1
|
Li WL, Li K, Chang WG, Shi H, Zhang WX, Wang Z, Li W. 20(R)-ginsenoside Rg3 alleviates diabetic retinal injury in T2DM mice by attenuating ROS-mediated ER stress through the activation of the Nrf2/HO-1 axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156202. [PMID: 39579577 DOI: 10.1016/j.phymed.2024.156202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 10/20/2024] [Accepted: 10/28/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND Although our previous work confirmed 20(R)-ginsenoside Rg3 (R-Rg3), which is an active ingredient in the Panax Ginseng C.A. Meyer, to have good anti-diabetic activity, its beneficial effect on diabetic retinal injury was found to be limited. PURPOSE This study aims to investigate the protective effects of R-Rg3 on diabetes-induced retinal injury and the associated molecular mechanisms of action. METHODS Diabetic retinal injury was induced in mice using a combination of a high-fat diet (HFD) and intraperitoneal injection of streptozotocin (STZ). R-Rg3 (10 and 20 mg/kg) was subsequently administered for 6 weeks. The human retinal endothelial cells (HRECs) were subjected to high glucose (HG)-induced injury for the in vitro analysis and treated with R-Rg3 (4, 8, 16 μM), antioxidant N-Acetylcysteine (NAC, 1 mM) and Nrf2 inhibitor ML385 (5 μM). The mice retinas then underwent functional and histopathological analysis. Expression levels of proteins related to the Nrf2/HO-1 axis, tight junction proteins, endoplasmic reticulum (ER) stress and the apoptosis in retinal tissue and HRECs were determined by western blot. Expressions of ZO-1 and Nrf2 in the retina and HRECs were assessed by immunofluorescence. Additional evaluations included measuring body weights, fasting blood glucose (FBG), lipid levels and oxidative markers. RESULTS The results showed 6 weeks of R-Rg3 treatment significantly restored the functional changes and redox system imbalance that was induced by HFD/STZ in mice. R-Rg3 was also found to significantly reduce retinal barrier damage and thickness changes resulting from hyperglycaemia exposure. At the same time, R-Rg3 also protected HRECs from HG-induced damage. R-Rg3 could also activate Nrf2/HO-1 axis and inhibit endoplasmic reticulum stress as a means of alleviating retinal endothelial cells apoptosis. The molecular docking results also demonstrated that R-Rg3 had a good binding ability with Nrf2. CONCLUSION Our study suggested Nrf2/HO-1 axis might be crucial for the ability of R-Rg3 to prevent diabetic retinal injury.
Collapse
Affiliation(s)
- Wen-Lin Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China; College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China; Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Changchun, 130118, China
| | - Ke Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China; College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China; Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Changchun, 130118, China
| | - Wen-Guang Chang
- Institute for Translational Medicine, The Affiliated Hospital, Qingdao University, Qingdao, China
| | - Hui Shi
- The First Hospital, Jilin University, Changchun, 130118, China
| | - Wen-Xuan Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China; College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China; Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Changchun, 130118, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China; College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China; Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Changchun, 130118, China.
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China; College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China; Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Changchun, 130118, China.
| |
Collapse
|
2
|
Zhang J, Wu Y, Li Y, Li S, Liu J, Yang X, Xia G, Wang G. Natural products and derivatives for breast cancer treatment: From drug discovery to molecular mechanism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155600. [PMID: 38614043 DOI: 10.1016/j.phymed.2024.155600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/20/2024] [Accepted: 04/06/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND Breast cancer stands as the most common malignancy among women globally and a leading cause of cancer-related mortality. Conventional treatments, such as surgery, hormone therapy, radiotherapy, chemotherapy, and small-molecule targeted therapy, often fall short of addressing the complexity and heterogeneity of certain breast cancer subtypes, leading to drug resistance and metastatic progression. Thus, the search for novel therapeutic targets and agents is imperative. Given their low toxicity and abundant variety, natural products and their derivatives are increasingly considered valuable sources for small-molecule anticancer drugs. PURPOSE This review aims to elucidate the pharmacological impacts and underlying mechanisms of active compounds found in select natural products and their derivatives, primarily focusing on breast cancer treatment. It intends to underscore the potential of these substances in combating breast cancer and guide future research directions for the development of natural product-based therapeutics. METHODS We conducted comprehensive searches in electronic databases such as PubMed, Web of Science, and Scopus until October 2023, using keywords such as 'breast cancer', 'natural products', 'derivatives', 'mechanism', 'signaling pathways', and various keyword combinations. RESULTS The review presents a spectrum of phytochemicals, including but not limited to flavonoids, polyphenols, and alkaloids, and examines their actions in various animal and cellular models of breast cancer. The anticancer effects of these natural products and derivatives are manifested through diverse mechanisms, including induction of cell death via apoptosis and autophagy, and suppression of tumor angiogenesis. CONCLUSION An increasing array of natural products and their derivatives are proving effective against breast cancer. Future therapeutic strategies can benefit from strategic enhancement of the anticancer properties of natural compounds, optimization for targeted action, improved bioavailability, and minimized side effects. The forthcoming research on natural products should prioritize these facets to maximize their therapeutic potential.
Collapse
Affiliation(s)
- Jing Zhang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Yongya Wu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Yanhong Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China; Department of Rheumatology & Immunology, Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Shutong Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Jiaxi Liu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Xiao Yang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Guiyang Xia
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, No. 5, Ocean Warehouse, Dongcheng District, Beijing, 100700, China.
| | - Guan Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China.
| |
Collapse
|
3
|
Zhou N, Mao F, Cheng S. Mechanism Research and Application for Ginsenosides in the Treatment of Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2023; 2023:7214037. [PMID: 38027042 PMCID: PMC10667047 DOI: 10.1155/2023/7214037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 07/07/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
Ginsenosides, the main active pharmacological ingredients of ginseng, have been widely used for the treatment of numerous carcinomas. Hepatocellular carcinoma (HCC) is 3rd leading malignant tumor in terms of mortality worldwide. Accumulating evidence indicates that ginsenosides play a vital role in the prevention and treatment of HCC. Ginsenosides can significantly improve the symptoms of HCC, and their anticancer activity is mainly involved in inhibiting proliferation and migration, inducing cell cycle arrest at the G0/G1 phase, promoting caspase-3 and 8-mediated apoptosis, regulating autophagy related to Atg5, Atg7, Atg12, LC3-II, and PI3K/Akt pathways, and lowering invasion and metastasis associated with decreased nuclear translocation of NF-κB p65 and MMP-2/9, increasing IL-2 and IFN-γ levels to enhance immune function, as well as regulating the gut-liver axis. In addition, ginsenosides can be used as an adjuvant to conventional cancer therapies, enhancing sensitivity to chemotherapy drugs, and improving efficacy and/or reducing adverse reactions through synergistic effects. Therefore, the current manuscript discusses the mechanism and application of ginsenosides in HCC. It is hoped to provide theoretical basis for the treatment of HCC with ginsenosides.
Collapse
Affiliation(s)
- Nian Zhou
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Feifei Mao
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Shuqun Cheng
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai 200438, China
| |
Collapse
|
4
|
Jiang RY, Fang ZR, Zhang HP, Xu JY, Zhu JY, Chen KY, Wang W, Jiang X, Wang XJ. Ginsenosides: changing the basic hallmarks of cancer cells to achieve the purpose of treating breast cancer. Chin Med 2023; 18:125. [PMID: 37749560 PMCID: PMC10518937 DOI: 10.1186/s13020-023-00822-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/16/2023] [Indexed: 09/27/2023] Open
Abstract
In 2021, breast cancer accounted for a substantial proportion of cancer cases and represented the second leading cause of cancer deaths among women worldwide. Although tumor cells originate from normal cells in the human body, they possess distinct biological characteristics resulting from changes in gene structure and function of cancer cells in contrast with normal cells. These distinguishing features, known as hallmarks of cancer cells, differ from those of normal cells. The hallmarks primarily include high metabolic activity, mitochondrial dysfunction, and resistance to cell death. Current evidence suggests that the fundamental hallmarks of tumor cells affect the tissue structure, function, and metabolism of tumor cells and their internal and external environment. Therefore, these fundamental hallmarks of tumor cells enable tumor cells to proliferate, invade and avoid apoptosis. Modifying these hallmarks of tumor cells represents a new and potentially promising approach to tumor treatment. The key to breast cancer treatment lies in identifying the optimal therapeutic agent with minimal toxicity to normal cells, considering the specific types of tumor cells in patients. Some herbal medicines contain active ingredients which can precisely achieve this purpose. In this review, we introduce Ginsenoside's mechanism and research significance in achieving the therapeutic effect of breast cancer by changing the functional hallmarks of tumor cells, providing a new perspective for the potential application of Ginsenoside as a therapeutic drug for breast cancer.
Collapse
Affiliation(s)
- Rui-Yuan Jiang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- Zhejiang Chinese Medical University, NO. 548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China
| | - Zi-Ru Fang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- Zhejiang Chinese Medical University, NO. 548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China
| | - Huan-Ping Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- Wenzhou Medical University, No. 270, Xueyuan West Road, Lucheng District, Wenzhou, 325027, Zhejiang, China
| | - Jun-Yao Xu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Jia-Yu Zhu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- Zhejiang Chinese Medical University, NO. 548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China
| | - Ke-Yu Chen
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- Zhejiang Chinese Medical University, NO. 548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China
| | - Wei Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- Wenzhou Medical University, No. 270, Xueyuan West Road, Lucheng District, Wenzhou, 325027, Zhejiang, China
| | - Xiao Jiang
- Department of Basic Medical Sciences, Guangxi University of Chinese Medicine, NO. 13, Wuhe Road, Qingxiu District, Nanning, 530022, Guangxi, China.
| | - Xiao-Jia Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
5
|
Yang J, Zhang L, Peng X, Zhang S, Sun S, Ding Q, Ding C, Liu W. Polymer-Based Wound Dressings Loaded with Ginsenoside Rg3. Molecules 2023; 28:5066. [PMID: 37446725 DOI: 10.3390/molecules28135066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The skin, the largest organ in the human body, mainly plays a protective role. Once damaged, it can lead to acute or chronic wounds. Wound healing involves a series of complex physiological processes that require ideal wound dressings to promote it. The current wound dressings have characteristics such as high porosity and moderate water vapor permeability, but they are limited in antibacterial properties and cannot protect wounds from microbial infections, which can delay wound healing. In addition, several dressings contain antibiotics, which may have bad impacts on patients. Natural active substances have good biocompatibility; for example, ginsenoside Rg3 has anti-inflammatory, antibacterial, antioxidant, and other biological activities, which can effectively promote wound healing. Some researchers have developed various polymer wound dressings loaded with ginsenoside Rg3 that have good biocompatibility and can effectively promote wound healing and reduce scar formation. This article will focus on the application and mechanism of ginsenoside Rg3-loaded dressings in wounds.
Collapse
Affiliation(s)
- Jiali Yang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Lifeng Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Xiaojuan Peng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Shuai Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Shuwen Sun
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Qiteng Ding
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Chuanbo Ding
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Wencong Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543003, China
| |
Collapse
|
6
|
Fan M, Shan M, Lan X, Fang X, Song D, Luo H, Wu D. Anti-cancer effect and potential microRNAs targets of ginsenosides against breast cancer. Front Pharmacol 2022; 13:1033017. [PMID: 36278171 PMCID: PMC9581320 DOI: 10.3389/fphar.2022.1033017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
Breast cancer (BC) is one of the most common malignant tumor, the incidence of which has increased worldwide in recent years. Ginsenosides are the main active components of Panax ginseng C. A. Mey., in vitro and in vivo studies have confirmed that ginsenosides have significant anti-cancer activity, including BC. It is reported that ginsenosides can induce BC cells apoptosis, inhibit BC cells proliferation, migration, invasion, as well as autophagy and angiogenesis, thereby suppress the procession of BC. In this review, the therapeutic effects and the molecular mechanisms of ginsenosides on BC will be summarized. And the combination strategy of ginsenosides with other drugs on BC will also be discussed. In addition, epigenetic changes, especially microRNAs (miRNAs) targeted by ginsenosides in the treatment of BC are clarified.
Collapse
Affiliation(s)
- Meiling Fan
- Changchun University of Chinese Medicine, Changchun, China
| | - Mengyao Shan
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Xintian Lan
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Xiaoxue Fang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Dimeng Song
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Haoming Luo
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
- *Correspondence: Haoming Luo, ; Donglu Wu,
| | - Donglu Wu
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
- School of Clinical Medical, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Haoming Luo, ; Donglu Wu,
| |
Collapse
|
7
|
Ginsenoside Rg5 Sensitizes Paclitaxel—Resistant Human Cervical-Adeno-Carcinoma Cells to Paclitaxel—And Enhances the Anticancer Effect of Paclitaxel. Genes (Basel) 2022; 13:genes13071142. [PMID: 35885925 PMCID: PMC9316462 DOI: 10.3390/genes13071142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/07/2022] [Accepted: 06/22/2022] [Indexed: 12/04/2022] Open
Abstract
In cervical cancer chemotherapy, paclitaxel (PTX) chemoresistance has become a major difficulty, and it also affects the survival rate of numerous tumor patients. Thus, for the reversal of chemoresistance, it is imperative to develop combinatory drugs with petite or almost no side effects to sensitize cells to paclitaxel. Ginsenoside Rg5 (GRg5) may act as a chemosensitizer by reversing multidrug resistance. The present study aimed to determine the potential of GRg5 as a chemosensitizer in PTX-resistant human cervical adeno-carcinoma cell lines (HeLa cells). MTT assay was carried out to assess whether GRg5 can potentiate the cytotoxic effect of PTX in PTX- resistant HeLa cells; using flow cytometry-based annexin V-FITC assay, cellular apoptosis was analyzed; the rate of expression of the cell cycle, apoptosis and major cell-survival-signaling-related genes and its proteins were examined using RT-PCR and Western blotting technique. We found increased mRNA expression of Bak, Bax, Bid, and PUMA genes, whereas the mRNA expression of Bcl2, Bcl-XL, c-IAP-1, and MCL-1 were low; GRg5 combination triggered the efficacy of paclitaxel, which led to increased expression of Bax with an enhanced caspase-9/-3 activation, and apoptosis. Moreover, the study supports GRg5 as an inhibitor of two key signaling proteins, Akt and NF-κB, by which GRg5 augments the susceptibility of cervical cancer cells to PTX chemotherapy. GRg5 drastically potentiated the antiproliferative and pro-apoptotic activity of paclitaxel in PTX-resistant human cervical cancer cells in a synergistic mode. Moreover, in the clinical context, combining paclitaxel with GRg5 may prove to be a new approach for enhancing the efficacy of the paclitaxel.
Collapse
|
8
|
Huang L, Ren C, Li HJ, Wu YC. Recent Progress on Processing Technologies, Chemical Components, and Bioactivities of Chinese Red Ginseng, American Red Ginseng, and Korean Red Ginseng. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02697-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
9
|
Lee M, Ban JJ, Won BH, Im W, Kim M. Therapeutic potential of ginsenoside Rg3 and Rf for Huntington's disease. In Vitro Cell Dev Biol Anim 2021; 57:641-648. [PMID: 34128157 DOI: 10.1007/s11626-021-00595-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/23/2021] [Indexed: 11/30/2022]
Abstract
Ginseng is a popular herbal medicine and known to have protective and therapeutic effects in various diseases. Ginsenosides are active gradients representing the diverse pharmacological efficacy of ginseng. Huntington's disease (HD) is incurable genetic disorder associated with mutant huntingtin (mHtt) aggregation in the central nervous system. This study was conducted to investigate the effects of ginsenoside Rg3 and Rf on mHtt aggregation, cell viability, mitochondrial function, and apoptotic molecules on HD model. To investigate the effect of ginsenosides on HD, neural stem cells were isolated from the R6/2 mouse brain and used as a cellular model of HD. Nuclear aggregation of mHtt was measured by immunocytochemistry, and expressions of mitochondrial biogenesis and apoptotic molecules were investigated by western blot. As a result, the number of mHtt aggregates positive cells has decreased by ginsenoside Rg3 and Rf treatment in cellular model of HD. Mitochondrial biogenesis-related molecules such as PGC-1α and phosphorylated CREB were increased or showed increased tendency by ginsenoside Rg3 and Rf. Apoptotic molecules, p53, Bax, and cleaved caspase-3, were down-regulated by treatment of ginsenoside Rg3 and Rf. In addition, Lysotracker staining result showed that cellular lysosomal content was reduced by ginsenoside Rg3 and Rf. Given that ginsenoside Rg3 and Rf have the potential to reduce mHtt aggregation and cellular apoptosis, these ginsenosides can be possible therapeutic candidates for treating HD phenotypes.
Collapse
Affiliation(s)
- Mijung Lee
- Department of Neurology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea
| | - Jae-Jun Ban
- Department of Neurology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea
| | - Bo Hee Won
- Department of Neurology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea
| | - Wooseok Im
- Department of Neurology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea. .,Institute of Women's Life Medical Science, Gangnam Severance Hospital, Seoul, South Korea.
| | - Manho Kim
- Department of Neurology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea. .,Neuroscience Research Institute, College of Medicine, Seoul National University , Seoul, South Korea. .,Protein Metabolism and Neuroscience Dementia Research Center, College of Medicine, Seoul National University, Seoul, South Korea.
| |
Collapse
|
10
|
Luo X, Wang H, Ji D. Carbon nanotubes (CNT)-loaded ginsenosides Rb3 suppresses the PD-1/PD-L1 pathway in triple-negative breast cancer. Aging (Albany NY) 2021; 13:17177-17189. [PMID: 34111025 PMCID: PMC8312428 DOI: 10.18632/aging.203131] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/29/2021] [Indexed: 12/16/2022]
Abstract
Carbon nanotubes (CNTs), as advanced nanotechnology with specific properties and structures, have presented practical drug delivery properties. Ginsenoside Rg3 is a component of puffed ginseng and demonstrates anti-cancer activities. To explore the effect of CNTs-loaded Rg3 (Rg3-CNT) on the PD-1/PD-L1 signaling and the development of triple-negative breast cancer (TNBC). Our data revealed that Rg3 inhibited the cell viability of TNBC cells, in which Rg3-CNT further enhanced this effect in the system. Similarly, the colony formation of TNBC cells was decreased by Rg3, while Rg3-CNT could reinforce its effect in the cells. Besides, the treatment of Rg3 induced apoptosis of TNBC cells, in which Rg3-CNT treatment further increased the phenotype in the cells. Remarkably, Rg3-CNT, but not Rg3, attenuated PD-L1 expression in TNBC cells. Rg3-CNT decreased the PD-L1 upregulation induced by interferon-γ (IFN-γ) in breast cancer cells. Importantly, Rg3-CNT was able to reduce PD-1 expression in activated T cells. Specifically, Rg3-CNT reduced the PD-1/PD-L1 axis in a T cell/triple-negative TNBC cell co-culture system. Moreover, the levels of IFN-γ, interleukins-2 (IL-2), interleukins-9 (IL-9), interleukins-10 (IL-10), interleukins-22 (IL-22), and interleukins-23 (IL-23) were significantly stimulated in the activated T cells, while the treatment of Rg3-CNT could reverse these phenotypes in the cells. Rg3-CNT attenuated the TNBC cell growth in vivo. The Rg3-CNT improved the anti-cancer effect of Rg3 toward TNBC by inhibiting the PD-1/PD-L1 axis. Our finding provides new insights into the mechanism by which Rg3-CNT attenuates the development of TNBC. Rg3-CNT may be applied as the potential therapeutic strategy for immunotherapy of TNBC.
Collapse
Affiliation(s)
- Xiao Luo
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China
| | - Hui Wang
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China
| | - Degang Ji
- Department of Hepatobiliary Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China
| |
Collapse
|
11
|
Tian W, Li J, Wang Z, Zhang T, Han Y, Liu Y, Chu W, Liu Y, Yang B. HYD-PEP06 suppresses hepatocellular carcinoma metastasis, epithelial-mesenchymal transition and cancer stem cell-like properties by inhibiting PI3K/AKT and WNT/ β-catenin signaling activation. Acta Pharm Sin B 2021; 11:1592-1606. [PMID: 34221870 PMCID: PMC8245914 DOI: 10.1016/j.apsb.2021.03.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/27/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023] Open
Abstract
HYD-PEP06, an endostatin-modified polypeptide, has been shown to produce effective anti-colorectal carcinoma effects through inhibiting epithelial–mesenchymal transition (EMT). However, whether HYD-PEP06 has similar suppressive effect on hepatocellular carcinoma (HCC) remained unknown. In this study, HYD-PEP06 inhibited metastasis and EMT but not proliferation in vitro. Cignal finder pathway reporter array and Western blot analysis revealed that HYD-PEP06 suppressed HCCLM3 cell metastasis and EMT by inhibiting the PI3K/AKT pathway. Moreover, HYD-PEP06 exerted anti-metastasis effects in HepG2 cancer stem-like cells (CSCs) via suppressing the WNT/β-catenin signaling pathway. Finally, in HCCLM3 tumor-bearing BALB/c nu/nu nude mice, HYD-PEP06 substantially suppressed tumor growth, lung metastasis and HCC progress. Our results suggest that HYD-PEP06 inhibits the metastasis and EMT of HCC and CSCs as well, and thus has the potential as an agent for HCC treatment.
Collapse
Affiliation(s)
- Wei Tian
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Jiatong Li
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Zhuo Wang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Tong Zhang
- The First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Ying Han
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yanyan Liu
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150081, China
| | - Wenfeng Chu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yu Liu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Corresponding authors. Tel.: +86 451 86671354; fax: +86 451 86675769.
| | - Baofeng Yang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Corresponding authors. Tel.: +86 451 86671354; fax: +86 451 86675769.
| |
Collapse
|
12
|
Paving the Road Toward Exploiting the Therapeutic Effects of Ginsenosides: An Emphasis on Autophagy and Endoplasmic Reticulum Stress. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1308:137-160. [PMID: 33861443 DOI: 10.1007/978-3-030-64872-5_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Programmed cell death processes such as apoptosis and autophagy strongly contribute to the onset and progression of cancer. Along with these lines, modulation of cell death mechanisms to combat cancer cells and elimination of resistance to apoptosis is of great interest. It appears that modulation of autophagy and endoplasmic reticulum (ER) stress with specific agents would be beneficial in the treatment of several disorders. Interestingly, it has been suggested that herbal natural products may be suitable candidates for the modulation of these processes due to few side effects and significant therapeutic potential. Ginsenosides are derivatives of ginseng and exert modulatory effects on the molecular mechanisms associated with autophagy and ER stress. Ginsenosides act as smart phytochemicals that confer their effects by up-regulating ATG proteins and converting LC3-I to -II, which results in maturation of autophagosomes. Not only do ginsenosides promote autophagy but they also possess protective and therapeutic properties due to their capacity to modulate ER stress and up- and down-regulate and/or dephosphorylate UPR transducers such as IRE1, PERK, and ATF6. Thus, it would appear that ginsenosides are promising agents to potentially restore tissue malfunction and possibly eliminate cancer.
Collapse
|
13
|
Anti-Metastatic and Anti-Inflammatory Effects of Matrix Metalloproteinase Inhibition by Ginsenosides. Biomedicines 2021; 9:biomedicines9020198. [PMID: 33671187 PMCID: PMC7921986 DOI: 10.3390/biomedicines9020198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 12/12/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are proteolytic enzymes which cleave extracellular matrix (ECM) and other substrates. They are deeply involved in both cancer metastasis and human chronic inflammatory diseases such as osteoarthritis and Crohn’s disease. Regulation of MMPs is closely associated with signaling molecules, especially mitogen-activated protein kinases (MAPKs), including three representative kinases, extracellular signal regulated kinases (ERK), p38 and c-Jun N-terminal kinases (JNK). Ginseng (Panax sp.) is a plant which has been traditionally used for medicinal applications. Ginsenosides are major metabolites which have potentials to treat various human diseases. In this review, the pharmacological effects of ginsenosides have been rigorously investigated; these include anti-metastatic and anti-inflammatory activities of ginsenosides associated with suppression of MMPs via regulation of various signaling pathways. This will highlight the importance of MMPs as therapeutic targets for anti-metastatic and anti-inflammatory drug development based on ginsenosides.
Collapse
|
14
|
Zhang Y, Jin T, Ryu G, Gao Y. Effects of screw configuration on chemical properties and ginsenosides content of extruded ginseng. Food Sci Nutr 2021; 9:251-260. [PMID: 33473289 PMCID: PMC7802574 DOI: 10.1002/fsn3.1991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The purpose of this study was to investigate the effects of screw configuration on chemical properties and ginsenosides content of extruded ginseng and to select the most suitable screw configuration for the processing of ginseng. METHOD The extrusion conditions were set as follows: moisture content (20%), barrel temperature (140°C), screw speed (200 rpm), and feeding rate (100 g/min). RESULT The extruded ginseng of screw configuration 6 has the highest DPPH free radical scavenging rate, reducing power and total phenol, which is the most suitable configuration for the development of ginseng extract products. In addition, the extruded ginseng of screw configuration 9 has the highest content of total saponin, and the content of rare ginsenoside Rg3 which is scarcely present in the ginseng raw material powder was significantly increased. This intended that twin-screw extrusion process enables the mutual conversion between ginsenosides and rare ginsenoside Rg3 had achieved. CONCLUSION The extrusion process promotes the development and utilization of ginseng and provides theoretical basis for the design and development of screw configuration of twin-screw extruded ginseng.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Food Science and EngineeringYanbian UniversityYanbianChina
| | - Tie Jin
- Department of Food Science and EngineeringYanbian UniversityYanbianChina
| | - Gihyung Ryu
- Department of Food Science and TechnologyKongju National UniversityYesanSouth Korea
| | - Yuxuan Gao
- Department of Food Science and EngineeringYanbian UniversityYanbianChina
| |
Collapse
|
15
|
Anti-Angiogenic Properties of Ginsenoside Rg3. Molecules 2020; 25:molecules25214905. [PMID: 33113992 PMCID: PMC7660320 DOI: 10.3390/molecules25214905] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Ginsenoside Rg3 (Rg3) is a member of the ginsenoside family of chemicals extracted from Panax ginseng. Like other ginsenosides, Rg3 has two epimers: 20(S)-ginsenoside Rg3 (SRg3) and 20(R)-ginsenoside Rg3 (RRg3). Rg3 is an intriguing molecule due to its anti-cancer properties. One facet of the anti-cancer properties of Rg3 is the anti-angiogenic action. This review describes the controversies on the effects and effective dose range of Rg3, summarizes the evidence on the efficacy of Rg3 on angiogenesis, and raises the possibility that Rg3 is a prodrug.
Collapse
|
16
|
Jin Y, Huynh DTN, Nguyen TLL, Jeon H, Heo KS. Therapeutic effects of ginsenosides on breast cancer growth and metastasis. Arch Pharm Res 2020; 43:773-787. [PMID: 32839835 DOI: 10.1007/s12272-020-01265-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/13/2020] [Indexed: 12/16/2022]
Abstract
Breast cancer is the most common cause of cancer-related deaths among women worldwide. Thus, the development of new and effective low-toxicity drugs is vital. The specific characteristics of breast cancer have allowed for the development of targeted therapy towards each breast cancer subtype. Nevertheless, increasing drug resistance is displayed by the changing phenotype and microenvironments of the tumor through mutation or dysregulation of various mechanisms. Recently, emerging data on the therapeutic potential of biocompounds isolated from ginseng have been reported. Therefore, in this review, various roles of ginsenosides in the treatment of breast cancer, including apoptosis, autophagy, metastasis, epithelial-mesenchymal transition, epigenetic changes, combination therapy, and drug delivery system, have been discussed.
Collapse
Affiliation(s)
- Yujin Jin
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon, Republic of Korea
| | - Diem Thi Ngoc Huynh
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon, Republic of Korea
| | - Thuy Le Lam Nguyen
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon, Republic of Korea
| | - Hyesu Jeon
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon, Republic of Korea
| | - Kyung-Sun Heo
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon, Republic of Korea. .,Institute of Drug Research & Development, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
17
|
Lv P, Shi F, Chen X, Xu L, Wang C, Tian S, Yang H, Hou L. Tea polyphenols inhibit the growth and angiogenesis of breast cancer xenografts in a mouse model. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2020. [DOI: 10.1016/j.jtcms.2020.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
18
|
Guo YH, Kuruganti R, Gao Y. Recent Advances in Ginsenosides as Potential Therapeutics Against Breast Cancer. Curr Top Med Chem 2019; 19:2334-2347. [DOI: 10.2174/1568026619666191018100848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 05/10/2019] [Accepted: 08/16/2019] [Indexed: 12/14/2022]
Abstract
The dried root of ginseng (Panax ginseng C. A. Meyer or Panax quinquefolius L.) is a traditional
Chinese medicine widely used to manage cancer symptoms and chemotherapy side effects in
Asia. The anti-cancer efficacy of ginseng is attributed mainly to the presence of saponins, which are
commonly known as ginsenosides. Ginsenosides were first identified as key active ingredients in Panax
ginseng and subsequently found in Panax quinquefolius, both of the same genus. To review the recent
advances on anti-cancer effects of ginsenosides against breast cancer, we conducted a literature study of
scientific articles published from 2010 through 2018 to date by searching the major databases including
Pubmed, SciFinder, Science Direct, Springer, Google Scholar, and CNKI. A total of 50 articles authored
in either English or Chinese related to the anti-breast cancer activity of ginsenosides have been
reviewed, and the in vitro, in vivo, and clinical studies on ginsenosides are summarized. This review focuses
on how ginsenosides exert their anti-breast cancer activities through various mechanisms of action
such as modulation of cell growth, modulation of the cell cycle, modulation of cell death, inhibition of
angiogenesis, inhibition of metastasis, inhibition of multidrug resistance, and cancer immunemodulation.
In summary, recent advances in the evaluation of ginsenosides as therapeutic agents against
breast cancer support further pre-clinical and clinical studies to treat primary and metastatic breast tumors.
Collapse
Affiliation(s)
- Yu-hang Guo
- International Ginseng Institute, School of Agriculture, Middle Tennessee State University, Murfreesboro, TN 37132, United States
| | - Revathimadhubala Kuruganti
- International Ginseng Institute, School of Agriculture, Middle Tennessee State University, Murfreesboro, TN 37132, United States
| | - Ying Gao
- International Ginseng Institute, School of Agriculture, Middle Tennessee State University, Murfreesboro, TN 37132, United States
| |
Collapse
|
19
|
Luo H, Vong CT, Chen H, Gao Y, Lyu P, Qiu L, Zhao M, Liu Q, Cheng Z, Zou J, Yao P, Gao C, Wei J, Ung COL, Wang S, Zhong Z, Wang Y. Naturally occurring anti-cancer compounds: shining from Chinese herbal medicine. Chin Med 2019; 14:48. [PMID: 31719837 PMCID: PMC6836491 DOI: 10.1186/s13020-019-0270-9] [Citation(s) in RCA: 280] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022] Open
Abstract
Numerous natural products originated from Chinese herbal medicine exhibit anti-cancer activities, including anti-proliferative, pro-apoptotic, anti-metastatic, anti-angiogenic effects, as well as regulate autophagy, reverse multidrug resistance, balance immunity, and enhance chemotherapy in vitro and in vivo. To provide new insights into the critical path ahead, we systemically reviewed the most recent advances (reported since 2011) on the key compounds with anti-cancer effects derived from Chinese herbal medicine (curcumin, epigallocatechin gallate, berberine, artemisinin, ginsenoside Rg3, ursolic acid, silibinin, emodin, triptolide, cucurbitacin B, tanshinone I, oridonin, shikonin, gambogic acid, artesunate, wogonin, β-elemene, and cepharanthine) in scientific databases (PubMed, Web of Science, Medline, Scopus, and Clinical Trials). With a broader perspective, we focused on their recently discovered and/or investigated pharmacological effects, novel mechanism of action, relevant clinical studies, and their innovative applications in combined therapy and immunomodulation. In addition, the present review has extended to describe other promising compounds including dihydroartemisinin, ginsenoside Rh2, compound K, cucurbitacins D, E, I, tanshinone IIA and cryptotanshinone in view of their potentials in cancer therapy. Up to now, the evidence about the immunomodulatory effects and clinical trials of natural anti-cancer compounds from Chinese herbal medicine is very limited, and further research is needed to monitor their immunoregulatory effects and explore their mechanisms of action as modulators of immune checkpoints.
Collapse
Affiliation(s)
- Hua Luo
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Chi Teng Vong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Hanbin Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yan Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Peng Lyu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Ling Qiu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Mingming Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Qiao Liu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zehua Cheng
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Jian Zou
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Peifen Yao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Caifang Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Jinchao Wei
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Carolina Oi Lam Ung
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Shengpeng Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zhangfeng Zhong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yitao Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| |
Collapse
|
20
|
Wu T, Kwaku OR, Li HZ, Yang CR, Ge LJ, Xu M. Sense Ginsenosides From Ginsengs: Structure-Activity Relationship in Autophagy. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19858223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The term ginseng refers to the dried roots of several plants belonging to the genus Panax of the Araliaceae family. The 3 major commercial ginsengs are Panax notoginseng (Burk.) F.H. Chen (Notoginseng), P. ginseng C.A. Meyer (Ginseng), and P. quinquefolius L. (American ginseng), which have been used as herbal medicines. Over 18,000 papers on ginsengs have been published on the basis of their structural diversity and biological activities. Many reviews have summarized the phytochemistry, pharmacology, and clinical use of ginsengs, but the structure-activity relationship (SAR) of ginsenosides from ginsengs in autophagy is unavailable. Herein, we review the structural diversity of ginsenosides, especially the ones in notoginseng, and the SAR in autophagic activity is discussed in detail.
Collapse
Affiliation(s)
- Tao Wu
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, P.R. China
| | - Osafo Raymond Kwaku
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, P.R. China
| | - Hai-Zhou Li
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, P.R. China
| | - Chong-Ren Yang
- State Key Laboratory of Phytochemistry and Plant Resources of West China, Kunming Institute of Botany, Chinese Academy of Sciences, P.R. China
| | - Long-Jiao Ge
- Translational Lab of Primate Brain Research, Kunming Institute of Zoology, Chinese Academy of Sciences, P.R. China
| | - Min Xu
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, P.R. China
| |
Collapse
|
21
|
Younas M, Hano C, Giglioli-Guivarc'h N, Abbasi BH. Mechanistic evaluation of phytochemicals in breast cancer remedy: current understanding and future perspectives. RSC Adv 2018; 8:29714-29744. [PMID: 35547279 PMCID: PMC9085387 DOI: 10.1039/c8ra04879g] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/15/2018] [Indexed: 12/30/2022] Open
Abstract
Breast cancer is one of the most commonly diagnosed cancers around the globe and accounts for a large proportion of fatalities in women. Despite the advancement in therapeutic and diagnostic procedures, breast cancer still represents a major challenge. Current anti-breast cancer approaches include surgical removal, radiotherapy, hormonal therapy and the use of various chemotherapeutic drugs. However, drug resistance, associated serious adverse effects, metastasis and recurrence complications still need to be resolved which demand safe and alternative strategies. In this scenario, phytochemicals have recently gained huge attention due to their safety profile and cost-effectiveness. These phytochemicals modulate various genes, gene products and signalling pathways, thereby inhibiting breast cancer cell proliferation, invasion, angiogenesis and metastasis and inducing apoptosis. Moreover, they also target breast cancer stem cells and overcome drug resistance problems in breast carcinomas. Phytochemicals as adjuvants with chemotherapeutic drugs have greatly enhanced their therapeutic efficacy. This review focuses on the recently recognized molecular mechanisms underlying breast cancer chemoprevention with the use of phytochemicals such as curcumin, resveratrol, silibinin, genistein, epigallocatechin gallate, secoisolariciresinol, thymoquinone, kaempferol, quercetin, parthenolide, sulforaphane, ginsenosides, naringenin, isoliquiritigenin, luteolin, benzyl isothiocyanate, α-mangostin, 3,3'-diindolylmethane, pterostilbene, vinca alkaloids and apigenin.
Collapse
Affiliation(s)
- Muhammad Younas
- Department of Biotechnology, Quaid-i-Azam University Islamabad-45320 Pakistan +92-51-90644121 +92-51-90644121 +33-767-97-0619
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Plant Lignans Team, UPRES EA 1207, Université d'Orléans F 28000 Chartres France
| | | | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University Islamabad-45320 Pakistan +92-51-90644121 +92-51-90644121 +33-767-97-0619
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Plant Lignans Team, UPRES EA 1207, Université d'Orléans F 28000 Chartres France
- EA2106 Biomolecules et Biotechnologies Vegetales, Universite Francois-Rabelais de Tours Tours France
| |
Collapse
|
22
|
Lee H, Hong Y, Tran Q, Cho H, Kim M, Kim C, Kwon SH, Park S, Park J, Park J. A new role for the ginsenoside RG3 in antiaging via mitochondria function in ultraviolet-irradiated human dermal fibroblasts. J Ginseng Res 2018; 43:431-441. [PMID: 31308815 PMCID: PMC6606973 DOI: 10.1016/j.jgr.2018.07.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/09/2018] [Indexed: 11/18/2022] Open
Abstract
Background The efficacy of ginseng, the representative product of Korea, and its chemical effects have been well investigated. The ginsenoside RG3 has been reported to exhibit apoptotic, anticancer, and antidepressant-like effects. Methods In this report, the putative effect of RG3 on several cellular function including cell survival, differentiation, development and aging process were evaluated by monitoring each specific marker. Also, mitochondrial morphology and function were investigated in ultraviolet (UV)-irradiated normal human dermal fibroblast cells. Results RG3 treatment increased the expression of extracellular matrix proteins, growth-associated immediate-early genes, and cell proliferation genes in UV-irradiated normal human dermal fibroblast cells. And, RG3 also resulted in enhanced expression of antioxidant proteins such as nuclear factor erythroid 2–related factor-2 and heme oxygenase-1. In addition, RG3 affects the morphology of UV-induced mitochondria and plays a role in protecting mitochondrial dysfunction. Conclusioin RG3 restores mitochondrial adenosine triphosphate (ATP) and membrane potential via its antioxidant effects in skin cells damaged by UV irradiation, leading to an increase in proteins linked with the extracellular matrix, cell proliferation, and antioxidant activity.
Collapse
Affiliation(s)
- Hyunji Lee
- Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Youngeun Hong
- Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Quangdon Tran
- Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Hyeonjeong Cho
- Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Minhee Kim
- Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Chaeyeong Kim
- Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - So Hee Kwon
- Department of Pharmacy, College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - SungJin Park
- Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jongsun Park
- Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Corresponding author. Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea.
| | - Jisoo Park
- Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Corresponding author. Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea.
| |
Collapse
|
23
|
Duan Z, Wei B, Deng J, Mi Y, Dong Y, Zhu C, Fu R, Qu L, Fan D. The anti-tumor effect of ginsenoside Rh4 in MCF-7 breast cancer cells in vitro and in vivo. Biochem Biophys Res Commun 2018; 499:482-487. [PMID: 29596831 DOI: 10.1016/j.bbrc.2018.03.174] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 03/22/2018] [Indexed: 01/27/2023]
Abstract
Breast cancer is a tremendous threat to humans in many countries, and thus we need to find safe and effective drugs for treatment. Ginsenoside Rh4 has been reported to be present in processed ginseng. However, few studies have focused on its anti-tumor activity. In this study, we investigated the inhibitory effects of ginsenoside Rh4 on MCF-7 breast cancer cells and the pathways that promote apoptosis in vitro. To study the effect of ginsenoside Rh4 in vivo, xenograft models were randomly divided into 3 groups (the control group, 10 mg/kg/d Rh4, 20 mg/kg/d Rh4, n = 10 per group), the ginsenoside Rh4 injection method was i.p. The results showed that ginsenoside Rh4 effectively inhibited proliferation, arrested the cell cycle in S phase and induced apoptosis in MCF-7 cells by flow cytometry. Morphological changes caused by ginsenoside Rh4-induced apoptosis were also observed by Hoechst 33342 staining. Western-blot analyses indicated that the apoptosis-inducing effects of ginsenoside Rh4 were associated with the external pathway by decreasing Bcl-2, increasing Bax, and activating caspase-8, -3 and PARP. Moreover, ginsenoside Rh4 significantly inhibited the growth of MCF-7 tumor cells in vivo. These results suggested that ginsenoside Rh4 could be a potentially effective anti-tumor drug for breast cancer.
Collapse
Affiliation(s)
- Zhiguang Duan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China.
| | - Bo Wei
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China.
| | - Jianjun Deng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China
| | - Yu Mi
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China
| | - Yangfang Dong
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China
| | - Chenhui Zhu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China
| | - Rongzhan Fu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China
| | - Linlin Qu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
24
|
Lee JB, Yoon SJ, Lee SH, Lee MS, Jung H, Kim TD, Yoon SR, Choi I, Kim IS, Chung SW, Lee HG, Min JK, Park YJ. Ginsenoside Rg3 ameliorated HFD-induced hepatic steatosis through downregulation of STAT5-PPARγ. J Endocrinol 2017; 235:223-235. [PMID: 29042402 DOI: 10.1530/joe-17-0233] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 09/26/2017] [Indexed: 01/01/2023]
Abstract
Healthy expansion of adipose tissue maintains metabolic homeostasis by storing excess chemical energy in increased fat mass. The STAT5-PPAR gamma pathway reportedly regulates adipocyte differentiation, lipid metabolism and adipogenesis. Ginsenoside Rg3 is one of the diverse groups of steroidal saponins, the major active components of ginseng, which have demonstrated pharmacological properties. In this study, we evaluated the therapeutic effects of ginsenoside Rg3 under pathological conditions in vitro and in vivo We examined the effects of ginsenoside Rg3 on glucose level, insulin sensitivity and lipogenesis in high-fat diet-fed C57BL/6 mice. Ginsenoside Rg3 was also applied to the pre-adipocyte cell line 3T3-L1 to assess the impact on lipogenesis. Ginsenoside Rg3 reduced epididymal white adipose tissue (eWAT) size and hepatic steatosis, and the amount of triglycerides (TGs) in both eWAT and liver. Similar to the murine model, Rg3-treated 3T3-L1 cells showed a reduction in lipid accumulation and amount of total TGs. Ginsenoside Rg3 regulates the expression of PPAR gamma though STAT5 in vitro and in vivo According to our results, lipid metabolism-related genes were downregulated in the high-fat mice and 3T3-L1 cell line. Rg3 shows potential for the amelioration of obesity-induced pathology, acting though STAT5-PPAR gamma to facilitate the healthy functioning of adipose tissue. This is the first report of evidence that obesity-induced insulin resistance and lipotoxicity can be treated with ginsenoside Rg3, which acts though the STAT5-PPAR gamma pathway in vivo and in vitro.
Collapse
Affiliation(s)
- Jin-Bong Lee
- Metabolic Regulation Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon Republic of Korea
- Department of Functional GenomicsUniversity of Science and Technology, Daejeon, Republic of Korea
| | - Sung-Jin Yoon
- Immunotherapy Convergence Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Sang-Hyun Lee
- Biotherapeutics Translational Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Moo-Seung Lee
- Department of Biomolecular ScienceUniversity of Science and Technology, Daejeon, Republic of Korea
- Infectious Disease Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Haiyoung Jung
- Department of Functional GenomicsUniversity of Science and Technology, Daejeon, Republic of Korea
- Immunotherapy Convergence Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Tae-Don Kim
- Department of Functional GenomicsUniversity of Science and Technology, Daejeon, Republic of Korea
- Immunotherapy Convergence Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Suk Ran Yoon
- Department of Functional GenomicsUniversity of Science and Technology, Daejeon, Republic of Korea
- Immunotherapy Convergence Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Inpyo Choi
- Department of Functional GenomicsUniversity of Science and Technology, Daejeon, Republic of Korea
- Immunotherapy Convergence Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Ik-Soo Kim
- Hanwool Life SciencesDaejeon, Republic of Korea
| | - Su Wol Chung
- School of Biological SciencesCollege of Natural Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Hee Gu Lee
- Department of Functional GenomicsUniversity of Science and Technology, Daejeon, Republic of Korea
- Department of Biomolecular ScienceUniversity of Science and Technology, Daejeon, Republic of Korea
| | - Jeong-Ki Min
- Biotherapeutics Translational Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Biomolecular ScienceUniversity of Science and Technology, Daejeon, Republic of Korea
| | - Young-Jun Park
- Metabolic Regulation Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon Republic of Korea
- Immunotherapy Convergence Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| |
Collapse
|
25
|
Jung J, Lee NK, Paik HD. Bioconversion, health benefits, and application of ginseng and red ginseng in dairy products. Food Sci Biotechnol 2017; 26:1155-1168. [PMID: 30263648 PMCID: PMC6049797 DOI: 10.1007/s10068-017-0159-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/01/2017] [Accepted: 05/03/2017] [Indexed: 12/17/2022] Open
Abstract
Ginseng and red ginseng are popular as functional foods in Asian countries such as Korea, Japan, and China. They possess various pharmacologic effects, including antioxidant, anti-inflammatory, anti-cancer, anti-obesity, and anti-viral activities. Ginsenosides are a class of pharmacologically active components in ginseng and red ginseng. Major ginsenosides are converted to minor ginsenosides, which have better bioavailability and cellular uptake, by microorganisms and enzymes. Studies have shown that ginseng and red ginseng can affect the physicochemical and sensory properties, ginsenosides content, and functional properties of dairy products. In addition, lactic acid bacteria in dairy products can convert into minor ginsenosides and ginseng and red ginseng improve functionality of products. This review will discuss the characteristics of ginseng and red ginseng, and their bioconversion, functionality, and application in dairy products.
Collapse
Affiliation(s)
- Jieun Jung
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Korea
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Korea
- Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029 Korea
| |
Collapse
|
26
|
Wang H, Qian J, Zhang Y, Xu W, Xiao J, Suo A. Growth of MCF-7 breast cancer cells and efficacy of anti-angiogenic agents in a hydroxyethyl chitosan/glycidyl methacrylate hydrogel. Cancer Cell Int 2017; 17:55. [PMID: 28515673 PMCID: PMC5434523 DOI: 10.1186/s12935-017-0424-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/07/2017] [Indexed: 11/20/2022] Open
Abstract
Background Breast cancer negatively affects women’s health worldwide. The tumour microenvironment plays a critical role in tumour initiation, proliferation, and metastasis. Cancer cells are traditionally grown in two-dimensional (2D) cultures as monolayers on a flat solid surface lacking cell–cell and cell–matrix interactions. These experimental conditions deviate from the clinical situation. Improved experimental systems that can mimic the in vivo situation are required to discover new therapies, particularly for anti-angiogenic agents that mainly target intercellular factors and play an essential role in treating some cancers. Methods Chitosan can be modified to construct three-dimensional (3D) tumour models. Here, we report an in vitro 3D tumour model using a hydroxyethyl chitosan/glycidyl methacrylate (HECS–GMA) hydrogel produced by a series of chitosan modifications. Parameters relating to cell morphology, viability, proliferation, and migration were analysed using breast cancer MCF-7 cells. In a xenograft model, secretion of angiogenesis-related growth factors and the anti-angiogenic efficacy of Endostar and Bevacizumab in cells grown in HECS–GMA hydrogels were assessed by immunohistochemistry. Results Hydroxyethyl chitosan/glycidyl methacrylate hydrogels had a highly porous microstructure, mechanical properties, swelling ratio, and morphology consistent with a 3D tumour model. Compared with a 2D monolayer culture, breast cancer MCF-7 cells residing in the HECS–GMA hydrogels grew as tumour-like clusters in a 3D formation. In a xenograft model, MCF-7 cells cultured in the HECS–GMA hydrogels had increased secretion of angiogenesis-related growth factors. Recombinant human endostatin (Endostar), but not Bevacizumab (Avastin), was an effective anti-angiogenic agent in HECS–GMA hydrogels. Conclusions The HECS–GMA hydrogel provided a 3D tumour model that mimicked the in vivo cancer microenvironment and supported the growth of MCF7 cells better than traditional tissue culture plates. The HECS–GMA hydrogel may offer an improved platform to minimize the gap between traditional tissue culture plates and clinical applicability. In addition, the anti-angiogenic efficacy of drugs such as Endostar and Bevacizumab can be more comprehensively studied and assessed in HECS–GMA hydrogels.
Collapse
Affiliation(s)
- Hejing Wang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shanxi People's Republic of China
| | - Junmin Qian
- State Key Laboratory for Mechanical Behaviours of Materials, Xi'an Jiaotong University, Xi'an, 710049 China
| | - Yaping Zhang
- State Key Laboratory for Mechanical Behaviours of Materials, Xi'an Jiaotong University, Xi'an, 710049 China
| | - Weijun Xu
- State Key Laboratory for Mechanical Behaviours of Materials, Xi'an Jiaotong University, Xi'an, 710049 China
| | - Juxiang Xiao
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shanxi People's Republic of China
| | - Aili Suo
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shanxi People's Republic of China
| |
Collapse
|
27
|
Jeong D, Irfan M, Kim SD, Kim S, Oh JH, Park CK, Kim HK, Rhee MH. Ginsenoside Rg3-enriched red ginseng extract inhibits platelet activation and in vivo thrombus formation. J Ginseng Res 2017; 41:548-555. [PMID: 29021703 PMCID: PMC5628340 DOI: 10.1016/j.jgr.2016.11.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/28/2016] [Indexed: 11/27/2022] Open
Abstract
Background Korean Red Ginseng has been used for several decades to treat many diseases, enhancing both immunity and physical strength. Previous studies have documented the therapeutic effects of ginseng, including its anticancer, antiaging, and anti-inflammatory activities. These activities are mediated by ginsenosides present in the ginseng plant. Ginsenoside Rg3, an effective compound from red ginseng, has been shown to have antiplatelet activity in addition to its anticancer and anti-inflammatory activities. Platelets are important for both primary hemostasis and the repair of the vessels after injury; however, they also play a crucial role in the development of acute coronary diseases. We prepared ginsenoside Rg3-enriched red ginseng extract (Rg3-RGE) to examine its role in platelet physiology. Methods To examine the effect of Rg3-RGE on platelet activation in vitro, platelet aggregation, granule secretion, intracellular calcium ([Ca2+]i) mobilization, flow cytometry, and immunoblot analysis were carried out using rat platelets. To examine the effect of Rg3-RGE on platelet activation in vivo, a collagen plus epinephrine-induced acute pulmonary thromboembolism mouse model was used. Results We found that Rg3-RGE significantly inhibited collagen-induced platelet aggregation and [Ca2+]i mobilization in a dose-dependent manner in addition to reducing ATP release from collagen-stimulated platelets. Furthermore, using immunoblot analysis, we found that Rg3-RGE markedly suppressed mitogen-activated protein kinase phosphorylation (i.e., extracellular stimuli-responsive kinase, Jun N-terminal kinase, p38) as well as the PI3K (phosphatidylinositol 3 kinase)/Akt pathway. Moreover, Rg3-RGE effectively reduced collagen plus epinephrine-induced mortality in mice. Conclusion These data suggest that ginsenoside Rg3-RGE could be potentially be used as an antiplatelet therapeutic agent against platelet-mediated cardiovascular disorders.
Collapse
Affiliation(s)
- Dahye Jeong
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Muhammad Irfan
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sung-Dae Kim
- Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan, Republic of Korea
| | - Suk Kim
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Jun-Hwan Oh
- Research and Development Headquarters, Korean Ginseng Corporation, Daejeon, Republic of Korea
| | - Chae-Kyu Park
- Research and Development Headquarters, Korean Ginseng Corporation, Daejeon, Republic of Korea
| | - Hyun-Kyoung Kim
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Man Hee Rhee
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
28
|
Xie Q, Wen H, Zhang Q, Zhou W, Lin X, Xie D, Liu Y. Inhibiting PI3K-AKt signaling pathway is involved in antitumor effects of ginsenoside Rg3 in lung cancer cell. Biomed Pharmacother 2017; 85:16-21. [DOI: 10.1016/j.biopha.2016.11.096] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 11/23/2016] [Accepted: 11/24/2016] [Indexed: 12/18/2022] Open
|
29
|
Yayeh T, Yun K, Jang S, Oh S. Morphine dependence is attenuated by red ginseng extract and ginsenosides Rh2, Rg3, and compound K. J Ginseng Res 2016; 40:445-452. [PMID: 27746699 PMCID: PMC5052441 DOI: 10.1016/j.jgr.2016.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/09/2016] [Accepted: 08/12/2016] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Red ginseng and ginsenosides have shown plethoric effects against various ailments. However, little is known regarding the effect of red ginseng on morphine-induced dependence and tolerance. We therefore investigated the effect of red ginseng extract (RGE) and biotransformed ginsenosides Rh2, Rg3, and compound K on morphine-induced dependence in mice and rats. METHODS While mice were pretreated with RGE and then morphine was injected intraperitoneally, rats were infused with ginsenosides and morphine intracranially for 7 days. Naloxone-induced morphine withdrawal syndrome was estimated and conditioned place preference test was performed for physical and psychological dependence, respectively. Western blotting was used to measure protein expressions. RESULTS Whereas RGE inhibited the number of naloxone-precipitated jumps and reduced conditioned place preference score, it restored the level of glutathione in mice. Likewise, ginsenosides Rh2, Rg3, and compound K attenuated morphine-dependent behavioral patterns such as teeth chattering, grooming, wet-dog shake, and escape behavior in rats. Moreover, activated N-methyl-D-aspartate acid receptor subunit 1 and extracellular signal-regulated kinase in the frontal cortex of rats, and cultured cortical neurons from mice were downregulated by ginsenosides Rh2, Rg3, and compound K despite their differential effects. CONCLUSION RGE and biotransformed ginsenosides could be considered as potential therapeutic agents against morphine-induced dependence.
Collapse
Affiliation(s)
| | | | | | - Seikwan Oh
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul, Korea
| |
Collapse
|
30
|
Liu Y, Li H, Fan Y, Man S, Liu Z, Gao W, Wang T. Antioxidant and Antitumor Activities of the Extracts from Chinese Yam (Dioscorea opposite Thunb.) Flesh and Peel and the Effective Compounds. J Food Sci 2016; 81:H1553-64. [PMID: 27122252 DOI: 10.1111/1750-3841.13322] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 03/07/2016] [Accepted: 03/26/2016] [Indexed: 01/19/2023]
Abstract
The aims of this study are to investigate the antioxidant and antitumor activities of the water and ethanol extracts isolated from Chinese yam (Dioscorea opposite Thunb.) flesh (CYF) and peel (CYP) and the effective compounds. It was found that all peel portions have a better effect on reactive oxygen (ROS) scavenging assay than meat portions, especially for the water extract of Chinese yam peel (CYP-W). Its IC50 values for hydroxyl radical (OH•) scavenging assay (744.25 ± 3.46 μg/mL) and for 1,1-diphenyl-2-picrylhydrazyl scavenging assay (374.85 ± 6.78 μg/mL) were both lower than that of yam flesh (CYF-W). Furthermore, the antitumor property of yam peel was more effective than that of yam flesh (CYF-W) on mouse models, with tumor inhibition rates were 47.92% and 27.41% for Ehrlich Ascites Tumor (EAC) model and 40.44% and 24.22% for H22 hepatocarcinoma tumor (H22) model. Meanwhile, extracts of peel showed higher allantoin, total flavonoids, and total phenolics contents than extracts of flesh. In conclusion, this study demonstrated that CYP-W exerted better antitumor activity than flesh extracts and the scavenging ROS effects were also significantly higher in the CYP-W in vitro. Moreover, the data indicated that allantoin may play an important role on antioxidative and antitumor capacity in yam peel.
Collapse
Affiliation(s)
- Yuanxue Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin Univ, Tianjin, China
| | - Hongfa Li
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin Univ. of Science & Technology, Tianjin, China
| | - Yaya Fan
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin Univ. of Science & Technology, Tianjin, China
| | - Shuli Man
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin Univ. of Science & Technology, Tianjin, China
| | - Zhen Liu
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin Univ. of Science & Technology, Tianjin, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin Univ, Tianjin, China
| | - Tingting Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin Univ, Tianjin, China
| |
Collapse
|