content of bioactive compounds using standard reagents, determination of total phenol content by colorimetric method, determination of antioxidant activity using the DPPH method, and analysis of bioactive compounds using gas chromatography–mass spectroscopy.
RESULTS: The results showed that the ethyl acetate fraction of M. calabura leaves was positive for phenolic content which was indicated by the formation of a turquoise color after 5% FeCl3 reagent was added (in ethanol), phenolic content was 0.0727 mg GAE/g dry fraction, indicating antioxidant activity (IC50) amounted to 54.437 including strong categories as antioxidants and the results of GC–MS analysis obtained various kinds of compounds and it is suspected that compounds that provide potential as antioxidants are phytol.
CONCLUSION: The bioactive compound of ethyl acetate fraction of seri (M. calabura) leaves contained phenolic components and has strong antioxidant activity.
Collapse
|
17
|
Anti-fungal and antioxidant properties of propolis (bee glue) extracts. Int J Food Microbiol 2022; 361:109463. [PMID: 34742143 DOI: 10.1016/j.ijfoodmicro.2021.109463] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 01/07/2023]
Abstract
This study aimed to identify the phenolic compounds contained in propolis and to evaluate the effect of propolis and its extracts on the antifungal activity, pH, color, and sensory analysis of creamy cheese with thyme (thyme labneh). Ethanolic and water extracts of propolis were evaluated to determine its phenolic compound content and antioxidant activity. Phenolic compounds in propolis were identified and quantified using gas chromatography-mass spectrometry (GC-MS). Antifungal activities, color, pH, and sensory evaluation of propolis and its extracts (water and ethanolic) were investigated at concentrations of 0.5%, 1%, and 1.5%. The results showed 11 phenolic compounds in the propolis extract. Our findings revealed a significant difference in phenolic content and antioxidant activity in the ethanolic extract of propolis when compared with the water extract (P < 0.05). Microbial counts in thyme labneh treated with propolis powder and its extracts (ethanolic and water) showed significant differences compared with the control at all concentrations (0.5%, 1%, and 1.5%). Propolis powder and ethanolic extracts at concentrations of 1% and 1.5% were limited the rapid growth of mold and yeast, so the results showed no significant difference between 14 and 21 days for these samples. In addition, the 1.5% water extract did not show a significant difference (P > 0.05) between Days 14 and 21. The sensory panel did not detect a significant difference in any sensory attribute in the thyme labneh treated with propolis extracts. This study identified the significant antioxidant and antimicrobial effectiveness of using propolis in dairy products, suggesting its potential as a natural preservative.
Collapse
|
18
|
Chaniad P, Phuwajaroanpong A, Techarang T, Viriyavejakul P, Chukaew A, Punsawad C. Antiplasmodial activity and cytotoxicity of plant extracts from the Asteraceae and Rubiaceae families. Heliyon 2022; 8:e08848. [PMID: 35141436 PMCID: PMC8814390 DOI: 10.1016/j.heliyon.2022.e08848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/01/2021] [Accepted: 01/24/2022] [Indexed: 12/02/2022] Open
Abstract
The increasing resistance of parasites to antimalarial drugs and the limited number of effective drugs are the greatest challenges in the treatment of malaria. It is necessary to search for an alternative medicine for use as a new, more effective antimalarial drug. Therefore, this study aimed to evaluate the in vitro antimalarial activity and cytotoxicity of extracts from plants belonging to the Asteraceae and Rubiaceae families. The phytoconstituents of one hundred ten ethanolic and aqueous extracts from different parts of twenty-three plant species were analyzed. Evaluation of their antimalarial activities against the chloroquine (CQ)-resistant Plasmodium falciparum (K1) strain was carried out using the lactate dehydrogenase (pLDH) assay, and their cytotoxicity in Vero cells was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) colorimetric method. A total of 40.91% of the extracts were active antimalarial agents. Three extracts (2.73%) exhibited high antiplasmodial activity (IC50 < 10 μg/ml), twenty-four extracts (21.82%) were moderately active with IC50 values ranging from 10-50 μg/ml, and eighteen extracts (16.36%) were mildly active with IC50 values ranging from 50-100 μg/ml. The ethanolic leaf extract of Mussaenda erythrophylla (Dona Trining; Rubiaceae) exhibited the highest activity against P. falciparum, with an IC50 value of 3.73 μg/ml and a selectivity index (SI) of 30.74, followed by the ethanolic leaf extract of Mussaenda philippica Dona Luz x M. flava (Dona Marmalade; Rubiaceae) and the ethanolic leaf extract of Blumea balsamifera (Camphor Tree; Asteraceae), with IC50 values of 5.94 and 9.66 μg/ml and SI values of 25.36 and >20.70, respectively. GC-MS analysis of these three plant species revealed the presence of various compounds, such as squalene, oleic acid amide, β-sitosterol, quinic acid, phytol, oleamide, α-amyrin, sakuranin, quercetin and pillion. In conclusion, the ethanolic leaf extract of M. erythrophylla, the leaf extract of M. philippica Dona Luz x M. flava and the leaf extract of B. balsamifera had strong antimalarial properties with minimal toxicity, indicating that compounds from these plant species have the potential to be developed into new antiplasmodial agents.
Collapse
Affiliation(s)
- Prapaporn Chaniad
- Department of Medical Science, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Arisara Phuwajaroanpong
- Department of Medical Science, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Tachpon Techarang
- Department of Medical Science, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Parnpen Viriyavejakul
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Arnon Chukaew
- Chemistry Department, Faculty of Science and Technology, Suratthani Rajabhat University, Surat Tani 84100, Thailand
| | - Chuchard Punsawad
- Department of Medical Science, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
19
|
Sethuraman SP, Ramachandran KP. Chemical Profiling of Volatile Bioactives in Luisia tenuifolia Blume Successive Extracts by GC-MS Analysis. Appl Biochem Biotechnol 2021; 194:84-98. [PMID: 34845587 DOI: 10.1007/s12010-021-03745-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022]
Abstract
Luisia tenuifolia Blume is also known as "slender leaved Luisia" and has been traditionally used in various skin ailments. The study was conducted to investigate and further characterize the volatile bioactives of different extracts of L. tenuifolia. Whole plants of L. tenuifolia, after collection, were shade dried, pulverized, and extracted successively with n-hexane, chloroform, ethyl acetate, and ethanol by Soxhlet percolation. Each of the crude extracts was further subjected to gas chromatography-mass spectrometry (GC-MS) analysis. GC-MS profile of all the four extracts was established and a wide range of secondary metabolites were identified and characterized spectroscopically. A total of 25, 27, 14, and 15 components were identified in the n-hexane, chloroform, ethyl acetate, and ethanol extracts accounting for 79.31, 78.28, 97.08, and 83.83% of the total peak areas of volatile components, respectively. Several pharmacologically active components including natural antioxidants (β-tocopherol and δ-tocopherol), saturated and unsaturated fatty acids, eicosane, phytol, and spheroidenone were present. Thus, the current study reports the presence of promising, volatile yet thermostable bioactive components and in turn provides a promising note in the exploration of its biological activity.
Collapse
Affiliation(s)
- Sakthi Priyadarsini Sethuraman
- Department of Pharmacognosy, SRM College of Pharmacy, Faculty of Medicine and Health Sciences, SRM Institute of Science & Technology, SRM Nagar, Kattankulathur 603203, Kanchipuram, Chennai TN, India
| | - Kumar Pathangi Ramachandran
- Department of Pharmacognosy, SRM College of Pharmacy, Faculty of Medicine and Health Sciences, SRM Institute of Science & Technology, SRM Nagar, Kattankulathur 603203, Kanchipuram, Chennai TN, India.
| |
Collapse
|
20
|
Confortin TC, Todero I, Luft L, Schmaltz S, Ferreira DF, Barin JS, Mazutti MA, Zabot GL, Tres MV. Extraction of bioactive compounds from Senecio brasiliensis using emergent technologies. 3 Biotech 2021; 11:284. [PMID: 34094803 DOI: 10.1007/s13205-021-02845-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 05/11/2021] [Indexed: 11/25/2022] Open
Abstract
Several plant species synthesize biologically active secondary metabolites. Pyrrolizidine alkaloids are a large group of biotoxins produced by thousands of plant species to protect against the attack of insects and herbivores, but they are highly toxic for humans and animals. In this study, extracts from the aerial part of Senecio brasiliensis were obtained using different technologies: ultrasound-assisted extraction (UAE), pressurized liquid extraction (PLE), and microwave hydrodiffusion and gravity (MHG). The study aimed to evaluate the effectiveness of these technologies for the extraction of chemical compounds found in this plant, focusing on two pyrrolizidine alkaloids: integerrimine and senecionine. Influential parameters on yield and chemical composition were also evaluated: for UAE and MHG, temperature and pressure; for PLE, temperature, and percentage of ethanol. All the extraction techniques were efficient for the extraction of integerrimine and senecionine. The UAE and PLE stood out for the higher yields and number of compounds. The PLE presented a maximum yield of 18.63% for the matrix leaf and the UAE a maximum yield of 11.82% for the same matrix. These two techniques also stood out in terms of the number of compounds, once 36 different compounds were found via PLE and 17 via UAE. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02845-1.
Collapse
Affiliation(s)
- Tássia C Confortin
- Department of Agricultural Engineering, Federal University of Santa Maria, 1000, Roraima av., Santa Maria, 97105-900 Brazil
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria, 1040 Sete de Setembro st., Center DC, Cachoeira do Sul, RS 96508-010 Brazil
| | - Izelmar Todero
- Department of Agricultural Engineering, Federal University of Santa Maria, 1000, Roraima av., Santa Maria, 97105-900 Brazil
| | - Luciana Luft
- Department of Chemical Engineering, Federal University of Santa Maria, 1000, Roraima av., Santa Maria, 97105-900 Brazil
| | - Silvana Schmaltz
- Department of Chemical Engineering, Federal University of Santa Maria, 1000, Roraima av., Santa Maria, 97105-900 Brazil
| | - Daniele F Ferreira
- Department of Food Science and Technology, Federal University of Santa Maria, 1000, Roraima av., Santa Maria, 97105-900 Brazil
| | - Juliano S Barin
- Department of Food Science and Technology, Federal University of Santa Maria, 1000, Roraima av., Santa Maria, 97105-900 Brazil
| | - Marcio A Mazutti
- Department of Agricultural Engineering, Federal University of Santa Maria, 1000, Roraima av., Santa Maria, 97105-900 Brazil
| | - Giovani L Zabot
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria, 1040 Sete de Setembro st., Center DC, Cachoeira do Sul, RS 96508-010 Brazil
| | - Marcus V Tres
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria, 1040 Sete de Setembro st., Center DC, Cachoeira do Sul, RS 96508-010 Brazil
| |
Collapse
|
21
|
Chitiva-Chitiva LC, Ladino-Vargas C, Cuca-Suárez LE, Prieto-Rodríguez JA, Patiño-Ladino OJ. Antifungal Activity of Chemical Constituents from Piper pesaresanum C. DC. and Derivatives against Phytopathogen Fungi of Cocoa. Molecules 2021; 26:molecules26113256. [PMID: 34071493 PMCID: PMC8198927 DOI: 10.3390/molecules26113256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, the antifungal potential of chemical constituents from Piper pesaresanum and some synthesized derivatives was determined against three phytopathogenic fungi associated with the cocoa crop. The methodology included the phytochemical study on the aerial part of P. pesaresanum, the synthesis of some derivatives and the evaluation of the antifungal activity against the fungi Moniliophthora roreri, Fusarium solani and Phytophthora sp. The chemical study allowed the isolation of three benzoic acid derivatives (1-3), one dihydrochalcone (4) and a mixture of sterols (5-7). Seven derivatives (8-14) were synthesized from the main constituents, of which compounds 9, 10, 12 and 14 are reported for the first time. Benzoic acid derivatives showed strong antifungal activity against M. roreri, of which 11 (3.0 ± 0.8 µM) was the most active compound with an IC50 lower compared with positive control Mancozeb® (4.9 ± 0.4 µM). Dihydrochalcones and acid derivatives were active against F. solani and Phytophthora sp., of which 3 (32.5 ± 3.3 µM) and 4 (26.7 ± 5.3 µM) were the most active compounds, respectively. The preliminary structure-activity relationship allowed us to establish that prenylated chains and the carboxyl group are important in the antifungal activity of benzoic acid derivatives. Likewise, a positive influence of the carbonyl group on the antifungal activity for dihydrochalcones was deduced.
Collapse
Affiliation(s)
- Luis C. Chitiva-Chitiva
- Department of Chemistry, Faculty of Sciences, Universidad Nacional de Colombia, Sede Bogotá, Bogotá 111321, Colombia; (L.C.C.-C.); (L.E.C.-S.)
| | - Cristóbal Ladino-Vargas
- Department of Chemistry, Faculty of Sciences, Pontificia Universidad Javeriana, Sede Bogotá, Bogotá 110231, Colombia; (C.L.-V.); (J.A.P.-R.)
| | - Luis E. Cuca-Suárez
- Department of Chemistry, Faculty of Sciences, Universidad Nacional de Colombia, Sede Bogotá, Bogotá 111321, Colombia; (L.C.C.-C.); (L.E.C.-S.)
| | - Juliet A. Prieto-Rodríguez
- Department of Chemistry, Faculty of Sciences, Pontificia Universidad Javeriana, Sede Bogotá, Bogotá 110231, Colombia; (C.L.-V.); (J.A.P.-R.)
| | - Oscar J. Patiño-Ladino
- Department of Chemistry, Faculty of Sciences, Universidad Nacional de Colombia, Sede Bogotá, Bogotá 111321, Colombia; (L.C.C.-C.); (L.E.C.-S.)
- Correspondence: ; Tel.: +57-1-3165000 (ext. 14485)
| |
Collapse
|
22
|
Phytochemical profiling and GC–MS analysis of Vitis rotundifolia pulp extract (Jumbo muscadine). APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01889-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Mkhize Z, Seboletswe PS, Paumo HK, Boniface PK, Katata-Seru LM. Enhanced Antioxidant Efficacy of Nano-Encapsulated Protorhus Longifolia Methanol Extract Stabilized with Eudragit. INTERNATIONAL JOURNAL OF NANOSCIENCE 2021. [DOI: 10.1142/s0219581x21500174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study describes the synthesis of Protorhus longifolia methanolic leaf extract-loaded Eudragit nanoparticles (NPs) and assessment of their antioxidant activity comparative to the free methanolic extract. The latter was also analyzed for its total phenolic content (TPC) and total flavonoid content (TFC). The extract-loaded NPs were obtained through the emulsification solvent evaporation process and systematically characterized using the dynamic light scattering, entrapment efficiency, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The antioxidant power was determined using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing ability of plasma (FRAP) in vitro model systems. Screening of the different classes of secondary metabolites was carried out through chemical reaction tests. Identification of the potential antioxidants was performed using the gas chromatography-mass spectrometry (GC-MS) technique and the database of National Institute Standard and Technology (NIST). The characterization techniques showed spherical-like particles having an average size of 150[Formula: see text]nm and zeta potential of [Formula: see text]22[Formula: see text]mV. The percentage of entrapped methanolic extract was determined to be 83%. The antioxidant assay demonstrated that this methodology persuaded an efficient concentration-dependent potential. This study indicates that nanoformulation of the Protorhus longifolia extracts leads to a suitable system for the enhancement of antioxidant activity. The appraisal of other pharmacological activities of the nano-encapsulated Protorhus longifolia methanol extract is under process.
Collapse
Affiliation(s)
- Zimbili Mkhize
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng 2735, South Africa
| | - Pule Silent Seboletswe
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng 2735, South Africa
| | - Hugues Kamdem Paumo
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng 2735, South Africa
| | - Pone Kamdem Boniface
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Brazil
| | - Lebogang Maureen Katata-Seru
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng 2735, South Africa
| |
Collapse
|
24
|
Keshav P, Goyal DK, Kaur S. Promastigotes of Leishmania donovani exhibited sensitivity towards the high altitudinal plant Cicer microphyllum. ACTA ACUST UNITED AC 2021; 1:100040. [PMID: 35284854 PMCID: PMC8906067 DOI: 10.1016/j.crpvbd.2021.100040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/18/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
In this study, we explored Cicer microphyllum (CM), a Trans-Himalayan plant for its chemical components by GC-MS, phytochemical quantitation, and anti-leishmanial efficacy against sensitive strain (SS) and resistant strain (RS) promastigotes of L. donovani in vitro. The hydroethanolic extract of aerial parts of CM was screened for the presence of chemical compounds and phytochemical estimation. The antileishmanial activity of CM was assessed against the promastigotes of L. donovani. The cell volume and cell viability were analyzed by flow cytometry. The generation of reactive oxygen species (ROS) and lipid bodies was determined after treatment with reference and test drug. The extract of CM is complemented with major plant secondary metabolites and the quantitative assessment for phytoconstituents showed the highest concentration of phenols followed by flavonoids and terpenoids. Different biologically active chemical compounds were identified by the GC-MS analysis. The 50% inhibitory concentrations against L. donovani sensitive strain were 14.40 μg/ml and 23.03 μg/ml whereas for resistant promastigotes these were 49.84 μg/ml and 26.77 μg/ml after SAG (sodium stibogluconate) and CM exposure, respectively. CM treatment reduced cell viability induced by loss in plasma membrane integrity. Drug treatment resulted in higher ROS generation and production of lipid bodies. GC-MS screening of the extract revealed the richness of active chemical components in CM. The presence of diverse phytochemicals, no cytotoxicity to human macrophages, and the antileishmanial action of CM depicted its potential as an alternative future drug. First report of in vitro leishmanial activity of Cicer microphyllum (CM) against SAG-resistant and SAG-sensitive strain. Chemical characterization of CM by GC-MS revealed biologically active components. CM augmented ROS production and lipid bodiesʼ formation in Leishmania parasites. Parasitic cells exhibited loss of membrane integrity upon drug treatment. No significant toxicity on THP-1 cell line was observed.
Collapse
|
25
|
GC-MS Analysis, Metal Analysis and Antimicrobial Investigation of Sterculia diversifolia. Pharm Chem J 2020. [DOI: 10.1007/s11094-020-02301-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Phytochemical analysis and in vitro antioxidant and antimicrobial activities of hydroalcoholic extracts of the leaves of Salacia kraussii. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Chuo SC, Nasir HM, Mohd-Setapar SH, Mohamed SF, Ahmad A, Wani WA, Muddassir M, Alarifi A. A Glimpse into the Extraction Methods of Active Compounds from Plants. Crit Rev Anal Chem 2020; 52:667-696. [PMID: 32954795 DOI: 10.1080/10408347.2020.1820851] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Naturally active compounds are usually contained inside plants and materials thereof. Thus, the extraction of the active compounds from plants needs appropriate extraction methods. The commonly employed extraction methods are mostly based on solid-liquid extraction. Frequently used conventional extraction methods such as maceration, heat-assisted extraction, Soxhlet extraction, and hydrodistillation are often criticized for large solvent consumption and long extraction times. Therefore, many advanced extraction methods incorporating various technologies such as ultrasound, microwaves, high pressure, high voltage, enzyme hydrolysis, innovative solvent systems, adsorption, and mechanical forces have been studied. These advanced extraction methods are often better than conventional methods in terms of higher yields, higher selectivity, lower solvent consumption, shorter processing time, better energy efficiency, and potential to avoid organic solvents. They are usually designed to be greener, more sustainable, and environment friendly. In this review, we have critically described recently developed extraction methods pertaining to obtaining active compounds from plants and materials thereof. Main factors that affect the extraction performances are tuned, and extraction methods are chosen in line with the properties of targeted active compounds or the objectives of extraction. The review also highlights the advancements in extraction procedures by using combinations of extraction methods to obtain high overall yields or high purity extracts.
Collapse
Affiliation(s)
- Sing Chuong Chuo
- Centre of Lipids Engineering and Applied Research, Universiti Teknologi Malaysia, UTM Skudai, Johor, Malaysia.,Department of Quantity Surveying, Faculty of Built Environment, Universiti Teknologi Malaysia, UTM Skudai, Johor, Malaysia
| | - Hasmida Mohd Nasir
- Centre of Lipids Engineering and Applied Research, Universiti Teknologi Malaysia, UTM Skudai, Johor, Malaysia
| | - Siti Hamidah Mohd-Setapar
- Centre of Lipids Engineering and Applied Research, Universiti Teknologi Malaysia, UTM Skudai, Johor, Malaysia.,Malaysia-Japan International Institute of Technology, Jalan Sultan Yahya Petra, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| | - Sarajul Fikri Mohamed
- Department of Quantity Surveying, Faculty of Built Environment, Universiti Teknologi Malaysia, UTM Skudai, Johor, Malaysia
| | - Akil Ahmad
- Centre of Lipids Engineering and Applied Research, Universiti Teknologi Malaysia, UTM Skudai, Johor, Malaysia.,Malaysia-Japan International Institute of Technology, Jalan Sultan Yahya Petra, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| | - Waseem A Wani
- Department of Chemistry, Govt. Degree College Tral, Kashmir, J&K, India
| | - Mohd Muddassir
- Catalytic Chemistry Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah Alarifi
- Catalytic Chemistry Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
28
|
Faustino MV, Faustino MAF, Silva H, Silva AMS, Pinto DCGA. Lipophilic Metabolites of
Spartina maritima
and
Puccinellia maritima
Involved in Their Tolerance to Salty Environments. Chem Biodivers 2020; 17:e2000316. [DOI: 10.1002/cbdv.202000316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Maria V. Faustino
- LAQV-REQUIMTE Department of Chemistry University of Aveiro Campus de Santiago 3810-193 Aveiro Portugal
| | - Maria A. F. Faustino
- LAQV-REQUIMTE Department of Chemistry University of Aveiro Campus de Santiago 3810-193 Aveiro Portugal
| | - Helena Silva
- CESAM Department of Biology University of Aveiro Campus de Santiago 3810-193 Aveiro Portugal
| | - Artur M. S. Silva
- LAQV-REQUIMTE Department of Chemistry University of Aveiro Campus de Santiago 3810-193 Aveiro Portugal
| | - Diana C. G. A. Pinto
- LAQV-REQUIMTE Department of Chemistry University of Aveiro Campus de Santiago 3810-193 Aveiro Portugal
| |
Collapse
|
29
|
Phytochemical investigation and antioxidant activities of methanol extract, methanol fractions and essential oil of Dillenia suffruticosa leaves. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.07.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
30
|
Poochi SP, Easwaran M, Balasubramanian B, Anbuselvam M, Meyyazhagan A, Park S, Bhotla HK, Anbuselvam J, Arumugam VA, Keshavarao S, Kanniyappan GV, Pappusamy M, Kaul T. Employing bioactive compounds derived from Ipomoea obscura (L.) to evaluate potential inhibitor for SARS-CoV-2 main protease and ACE2 protein. FOOD FRONTIERS 2020; 1:168-179. [PMID: 32838301 PMCID: PMC7361879 DOI: 10.1002/fft2.29] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 11/13/2022] Open
Abstract
Angiotensin converting enzyme 2 (ACE2) and main protease (MPro) are significant target proteins, mainly involved in the attachment of viral genome to host cells and aid in replication of severe acute respiratory syndrome-coronaviruses or SARS-CoV genome. In the present study, we identified 11 potent bioactive compounds from ethanolic leaf extract of Ipomoea obscura (L.) by using GC-MS analysis. These potential bioactive compounds were considered for molecular docking studies against ACE2 and MPro target proteins to determine the antiviral effects against SARS-COV. Results exhibits that among 11 compounds from I. obscura (L.), urso-deoxycholic acid, demeclocycline, tetracycline, chlorotetracycline, and ethyl iso-allocholate had potential viral inhibitory activity. Hence, the present findings suggested that chemical constitution present in I. obscura (L.) will address inhibition of corona viral replication in host cells.
Collapse
Affiliation(s)
- Saravana Prabha Poochi
- Department of Biochemistry and BioinformaticsKarpagam Academy of Higher EducationCoimbatore641021India
| | - Murugesh Easwaran
- Nutritional Improvement of CropsInternational Centre for Genetic Engineering and BiotechnologyNew Delhi110067India
| | | | - Mohan Anbuselvam
- Department of BiotechnologySelvamm College of Arts and ScienceNamakkal637003India
| | - Arun Meyyazhagan
- Euroespes Biomedical Research CentreInternational Centre of Neuroscience and Genomic MedicineCorunna15165Spain
- Department of Life SciencesChrist (Deemed to be University)Bangalore560029India
| | - Sungkwon Park
- Department of Food Science and BiotechnologyCollege of Life ScienceSejong UniversitySeoul05006Republic of Korea
| | - Haripriya Kuchi Bhotla
- Department of MedicineSection of Internal and Cardiovascular MedicineUniversity of PerugiaPerugiaItaly
| | - Jeeva Anbuselvam
- Department of Animal ScienceBharathidasan UniversityTiruchirappalli620024India
| | - Vijaya Anand Arumugam
- Medical Genetics and Epigenetics LaboratoryDepartment of Human Genetics and Molecular BiologyBharathiar UniversityCoimbatoreTamil NaduIndia
| | - Sasikala Keshavarao
- Professor and Emeritus (Rtd.)Human Genetics LaboratoryDepartment of ZoologySchool of Life SciencesBharathiar UniversityCoimbatoreTamil Nadu46India
| | | | | | - Tanushri Kaul
- Nutritional Improvement of CropsInternational Centre for Genetic Engineering and BiotechnologyNew Delhi110067India
| |
Collapse
|
31
|
Supercritical fluid extraction and solubilization of Carica papaya linn. leaves in ternary system with CO2 + ethanol solvents. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.01.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Viju N, Punitha SMJ, Satheesh S. Antibiofilm activity of symbiotic Bacillus species associated with marine gastropods. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01554-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Abstract
Purpose
Generally, symbiotic marine bacteria are renowned for the synthesis of compounds with bioactive properties, and this has been documented in many previous studies. Therefore, the present study was aimed to isolate novel bacterial symbionts of gastropods that have the ability to synthesize bioactive compounds. These bioactive compounds could be used effectively as antibiofilm agents in order to overcome the problems associated with biofilm.
Methods
The bacteria associated with the surface of marine gastropods were isolated and characterized. Following this, the bacterial metabolites were extracted and their antibiofilm effect was evaluated on biofilm-forming bacteria on artificial substrates. Moreover, the biofilm-forming bacterium Alteromonas sp. was treated with the extracts of symbiotic bacteria in order to evaluate the influence of extracts over the synthesis of extracellular polymeric substance (EPS). Besides, the biologically active chemical constituents of the extracts were separated using thin-layer chromatography and subjected to gas chromatography and mass spectrometry (GC-MS) analysis for characterization.
Results
Three bacterial strains belonging to the species Bacillus firmus, Bacillus cereus and Bacillus subtilis were identified from the bacterial community associated with the gastropods. The antibiofilm assays revealed that the extract of three symbiotic bacteria significantly (p < 0.05) reduced the biofilm formation by the marine bacterium Alteromonas sp. on artificial materials. Also, the EPS synthesis by Alteromonas sp. was significantly inhibited due to symbiotic bacterial extract treatment. The chemical composition of the bioactive fraction isolated from the symbiotic bacteria extract revealed that most of the detected compounds were belonging to aromatic acid, fatty acid and carboxylic acid.
Conclusion
The results of this study clearly revealed that the bacteria belonging to the above listed Bacillus species can be considered as a promising source of natural antibiofilm agents.
Collapse
|
33
|
Confortin TC, Todero I, Luft L, Teixeira AL, Mazutti MA, Zabot GL, Tres MV. VALORIZATION OF Solanum viarum DUNAL BY EXTRACTING BIOACTIVE COMPOUNDS FROM ROOTS AND FRUITS USING ULTRASOUND AND SUPERCRITICAL CO2. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2019. [DOI: 10.1590/0104-6632.20190364s20190267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tássia Carla Confortin
- Universidade Federal de Santa Maria, Brazil; Universidade Federal de Santa Maria, Brazil
| | | | | | | | - Marcio Antonio Mazutti
- Universidade Federal de Santa Maria, Brazil; Universidade Federal de Santa Maria, Brazil
| | | | | |
Collapse
|
34
|
Huang CY, Chu YL, Sridhar K, Tsai PJ. Analysis and determination of phytosterols and triterpenes in different inbred lines of Djulis (Chenopodium formosanum Koidz.) hull: A potential source of novel bioactive ingredients. Food Chem 2019; 297:124948. [PMID: 31253280 DOI: 10.1016/j.foodchem.2019.06.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/13/2019] [Accepted: 06/05/2019] [Indexed: 12/31/2022]
Abstract
Djulis (Chenopodiun formosaneum Koidz.,), pseudo-cereal crop emerged as a potential source of functional ingredients, was used to identify phytosterols and triterpenes from seven inbred lines of Djulis hull using GC-MS. Key bioactive compounds were identified including 6 phytosterols (34.73-59.48 mg/100 g), 6 triterpenes (30.56-57.47 mg/100 g), and 5 other unsaponifiable compounds (15.89-22.50 mg/100 g). Moreover, principal component analysis (PCA) was conducted and explored the variation among Djulis hull samples with two clusters based on the surface color that reflected the content of phytosterols and triterpenes. These results confirmed that the color might be used as an indicator for estimation of phytosterol and triterpene contents in Djulis hull. Overall, this is the first study that identified novel unsaponifiable compounds in Djulis hull, which might contribute to the development of phytosterols and/or triterpenes enriched functional foods.
Collapse
Affiliation(s)
- Chin-Yuan Huang
- Department of Food Science, Agricultural College, National Pingtung University of Science and Technology, 1 Shuefu Road, Neipu, Pingtung 912 01, Taiwan
| | - Yung-Lin Chu
- International Master's Degree Program in Food Science, International College, National Pingtung University of Science and Technology, 1 Shuefu Road, Neipu, Pingtung 912 01, Taiwan
| | - Kandi Sridhar
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, 1 Shuefu Road, Neipu, Pingtung 912 01, Taiwan.
| | - Pi-Jen Tsai
- Department of Food Science, Agricultural College, National Pingtung University of Science and Technology, 1 Shuefu Road, Neipu, Pingtung 912 01, Taiwan.
| |
Collapse
|
35
|
Faustino MV, Faustino MAF, Pinto DCGA. Halophytic Grasses, a New Source of Nutraceuticals? A Review on Their Secondary Metabolites and Biological Activities. Int J Mol Sci 2019; 20:E1067. [PMID: 30823674 PMCID: PMC6429475 DOI: 10.3390/ijms20051067] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/24/2019] [Accepted: 02/25/2019] [Indexed: 12/02/2022] Open
Abstract
The Poaceae family, known as grasses, is distributed worldwide and is considered the most important group of monocotyledonous crops. Salt stress is multifactorial, therefore to survive, halophytes evolved a variety of adaptations, which include the biosynthesis of different primary and secondary metabolites. This trait enhances the accumulation of important families of compounds crucial to the prevention of a variety of chronic diseases. Besides, if proven edible, these species could cope with the increased soil salinity responsible for the decline of arable land due to their high nutritional/nutraceutical value. Herein, the phytochemical investigations performed in halophytes from the Poaceae family as well as their biological properties were explored. Among the 65 genera and 148 species of known halophytic grasses, only 14% of the taxa were studied phytochemically and 10% were subjected to biological evaluation. Notably, in the studied species, a variety of compound families, as well as bioactivities, were demonstrated, highlighting the potential of halophytic grasses.
Collapse
Affiliation(s)
- Maria V Faustino
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Maria A F Faustino
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Diana C G A Pinto
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
36
|
Sharmila G, Thirumarimurugan M, Muthukumaran C. Green synthesis of ZnO nanoparticles using Tecoma castanifolia leaf extract: Characterization and evaluation of its antioxidant, bactericidal and anticancer activities. Microchem J 2019. [DOI: 10.1016/j.microc.2018.11.022] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
37
|
Alara OR, Abdurahman NH, Ukaegbu CI, Kabbashi NA. Extraction and characterization of bioactive compounds in Vernonia amygdalina leaf ethanolic extract comparing Soxhlet and microwave-assisted extraction techniques. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2019. [DOI: 10.1080/16583655.2019.1582460] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Oluwaseun Ruth Alara
- Centre of Excellence for Advanced Research in Fluid Flow (CARIFF), Universiti Malaysia Pahang Gambang, Malaysia
| | - Nour Hamid Abdurahman
- Centre of Excellence for Advanced Research in Fluid Flow (CARIFF), Universiti Malaysia Pahang Gambang, Malaysia
| | | | - Nassereldeen Ahmed Kabbashi
- Bioenvironmental Engineering Research Centre (BERC), Department of Biotechnology Engineering (BTE), Kulliyyah of Engineering (KOE), International Islamic University Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
38
|
dos Santos IB, Lopes MDS, Bini AP, Tschoeke BAP, Verssani BAW, Figueredo EF, Cataldi TR, Marques JPR, Silva LD, Labate CA, Quecine MC. The Eucalyptus Cuticular Waxes Contribute in Preformed Defense Against Austropuccinia psidii. FRONTIERS IN PLANT SCIENCE 2019; 9:1978. [PMID: 30687371 PMCID: PMC6334236 DOI: 10.3389/fpls.2018.01978] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/19/2018] [Indexed: 05/02/2023]
Abstract
Austropuccinia psidii, the causal agent of myrtle rust, is a biotrophic pathogen whose growth and development depends on the host tissues. The uredospores of A. psidii infect Eucalyptus by engaging in close contact with the host surface and interacting with the leaf cuticle that provides important chemical and physical signals to trigger the infection process. In this study, the cuticular waxes of Eucalyptus spp. were analyzed to determine their composition or structure and correlation with susceptibility/resistance to A. psidii. Twenty-one Eucalyptus spp. in the field were classified as resistant or susceptible. The resistance/susceptibility level of six Eucalyptus spp. were validated in controlled conditions using qPCR, revealing that the pathogen can germinate on the eucalyptus surface of some species without multiplying in the host. CG-TOF-MS analysis detected 26 compounds in the Eucalyptus spp. cuticle and led to the discovery of the role of hexadecanoic acid in the susceptibility of Eucalyptus grandis and Eucalyptus phaeotricha to A. psidii. We characterized the epicuticular wax morphology of the six previously selected Eucalyptus spp. using scanning electron microscopy and observed different behavior in A. psidii germination during host infection. It was found a correlation of epicuticular morphology on the resistance to A. psidii. However, in this study, we provide the first report of considerable interspecific variation in Eucalyptus spp. on the susceptibility to A. psidii and its correlation with cuticular waxes chemical compounds that seem to play a synergistic role as a preformed defense mechanism.
Collapse
Affiliation(s)
- Isaneli Batista dos Santos
- Departament of Genetics, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Mariana da Silva Lopes
- Departament of Genetics, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Andressa Peres Bini
- Departament of Genetics, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | | | | | | | - Thais Regiani Cataldi
- Departament of Genetics, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - João Paulo Rodrigues Marques
- Departament of Phytopathology, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Luciana Duque Silva
- Departament of Forest Science, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Carlos Alberto Labate
- Departament of Genetics, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Maria Carolina Quecine
- Departament of Genetics, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, Brazil
| |
Collapse
|
39
|
Sanjay KR, Sudarshan BL, Maheshwar PK, Priya PS. Volatile and phenolic compounds in freshwater diatom Nitzschia palea as a potential oxidative damage protective and anti-inflammatory source. Pharmacogn Mag 2019. [DOI: 10.4103/pm.pm_649_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
40
|
Antibacterial and Antioxidant Activity of Different Staged Ripened Fruit of Capsicum annuum and Its Green Synthesized Silver Nanoparticles. BIONANOSCIENCE 2018. [DOI: 10.1007/s12668-018-0521-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Paudel MR, Chand MB, Pant B, Pant B. Antioxidant and cytotoxic activities of Dendrobium moniliforme extracts and the detection of related compounds by GC-MS. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:134. [PMID: 29685150 PMCID: PMC5913799 DOI: 10.1186/s12906-018-2197-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/10/2018] [Indexed: 02/07/2023]
Abstract
Background The medicinal orchid Dendrobium moniliforme contains water-soluble polysaccharides, phenanthrenes, bibenzyl derivatives, and polyphenol compounds. This study explored the antioxidant and cytotoxic activities of D. moniliforme extracts and detected their bioactive compounds. Methods Plant material was collected from the Daman of Makawanpur district in central Nepal. Plant extracts were prepared from stems using hexane, chloroform, acetone, ethanol and methanol. The total polyphenol content (TPC) in each extract was determined using Folin-Ciocalteu’s reagent and the total flavonoid content (TFC) in each extract was determined using the aluminium chloride method. The in vitro antioxidant and cytotoxic activities of each extract were determined using DPPH (2,2-diphenyl-1-picrylhydrazyl) and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays respectively. Gas chromatography and mass spectrometry (GC-MS) analysis was used to detect bioactive compounds. Results TPC content was highest (116.65 μg GAE/mg of extract) in D. moniliforme chloroform extract (DMC) and TFC content was highest (116.67 μg QE/mg of extract) in D. moniliforme acetone extract (DMA). D. moniliforme hexane extract (DMH) extract showed the highest percentage of DPPH radical scavenging activity (94.48%), followed closely by D. moniliforme ethanol extract (DME) (94.45%), DMA (93.71%) and DMC (94.35%) at 800 μg/ml concentration. The antioxidant capacities of DMC, DMA, DMH and DME, which were measured in IC50 values, were much lower 42.39 μg/ml, 49.56 μg/ml, 52.68 μg/ml, and 58.77 μg/ml respectively than the IC50 of D. moniliforme methanol extract (DMM) (223.15 μg/ml). DMM at the concentration of 800 μg/ml most inhibited the growth of HeLa cells (78.68%) and DME at the same concentration most inhibited the growth of U251 cells (51.95%). The cytotoxic capacity (IC50) of DMM against HeLa cells was 155.80 μg/ml of extract and that of DME against the U251 cells was 772.50 μg/ml of extract. A number of bioactive compounds were detected in both DME and DMM. Conclusion The fact that plant extract of D. moniliforme has a number of bioactive compounds which showed antioxidant and cytotoxic activities suggests the potential pharmacological importance of this plant. Electronic supplementary material The online version of this article (10.1186/s12906-018-2197-6) contains supplementary material, which is available to authorized users.
Collapse
|
42
|
Chandrasekaran R, Seetharaman P, Krishnan M, Gnanasekar S, Sivaperumal S. Carica papaya (Papaya) latex: a new paradigm to combat against dengue and filariasis vectors Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). 3 Biotech 2018; 8:83. [PMID: 29430347 PMCID: PMC5796936 DOI: 10.1007/s13205-018-1105-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 01/07/2018] [Indexed: 12/22/2022] Open
Abstract
This study manifests the larvicidal efficacy of Carica papaya latex extract and silver nanoparticles (CPAgNPs) synthesized using latex, against developing immature juveniles of Aedes aegypti and Culex quinquefasciatus. Briefly, the latex was collected and fractioned with different solvents such as chloroform, methanol and aqueously. The obtained crude extracts were subjected to larvicidal activity in the dose-dependent method. After 24 h, the mortality rate was calculated and statistically analyzed. From the results, it was demonstrated that the chloroform extract displayed prominent activity in IInd and IIIrd instar larvae of A. aegypti and C. quinquefasciatus with better LC50 values followed by methanol and aqueous extract. Subsequently, we profiled the qualitative analysis of a chloroform extract through biochemical tests; Fourier transform infrared spectroscopy and gas chromatography-mass spectrometry. Moreover, we authenticated the major secondary metabolites and activated larvicidal compound present in the extract. Further, we synthesized CPAgNPs using aqueous latex extract and challenged with IInd and IIIrd instar larvae of A. aegypti and C. quinquefasciatus. Noticeably, the synthesized nanoproducts were showed 100% mortality in a 24-h treatment with significant LC50 values. Hence, this study has opened up new vistas in the field of parasitological research to develop Carica papaya latex as a new stratagem in the insect vector management program.
Collapse
Affiliation(s)
- Rajkuberan Chandrasekaran
- Department of Biotechnology, School of Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu India
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu India
| | - Prabukumar Seetharaman
- Department of Biotechnology, School of Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu India
| | - Muthukumar Krishnan
- Department of Physics, National Institute of Technology, Tiruchirappalli, Tamil Nadu India
| | - Sathishkumar Gnanasekar
- Department of Biotechnology, School of Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu India
| | - Sivaramakrishnan Sivaperumal
- Department of Biotechnology, School of Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu India
| |
Collapse
|
43
|
Susanto DF, Aparamarta HW, Widjaja A, Gunawan S. Identification of phytochemical compounds in Calophyllum inophyllum leaves. Asian Pac J Trop Biomed 2017. [DOI: 10.1016/j.apjtb.2017.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|