1
|
Nassef NE, Shendi SS, Saad AGE, Harba NM, Beshay EVN, Mohamed ASED, Gouda MA. An in vivo appraisal of Punica granatum peel extract's ultrastructural effect on cystic echinococcosis in mice. J Helminthol 2024; 98:e40. [PMID: 38738533 DOI: 10.1017/s0022149x24000300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
In the past decade, interest has significantly increased regarding the medicinal and nutritional benefits of pomegranate (Punica granatum) peel. This study examined the effects of using pomegranate peel extract (PGE) alone and in combination with albendazole (ABZ) on ultrastructural and immunological changes in cystic echinococcosis in laboratory-infected mice. Results revealed that the smallest hydatid cyst size and weight (0.48 ± 0.47mm, 0.17 ± 0.18 gm) with the highest drug efficacy (56.2%) was detected in the PGE + ABZ group, which also exhibited marked histopathological improvement. Ultrastructural changes recorded by transmission electron microscopy including fragmentation of the nucleus, glycogen depletion, and multiple lysosomes in vacuolated cytoplasm were more often observed in PGE + ABZ group. IFN-γ levels were significantly increased in the group treated with ABZ, with a notable reduction following PGE treatment, whether administered alone or in combination with ABZ. Thus, PGE enhanced the therapeutic efficiency of ABZ, with improvement in histopathological and ultrastructural changes.
Collapse
Affiliation(s)
- Nashaat E Nassef
- Parasitology Department, Faculty of Medicine, Menoufia University, Yassin Abdel Ghaffar St. from Gamal Abdel Nasser St., Shebin El-Kom, Menoufia, Egypt
| | - Sawsan S Shendi
- Department of Clinical and Molecular Parasitology Department, National Liver Institute, Menoufia University, Shebin El-Kom, Menoufia, Egypt
| | - Abdel-Gawad E Saad
- Department of Clinical and Molecular Parasitology Department, National Liver Institute, Menoufia University, Shebin El-Kom, Menoufia, Egypt
| | - Nancy M Harba
- Parasitology Department, Faculty of Medicine, Menoufia University, Yassin Abdel Ghaffar St. from Gamal Abdel Nasser St., Shebin El-Kom, Menoufia, Egypt
| | - Engy V N Beshay
- Parasitology Department, Faculty of Medicine, Menoufia University, Yassin Abdel Ghaffar St. from Gamal Abdel Nasser St., Shebin El-Kom, Menoufia, Egypt
| | | | - Marwa A Gouda
- Department of Clinical and Molecular Parasitology Department, National Liver Institute, Menoufia University, Shebin El-Kom, Menoufia, Egypt
| |
Collapse
|
2
|
Sadr S, Lotfalizadeh N, Abbasi AM, Soleymani N, Hajjafari A, Roohbaksh Amooli Moghadam E, Borji H. Challenges and Prospective of Enhancing Hydatid Cyst Chemotherapy by Nanotechnology and the Future of Nanobiosensors for Diagnosis. Trop Med Infect Dis 2023; 8:494. [PMID: 37999613 PMCID: PMC10674171 DOI: 10.3390/tropicalmed8110494] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023] Open
Abstract
Hydatid cysts have been widely recognized for decades as a common medical problem that affects millions of people. A revolution in medical treatment may be on the prospect of nanotechnology enhancing chemotherapy against hydatid cysts. An overview of nanotechnology's impact on chemotherapeutics is presented in the current review. It discusses some of the challenges as well as some of the opportunities. The application of nanotechnology to enhance chemotherapy against hydatid cysts is what this review will explore. Nanotechnology is a critical component of delivering therapeutic agents with greater precision and efficiency and targeting hydatid cysts with better efficacy, and minimizing interference with surrounding tissue. However, there are biodistribution challenges, toxicity, and resistance problems associated with nanotherapeutics. Additionally, nanobiosensors are being investigated to enable the early diagnosis of hydatid cysts. A nanobiosensor can detect hydatid cysts by catching them early, non-invasively, rapidly, and accurately. The sensitivity and specificity of diagnostic tests can be enhanced with nanobiosensors because they take advantage of the unique properties of nanomaterials. By providing more precise and customized treatment options for hydatid cysts, nanotechnology may improve therapeutic options and strategies for diagnosing the disease. In conclusion, treatment with nanotechnology to treat hydatid cysts is potentially effective but presents many obstacles. Furthermore, nanobiosensors are being integrated into diagnostic techniques, as well as helping to diagnose patients earlier and more accurately.
Collapse
Affiliation(s)
- Soheil Sadr
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 917794897, Iran; (S.S.)
| | - Narges Lotfalizadeh
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 917794897, Iran; (S.S.)
| | - Amir Mohammad Abbasi
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 917794897, Iran; (S.S.)
| | - Nooshinmehr Soleymani
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 917794897, Iran; (S.S.)
| | - Ashkan Hajjafari
- Department of Pathobiology, Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran 1477893855, Iran
| | | | - Hassan Borji
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 917794897, Iran; (S.S.)
| |
Collapse
|
3
|
Jalil PJ, Shnawa BH, Hamad SM, Hamad BS, Ahmed MH. The efficiency of fabricated Ag/ZnO nanocomposite using Ruta chalepensis L. leaf extract as a potent protoscolicidal and anti-hydatid cysts agent. J Biomater Appl 2023; 38:629-645. [PMID: 37844268 DOI: 10.1177/08853282231207236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
BACKGROUND As a consequence of their eco-friendliness, simplicity and non-toxicity, the fabrication of metal and metal oxide nanoparticles using greener chemistry has been a highly attractive research area over the last decade. AIM In this study focused on the fabrication of silver-Zinc oxide nanocomposite (Ag-ZnO NCs) using Ruta chalepensis leaf extract and evaluating its potential biological activities, against Echinococcus granulosus in an in vitro and in vivo model using BALB/c mice. METHODS In this study, the synthesis of Ag-ZnO NCs was accomplished using local R. chalepensis leaf extracts. The synthesized nanocomposites were identified using UV-Vis, SEM-EDX, XRD, and FTIR. For a short-term assessment of acute toxicity, BALB/c mice were given the prepared NCs orally. Dual sets of mice were also intraperitoneally injected with protoscoleces for secondary echinococcosis infection. Furthermore, a blood compatibility test was carried out on the nanocomposites. RESULTS The synthesized Ag-ZnO NCs presented a surface plasmon peak at 329 and 422 nm. The XRD, SEM, and EDX confirmed the purity of the Ag-ZnO NCs. The FTIR spectra indicated the formation of Ag-ZnO NCs. Compared to the untreated infected mice, the treated-infected animals displayed an alteration in the appearance of the hepatic hydatid cysts from hyaline to whitish cloudy with a rough surface appearance. Lysis of RBCs at various doses of Ag-ZnONCs was significantly less than the positive contro,. CONCLUSION These findings revealed that the Ag-ZnO NCs didn't cause any adverse symptoms and no mortality was observed in all administered groups of mice. The obtained outcomes confirmed that concentrations of up to 40 μg/mL of the bio-fabricated Ag-ZnONCs induced no notable harm to the red blood cells.
Collapse
Affiliation(s)
- Parwin J Jalil
- Department of Biology, Faculty of Science, Soran University, Soran, Iraq
- Scientific Research Center, Soran University, Soran, Iraq
| | - Bushra H Shnawa
- Department of Biology, Faculty of Science, Soran University, Soran, Iraq
| | - Samir M Hamad
- Scientific Research Center, Soran University, Soran, Iraq
| | - Bnar Shahab Hamad
- Department of Biology, Faculty of Science, Soran University, Soran, Iraq
| | - Mukhtar H Ahmed
- SISAF Drug Delivery Nanotechnology, Ulster University, Belfast, UK
| |
Collapse
|
4
|
Assessment of the Therapeutic Efficacy of Silver Nanoparticles against Secondary Cystic Echinococcosis in BALB/c Mice. SURFACES 2022. [DOI: 10.3390/surfaces5010004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Background: Cystic echinococcosis (CE) is a highly prevalent parasitic disease resulting from the hydatid cyst of Echinococcus granulosus. It is also described as a zoonotic disease and considered a neglected tropical infection. Aim: This study assessed the antiparasitic activity of silver nanoparticles (AgNPs), against E. granulosus infection in BALB/c mice. Methods: The green synthesis of AgNPs was accomplished using Zizyphus spina-christi leaves. AgNPs were orally administered to BALB/c mice for acute short-term toxicity evaluation, in doses of 50 mg, 100 mg, 200 mg, and 300 mg/kg, and observations for toxic signs were carried out at 24, 48 h, and 14 days, continuously. Moreover, a total of 20 mice divided into two groups were intraperitoneally administered with 1500 viable protoscoleces for secondary hydatidosis infection. Results: The results showed that AgNPs did not induce any adverse effects or signs and no death, in either group of mice. The histopathological findings in the liver, kidneys, and intestine of the mice administered with AgNPs revealed mild histological effects compared with the control ones. The treated-infected mice showed a change in the appearance of the liver hydatid cysts from hyaline to milky cloudy compared with the untreated infected mice. Conclusion: Biosynthesized AgNPs showed anti-hydatic effects and are suggested as anti-echinococcal cyst treatment.
Collapse
|
5
|
Farhadi M, Haniloo A, Rostamizadeh K, Ahmadi N. In vitro evaluation of albendazole-loaded nanostructured lipid carriers on Echinococcus granulosus microcysts and their prophylactic efficacy on experimental secondary hydatidosis. Parasitol Res 2021; 120:4049-4060. [PMID: 34669034 DOI: 10.1007/s00436-021-07343-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/07/2021] [Indexed: 10/20/2022]
Abstract
To enhance the therapeutic effects of albendazole (ABZ) on Echinococcus granulosus protoscoleces and metacestodes, ABZ-loaded nanostructured lipid carriers (ABZ-NLCs) are prepared by the hot high-speed homogenization method. Protoscoleces and microcysts were treated in vitro with free ABZ and ABZ-NLCs (concentrations of 1, 5, and 10 μg/ml), and the corresponding effects were monitored by methylene blue exclusion test and scanning and transmission electron microscopy. Chemoprophylactic treatment was performed on Balb/C mice 1 day before intraperitoneal injection of viable protoscoleces. The drugs were administered daily by intragastric inoculation for a period of 30 days. The prophylactic efficacy was assessed based on the number and weight of cysts developed in treated mice. The ultrastructural alterations in cysts were examined by transmission electron microscopy. After 18 days, all the protoscoleces incubated with 10 μg/ml ABZ-NLCs were killed, while 51.25 ± 4.03% of the protoscoleces incubated with 10 μg/ml free ABZ were still viable. Microcysts treated with ABZ-NLCs underwent degenerative alterations in a shorter time than when free ABZ was applied. The mean weight of the cysts recovered from mice of ABZ-NLCs group was significantly lower than that of the free ABZ group (P < 0.05), yielding prophylactic efficacy of 92.45% and 38.53%, respectively. The cysts treated with ABZ-NLCs showed marked ultrastructural changes in the germinal layer. This study demonstrated that both in vitro and in vivo treatments with ABZ-NLCs are significantly more efficient than treatment with free ABZ against E. granulosus protoscoleces, metacestodes, and prevention of cyst development in mice.
Collapse
Affiliation(s)
- Mehdi Farhadi
- Department of Parasitology and Mycology, School of Medicine, Zanjan University of Medical Sciences, End of Mahdavi Blvd., Shahrak Karmandan, 4513956111, Zanjan, Iran
| | - Ali Haniloo
- Department of Parasitology and Mycology, School of Medicine, Zanjan University of Medical Sciences, End of Mahdavi Blvd., Shahrak Karmandan, 4513956111, Zanjan, Iran.
| | - Kobra Rostamizadeh
- Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Nahid Ahmadi
- Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
6
|
High Potency of Organic and Inorganic Nanoparticles to Treat Cystic Echinococcosis: An Evidence-Based Review. NANOMATERIALS 2020; 10:nano10122538. [PMID: 33348662 PMCID: PMC7766156 DOI: 10.3390/nano10122538] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
Abstract
Since there is no potential, effective vaccine available, treatment is the only controlling option against hydatid cyst or cystic echinococcosis (CE). This study was designed to systematically review the in vitro, in vivo, and ex vivo effects of nanoparticles against hydatid cyst. The study was carried out based on the 06- PRISMA guideline and registered in the CAMARADES-NC3Rs Preclinical Systematic Review and Meta-analysis Facility (SyRF) database. The search was performed in five English databases, including Scopus, PubMed, Web of Science, EMBASE, and Google Scholar without time limitation for publications around the world about the protoscolicdal effects of all the organic and inorganic nanoparticles without date limitation in order to identify all the published articles (in vitro, in vivo, and ex vivo). The searched words and terms were: “nanoparticles”, “hydatid cyst”, “protoscoleces”, “cystic echinococcosis”, “metal nanoparticles”, “organic nanoparticles”, “inorganic nanoparticles, “in vitro”, ex vivo”, “in vivo”. Out of 925 papers, 29 papers including 15 in vitro (51.7%), 6 in vivo (20.7%), ex vivo 2 (6.9%), and 6 in vitro/in vivo (20.7%) up to 2020 met the inclusion criteria for discussion in this systematic review. The results demonstrated the most widely used nanoparticles in the studies were metal nanoparticles such as selenium, silver, gold, zinc, copper, iron nanoparticles (n = 8, 28.6%), and metal oxide nanoparticles such as zinc oxide, titanium dioxide, cerium oxide, zirconium dioxide, and silicon dioxide (n = 8, 28.6%), followed by polymeric nanoparticles such as chitosan and chitosan-based nanoparticles (n = 7, 25.0%). The results of this review showed the high efficacy of a wide range of organic and inorganic NPs against CE, indicating that nanoparticles could be considered as an alternative and complementary resource for CE treatment. The results demonstrated that the most widely used nanoparticles for hydatid cyst treatment were metal nanoparticles and metal oxide nanoparticles, followed by polymeric nanoparticles. We found that the most compatible drugs with nanoparticles were albendazole, followed by praziquantel and flubendazole, indicating a deeper understanding about the synergistic effects of nanoparticles and the present anti-parasitic drugs for treating hydatid cysts. The important point about using these nanoparticles is their toxicity; therefore, cytotoxicity as well as acute and chronic toxicities of these nanoparticles should be considered in particular. As a limitation, in the present study, although most of the studies have been performed in vitro, more studies are needed to confirm the effect of these nanoparticles as well as their exact mechanisms in the hydatid cyst treatment, especially in animal models and clinical settings.
Collapse
|
7
|
Nassef NE, Saad AGE, Harba NM, Beshay EVN, Gouda MA, Shendi SS, Mohamed ASED. Evaluation of the therapeutic efficacy of albendazole-loaded silver nanoparticles against Echinococcus granulosus infection in experimental mice. J Parasit Dis 2019; 43:658-671. [PMID: 31749538 DOI: 10.1007/s12639-019-01145-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/10/2019] [Indexed: 01/08/2023] Open
Abstract
The drug of choice for treatment of hydatid disease, albendazole (ABZ) is a poorly water-soluble drug; thus, enhancing its solubility is required. Among metal nanoparticles (NPs), silver (Ag) NPs showed antimicrobial efficacies. Therefore, this study was conducted to evaluate nanosilver particles (Ag NPs) free or combined with albendazole against Echinococcus granulosus infection in vivo. In this study, besides the normal control group (GI) (n = 5), 80 mice were infected with 2000 viable protoscoleces intraperitoneally then divided equally (n = 20) into the infected control (GII), ABZ-treated (GIII), nanosilver-treated (GIV) and ABZ-loaded-Ag NPs-treated (GV) groups. On the 90th post-infection day, treatment was started and continued for 8 weeks then the experiment was terminated. Each mouse was subjected to measurement of hydatid cysts' sizes and weights, serum IFN-γ, liver enzymes; histopathological and transmission electron microscopy studies. In all treated groups, there were significant reductions of hydatid cysts' sizes and weights; however, the highest efficacy rate (63.9%) was detected in group V associated with obvious ultrastructure alterations of the cysts. The liver tissues of group II showed intense granulomatous reactions, congestion, fibrosis, necrosis and steatosis associated with significant increases in serum IFN-γ and liver enzymes. Interestingly, the best antiparasitic effect and the most significant reduction of IFN-γ towards the normal values were found in GV. Moreover, Ag NPs had reduced the toxic effects of ABZ such as necrosis, steatosis and the elevated serum liver enzymes. Therefore, loading ABZ on Ag NPs could be a potential method to improve ABZ efficacy against hydatid disease.
Collapse
Affiliation(s)
- Nashaat E Nassef
- 1Medical Parasitology Department, Faculty of Medicine, Menoufia University, Yassin abdel Gaffar St. from Gamal Abdel Nasser St., Shebin El-Kom, Menoufia Egypt
| | - Abdel-Gawad E Saad
- 2Clinical and Molecular Parasitology Department, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| | - Nancy M Harba
- 1Medical Parasitology Department, Faculty of Medicine, Menoufia University, Yassin abdel Gaffar St. from Gamal Abdel Nasser St., Shebin El-Kom, Menoufia Egypt
| | - Engy V N Beshay
- 1Medical Parasitology Department, Faculty of Medicine, Menoufia University, Yassin abdel Gaffar St. from Gamal Abdel Nasser St., Shebin El-Kom, Menoufia Egypt
| | - Marwa A Gouda
- 2Clinical and Molecular Parasitology Department, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| | - Sawsan S Shendi
- 2Clinical and Molecular Parasitology Department, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| | | |
Collapse
|
8
|
Andrade LN, Oliveira DML, Chaud MV, Alves TFR, Nery M, da Silva CF, Gonsalves JKC, Nunes RS, Corrêa CB, Amaral RG, Sanchez-Lopez E, Souto EB, Severino P. Praziquantel-Solid Lipid Nanoparticles Produced by Supercritical Carbon Dioxide Extraction: Physicochemical Characterization, Release Profile, and Cytotoxicity. Molecules 2019; 24:molecules24213881. [PMID: 31661906 PMCID: PMC6864877 DOI: 10.3390/molecules24213881] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 01/01/2023] Open
Abstract
Solid lipid nanoparticles (SLNs) can be produced by various methods, but most of them are difficult to scale up. Supercritical fluid (SCF) is an important tool to produce micro/nanoparticles with a narrow size distribution and high encapsulation efficiency. The aim of this work was to produce cetyl palmitate SLNs using SCF to be loaded with praziquantel (PZQ) as an insoluble model drug. The mean particle size (nm), polydispersity index (PdI), zeta potential, and encapsulation efficiency (EE) were determined on the freshly prepared samples, which were also subject of Differential Scanning Calorimetry (DSC), Fourier-Transform Infrared Spectroscopy (FTIR), drug release profile, and in vitro cytotoxicity analyses. PZQ-SLN exhibited a mean size of ~25 nm, PdI ~ 0.5, zeta potential ~−28 mV, and EE 88.37%. The DSC analysis demonstrated that SCF reduced the crystallinity of cetyl palmitate and favored the loading of PZQ into the lipid matrices. No chemical interaction between the PZQ and cetyl palmitate was revealed by FTIR analysis, while the release or PZQ from SLN followed the Weibull model. PZQ-SLN showed low cytotoxicity against fibroblasts cell lines. This study demonstrates that SCF may be a suitable scale-up procedure for the production of SLN, which have shown to be an appropriate carrier for PZQ.
Collapse
Affiliation(s)
- Luciana N Andrade
- Laboratory of Nanotechnology and Nanomedicine, Institute of Technology and Research, Aracaju, SE 49032-490, Brazil.
- School of Pharmacy, University Tiradentes, Aracaju, SE 49032-490, Brazil.
| | - Daniele M L Oliveira
- Laboratory of Nanotechnology and Nanomedicine, Institute of Technology and Research, Aracaju, SE 49032-490, Brazil.
- School of Pharmacy, University Tiradentes, Aracaju, SE 49032-490, Brazil.
| | - Marco V Chaud
- Laboratory of Biomaterials and Nanotechnology, University of Sorocaba-UNISO, Sorocaba, SP 18023-000, Brazil.
| | - Thais F R Alves
- Laboratory of Biomaterials and Nanotechnology, University of Sorocaba-UNISO, Sorocaba, SP 18023-000, Brazil.
| | - Marcelo Nery
- Laboratory of Nanotechnology and Nanomedicine, Institute of Technology and Research, Aracaju, SE 49032-490, Brazil.
- School of Pharmacy, University Tiradentes, Aracaju, SE 49032-490, Brazil.
| | - Classius F da Silva
- Laboratory of Biotechnology and Natural Products, Federal University of São Paulo, Diadema, SP 09913-030, Brazil.
| | | | - Rogéria S Nunes
- Federal University of Sergipe, São Cristóvão, SE 49100-000, Brazil.
| | | | - Ricardo G Amaral
- Federal University of Sergipe, São Cristóvão, SE 49100-000, Brazil.
| | - Elena Sanchez-Lopez
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, and Institute of Nanoscience and Nanotechnology (IN2UB), Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain.
- Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| | - Eliana B Souto
- Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Patrícia Severino
- Laboratory of Nanotechnology and Nanomedicine, Institute of Technology and Research, Aracaju, SE 49032-490, Brazil.
- School of Pharmacy, University Tiradentes, Aracaju, SE 49032-490, Brazil.
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, and Institute of Nanoscience and Nanotechnology (IN2UB), Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain.
- Tiradentes Institute, 150 Mt Vernon St, Dorchester, MA 02125, USA.
| |
Collapse
|
9
|
Bakhtiar NM, Akbarzadeh A, Casulli A, Mahami-Oskouei M, Ahmadpour E, Nami S, Rostami A, Spotin A. Therapeutic efficacy of nanocompounds in the treatment of cystic and alveolar echinococcoses: challenges and future prospects. Parasitol Res 2019; 118:2455-2466. [PMID: 31402401 DOI: 10.1007/s00436-019-06416-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/02/2019] [Indexed: 12/17/2022]
Abstract
Echinococcus granulosus sensu lato and E. multilocularis are the causative agents of life-threatening cystic and alveolar echinococcoses (CE and AE), respectively, which lead to serious public health concerns across the globe. Benzimidazoles (BMZs) are the drugs of choice for the treatment of human CE and AE. Presently, the chemotherapeutic failures of BMZs against CE and AE are caused by their low aqueous solubility, poor absorption, and consequently their erratic bioavailability. Among the BMZ compounds used for CE/AE treatment, albendazole (ABZ) and mebendazole (MBZ) are the only drugs licensed for human use. Nevertheless, the administration of these BMZs for a long period of time leads to undesirable adverse effects. Therefore, there is an urgent need for designing new formulations of BMZs with increased bioavailability. To bridge these therapeutic gaps, nanoparticle enantiomers of ABZ and drug delivery systems based on nanostructured entities currently provide an interesting new formulation of already existing drugs to improve the pharmacokinetic effects of BMZs. This study provides an overview of the tested nanocompounds against E. granulosus and E. multilocularis, including their effective dose, type of nanoparticles (NPs), assay setting, and therapeutic outcomes. This review suggests that BMZ derivatives loaded in NPs can significantly improve the scolicidal and cysticidal activities compared with single BMZ. Moreover, BMZ-loaded polymeric NPs show a tendency to increase mortality rate against protoscoleces and microcysts compared with metallic formulations, nanoemulsions, lipid nanocapsules, solid lipid NPs, liposomes, and nanocrystals. In the future, the use of the newly structured entities, attained by bridging ligands to the modified surface of NPs, as well as the electromagnetically produced nanodrugs could be helpful for developing fine-tuned formulations as an alternative to the already existing drugs against these neglected parasitic infections.
Collapse
Affiliation(s)
- Nayer Mehdizad Bakhtiar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Akbarzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Adriano Casulli
- WHO Collaborating Centre for the Epidemiology, Detection and Control of Cystic and Alveolar Echinococcosis, Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy.,European Union Reference Laboratory for Parasites (EURLP), Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Mahmoud Mahami-Oskouei
- Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Ahmadpour
- Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanam Nami
- Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Rostami
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Adel Spotin
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Abstract
AIM Albendazole (ABZ) is a broad-spectrum antiparasitic agent with poor aqueous solubility, which leads to poor/erratic bioavailability and therapeutic failures. Here, we aimed to produce a novel formulation of ABZ nanocrystals (ABZNC) and assess its pharmacokinetic performance in mice. Results/methodology: ABZNC were prepared by high-pressure homogenization and spray-drying processes. Redispersion capacity and solid yield were measured in order to obtain an optimized product. The final particle size was 415.69±7.40 nm and the solid yield was 72.32%. The pharmacokinetic parameters obtained in a mice model for ABZNC were enhanced (p < 0.05) with respect to the control formulation. CONCLUSION ABZNC with improved pharmacokinetic behavior were produced by a simple, inexpensive and potentially scalable methodology.
Collapse
|
11
|
Farhadi M, Haniloo A, Rostamizadeh K, Faghihzadeh S. Efficiency of flubendazole-loaded mPEG-PCL nanoparticles: A promising formulation against the protoscoleces and cysts of Echinococcus granulosus. Acta Trop 2018; 187:190-200. [PMID: 30098942 DOI: 10.1016/j.actatropica.2018.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/07/2018] [Accepted: 08/08/2018] [Indexed: 11/18/2022]
Abstract
None of the existing drugs can effectively treat the human cystic echinococcosis. This study aimed to improve the efficacy of flubendazole (FLBZ) against the protoscoleces and cysts of Echinococcus granulosus by preparing polymeric FLBZ-loaded methoxy polyethylene glycol-polycaprolactone (mPEG-PCL) nanoparticles. The protoscoleces and microcysts were treated with FLBZ-loaded mPEG-PCL nanoparticles (FLBZ-loaded nanoparticles) and free FLBZ at the final concentrations of 1, 5, and 10 μg/mL for 27 and 14 days, respectively. The chemoprophylactic efficacy of the drugs was evaluated in experimentally infected mice. The nanoparticles were stable for 1 month, with an average size of 101.41 ± 5.14 nm and a zeta potential of -19.13 ± 2.56 mV. The drug-loading and entrapment efficiency of the FLBZ-loaded nanoparticles were calculated to be 3.08 ± 0.15% and 89.16 ± 2.93%, respectively. The incubation of the protoscoleces with the 10 μg/mL nano-formulation for 15 days resulted in 100% mortality, while after incubation with the 10 μg/mL free FLBZ, the viability rate of the protoscoleces was only 44.0% ± 5.22%. Destruction of the microcysts was observed after 7 days' exposure to the FLBZ-loaded nanoparticles at a concentration of 10 μg/mL. The in vivo challenge showed a significant reduction in the weight and number of the cysts (P < 0.05) in the mice treated with the FLBZ-loaded nanoparticles, yielding efficacy rates of 94.64% and 70.21%, correspondingly. Transmission electron microscopy revealed extensive ultrastructural damage to the cysts treated with the FLBZ-loaded nanoparticles. The results indicated that the FLBZ-loaded nanoparticles were more effective than the free FLBZ against the protoscoleces and cysts of E. granulosus both in vitro and in vivo.
Collapse
Affiliation(s)
- Mehdi Farhadi
- Department of Parasitology and Mycology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Haniloo
- Department of Parasitology and Mycology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Kobra Rostamizadeh
- Zanjan Pharmaceutical Nanotechnology Research Center, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Soghrat Faghihzadeh
- Department of Biological statistics and Epidemiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
12
|
Magnetic solid lipid nanoparticles co-loaded with albendazole as an anti-parasitic drug: Sonochemical preparation, characterization, and in vitro drug release. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.06.116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
13
|
Development and in vitro evaluation of solid dispersions as strategy to improve albendazole biopharmaceutical behavior. Ther Deliv 2018; 9:623-638. [DOI: 10.4155/tde-2018-0037] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: Solid dispersions using Poloxamer 407 as carrier were developed to improve albendazole (ABZ) solubility and dissolution profiles. Methods: ABZ/poloxamer solid dispersions were prepared, and dissolution profiles were mathematically modeled and compared with physical mixtures, pharmaceutical ABZ and a commercial formulation. Results: Poloxamer 407 increased exponentially ABZ solubility, in about 400% when 95% w/w of polymer compared with its absence. Solid dispersions initial dissolution rate was three to 20-fold higher than physical mixtures, the drug and the commercial formulation. All the solid dispersions required less than 2.2 min to reach an 80% of ABZ dissolution, while the commercial formulation needed around 40 min. Conclusion: Solid dispersions improved ABZ solubility and dissolution rate, which could result in a faster absorption and an increased bioavailability.
Collapse
|
14
|
In vivo evaluation of the efficacy of Sophora moorcroftiana alkaloids in combination with Bacillus Calmette–Guérin (BCG) treatment for cystic echinococcosis in mice. J Helminthol 2017; 92:681-686. [DOI: 10.1017/s0022149x1700089x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AbstractHuman cystic echinococcosis is a widespread, chronic, endemic, helminthic zoonosis caused by larval tapeworms of the species Echinococcus granulosus. At present, there is no rational and effective therapy for patients with echinococcosis. The present study evaluated whether the combination of alkaloids from Sophora moorcroftiana seeds (SMSa2) and Bacillus Calmette–Guérin (BCG) was effective in the treatment of experimental echinococcosis. After 20 weeks of secondary infection with protoscoleces, mice were randomly allocated to five groups and treated for 6 weeks by daily intragastric administration of albendazole (ABZ, 100 mg/kg), SMSa2 (100 mg/kg), BCG (abdominal subcutaneous injection at 5 × 106 CFU), SMSa2 + BCG (100 mg/kg SMSa2 and 5 × 106 CFU BCG) or normal saline (untreated group), respectively. The results indicated a significant reduction in the weight of hydatid cysts in the SMSa2 + BCG group compared with the untreated, SMSa2 and BCG groups. The rate of inhibition of hydatid cyst growth in the SMSa2 + BCG group (76.1%) was obviously increased compared with that in the SMSa2 (25.7%) and BCG (26.6%) groups, respectively. Compared with the untreated control, the SMSa2 + BCG group showed a non-significant increase in serum interleukin-4 (IL-4). Furthermore, the serum levels of interferon-γ (IFN-γ) between the untreated and SMSa2 + BCG groups were not statistically different. Therefore, the combination of alkaloids from S. moorcroftiana seeds and BCG can reduce cyst burden and is an effective therapeutic regimen against echinococcosis.
Collapse
|