1
|
Bangar NS, Ravindran S, Shaikh SA, Shah N, Tupe RS. Homeopathic Formulations of Syzygium jambolanum Alleviate Glycation-Mediated Structural and Functional Modifications of Albumin: Evaluation through Multi-Spectroscopic and Microscopic Approaches. HOMEOPATHY 2024; 113:98-111. [PMID: 37857331 DOI: 10.1055/s-0043-1771024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
BACKGROUND The growing interest in identifying the mode of action of traditional medicines has strengthened its research. Syzygium jambolanum (Syzyg) is commonly prescribed in homeopathy and is a rich source of phytochemicals. OBJECTIVE The present study aims to shed light on the anti-glycation molecular mechanism of Syzyg mother tincture (MT), 30c, and 200c on glycated human serum albumin (HSA) by multi-spectroscopic and microscopic approaches. METHODS The phytochemicals and antioxidant potential of the Syzyg formulations were estimated by the high-performance liquid chromatography and spectroscopic technique, respectively. Glycation was initiated by incubating HSA with methylglyoxal, three Syzyg formulations, and the known inhibitor aminoguanidine in separate tubes at 37°C for 48 hours. The formation of glycation adducts was assessed by spectrofluorometer and affinity chromatography. The structural modifications were analyzed through circular dichroism, Fourier transform infrared spectroscopy, turbidity, 8-anilinonapthalene-1-sulfonic acid fluorescence, and nuclear magnetic resonance. Further, the formation of the aggregates was examined by thioflavin T, native-polyacrylamide gel electrophoresis, and transmission electron microscopy. Additionally, the functional modifications of glycated HSA were determined by esterase-like activity and antioxidant capacity. The binding analysis of Syzyg formulations with glycated HSA was evaluated by surface plasmon resonance (SPR). RESULTS Syzyg formulations MT, 30c, and 200c contained gallic acid and ellagic acid as major phytochemicals, with concentrations of 16.02, 0.86, and 0.52 µg/mL, and 227.35, 1.35, and 0.84 µg/mL, respectively. Additionally, all three formulations had remarkable radical scavenging ability and could significantly inhibit glycation compared with aminoguanidine. Further, Syzyg formulations inhibited albumin's structural and functional modifications. SPR data showed that Syzyg formulations bind to glycated HSA with an equilibrium dissociation constant of 1.10 nM. CONCLUSION Syzyg formulations inhibited the glycation process while maintaining the structural and functional integrity of HSA.
Collapse
Affiliation(s)
- Nilima S Bangar
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune, Maharashtra, India
| | - Selvan Ravindran
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune, Maharashtra, India
| | - Shamim A Shaikh
- Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth (Deemed to be University), Katraj, Pune, Maharashtra, India
| | - Nilesh Shah
- Department of Surgery and Homeopathic Therapeutics, Bharati Vidyapeeth (Deemed to be University), Homoeopathic Medical College, Katraj, Pune, Maharashtra, India
| | - Rashmi S Tupe
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune, Maharashtra, India
| |
Collapse
|
2
|
Thiyagarajan G, Muthukumaran P, Prabhu D, Balasubramanyam M, Baddireddi LS. Syzygium cumini ameliorates high fat diet induced glucose intolerance, insulin resistance, weight gain, hepatic injury and nephrotoxicity through modulation of PTP1B and PPARγ signaling. ENVIRONMENTAL TOXICOLOGY 2024; 39:1086-1098. [PMID: 37815491 DOI: 10.1002/tox.23989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/04/2023] [Accepted: 09/21/2023] [Indexed: 10/11/2023]
Abstract
Metabolic disorders are majorly associated with insulin resistance and an impaired glucose tolerance. Since, many of the currently available drugs exhibit adverse effects and are resistant to therapies, natural products are a promising alternate in the alleviation of complex metabolic disorders. In the current study, Syzygium cumini methanolic extract (SCE) was investigated for its anti-diabetic and anti-adipogenic potential using C57BL/6 mice fed on high fat diet (HFD). The HFD fed obese mice were treated with 200 mg/kg SCE and compared with positive controls Metformin, Pioglitazone and Sodium Orthovanadate. The biometabolites in SCE were characterized using Fourier transform infrared and gas chromatography and mass spectroscopy. A reduction in blood glucose levels with improved insulin sensitivity and glucose tolerance was observed in SCE-treated HFD obese mice. Histopathological and biochemical investigations showed a reduction in hepatic injury and nephrotoxicity in SCE-administered HFD mice. Results showed inhibition of PTP1B and an upregulation of IRS1 and PKB-mediated signaling in skeletal muscle. A significant decrease in lipid markers such as TC, TG, LDL-c and VLDL-c levels were observed with increased HDL-c in SCE-treated HFD mice. A significant decrease in weight and adiposity was observed in SCE-administered HFD mice in comparison to controls. This decrease could be due to the partial agonism of PPARγ and an increased expression of adiponectin, an insulin sensitizer. Hence, the dual-modulatory effect of SCE, partly due to the presence of 26% Pyrogallol, could be useful in the management of diabetes and its associated maladies.
Collapse
Affiliation(s)
- Gopal Thiyagarajan
- Tissue Culture and Drug Discovery Laboratory, Centre for Food Technology, Department of Biotechnology, Anna University, Chennai, India
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology, Chennai, India
| | - Padmanaban Muthukumaran
- Tissue Culture and Drug Discovery Laboratory, Centre for Food Technology, Department of Biotechnology, Anna University, Chennai, India
| | - Durai Prabhu
- Department of Cell and Molecular Biology, Madras Diabetes Research Foundation, Chennai, India
| | | | - Lakshmi Subhadra Baddireddi
- Tissue Culture and Drug Discovery Laboratory, Centre for Food Technology, Department of Biotechnology, Anna University, Chennai, India
| |
Collapse
|
3
|
Hussain S, Gul Jan F, Jan G, Irfan M, Musa M, Rahman S, Ali N, Hamayun M, Alrefai AF, Almutairi MH, Azmat R, Ali S. Evaluation of the Hypoglycemic and Hypolipidemic Potential of Extract Fraction of Quercus baloot Griff Seeds in Alloxan-induced Diabetic Mice. Curr Pharm Des 2024; 30:2978-2991. [PMID: 39219120 DOI: 10.2174/0113816128319184240827070016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION The discovery and development of new phytomedicines can be greatly aided by plants because of their tremendous therapeutic benefits, efficiency, cost-effectiveness, lack of side effects, and cheaper therapies. In this regard, Quercus baloot, generally known as oak, is used in folkloric medicine for treating and preventing various human disorders, including diabetes. AIM For this purpose, the present study aimed to evaluate crude methanolic extract and various fractions of Quercus baloot for antihyperlipidemic and antihyperglycemic potential followed by the analysis of active compounds. METHODS The hypoglycemic and hypolipidemic activity was evaluated in Swiss male Albino mice by administering an oral dose of 150-300 mg/kg of Q. baloot extracts in alloxan induced diabetic mice for 14 days. RESULTS The results revealed that crude methanolic extract at a dose of 300 mg/kg exhibited a significant reduction in the blood glucose level (198.50 ± 1.99 mg/dl) at day 14 and the same treatment significantly increased the body weight (31.26 ± 0.27 g) at day 14 in comparison to the control group. Moreover, the biochemical parameters were investigated which presented an increase in high-density lipids (HDL) (30.33 ± 0.33 mg/dl), whereas low-density lipids (LDL) showed a significant decrease (105.66 ± 0.26 mg/dl). Additionally, triglyceride levels 104.83 ± 0.70 mg/dl, and total cholesterol 185.50 ± 0.76 mg/dl are significantly decreased. In serum biochemical analysis creatinine and hepatic enzyme markers, like serum glutamate pyruvate transaminase (32.00 ± 0.36 U/mg), serum glutamate oxaloacetate transaminase (34.33 ± 0.61 U/mg), and alkaline phosphatase (157.00 ± 0.73 U/mg), were significantly reduced by the crude methanolic extract at a dose of 300 mg/kg as compared to the control group. The antioxidant enzymes like Superoxide dismutase (4.57 ± 0.011), peroxidases dismutase (6.53 ± 0.014, and catalase (8.38 ± 0.014) at a dosage of 300 mg/kg of methanolic extract exhibited a significant increase. The histopathological study of the diabetic heart, liver, and pancreas showed substantial restoration of damaged tissues in the methanolic extract 150 and 300 mg/kg treated group, which supports the effectiveness of Q. baloot seeds. The gas chromatography-mass spectrometry analysis of methanolic extract identified 10 antidiabetic active compounds in the Q. baloot seeds, validating the antihyperglycemic activity. Thus, methanolic crude extract at the doses 150 and 300 mg/kg of Q. baloot showed significant antihyperlipidemic and antihyperglycemic activities, which validate the folkloric utilization of Q. baloot as a remedy in diabetes. CONCLUSION In conclusion, the 300 mg/kg methanolic extract of Q. baloot has notable hypoglycemic and hypolipidemic potential, supporting the plant's traditional medicinal usage in the treatment of diabetes and its complications. Further studies are needed for the purification, characterization, and structural clarification of bioactive compounds.
Collapse
Affiliation(s)
| | - Farzana Gul Jan
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | - Gul Jan
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | - Muhammad Irfan
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
- Missouri Botanical Garden, 4344 Shaw Blvd., St. Louis, Missouri 63110, USA
| | - Muhammad Musa
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | - Shahid Rahman
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | - Niaz Ali
- Department of Botany, University of Hazara, Mansehra, Pakistan
| | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | | | - Mikhlid H Almutairi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rafia Azmat
- Department of Chemistry, University of Karachi, Karachi, Pakistan
| | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
4
|
Das G, Nath R, Das Talukdar A, Ağagündüz D, Yilmaz B, Capasso R, Shin HS, Patra JK. Major Bioactive Compounds from Java Plum Seeds: An Investigation of Its Extraction Procedures and Clinical Effects. PLANTS (BASEL, SWITZERLAND) 2023; 12:1214. [PMID: 36986906 PMCID: PMC10057433 DOI: 10.3390/plants12061214] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Java plum is widely recognized as a plant with valuable medicinal properties, originating from Indonesia and India and distributed globally in the tropic and sub-tropic regions of the world. The plant is rich in alkaloids, flavonoids, phenyl propanoids, terpenes, tannins, and lipids. The phytoconstituents of the plant seeds possess various vital pharmacological activities and clinical effects including their antidiabetic potential. The bioactive phytoconstituents of Java plum seeds include jambosine, gallic acid, quercetin, β-sitosterol, ferulic acid, guaiacol, resorcinol, p-coumaric acid, corilagin, ellagic acid, catechin, epicatechin, tannic acid, 4,6 hexahydroxydiphenoyl glucose, 3,6-hexahydroxy diphenoylglucose, 1-galloylglucose, and 3-galloylglucose. Considering all the potential beneficial effects of the major bioactive compounds present in the Jamun seeds, in the current investigation, the specific clinical effects and the mechanism of action for the major bioactive compounds along with the extraction procedures are discussed.
Collapse
Affiliation(s)
- Gitishree Das
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea
| | - Rajat Nath
- Department of Life Science and Bioinformatics, Assam University, Silchar 788011, Assam, India
| | - Anupam Das Talukdar
- Department of Life Science and Bioinformatics, Assam University, Silchar 788011, Assam, India
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Emek, Ankara 06490, Turkey
| | - Birsen Yilmaz
- Department of Biological Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, Telangana, India
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80138 Naples, Italy
| | - Han-Seung Shin
- Department of Food Science & Biotechnology, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea
| |
Collapse
|
5
|
Kumar M, Hasan M, Lorenzo JM, Dhumal S, Nishad J, Rais N, Verma A, Changan S, Barbhai MD, Radha, Chandran D, Pandiselvam R, Senapathy M, Dey A, Pradhan PC, Mohankumar P, Deshmukh VP, Amarowicz R, Mekhemar M, Zhang B. Jamun (Syzygium cumini (L.) Skeels) seed bioactives and its biological activities: A review. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Tak Y, Kaur M, Jain MC, Samota MK, Meena NK, Kaur G, Kumar R, Sharma D, Lorenzo JM, Amarowicz R. Jamun Seed: A Review on Bioactive Constituents, Nutritional Value and Health Benefits. POL J FOOD NUTR SCI 2022. [DOI: 10.31883/pjfns/152568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
7
|
Ren Y, Cui GD, He LS, Yao H, Zi CY, Gao YX. Traditional Uses, Phytochemistry, Pharmacology and Toxicology of Rhizoma phragmitis: A Narrative Review. Chin J Integr Med 2022; 28:1127-1136. [PMID: 35319074 PMCID: PMC8940586 DOI: 10.1007/s11655-022-3572-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2022] [Indexed: 11/25/2022]
Abstract
Rhizoma phragmitis is a common Chinese herbal medicine whose effects are defined as ‘clearing heat and fire, promoting fluid production to quench thirst, eliminating irritability, stopping vomiting, and disinhibiting urine’. During the Novel Coronavirus epidemic in 2020, the Weijing Decoction and Wuye Lugen Decoction, with Rhizoma phragmitis as the main herbal component, were included in The Pneumonia Treatment Protocol for Novel Coronavirus Infection (Trial Version 5) due to remarkable antiviral effects. Modern pharmacological studies have shown that Rhizoma phragmitis has antiviral, antioxidative, anti-inflammatory, analgesic, and hypoglycemic functions, lowers blood lipids and protects the liver and kidney. This review aims to provide a systematic summary of the botany, traditional applications, phytochemistry, pharmacology and toxicology of Rhizoma phragmitis.
Collapse
Affiliation(s)
- Yuan Ren
- Department of Rheumatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Ge-Dan Cui
- Department of Rheumatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Li-Sha He
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Huan Yao
- Department of Rheumatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Chang-Yan Zi
- Department of Rheumatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yong-Xiang Gao
- International Education College, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
8
|
Mazumder K, Biswas B, Al Mamun A, Billah H, Abid A, Sarkar KK, Saha B, Azom S, Kerr PG. Investigations of AGEs' inhibitory and nephroprotective potential of ursolic acid towards reduction of diabetic complications. J Nat Med 2022; 76:490-503. [PMID: 35032247 DOI: 10.1007/s11418-021-01602-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/27/2021] [Indexed: 01/10/2023]
Abstract
In diabetes, interactions between AGEs (advanced glycation end products) and RAGEs (receptors of AGEs) are responsible for chronic complications and the current work reports the potential of ursolic acid as a RAGE inhibitor. The three-dimensional crystal structure of RAGE was first docked with target molecules by 'AutodockVina' using GROMOS 96 4381 parameters. Druggability and pharmacokinetic properties were calculated from the SwissADME server. In vitro bovine serum albumin (BSA)-glucose fluorescence and BSA-methylglyoxal fluorescence assays were also performed. Finally, alloxan-induced diabetic mice were administered ursolic acid and metformin standards (at 1, 50, 100 mg/kg) for 50 days. Blood glucose levels, several blood parameters, blood lipid profiles, supernatants of homogenized kidney and plasma of mice were examined. In the computational study, ursolic acid showed greater binding affinity (-7.5 kcal/mol) for RAGE with an ADMET profiles and lead-likeness compared to metformin as a standard antidiabetic. In the in vitro fluorescence assays, the IC50 value for ursolic acid was much less than that of metformin standard. During the in vivo study, significant reduction in the levels of blood glucose, HbA1C (glycated hemoglobin), creatinine, uric acid, BUN (blood urea nitrogen), AST (aspartate aminotransferase), ALT (alanine aminotransferase), ALP (alkaline phosphatase) were observed in the ursolic acid and metformin-treated mice. Substantial inhibition of AGEs' formation in the plasma and kidney were also detected. Finally, the histopathological examinations of the kidney revealed reversal of cellular necrosis. Hence, ursolic acid is proved to be a potent AGE inhibitory agent in managing the diabetic complications.
Collapse
Affiliation(s)
- Kishor Mazumder
- Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
- School of Dentistry and BioMedical Sciences, Charles Sturt University, Booroma St, Wagga Wagga, NSW, Australia.
- School of Optometry and Vision Science, UNSW Medicine University of New South Wales (UNSW), Sydney, NSW, Australia.
| | - Biswajit Biswas
- Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Abdullah Al Mamun
- Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Hasan Billah
- Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Ahsan Abid
- Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Kishore Kumar Sarkar
- Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Bisti Saha
- Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Shorrowar Azom
- Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Philip G Kerr
- School of Dentistry and BioMedical Sciences, Charles Sturt University, Booroma St, Wagga Wagga, NSW, Australia
| |
Collapse
|
9
|
do Nascimento-Silva NRR, Bastos RP, da Silva FA. Jambolan (Syzygium cumini (L.) Skeels)):A review on its nutrients, bioactive compounds and health benefits. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Qamar M, Akhtar S, Ismail T, Wahid M, Abbas MW, Mubarak MS, Yuan Y, Barnard RT, Ziora ZM, Esatbeyoglu T. Phytochemical Profile, Biological Properties, and Food Applications of the Medicinal Plant Syzygium cumini. Foods 2022; 11:foods11030378. [PMID: 35159528 PMCID: PMC8834268 DOI: 10.3390/foods11030378] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 12/24/2022] Open
Abstract
Syzygium cumini, locally known as Jamun in Asia, is a fruit-bearing crop belonging to the Myrtaceae family. This study aims to summarize the most recent literature related to botany, traditional applications, phytochemical ingredients, pharmacological activities, nutrition, and potential food applications of S. cumini. Traditionally, S. cumini has been utilized to combat diabetes and dysentery, and it is given to females with a history of abortions. Anatomical parts of S. cumini exhibit therapeutic potentials including antioxidant, anti-inflammatory, analgesic, antipyretic, antimalarial, anticancer, and antidiabetic activities attributed to the presence of various primary and secondary metabolites such as carbohydrates, proteins, amino acids, alkaloids, flavonoids (i.e., quercetin, myricetin, kaempferol), phenolic acids (gallic acid, caffeic acid, ellagic acid) and anthocyanins (delphinidin-3,5-O-diglucoside, petunidin-3,5-O-diglucoside, malvidin-3,5-O-diglucoside). Different fruit parts of S. cumini have been employed to enhance the nutritional and overall quality of jams, jellies, wines, and fermented products. Today, S. cumini is also used in edible films. So, we believe that S. cumini’s anatomical parts, extracts, and isolated compounds can be used in the food industry with applications in food packaging and as food additives. Future research should focus on the isolation and purification of compounds from S. cumini to treat various disorders. More importantly, clinical trials are required to develop low-cost medications with a low therapeutic index.
Collapse
Affiliation(s)
- Muhammad Qamar
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan; (M.Q.); (S.A.); (T.I.)
| | - Saeed Akhtar
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan; (M.Q.); (S.A.); (T.I.)
| | - Tariq Ismail
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan; (M.Q.); (S.A.); (T.I.)
- Department of Food Technology, Engineering and Nutrition, Lund University, P.O. Box 188, SE-221 00 Lund, Sweden
| | - Muqeet Wahid
- Department of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Malik Waseem Abbas
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | | | - Ye Yuan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; (Y.Y.); (Z.M.Z.)
| | - Ross T. Barnard
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Zyta M. Ziora
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; (Y.Y.); (Z.M.Z.)
| | - Tuba Esatbeyoglu
- Institute of Food Science and Human Nutrition, Department of Food Development and Food Quality, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany
- Correspondence:
| |
Collapse
|
11
|
Mazumder K, Sumi TS, Golder M, Biswas B, Maknoon, Kerr PG. Antidiabetic profiling, cytotoxicity and acute toxicity evaluation of aerial parts of Phragmites karka (Retz.). JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113781. [PMID: 33421602 DOI: 10.1016/j.jep.2021.113781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/28/2020] [Accepted: 01/01/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Phragmites karka (Retz.) of family Poaceae is a pristine tropical plant that is well known to the local healers for ailments of diabetes, fever, diarrhea and CNS depression but lacks the scientific evidence behind its traditional usage. Hence, we explicated this plant to find the scientific basis of its traditional utilization. AIM OF THE STUDY The current study aims to find out the antidiabetic potential, toxicity after oral administration and in vitro cytotoxic activity of aerial parts of the plant on HeLa cells. METHODS The plant was extracted with methanol by maceration and the crude extract was then subjected to solvent partitioning with modified Kupchan method for preparing several fractions. Phytochemical screening and total phenolic content of the plant was first determined through established procedures. Acute toxicity of the plant was studied by orally administering a single high dose (5000 mg/kg) of drug. Cytotoxicity of the methanolic plant extract was determined by measuring the percentage of cell viability on human cervical cancer cell lines, HeLa. In vitro antidiabetic activity was determined through iodine starch and DNSA (3,5-dinitrosalicylic acid) method of α-amylase inhibition. Finally, in vivo oral glucose tolerance test and alloxan induced antidiabetic activity test was performed at 150 and 300 mg/kg body weight doses of plant extract to confirm the in vivo antidiabetic activity. RESULTS No mortality was demonstrated by Phragmites karka in the acute toxicity test. However, signs of cellular toxicity was observed and histopathological studies on major organs exhibited necrosis in liver and kidney. In vitro cytotoxicity assay revealed the death of HeLa cells by DCM (dichloromethane) and n-hexane fractions of plant extract at 100 and 10 μg/mL concentrations. The IC50 value of the fractions were later evaluated by MTT assay (316.1 and 96.7 μg/mL for n-hexane and DCM fractions, respectively). In the iodine starch and DNSA method of α-amylase enzyme inhibitory activity test, substantial inhibition of enzyme was observed with the IC50 values of 2.05 and 2.08 mg/mL, respectively. In the in vivo antidiabetic activity test, considerable reduction in blood glucose level of diabetic mice was detected in both oral glucose tolerance test and alloxan induced antidiabetic activity test. In addition, the microscopic examination of pancreas showed noticeable recovery of pancreatic β cells and the blood lipid profile analysis represented a significant (p < 0.05) reduction of total cholesterol, LDL (low density lipoprotein) and triglyceride level in plant extract treated mice. CONCLUSION Results of this study reveals that the Phragmites karka extract is toxic at cellular level after oral administration and cytotoxic when tested on HeLa cells. The plant also evidenced hypoglycemic property, possibly through the inhibition of α-amylase enzyme and recovered the pancreatic beta cells along with the improvement of lipid profile of diabetic mice. However, robust studies on this plant is required to isolate the bioactive compounds, elucidate structures and evaluate their mechanism of actions in support of our findings. CLASSIFICATION Toxicology and Safety, Quality Traditional Medicine.
Collapse
Affiliation(s)
- Kishor Mazumder
- Department of Pharmacy, Jashore University of Science and Technology, Jashore, 7408, Bangladesh; School of Biomedical Sciences and Graham Centre for Agricultural Innovation, Charles Sturt University, Boorooma St, Wagga Wagga, NSW, Australia.
| | - Tahamina Sultana Sumi
- School of Biomedical Sciences and Graham Centre for Agricultural Innovation, Charles Sturt University, Boorooma St, Wagga Wagga, NSW, Australia
| | - Mimi Golder
- Pharmacy Discipline, Khulna University, Khulna, 9208, Bangladesh
| | - Biswajit Biswas
- Department of Pharmacy, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Maknoon
- Department of Pharmacy, University of Science and Technology Chittagong, Foy's Lake, Chiittagong, 4202, Bangladesh
| | - Philip G Kerr
- School of Biomedical Sciences and Graham Centre for Agricultural Innovation, Charles Sturt University, Boorooma St, Wagga Wagga, NSW, Australia
| |
Collapse
|
12
|
Atale N, Yadav D, Rani V, Jin JO. Pathophysiology, Clinical Characteristics of Diabetic Cardiomyopathy: Therapeutic Potential of Natural Polyphenols. Front Nutr 2020; 7:564352. [PMID: 33344490 PMCID: PMC7744342 DOI: 10.3389/fnut.2020.564352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/27/2020] [Indexed: 12/20/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is an outcome of disturbances in metabolic activities through oxidative stress, local inflammation, and fibrosis, as well as a prime cause of fatality worldwide. Cardiovascular disorders in diabetic individuals have become a challenge in diagnosis and formulation of treatment prototype. It is necessary to have a better understanding of cellular pathophysiology that reveal the therapeutic targets and prevent the progression of cardiovascular diseases due to hyperglycemia. Critical changes in levels of collagen and integrin have been observed in the extracellular matrix of heart, which was responsible for cardiac remodeling in diabetic patients. This review explored the understanding of the mechanisms of how the phytochemicals provide cardioprotection under diabetes along with the caveats and provide future perspectives on these agents as prototypes for the development of drugs for managing DCM. Thus, here we summarized the effect of various plant extracts and natural polyphenols tested in preclinical and cell culture models of diabetic cardiomyopathy. Further, the potential use of selected polyphenols that improved the therapeutic efficacy against diabetic cardiomyopathy is also illustrated.
Collapse
Affiliation(s)
- Neha Atale
- Jaypee Institute of Information Technology, Noida, India
| | - Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Vibha Rani
- Jaypee Institute of Information Technology, Noida, India
| | - Jun-O Jin
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
13
|
Bioguided chemical characterization of pequi (Caryocar brasiliense) fruit peels towards an anti-diabetic activity. Food Chem 2020; 345:128734. [PMID: 33310563 DOI: 10.1016/j.foodchem.2020.128734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/12/2020] [Accepted: 11/22/2020] [Indexed: 02/05/2023]
Abstract
Pequi fruit peels are an underexploited source of polyphenols. The anti-diabetic potential of an extract and fractions from the peels were evaluated in a panel of assays. The extract and fractions thereof inhibited the release of cytokines involved in insulin resistance - TNF, IL-1β, and CCL2 - by lipopolysaccharide-stimulated THP-1 cells. The ethyl acetate fraction inhibited in vitro α-glucosidase (pIC50 = 4.8 ± 0.1), an enzyme involved in the metabolization of starch and disaccharides to glucose, whereas a fraction enriched in tannins (16C) induced a more potent α-glucosidase inhibition (pIC50 = 5.3 ± 0.1). In the starch tolerance test in mice, fraction 16C reduced blood glucose level (181 ± 10 mg/dL) in comparison to the vehicle-treated group (238 ± 11 mg/dL). UPLC-DAD-ESI-MS/MS analyses disclosed phenolic acids and tannins as constituents, including corilagin and geraniin. These results highlight the potential of pequi fruit peels for developing functional foods to manage type-2 diabetes.
Collapse
|
14
|
de Paulo Farias D, Neri-Numa IA, de Araújo FF, Pastore GM. A critical review of some fruit trees from the Myrtaceae family as promising sources for food applications with functional claims. Food Chem 2020; 306:125630. [DOI: 10.1016/j.foodchem.2019.125630] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 12/19/2022]
|
15
|
Dos Santos MM, Prestes AS, de Macedo GT, Ecker A, Barcelos RP, Boligon AA, Souza D, de Bem AF, da Rocha JBT, Barbosa NV. Syzygium cumini leaf extract inhibits LDL oxidation, but does not protect the liproprotein from glycation. JOURNAL OF ETHNOPHARMACOLOGY 2018; 210:69-79. [PMID: 28844679 DOI: 10.1016/j.jep.2017.08.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 08/22/2017] [Accepted: 08/24/2017] [Indexed: 06/07/2023]
Abstract
ETNOPHARMACOLOGICAL RELEVANCE Syzygium cumini (L.) Skeels is a plant widely used in folk medicine to treat diabetes mellitus (DM). The tea from its leaves is frequently used by diabetics for lowering hyperglycemia. There is a close relationship between DM and atherosclerosis, a chronic immuno-inflammatory disease, were the early stages encompass oxidative and glycative modifications in the structure of low density lipoprotein (LDL). AIM OF THIS STUDY To investigate the potential protective effects of aqueous-leaf extract from Syzygium cumini (S.cExt) against CuSO4-induced oxidation and methylglyoxal (MG)-induced glycation of human LDL in vitro. MATERIALS AND METHODS LDL oxidative changes were evaluated by measuring conjugated dienes (CD) formation, thiobarbituric acid reactive substances (TBARS) levels, quenching of tryptophan (Trp) fluorescence and structural modifications in LDL particle. In LDL glycated by MG (glyLDL), we determined the levels of fluorescent advanced glycation end products (AGEs) and mobility by agarose gel electrophoresis. RESULTS S.cExt blocked oxidative events induced by CuSO4 in human LDL, plasma and serum. Fourier transform infrared spectroscopy (FT-IR) revealed that specific regions of apoB100 were oxidized by CuSO4 in human LDL and that S.cExt reduced these oxidations. Unlike, the increased AGEs levels and eletrophoretic mobility observed in LDL MG-glycated were not modified by S.cExt. CONCLUSION The findings herein indicate that S.cExt could be tested in atherogenesis models as potential protective agent against LDL oxidation.
Collapse
Affiliation(s)
- Matheus M Dos Santos
- Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Alessandro S Prestes
- Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Gabriel T de Macedo
- Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Assis Ecker
- Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Rômulo P Barcelos
- Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil; Graduate Program in Bio-experimentation, University of Passo Fundo, Passo Fundo, RS, Brazil
| | - Aline A Boligon
- Department of Industrial Pharmacy, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Diego Souza
- Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Andreza F de Bem
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - João B T da Rocha
- Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Nilda V Barbosa
- Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
16
|
Chhikara N, Kaur R, Jaglan S, Sharma P, Gat Y, Panghal A. Bioactive compounds and pharmacological and food applications of Syzygium cumini– a review. Food Funct 2018. [DOI: 10.1039/c8fo00654g pmid: 30379170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The present review explores the nutritional, phytochemical and pharmacological potential as well as diverse food usages ofSyzygium cumini.
Collapse
Affiliation(s)
- Navnidhi Chhikara
- Department of Food Technology and Nutrition
- Lovely Professional University
- India
| | - Ravinder Kaur
- Department of Food Technology and Nutrition
- Lovely Professional University
- India
| | - Sundeep Jaglan
- Division of Microbial Biotechnology
- Indian Institute of Integrative Medicine-CSIR
- India
| | | | - Yogesh Gat
- Department of Food Technology and Nutrition
- Lovely Professional University
- India
| | - Anil Panghal
- Department of Food Technology and Nutrition
- Lovely Professional University
- India
| |
Collapse
|
17
|
Chhikara N, Kaur R, Jaglan S, Sharma P, Gat Y, Panghal A. Bioactive compounds and pharmacological and food applications ofSyzygium cumini– a review. Food Funct 2018; 9:6096-6115. [DOI: 10.1039/c8fo00654g] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The present review explores the nutritional, phytochemical and pharmacological potential as well as diverse food usages ofSyzygium cumini.
Collapse
Affiliation(s)
- Navnidhi Chhikara
- Department of Food Technology and Nutrition
- Lovely Professional University
- India
| | - Ravinder Kaur
- Department of Food Technology and Nutrition
- Lovely Professional University
- India
| | - Sundeep Jaglan
- Division of Microbial Biotechnology
- Indian Institute of Integrative Medicine-CSIR
- India
| | | | - Yogesh Gat
- Department of Food Technology and Nutrition
- Lovely Professional University
- India
| | - Anil Panghal
- Department of Food Technology and Nutrition
- Lovely Professional University
- India
| |
Collapse
|