1
|
Egger M, Bergmann J, Krewer C, Jahn K, Müller F. Sensory Stimulation and Robot-Assisted Arm Training After Stroke: A Randomized Controlled Trial. J Neurol Phys Ther 2024; 48:178-187. [PMID: 38912852 DOI: 10.1097/npt.0000000000000486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
BACKGROUND AND PURPOSE Functional recovery after stroke is often limited, despite various treatment methods such as robot-assisted therapy. Repetitive sensory stimulation (RSS) might be a promising add-on therapy that is thought to directly drive plasticity processes. First positive effects on sensorimotor function have been shown. However, clinical studies are scarce, and the effect of RSS combined with robot-assisted training has not been evaluated yet. Therefore, our objective was to investigate the feasibility and sensorimotor effects of RSS (compared to a control group receiving sham stimulation) followed by robot-assisted arm therapy. METHODS Forty participants in the subacute phase (4.4-23.9 weeks) after stroke with a moderate to severe arm paresis were randomized to RSS or control group. Participants received 12 sessions of (sham-) stimulation within 3 weeks. Stimulation of the fingertips and the robot-assisted therapy were each applied in 45-min sessions. Motor and sensory outcome assessments (e.g. Fugl-Meyer-Assessment, grip strength) were measured at baseline, post intervention and at a 3-week follow-up. RESULTS Participants in both groups improved their sensorimotor function from baseline to post and follow-up measurements, as illustrated by most motor and sensory outcome assessments. However, no significant group effects were found for any measures at any time ( P > 0.058). Stimulations were well accepted, no safety issues arose. DISCUSSION AND CONCLUSIONS Feasibility of robot-assisted therapy with preceding RSS in persons with moderate to severe paresis was demonstrated. However, RSS preceding robot-assisted training failed to show a preliminary effect compared to the control intervention. Participants might have been too severely affected to identify changes driven by the RSS, or these might have been diluted or more difficult to identify because of the additional robotic training and neurorehabilitation. VIDEO ABSTRACT AVAILABLE for more insights from the authors (see the Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A478 ).
Collapse
Affiliation(s)
- Marion Egger
- Department of Neurology, Research Group, Schoen Clinic Bad Aibling, Bad Aibling, Germany (M.E., J.B., C.K., K.J., F.M.); Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Faculty of Medicine, LMU Munich, Pettenkofer School of Public Health, Munich, Germany (M.E.); German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians-Universität in Munich, Munich, Germany (J.B., K.J.); and Chair of Human Movement Science, Department of Sports and Health Sciences, Technical University of Munich, Munich, Germany (C.K.)
| | | | | | | | | |
Collapse
|
2
|
Schambra HM, Hays SA. Vagus nerve stimulation for stroke rehabilitation: Neural substrates, neuromodulatory effects and therapeutic implications. J Physiol 2024. [PMID: 39243394 DOI: 10.1113/jp285566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/12/2024] [Indexed: 09/09/2024] Open
Abstract
Paired vagus nerve stimulation (VNS) has emerged as a promising strategy to potentiate recovery after neurological injury. This approach, which combines short bursts of electrical stimulation of the vagus nerve with rehabilitation exercises, received approval from the US Food and Drug Aministration in 2021 as the first neuromodulation-based therapy for chronic stroke. Because this treatment is increasingly implemented in clinical practice, there is a need to take stock of what we know about this approach and what we have yet to learn. Here, we provide a survey on the foundational basis of VNS therapy for stroke and offer insight into the mechanisms that underlie potentiated recovery, focusing on the principles of neuromodulatory reinforcement. We discuss the current state of observations regarding synaptic reorganization in motor networks that are enhanced by VNS, and we propose other prospective loci of neuromodulation that should be evaluated in the future. Finally, we highlight the future opportunities and challenges to be faced as this approach is increasingly translated to clinical use. Collectively, a clearer understanding of the mechanistic basis of VNS therapy may reveal ways to maximize its benefits.
Collapse
Affiliation(s)
- Heidi M Schambra
- Departments of Neurology & Rehabilitation Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Seth A Hays
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA
- Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
3
|
Rony RJ, Amir S, Ahmed N, Atiba S, Verdezoto N, Sparkes V, Stawarz K. Understanding the Sociocultural Challenges and Opportunities for Affordable Wearables to Support Poststroke Upper-Limb Rehabilitation: Qualitative Study. JMIR Rehabil Assist Technol 2024; 11:e54699. [PMID: 38807327 DOI: 10.2196/54699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 05/30/2024] Open
Abstract
Background People who survive a stroke in many cases require upper-limb rehabilitation (ULR), which plays a vital role in stroke recovery practices. However, rehabilitation services in the Global South are often not affordable or easily accessible. For example, in Bangladesh, the access to and use of rehabilitation services is limited and influenced by cultural factors and patients' everyday lives. In addition, while wearable devices have been used to enhance ULR exercises to support self-directed home-based rehabilitation, this has primarily been applied in developed regions and is not common in many Global South countries due to potential costs and limited access to technology. Objective Our goal was to better understand physiotherapists', patients', and caregivers' experiences of rehabilitation in Bangladesh, existing rehabilitation practices, and how they differ from the rehabilitation approach in the United Kingdom. Understanding these differences and experiences would help to identify opportunities and requirements for developing affordable wearable devices that could support ULR in home settings. Methods We conducted an exploratory study with 14 participants representing key stakeholder groups. We interviewed physiotherapists and patients in Bangladesh to understand their approaches, rehabilitation experiences and challenges, and technology use in this context. We also interviewed UK physiotherapists to explore the similarities and differences between the 2 countries and identify specific contextual and design requirements for low-cost wearables for ULR. Overall, we remotely interviewed 8 physiotherapists (4 in the United Kingdom, 4 in Bangladesh), 3 ULR patients in Bangladesh, and 3 caregivers in Bangladesh. Participants were recruited through formal communications and personal contacts. Each interview was conducted via videoconference, except for 2 interviews, and audio was recorded with consent. A total of 10 hours of discussions were transcribed. The results were analyzed using thematic analysis. Results We identified several sociocultural factors that affect ULR and should be taken into account when developing technologies for the home: the important role of family, who may influence the treatment based on social and cultural perceptions; the impact of gender norms and their influence on attitudes toward rehabilitation and physiotherapists; and differences in approach to rehabilitation between the United Kingdom and Bangladesh, with Bangladeshi physiotherapists focusing on individual movements that are necessary to build strength in the affected parts and their British counterparts favoring a more holistic approach. We propose practical considerations and design recommendations for developing ULR devices for low-resource settings. Conclusions Our work shows that while it is possible to build a low-cost wearable device, the difficulty lies in addressing sociotechnical challenges. When developing new health technologies, it is imperative to not only understand how well they could fit into patients', caregivers', and physiotherapists' everyday lives, but also how they may influence any potential tensions concerning culture, religion, and the characteristics of the local health care system.
Collapse
Affiliation(s)
- Rahat Jahangir Rony
- School of Computer Science and Informatics, Cardiff University, Cardiff, United Kingdom
| | - Shajnush Amir
- Faculty of Electrical Engineering, Mathematics & Computer Science, University of Twente, Enschede, Netherlands
| | - Nova Ahmed
- Department of Electrical and Computer Engineering, North South University, Dhaka, Bangladesh
| | | | - Nervo Verdezoto
- School of Computer Science and Informatics, Cardiff University, Cardiff, United Kingdom
| | - Valerie Sparkes
- School of Healthcare Sciences, Cardiff University, Cardiff, United Kingdom
| | - Katarzyna Stawarz
- School of Computer Science and Informatics, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
4
|
Teasell R, Fleet JL, Harnett A. Post Stroke Exercise Training: Intensity, Dosage, and Timing of Therapy. Phys Med Rehabil Clin N Am 2024; 35:339-351. [PMID: 38514222 DOI: 10.1016/j.pmr.2023.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
More intense, earlier exercise in rehabilitation results in improved motor outcomes following stroke. Timing and intensity of therapy delivery vary from study to study. For more intensive therapies, there are practical challenges in implementation. However, there are also opportunities for high intensity treatment through innovative approaches and new technologies. Timing of rehabilitation is important. As time post stroke increases, the dosage of therapy required to improve motor recovery outcomes increases. Very early rehabilitation may improve motor outcomes but should be delayed for at least 24 hours post stroke.
Collapse
Affiliation(s)
- Robert Teasell
- Parkwood Institute Research, Parkwood Institute, D4-101A, 550 Wellington Road, London, Canada; St. Joseph's Health Care London, London, Canada; Physical Medicine and Rehabilitation, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada.
| | - Jamie L Fleet
- Parkwood Institute Research, Parkwood Institute, D4-101A, 550 Wellington Road, London, Canada; St. Joseph's Health Care London, London, Canada; Physical Medicine and Rehabilitation, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - Amber Harnett
- Parkwood Institute Research, Parkwood Institute, B3-123, 550 Wellington Road, London, Ontario N6C 0A7, Canada
| |
Collapse
|
5
|
Abstract
Stroke remains a major cause of disability. Intensive rehabilitation therapy can improve outcomes, but most patients receive limited doses. Telehealth methods can overcome obstacles to delivering intensive therapy and thereby address this unmet need. A specific example is reviewed in detail, focused on a telerehabilitation system that targets upper extremity motor deficits after stroke. Strengths of this system include provision of daily therapy associated with very high patient compliance, safety and feasibility in the inpatient or home setting, comparable efficacy to dose-matched therapy provided in-clinic, and a holistic approach that includes assessment, education, prevention, and activity-based therapy.
Collapse
Affiliation(s)
- Steven C Cramer
- Department of Neurology, UCLA, Los Angeles, CA, USA; California Rehabilitation Institute, 2070 Century Park East, Los Angeles, CA 90067-1907, USA.
| | - Brittany M Young
- Department of Neurology, UCLA, Los Angeles, CA, USA; California Rehabilitation Institute, 2070 Century Park East, Los Angeles, CA 90067-1907, USA
| | - Anne Schwarz
- Department of Neurology, UCLA, Los Angeles, CA, USA; California Rehabilitation Institute, 2070 Century Park East, Los Angeles, CA 90067-1907, USA
| | - Tracy Y Chang
- Department of Neurology, UCLA, Los Angeles, CA, USA; California Rehabilitation Institute, 2070 Century Park East, Los Angeles, CA 90067-1907, USA
| | - Michael Su
- Department of Neurology, UCLA, Los Angeles, CA, USA; California Rehabilitation Institute, 2070 Century Park East, Los Angeles, CA 90067-1907, USA
| |
Collapse
|
6
|
Devittori G, Dinacci D, Romiti D, Califfi A, Petrillo C, Rossi P, Ranzani R, Gassert R, Lambercy O. Unsupervised robot-assisted rehabilitation after stroke: feasibility, effect on therapy dose, and user experience. J Neuroeng Rehabil 2024; 21:52. [PMID: 38594727 PMCID: PMC11005116 DOI: 10.1186/s12984-024-01347-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/22/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Unsupervised robot-assisted rehabilitation is a promising approach to increase the dose of therapy after stroke, which may help promote sensorimotor recovery without requiring significant additional resources and manpower. However, the unsupervised use of robotic technologies is not yet a standard, as rehabilitation robots often show low usability or are considered unsafe to be used by patients independently. In this paper we explore the feasibility of unsupervised therapy with an upper limb rehabilitation robot in a clinical setting, evaluate the effect on the overall therapy dose, and assess user experience during unsupervised use of the robot and its usability. METHODS Subacute stroke patients underwent a four-week protocol composed of daily 45 min-sessions of robot-assisted therapy. The first week consisted of supervised therapy, where a therapist explained how to interact with the device. The second week was minimally supervised, i.e., the therapist was present but intervened only if needed. After this phase, if participants learnt how to use the device, they proceeded to two weeks of fully unsupervised training. Feasibility, dose of robot-assisted therapy achieved during unsupervised use, user experience, and usability of the device were evaluated. Questionnaires to evaluate usability and user experience were performed after the minimally supervised week and at the end of the study, to evaluate the impact of therapists' absence. RESULTS Unsupervised robot-assisted therapy was found to be feasible, as 12 out of the 13 recruited participants could progress to unsupervised training. During the two weeks of unsupervised therapy participants on average performed an additional 360 min of robot-assisted rehabilitation. Participants were satisfied with the device usability (mean System Usability Scale scores > 79), and no adverse events or device deficiencies occurred. CONCLUSIONS We demonstrated that unsupervised robot-assisted therapy in a clinical setting with an actuated device for the upper limb was feasible and can lead to a meaningful increase in therapy dose. These results support the application of unsupervised robot-assisted therapy as a complement to usual care in clinical settings and pave the way to its application in home settings. TRIAL REGISTRATION Registered on 13.05.2020 on clinicaltrials.gov (NCT04388891).
Collapse
Affiliation(s)
- Giada Devittori
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Switzerland.
| | - Daria Dinacci
- Clinica Hildebrand Centro di riabilitazione Brissago, Brissago, Switzerland
| | - Davide Romiti
- Clinica Hildebrand Centro di riabilitazione Brissago, Brissago, Switzerland
| | - Antonella Califfi
- Clinica Hildebrand Centro di riabilitazione Brissago, Brissago, Switzerland
| | - Claudio Petrillo
- Clinica Hildebrand Centro di riabilitazione Brissago, Brissago, Switzerland
| | - Paolo Rossi
- Clinica Hildebrand Centro di riabilitazione Brissago, Brissago, Switzerland
| | - Raffaele Ranzani
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Switzerland
| | - Roger Gassert
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Switzerland
- Future Health Technologies programme, Singapore-ETH Centre, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
| | - Olivier Lambercy
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Switzerland
- Future Health Technologies programme, Singapore-ETH Centre, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
| |
Collapse
|
7
|
Farahmand Y, Nabiuni M, Vafaei Mastanabad M, Sheibani M, Mahmood BS, Obayes AM, Asadi F, Davallou R. The exo-microRNA (miRNA) signaling pathways in pathogenesis and treatment of stroke diseases: Emphasize on mesenchymal stem cells (MSCs). Cell Biochem Funct 2024; 42:e3917. [PMID: 38379232 DOI: 10.1002/cbf.3917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/07/2023] [Accepted: 12/17/2023] [Indexed: 02/22/2024]
Abstract
A major factor in long-term impairment is stroke. Patients with persistent stroke and severe functional disabilities have few therapy choices. Long noncoding RNAs (lncRNAs) may contribute to the regulation of the pathophysiologic processes of ischemic stroke as shown by altered expression of lncRNAs and microRNA (miRNAs) in blood samples of acute ischemic stroke patients. On the other hand, multipotent mesenchymal stem cells (MSCs) increase neurogenesis, and angiogenesis, dampen neuroinflammation, and boost brain plasticity to improve functional recovery in experimental stroke models. MSCs can be procured from various sources such as the bone marrow, adipose tissue, and peripheral blood. Under the proper circumstances, MSCs can differentiate into a variety of mature cells, including neurons, astrocytes, and oligodendrocytes. Accordingly, the capability of MSCs to exert neuroprotection and also neurogenesis has recently attracted more attention. Nowadays, lncRNAs and miRNAs derived from MSCs have opened new avenues to alleviate stroke symptoms. Accordingly, in this review article, we examined various studies concerning the lncRNAs and miRNAs' role in stroke pathogenesis and delivered an overview of the therapeutic role of MSC-derived miRNAs and lncRNAs in stroke conditions.
Collapse
Affiliation(s)
- Yalda Farahmand
- School of Medicine, Terhan University of Medical Sciences, Tehran, Iran
| | - Mohsen Nabiuni
- Neurosurgery Department, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Vafaei Mastanabad
- Neurosurgery Department, Faculty of Medicine, Qazvin University of Medical Science, Qazvin, Iran
| | - Mehrnaz Sheibani
- Division of Pediatric Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Ali Mohammed Obayes
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Fatemeh Asadi
- Department of Genetics, Fars Science and Research Branch, Islamic Azad University, Marvdasht, Iran
- Department of Genetics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Rosa Davallou
- Department of Neurology, Sayyad Shirazi Hospital, Golestan University of Medical Siences, Gorgan, Iran
| |
Collapse
|
8
|
Fox-Hesling J, Wisseman D, Kantak S. Noninvasive cerebellar stimulation and behavioral interventions: A crucial synergy for post-stroke motor rehabilitation. NeuroRehabilitation 2024; 54:521-542. [PMID: 38943401 DOI: 10.3233/nre-230371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
BACKGROUND Improvement of functional movements after supratentorial stroke occurs through spontaneous biological recovery and training-induced reorganization of remnant neural networks. The cerebellum, through its connectivity with the cortex, brainstem and spinal cord, is actively engaged in both recovery and reorganization processes within the cognitive and sensorimotor systems. Noninvasive cerebellar stimulation (NiCBS) offers a safe, clinically feasible and potentially effective way to modulate the excitability of spared neural networks and promote movement recovery after supratentorial stroke. NiCBS modulates cerebellar connectivity to the cerebral cortex and brainstem, as well as influences the sensorimotor and frontoparietal networks. OBJECTIVE Our objective was twofold: (a) to conduct a scoping review of studies that employed NiCBS to influence motor recovery and learning in individuals with stroke, and (b) to present a theory-driven framework to inform the use of NiCBS to target distinct stroke-related deficits. METHODS A scoping review of current research up to August 2023 was conducted to determine the effect size of NiCBS effect on movement recovery of upper extremity function, balance, walking and motor learning in humans with stroke. RESULTS Calculated effect sizes were moderate to high, offering promise for improving upper extremity, balance and walking outcomes after stroke. We present a conceptual framework that capitalizes on cognitive-motor specialization of the cerebellum to formulate a synergy between NiCBS and behavioral interventions to target specific movement deficits. CONCLUSION NiCBS enhances recovery of upper extremity impairments, balance and walking after stroke. Physiologically-informed synergies between NiCBS and behavioral interventions have the potential to enhance recovery. Finally, we propose future directions in neurophysiological, behavioral, and clinical research to move NiCBS through the translational pipeline and augment motor recovery after stroke.
Collapse
Affiliation(s)
| | - Darrell Wisseman
- Moss Rehabilitation, Elkins Park, PA, USA
- Department of Physical Therapy, Arcadia University, Glenside, PA, USA
| | - Shailesh Kantak
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA
- Department of Physical Therapy, Arcadia University, Glenside, PA, USA
- Department of Rehabilitation Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
9
|
Devittori G, Ranzani R, Dinacci D, Romiti D, Califfi A, Petrillo C, Rossi P, Gassert R, Lambercy O. Progressive Transition From Supervised to Unsupervised Robot-Assisted Therapy After Stroke: Protocol for a Single-Group, Interventional Feasibility Study. JMIR Res Protoc 2023; 12:e48485. [PMID: 37943580 PMCID: PMC10667973 DOI: 10.2196/48485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/21/2023] [Accepted: 10/02/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Increasing the dose of therapy delivered to patients with stroke may improve functional outcomes and quality of life. Unsupervised technology-assisted rehabilitation is a promising way to increase the dose of therapy without dramatically increasing the burden on the health care system. Despite the many existing technologies for unsupervised rehabilitation, active rehabilitation robots have rarely been tested in a fully unsupervised way. Furthermore, the outcomes of unsupervised technology-assisted therapy (eg, feasibility, acceptance, and increase in therapy dose) vary widely. This might be due to the use of different technologies as well as to the broad range of methods applied to teach the patients how to independently train with a technology. OBJECTIVE This paper describes the study design of a clinical study investigating the feasibility of unsupervised therapy with an active robot and of a systematic approach for the progressive transition from supervised to unsupervised use of a rehabilitation technology in a clinical setting. The effect of unsupervised therapy on achievable therapy dose, user experience in this therapy setting, and the usability of the rehabilitation technology are also evaluated. METHODS Participants of the clinical study are inpatients of a rehabilitation clinic with subacute stroke undergoing a 4-week intervention where they train with a hand rehabilitation robot. The first week of the intervention is supervised by a therapist, who teaches participants how to interact and train with the device. The second week consists of minimally supervised therapy, where the therapist is present but intervenes only if needed as participants exercise with the device. If the participants properly learn how to train with the device, they proceed to the unsupervised phase and train without any supervision during the third and fourth weeks. Throughout the duration of the study, data on feasibility and therapy dose (ie, duration and repetitions) are collected. Usability and user experience are evaluated at the end of the second (ie, minimally supervised) and fourth (ie, unsupervised) weeks, allowing us to investigate the effect of therapist absence. RESULTS As of April 2023, 13 patients were recruited and completed the protocol, with no reported adverse events. CONCLUSIONS This study will inform on the feasibility of fully unsupervised rehabilitation with an active rehabilitation robot in a clinical setting and its effect on therapy dose. Furthermore, if successful, the proposed systematic approach for a progressive transition from supervised to unsupervised technology-assisted rehabilitation could serve as a benchmark to allow for easier comparisons between different technologies. This approach could also be extended to the application of such technologies in the home environment, as the supervised and minimally supervised sessions could be performed in the clinic, followed by unsupervised therapy at home after discharge. TRIAL REGISTRATION ClinicalTrials.gov NCT04388891; https://clinicaltrials.gov/study/NCT04388891. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/48485.
Collapse
Affiliation(s)
- Giada Devittori
- Rehabilitation Engineering Laboratory, Swiss Federal Institute of Technology Zürich, Zurich, Switzerland
| | - Raffaele Ranzani
- Rehabilitation Engineering Laboratory, Swiss Federal Institute of Technology Zürich, Zurich, Switzerland
| | - Daria Dinacci
- Clinica Hildebrand Centro di Riabilitazione Brissago, Brissago, Switzerland
| | - Davide Romiti
- Clinica Hildebrand Centro di Riabilitazione Brissago, Brissago, Switzerland
| | - Antonella Califfi
- Clinica Hildebrand Centro di Riabilitazione Brissago, Brissago, Switzerland
| | - Claudio Petrillo
- Clinica Hildebrand Centro di Riabilitazione Brissago, Brissago, Switzerland
| | - Paolo Rossi
- Clinica Hildebrand Centro di Riabilitazione Brissago, Brissago, Switzerland
| | - Roger Gassert
- Rehabilitation Engineering Laboratory, Swiss Federal Institute of Technology Zürich, Zurich, Switzerland
- Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
| | - Olivier Lambercy
- Rehabilitation Engineering Laboratory, Swiss Federal Institute of Technology Zürich, Zurich, Switzerland
- Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
| |
Collapse
|
10
|
Yeh TN, Chou LW. User Experience Evaluation of Upper Limb Rehabilitation Robots: Implications for Design Optimization: A Pilot Study. SENSORS (BASEL, SWITZERLAND) 2023; 23:9003. [PMID: 37960702 PMCID: PMC10647564 DOI: 10.3390/s23219003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 11/15/2023]
Abstract
With the development of science and technology, people are trying to use robots to assist in stroke rehabilitation training. This study aims to analyze the result of the formative test to provide the orientation of upper limb rehabilitation robot design optimization. We invited 21 physical therapists (PTs) and eight occupational therapists (OTs) who had no experience operating any upper limb rehabilitation robots before, and 4 PTs and 1 OT who had experience operating upper limb rehabilitation robots. Data statistics use the Likert scale. The general group scored 3.5 for safety-related topics, while the experience group scored 4.5. In applicability-related questions, the main function score was 2.3 in the general group and 2.4 in the experience group; and the training trajectory score was 3.5 in the general group and 5.0 in the experience group. The overall ease of use score was 3.1 in the general group and 3.6 in the experience group. There was no statistical difference between the two groups. The methods to retouch the trajectory can be designed through the feedback collected in the formative test and gathering further detail in the next test. Further details about the smooth trajectory must be confirmed in the next test. The optimization of the recording process is also important to prevent users from making additional effort to know it well.
Collapse
Affiliation(s)
- Tzu-Ning Yeh
- Department of Medical Engineering and Rehabilitation Science, China Medical University, Taichung 404332, Taiwan;
| | - Li-Wei Chou
- Department of Physical Medicine and Rehabilitation, China Medical University Hospital, Taichung 404332, Taiwan
- Department of Physical Therapy and Graduate Institute of Rehabilitation Science, China Medical University, Taichung 406040, Taiwan
- Department of Physical Medicine and Rehabilitation, Asia University Hospital, Asia University, Taichung 413505, Taiwan
| |
Collapse
|
11
|
Saragih ID, Everard G, Tzeng HM, Saragih IS, Lee BO. Efficacy of Robots-Assisted Therapy in Patients With Stroke: A Meta-analysis Update. J Cardiovasc Nurs 2023; 38:E192-E217. [PMID: 37816087 DOI: 10.1097/jcn.0000000000000945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Robot-assisted therapy (RAT) could address an unmet need to relieve the strain on healthcare providers and intensify treatment in the context of an increasing stroke incidence. A comprehensive meta-analysis could provide firmer data about the topic by considering methodology limitations discovered in previous reviews and providing more rigorous evidence. OBJECTIVE This meta-analysis study identifies RAT's efficacy for patients with stroke. METHODS A systematic search of the 7 databases from January 10 to February 1, 2022, located relevant publications. We used the updated Cochrane risk-of-bias checklist for 52 trials to assess the methodologic quality of the included studies. The efficacy of RAT for patients with stroke was estimated using a pooled random-effects model in the Stata 16 software application. RESULTS The final analysis included 2774 patients with stroke from 52 trials. In those patients, RAT was proven to improve quality of movement (mean difference, 0.15; 95% confidence interval, 0.03-0.28) and to reduce balance disturbances (mean difference, -1.28; 95% confidence interval, -2.48 to -0.09) and pain (standardized mean difference, -0.34; 95% confidence interval, -0.58 to -0.09). CONCLUSIONS Robot-assisted therapy seems to improve the quality of mobility and reduce balance disturbances and pain for patients with stroke. These findings will help develop advanced rehabilitation robots and could improve health outcomes by facilitating health services for healthcare providers and patients with stroke.
Collapse
|
12
|
Carrillo C, Tilley D, Horn K, Gonzalez M, Coffman C, Hilton C, Mani K. Effectiveness of Robotics in Stroke Rehabilitation to Accelerate Upper Extremity Function: Systematic Review. Occup Ther Int 2023; 2023:7991765. [PMID: 37927581 PMCID: PMC10624545 DOI: 10.1155/2023/7991765] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/24/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023] Open
Abstract
Objective To examine the effectiveness of robot-assisted therapy (RAT) combined with conventional therapy (CT) compared to CT alone in accelerating upper extremity (UE) recovery poststroke. Data Sources. We searched five databases: Ovid, MEDLINE, CINAHL, PubMed, and Scopus Study Selection. Studies were selected for this review using the following inclusion criteria: randomized controlled trials of adults, RAT combined with CT compared to CT, and Fugl-Meyer Assessment (FMA) as an outcome measure. Studies focused on children with neurological impairments, and studies that used RAT to facilitate lower extremity recovery and/or improve gait were excluded. Data Extraction. The initial search yielded 3,019 citations of articles published between January 2011 and May 2021. Fourteen articles met the inclusion criteria. Randomization, allocation sequence concealment, blinding, and other biases were assessed. Data Synthesis. Current evidence suggests that the use of RAT along with CT may accelerate upper extremity recovery, measured by FMA, in the beginning of rehabilitation. However, the progress fades over time. More empirical research is needed to validate this observation. Also, the findings related to cost-benefit analyses of RAT are inconclusive. Conclusions It is unclear whether RAT accelerates UE recovery poststroke when used in conjunction with conventional therapy. Given the capital and maintenance costs involved in developing and delivering RAT, more controlled studies examining the effectiveness and cost-benefit analysis of RAT are needed before it can be used widely. This trial is registered with CRD42021270824.
Collapse
Affiliation(s)
- Cora Carrillo
- University of Texas Medical Branch, Galveston, Texas, USA
| | - Devyn Tilley
- University of Texas Medical Branch, Galveston, Texas, USA
| | - Kaitlyn Horn
- University of Texas Medical Branch, Galveston, Texas, USA
| | | | | | - Claudia Hilton
- University of Texas Medical Branch, Galveston, Texas, USA
| | - Karthik Mani
- University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
13
|
King EC, Pedi E, Stoykov ME, Corcos DM, Urday S. Combining high dose therapy, bilateral motor priming, and vagus nerve stimulation to treat the hemiparetic upper limb in chronic stroke survivors: a perspective on enhancing recovery. Front Neurol 2023; 14:1182561. [PMID: 37448744 PMCID: PMC10336216 DOI: 10.3389/fneur.2023.1182561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Stroke is a leading cause of disability worldwide and upper limb hemiparesis is the most common post-stroke disability. Recent studies suggest that clinically significant motor recovery is possible in chronic stroke survivors with severe impairment of the upper limb. Three promising strategies that have been investigated are (1) high dose rehabilitation therapy (2) bilateral motor priming and (3) vagus nerve stimulation. We propose that the future of effective and efficient upper limb rehabilitation will likely require a combination of these approaches.
Collapse
Affiliation(s)
- Erin C. King
- Northwestern University, Evanston, IL, United States
| | - Elizabeth Pedi
- Physical Therapy & Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Mary Ellen Stoykov
- Shirley Ryan AbilityLab, Chicago, IL, United States
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Daniel M. Corcos
- Physical Therapy & Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Sebastian Urday
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
14
|
Shim J, Lee S. Effects of High-Frequency Repetitive Transcranial Magnetic Stimulation Combined with Motor Learning on Motor Function and Grip Force of the Upper Limbs and Activities of Daily Living in Patients with a Subacute Stroke. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6093. [PMID: 37372680 DOI: 10.3390/ijerph20126093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
Functional paralysis of the upper extremities occurs in >70% of all patients after having a stroke, and >60% showed decreased hand dexterity. A total of 30 patients with a subacute stroke were randomly allocated to either high-frequency repetitive transcranial magnetic stimulation combined with motor learning (n = 14) or sham repetitive transcranial magnetic stimulation combined with motor learning (n = 16). High-frequency repetitive transcranial magnetic stimulation combined with the motor learning group was conducted for 20 min (10 min of high-frequency repetitive transcranial magnetic stimulation and 10 min of motor learning) three times a week for 4 weeks. The sham repetitive transcranial magnetic stimulation combined with the motor learning group received 12 20-min sessions (10 min of sham repetitive transcranial magnetic stimulation and 10 min of motor learning). This was held three times a week for 4 weeks. Upper-limb function (Fugl-Meyer Assessment of the Upper Limbs) and upper-limb dexterity (box and block tests) concerning upper-limb motor function and grip force (hand grip dynamometer), and activities of daily living (Korean version of the modified Barthel index), were measured pre- and post-intervention. In both groups, there were significant improvements in the upper-limb motor function, grip force, and activities of daily living (p < 0.05). Regarding grip force, the high-frequency repetitive transcranial magnetic stimulation combined with the motor learning group improved significantly compared to the sham repetitive transcranial magnetic stimulation combined with the motor learning group (p < 0.05). However, except for grip force, there were no significant differences in the upper-limb motor function or activities of daily living between the groups. These findings suggest that high-frequency repetitive transcranial magnetic stimulation combined with motor learning is more likely to improve grip force than motor learning alone.
Collapse
Affiliation(s)
- Jungwoo Shim
- Department of Rehabilitation Medicine, Chungnam National University Sejong Hospital, Sejong-si 30099, Republic of Korea
| | - Seungwon Lee
- Department of Physical Therapy, Sahmyook University, Seoul 01792, Republic of Korea
| |
Collapse
|
15
|
Moulaei K, Bahaadinbeigy K, Haghdoostd AA, Nezhad MS, Sheikhtaheri A. Overview of the role of robots in upper limb disabilities rehabilitation: a scoping review. Arch Public Health 2023; 81:84. [PMID: 37158979 PMCID: PMC10169358 DOI: 10.1186/s13690-023-01100-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/29/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND Neuromotor rehabilitation and improvement of upper limb functions are necessary to improve the life quality of patients who have experienced injuries or have pathological outcomes. Modern approaches, such as robotic-assisted rehabilitation can help to improve rehabilitation processes and thus improve upper limb functions. Therefore, the aim of this study was to investigate the role of robots in upper limb disability improvement and rehabilitation. METHODS This scoping review was conducted by search in PubMed, Web of Science, Scopus, and IEEE (January 2012- February 2022). Articles related to upper limb rehabilitation robots were selected. The methodological quality of all the included studies will be appraised using the Mixed Methods Appraisal Tool (MMAT). We used an 18-field data extraction form to extract data from articles and extracted the information such as study year, country, type of study, purpose, illness or accident leading to disability, level of disability, assistive technologies, number of participants in the study, sex, age, rehabilitated part of the upper limb using a robot, duration and frequency of treatment, methods of performing rehabilitation exercises, type of evaluation, number of participants in the evaluation process, duration of intervention, study outcomes, and study conclusions. The selection of articles and data extraction was made by three authors based on inclusion and exclusion criteria. Disagreements were resolved through consultation with the fifth author. Inclusion criteria were articles involving upper limb rehabilitation robots, articles about upper limb disability caused by any illness or injury, and articles published in English. Also, articles involving other than upper limb rehabilitation robots, robots related to rehabilitation of diseases other than upper limb, systematic reviews, reviews, and meta-analyses, books, book chapters, letters to the editor, and conference papers were also excluded. Descriptive statistics methods (frequency and percentage) were used to analyses the data. RESULTS We finally included 55 relevant articles. Most of the studies were done in Italy (33.82%). Most robots were used to rehabilitate stroke patients (80%). About 60.52% of the studies used games and virtual reality rehabilitate the upper limb disabilities using robots. Among the 14 types of applied evaluation methods, "evaluation and measurement of upper limb function and dexterity" was the most applied evaluation method. "Improvement in musculoskeletal functions", "no adverse effect on patients", and "Safe and reliable treatment" were the most cited outcomes, respectively. CONCLUSIONS Our findings show that robots can improve musculoskeletal functions (musculoskeletal strength, sensation, perception, vibration, muscle coordination, less spasticity, flexibility, and range of motion) and empower people by providing a variety of rehabilitation capabilities.
Collapse
Affiliation(s)
- Khadijeh Moulaei
- Medical Informatics Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Kambiz Bahaadinbeigy
- Medical Informatics Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Akbar Haghdoostd
- HIV/STI Surveillance Research Center, WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Mansour Shahabi Nezhad
- Department of Physical Therapy, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Abbas Sheikhtaheri
- Department of Health Information Management, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Rodríguez-Hernández M, Polonio-López B, Corregidor-Sánchez AI, Martín-Conty JL, Mohedano-Moriano A, Criado-Álvarez JJ. Can specific virtual reality combined with conventional rehabilitation improve poststroke hand motor function? A randomized clinical trial. J Neuroeng Rehabil 2023; 20:38. [PMID: 37016408 PMCID: PMC10071242 DOI: 10.1186/s12984-023-01170-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/30/2023] [Indexed: 04/06/2023] Open
Abstract
TRIAL OBJECTIVE To verify whether conventional rehabilitation combined with specific virtual reality is more effective than conventional therapy alone in restoring hand motor function and muscle tone after stroke. TRIAL DESIGN This prospective single-blind randomized controlled trial compared conventional rehabilitation based on physiotherapy and occupational therapy (control group) with the combination of conventional rehabilitation and specific virtual reality technology (experimental group). Participants were allocated to these groups in a ratio of 1:1. The conventional rehabilitation therapists were blinded to the study, but neither the participants nor the therapist who applied the virtual reality-based therapy could be blinded to the intervention. PARTICIPANTS Forty-six patients (43 of whom completed the intervention period and follow-up evaluation) were recruited from the Neurology and Rehabilitation units of the Hospital General Universitario of Talavera de la Reina, Spain. INTERVENTION Each participant completed 15 treatment sessions lasting 150 min/session; the sessions took place five consecutive days/week over the course of three weeks. The experimental group received conventional upper-limb strength and motor training (100 min/session) combined with specific virtual reality technology devices (50 min/session); the control group received only conventional training (150 min/session). RESULTS As measured by the Ashworth Scale, a decrease in wrist muscle tone was observed in both groups (control and experimental), with a notably larger decrease in the experimental group (baseline mean/postintervention mean: 1.22/0.39; difference between baseline and follow-up: 0.78; 95% confidence interval: 0.38-1.18; effect size = 0.206). Fugl-Meyer Assessment scores were observed to increase in both groups, with a notably larger increase in the experimental group (total motor function: effect size = 0.300; mean: - 35.5; 95% confidence interval: - 38.9 to - 32.0; wrist: effect size = 0.290; mean: - 5.6; 95% confidence interval: - 6.4 to - 4.8; hand: effect size = 0.299; mean: - -8.9; 95% confidence interval: - 10.1 to - 7.6). On the Action Research Arm Test, the experimental group quadrupled its score after the combined intervention (effect size = 0.321; mean: - 32.8; 95% confidence interval: - 40.1 to - 25.5). CONCLUSION The outcomes of the study suggest that conventional rehabilitation combined with a specific virtual reality technology system can be more effective than conventional programs alone in improving hand motor function and voluntary movement and in normalizing muscle tone in subacute stroke patients. With combined treatment, hand and wrist functionality and motion increase; resistance to movement (spasticity) decreases and remains at a reduced level. TRIALS REGISTRY International Clinical Trials Registry Platform: ISRCTN27760662 (15/06/2020; retrospectively registered).
Collapse
Affiliation(s)
- Marta Rodríguez-Hernández
- Faculty of Health Sciences, University of Castilla-La Mancha, 45600, Talavera de la Reina, Spain
- Technological Innovation Applied to Health Research Group (ITAS Group), Faculty of Health Sciences, University of Castilla-La Mancha, Talavera de la Reina, Spain
| | - Begoña Polonio-López
- Faculty of Health Sciences, University of Castilla-La Mancha, 45600, Talavera de la Reina, Spain.
- Technological Innovation Applied to Health Research Group (ITAS Group), Faculty of Health Sciences, University of Castilla-La Mancha, Talavera de la Reina, Spain.
| | - Ana-Isabel Corregidor-Sánchez
- Faculty of Health Sciences, University of Castilla-La Mancha, 45600, Talavera de la Reina, Spain
- Technological Innovation Applied to Health Research Group (ITAS Group), Faculty of Health Sciences, University of Castilla-La Mancha, Talavera de la Reina, Spain
| | - José L Martín-Conty
- Faculty of Health Sciences, University of Castilla-La Mancha, 45600, Talavera de la Reina, Spain
- Technological Innovation Applied to Health Research Group (ITAS Group), Faculty of Health Sciences, University of Castilla-La Mancha, Talavera de la Reina, Spain
| | - Alicia Mohedano-Moriano
- Faculty of Health Sciences, University of Castilla-La Mancha, 45600, Talavera de la Reina, Spain
- Technological Innovation Applied to Health Research Group (ITAS Group), Faculty of Health Sciences, University of Castilla-La Mancha, Talavera de la Reina, Spain
| | - Juan-José Criado-Álvarez
- Faculty of Health Sciences, University of Castilla-La Mancha, 45600, Talavera de la Reina, Spain
- Technological Innovation Applied to Health Research Group (ITAS Group), Faculty of Health Sciences, University of Castilla-La Mancha, Talavera de la Reina, Spain
- Institute of Health Sciences, Talavera de la Reina, Spain
| |
Collapse
|
17
|
Rizvi A, Parveen S, Bazigha F, Noohu MM. Effect of transcranial direct current stimulation in combination with robotic therapy in upper limb impairments in people with stroke: a systematic review. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2023. [DOI: 10.1186/s41983-023-00640-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Abstract
Background
Stroke is a devastating condition, which not only affects patients’ activity, but also is a primary reason for the psychosocial impact on them, their caregivers, and the healthcare system. Transcranial direct current stimulation (tDCS) modulates cortical activity, encouraging neuro-modulation and motor recovery in stroke rehabilitation. Robotic therapy (RT) provides repetitive, high-intensity, interactive, task-specific intervention and can measure changes while providing feedback to people with stroke.
Objectives
This study aimed to evaluate and summarize the scientific literature systematically to investigate the combined effect of tDCS and RT in patients with stroke.
Methods
Four databases (MEDLINE, Web of Science, ScienceDirect, & PEDro) were searched for clinical trials investigating the effect of RT and tDCS in stroke patients with upper limb impairment. PEDro scale was used for the quality assessment of included studies.
Results
The search yielded 208 articles. A total of 213 patients with stroke who had upper limb impairment were studied. In the majority of the trials, RT combined with tDCS lead to positive improvement in various measures of upper limb function and spasticity.
Conclusions
RT along with tDCS is an effective mode of rehabilitation, although no additional effects of tDCS plus RT in comparison with RT alone were reported. Large, robust studies are needed, so that health care providers and researchers can make better decisions about merging tDCS and RT in stroke rehabilitation settings in the future.
Collapse
|
18
|
Ranzani R, Chiriatti G, Schwarz A, Devittori G, Gassert R, Lambercy O. An online method to monitor hand muscle tone during robot-assisted rehabilitation. Front Robot AI 2023; 10:1093124. [PMID: 36814447 PMCID: PMC9939644 DOI: 10.3389/frobt.2023.1093124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/24/2023] [Indexed: 02/08/2023] Open
Abstract
Introduction: Robot-assisted neurorehabilitation is becoming an established method to complement conventional therapy after stroke and provide intensive therapy regimes in unsupervised settings (e.g., home rehabilitation). Intensive therapies may temporarily contribute to increasing muscle tone and spasticity, especially in stroke patients presenting tone alterations. If sustained without supervision, such an increase in muscle tone could have negative effects (e.g., functional disability, pain). We propose an online perturbation-based method that monitors finger muscle tone during unsupervised robot-assisted hand therapy exercises. Methods: We used the ReHandyBot, a novel 2 degrees of freedom (DOF) haptic device to perform robot-assisted therapy exercises training hand grasping (i.e., flexion-extension of the fingers) and forearm pronosupination. The tone estimation method consisted of fast (150 ms) and slow (250 ms) 20 mm ramp-and-hold perturbations on the grasping DOF, which were applied during the exercises to stretch the finger flexors. The perturbation-induced peak force at the finger pads was used to compute tone. In this work, we evaluated the method performance in a stiffness identification experiment with springs (0.97 and 1.57 N/mm), which simulated the stiffness of a human hand, and in a pilot study with subjects with increased muscle tone after stroke and unimpaired, which performed one active sensorimotor exercise embedding the tone monitoring method. Results: The method accurately estimates forces with root mean square percentage errors of 3.8% and 11.3% for the soft and stiff spring, respectively. In the pilot study, six chronic ischemic stroke patients [141.8 (56.7) months after stroke, 64.3 (9.5) years old, expressed as mean (std)] and ten unimpaired subjects [59.9 (6.1) years old] were tested without adverse events. The average reaction force at the level of the fingertip during slow and fast perturbations in the exercise were respectively 10.7 (5.6) N and 13.7 (5.6) N for the patients and 5.8 (4.2) N and 6.8 (5.1) N for the unimpaired subjects. Discussion: The proposed method estimates reaction forces of physical springs accurately, and captures online increased reaction forces in persons with stroke compared to unimpaired subjects within unsupervised human-robot interactions. In the future, the identified range of muscle tone increase after stroke could be used to customize therapy for each subject and maintain safety during intensive robot-assisted rehabilitation.
Collapse
Affiliation(s)
- Raffaele Ranzani
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Giorgia Chiriatti
- Department of Industrial Engineering and Mathematical Science, Polytechnic University of Marche, Ancona, Italy
| | - Anne Schwarz
- Vascular Neurology and Neurorehabilitation, Department of Neurology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Giada Devittori
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Roger Gassert
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Future Health Technologies, Singapore—ETH Centre, Campus for Research Excellence And Technological Enterprise (CREATE), Singapore, Singapore
| | - Olivier Lambercy
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Future Health Technologies, Singapore—ETH Centre, Campus for Research Excellence And Technological Enterprise (CREATE), Singapore, Singapore
| |
Collapse
|
19
|
Douglass-Kirk P, Grierson M, Ward NS, Brander F, Kelly K, Chegwidden W, Shivji D, Stewart L. Real-time auditory feedback may reduce abnormal movements in patients with chronic stroke. Disabil Rehabil 2023; 45:613-619. [PMID: 35238694 DOI: 10.1080/09638288.2022.2037751] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
PURPOSE The current pilot study assesses the use of real-time auditory feedback to help reduce abnormal movements during an active reaching task in patients with chronic stroke. MATERIALS AND METHODS 20 patients with chronic stroke completed the study with full datasets (age: M = 53 SD = 14; sex: male = 75%; time since stroke in months: M = 34, SD = 33). Patients undertook 100 repetitions of an active reaching task while listening to self-selected music which automatically muted when abnormal movement was detected, determined by thresholds set by clinical therapists. A within-subject design with two conditions (with auditory feedback vs. without auditory feedback) presented in a randomised counterbalanced order was used. The dependent variable was the duration of abnormal movement as a proportion of trial duration. RESULTS A significant reduction in the duration of abnormal movement was observed when patients received auditory feedback, F(1,18) = 9.424, p = 0.007, with a large effect size (partial η2 = 0.344). CONCLUSIONS Patients with chronic stroke can make use of real-time auditory feedback to increase the proportion of time they spend in optimal movement patterns. The approach provides a motivating framework that encourages high dose with a key focus on quality of movement. Trial Registration: ISRCTN12969079 https://www.isrctn.com/ISRCTN12969079 ISRTCN trial registration REF: ISRCTN12969079IMPLICATIONS FOR REHABILITATIONMovement quality during upper limb rehabilitation should be targeted as part of a well-balanced rehabilitation programme.Auditory feedback is a useful tool to help patients with chronic stroke reduce compensatory movements.
Collapse
Affiliation(s)
| | - Mick Grierson
- University of the Arts London, UAL Creative Computing Institute, London, UK
| | - Nick S Ward
- Department of clinical and Motor Neuroscience, UCL Queen Square Institute of Neurology.,National Hospital for Neurology and Neurosurgery, University College London Hospitals, London, UK
| | - Fran Brander
- National Hospital for Neurology and Neurosurgery, University College London Hospitals, London, UK
| | - Kate Kelly
- National Hospital for Neurology and Neurosurgery, University College London Hospitals, London, UK
| | - Will Chegwidden
- Royal Free London NHS Foundation Trust, Royal Free London NHS Foundation Trust, London, UK
| | - Dhiren Shivji
- National Hospital for Neurology and Neurosurgery, University College London Hospitals, London, UK
| | - Lauren Stewart
- Department of Psychology, Goldsmiths University of London, London, UK
| |
Collapse
|
20
|
Salvalaggio S, Cacciante L, Maistrello L, Turolla A. Clinical Predictors for Upper Limb Recovery after Stroke Rehabilitation: Retrospective Cohort Study. Healthcare (Basel) 2023; 11:healthcare11030335. [PMID: 36766910 PMCID: PMC9913979 DOI: 10.3390/healthcare11030335] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
After stroke, recovery of upper limb (UL) motor function is enhanced by a high dose of rehabilitation and is supposed to be supported by attentive functions. However, their mutual influence during rehabilitation is not well known yet. The aim of this retrospective observational cohort study was to investigate the association between rehabilitation dose and motor and cognitive functions, during UL motor recovery. Inpatients with first unilateral stroke, without time restrictions from onset, and undergoing at least 15 h of rehabilitation were enrolled. Data on dose and modalities of rehabilitation received, together with motor and cognitive outcomes before and after therapy, were collected. Fugl-Meyer values for the Upper Extremity were the primary outcome measure. Logistic regression models were used to detect any associations between UL motor improvement and motor and cognitive-linguistic features at acceptance, regarding dose of rehabilitation received. Thirty-five patients were enrolled and received 80.57 ± 30.1 h of rehabilitation on average. Manual dexterity, level of independence and UL motor function improved after rehabilitation, with no influence of attentive functions on motor recovery. The total amount of rehabilitation delivered was the strongest factor (p = 0.031) influencing the recovery of UL motor function after stroke, whereas cognitive-linguistic characteristics were not found to influence UL motor gains.
Collapse
Affiliation(s)
- Silvia Salvalaggio
- Laboratory of Healthcare Innovation Technology, IRCCS San Camillo Hospital, Via Alberoni 70, 30126 Venice, Italy
- Padova Neuroscience Center, Università degli Studi di Padova, Via Orus 2/B, 35131 Padova, Italy
| | - Luisa Cacciante
- Laboratory of Healthcare Innovation Technology, IRCCS San Camillo Hospital, Via Alberoni 70, 30126 Venice, Italy
- Correspondence: ; Tel.: +39-0412207521
| | | | - Andrea Turolla
- Department of Biomedical and Neuromotor Sciences–DIBINEM, Alma Mater Studiorum Università di Bologna, Via Massarenti 9, 40138 Bologna, Italy
- Unit of Occupational Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Pelagio Palagi 9, 40138 Bologna, Italy
| |
Collapse
|
21
|
Bressi F, Cricenti L, Campagnola B, Bravi M, Miccinilli S, Santacaterina F, Sterzi S, Straudi S, Agostini M, Paci M, Casanova E, Marino D, La Rosa G, Giansanti D, Perrero L, Battistini A, Filoni S, Sicari M, Petrozzino S, Solaro CM, Gargano S, Benanti P, Boldrini P, Bonaiuti D, Castelli E, Draicchio F, Falabella V, Galeri S, Gimigliano F, Grigioni M, Mazzoleni S, Mazzon S, Molteni F, Petrarca M, Picelli A, Posteraro F, Senatore M, Turchetti G, Morone G, Gallotti M, Germanotta M, Aprile I. Effects of robotic upper limb treatment after stroke on cognitive patterns: A systematic review. NeuroRehabilitation 2022; 51:541-558. [PMID: 36530099 PMCID: PMC9837692 DOI: 10.3233/nre-220149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Robotic therapy (RT) has been internationally recognized for the motor rehabilitation of the upper limb. Although it seems that RT can stimulate and promote neuroplasticity, the effectiveness of robotics in restoring cognitive deficits has been considered only in a few recent studies. OBJECTIVE To verify whether, in the current state of the literature, cognitive measures are used as inclusion or exclusion criteria and/or outcomes measures in robotic upper limb rehabilitation in stroke patients. METHODS The systematic review was conducted according to PRISMA guidelines. Studies eligible were identified through PubMed/MEDLINE and Web of Science from inception to March 2021. RESULTS Eighty-one studies were considered in this systematic review. Seventy-three studies have at least a cognitive inclusion or exclusion criteria, while only seven studies assessed cognitive outcomes. CONCLUSION Despite the high presence of cognitive instruments used for inclusion/exclusion criteria their heterogeneity did not allow the identification of a guideline for the evaluation of patients in different stroke stages. Therefore, although the heterogeneity and the low percentage of studies that included cognitive outcomes, seemed that the latter were positively influenced by RT in post-stroke rehabilitation. Future larger RCTs are needed to outline which cognitive scales are most suitable and their cut-off, as well as what cognitive outcome measures to use in the various stages of post-stroke rehabilitation.
Collapse
Affiliation(s)
- Federica Bressi
- Physical Medicine and Rehabilitation Unit, Campus Bio-Medico University Polyclinic Foundation, Rome, Italy
| | - Laura Cricenti
- Physical Medicine and Rehabilitation Unit, Campus Bio-Medico University Polyclinic Foundation, Rome, Italy
| | - Benedetta Campagnola
- Physical Medicine and Rehabilitation Unit, Campus Bio-Medico University Polyclinic Foundation, Rome, Italy,Address for correspondence: Benedetta Campagnola, Physical Medicine and Rehabilitation Unit, Campus Bio-Medico University Polyclinic Foundation, Rome, Italy. E-mail:
| | - Marco Bravi
- Physical Medicine and Rehabilitation Unit, Campus Bio-Medico University Polyclinic Foundation, Rome, Italy
| | - Sandra Miccinilli
- Physical Medicine and Rehabilitation Unit, Campus Bio-Medico University Polyclinic Foundation, Rome, Italy
| | - Fabio Santacaterina
- Physical Medicine and Rehabilitation Unit, Campus Bio-Medico University Polyclinic Foundation, Rome, Italy
| | - Silvia Sterzi
- Physical Medicine and Rehabilitation Unit, Campus Bio-Medico University Polyclinic Foundation, Rome, Italy
| | - Sofia Straudi
- Department of Neuroscience and Rehabilitation, Ferrara University Hospital, Ferrara, Italy
| | | | - Matteo Paci
- AUSL (Unique Sanitary Local Company) District of Central Tuscany, Florence, Italy
| | - Emanuela Casanova
- Unità Operativa di Medicina Riabilitativa e Neuroriabilitazione (SC), IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Dario Marino
- IRCCS Neurolysis Center “Bonino Pulejo”, Messina, Italy
| | | | - Daniele Giansanti
- National Center for Innovative Technologies in Public Health, Italian National Institute of Health, Rome, Italy
| | - Luca Perrero
- Neurorehabilitation Unit, Azienda Ospedaliera Nazionale SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Alberto Battistini
- Unità Operativa di Medicina Riabilitativa e Neuroriabilitazione (SC), IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Serena Filoni
- Padre Pio Onlus Rehabilitation Centers Foundation, San Giovanni Rotondo, Italy
| | - Monica Sicari
- A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy
| | | | | | | | | | - Paolo Boldrini
- Società Italiana di Medicina Fisica e Riabilitativa (SIMFER), Rome, Italy
| | | | - Enrico Castelli
- Department of Paediatric Neurorehabilitation, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Francesco Draicchio
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Rome, Italy
| | - Vincenzo Falabella
- Italian Federation of Persons with Spinal Cord Injuries (Faip Onlus), Rome, Italy
| | | | - Francesca Gimigliano
- Department of Mental, Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Mauro Grigioni
- National Center for Innovative Technologies in Public Health, Italian National Institute of Health, Rome, Italy
| | - Stefano Mazzoleni
- Department of Electrical and Information Engineering, Politecnico di Bari, Bari, Italy
| | - Stefano Mazzon
- AULSS6 (Unique Sanitary Local Company) Euganea Padova – Distretto 4 “Alta Padovana”, Padua, Italy
| | - Franco Molteni
- Department of Rehabilitation Medicine, Villa Beretta Rehabilitation Center, Valduce Hospital, Lecco, Italy
| | - Maurizio Petrarca
- Movement Analysis and Robotics Laboratory (MARlab), IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Alessandro Picelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Federico Posteraro
- Department of Rehabilitation, Versilia Hospital – AUSL12, Viareggio, Italy
| | - Michele Senatore
- Associazione Italiana dei Terapisti Occupazionali (AITO), Rome, Italy
| | | | | | | | | | - Irene Aprile
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | | |
Collapse
|
22
|
Putrino D, Krakauer JW. Neurotechnology’s Prospects for Bringing About Meaningful Reductions in Neurological Impairment. Neurorehabil Neural Repair 2022:15459683221137341. [DOI: 10.1177/15459683221137341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Here we report and comment on the magnitudes of post-stroke impairment reduction currently observed using new neurotechnologies. We argue that neurotechnology’s best use case is impairment reduction as this is neither the primary strength nor main goal of conventional rehabilitation, which is better at targeting the activity and participation levels of the ICF. The neurotechnologies discussed here can be divided into those that seek to be adjuncts for enhancing conventional rehabilitation, and those that seek to introduce a novel behavioral intervention altogether. Examples of the former include invasive and non-invasive brain stimulation. Examples of the latter include robotics and some forms of serious gaming. We argue that motor learning and training-related recovery are conceptually and mechanistically distinct. Based on our survey of recent results, we conclude that large reductions in impairment will need to begin with novel forms of high dose and high intensity behavioral intervention that are qualitatively different to conventional rehabilitation. Adjunct forms of neurotechnology, if they are going to be effective, will need to piggyback on these new behavioral interventions.
Collapse
Affiliation(s)
- David Putrino
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John W. Krakauer
- Departments of Neurology, Neuroscience, and Physical Medicine & Rehabilitation, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
23
|
Donnellan-Fernandez K, Ioakim A, Hordacre B. Revisiting dose and intensity of training: Opportunities to enhance recovery following stroke. J Stroke Cerebrovasc Dis 2022; 31:106789. [PMID: 36162377 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 10/31/2022] Open
Abstract
PURPOSE Stroke is a global leading cause of adult disability with survivors often enduring persistent impairments and loss of function. Both intensity and dosage of training appear to be important factors to help restore behavior. However, current practice fails to achieve sufficient intensity and dose of training to promote meaningful recovery. The purpose of this review is to propose therapeutic solutions that can help achieve a higher dose and/or intensity of therapy. Raising awareness of these intensive, high-dose, treatment strategies might encourage clinicians to re-evaluate current practice and optimize delivery of stroke rehabilitation for maximal recovery. METHODS Literature that tested and evaluated solutions to increase dose or intensity of training was reviewed. For each therapeutic strategy, we outline evidence of clinical benefit, supporting neurophysiological data (where available) and discuss feasibility of clinical implementation. RESULTS Possible therapeutic solutions included constraint induced movement therapy, robotics, circuit therapy, bursts of training, gaming technologies, goal-oriented instructions, and cardiovascular exercise. CONCLUSION Our view is that clinicians should evaluate current practice to determine how intensive high-dose training can be implemented to promote greater recovery after stroke.
Collapse
Affiliation(s)
| | - Andrew Ioakim
- Allied Health and Human Performance, University of South Australia, Adelaide, Australia
| | - Brenton Hordacre
- Innovation, IMPlementation and Clinical Translation (IIMPACT) in Health, University of South Australia, Adelaide, Australia.
| |
Collapse
|
24
|
Boccuni L, Marinelli L, Trompetto C, Pascual-Leone A, Tormos Muñoz JM. Time to reconcile research findings and clinical practice on upper limb neurorehabilitation. Front Neurol 2022; 13:939748. [PMID: 35928130 PMCID: PMC9343948 DOI: 10.3389/fneur.2022.939748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
The problemIn the field of upper limb neurorehabilitation, the translation from research findings to clinical practice remains troublesome. Patients are not receiving treatments based on the best available evidence. There are certainly multiple reasons to account for this issue, including the power of habit over innovation, subjective beliefs over objective results. We need to take a step forward, by looking at most important results from randomized controlled trials, and then identify key active ingredients that determined the success of interventions. On the other hand, we need to recognize those specific categories of patients having the greatest benefit from each intervention, and why. The aim is to reach the ability to design a neurorehabilitation program based on motor learning principles with established clinical efficacy and tailored for specific patient's needs.Proposed solutionsThe objective of the present manuscript is to facilitate the translation of research findings to clinical practice. Starting from a literature review of selected neurorehabilitation approaches, for each intervention the following elements were highlighted: definition of active ingredients; identification of underlying motor learning principles and neural mechanisms of recovery; inferences from research findings; and recommendations for clinical practice. Furthermore, we included a dedicated chapter on the importance of a comprehensive assessment (objective impairments and patient's perspective) to design personalized and effective neurorehabilitation interventions.ConclusionsIt's time to reconcile research findings with clinical practice. Evidence from literature is consistently showing that neurological patients improve upper limb function, when core strategies based on motor learning principles are applied. To this end, practical take-home messages in the concluding section are provided, focusing on the importance of graded task practice, high number of repetitions, interventions tailored to patient's goals and expectations, solutions to increase and distribute therapy beyond the formal patient-therapist session, and how to integrate different interventions to maximize upper limb motor outcomes. We hope that this manuscript will serve as starting point to fill the gap between theory and practice in upper limb neurorehabilitation, and as a practical tool to leverage the positive impact of clinicians on patients' recovery.
Collapse
Affiliation(s)
- Leonardo Boccuni
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Spain
- Universitat Autònoma de Barcelona, Bellaterra, Spain
- Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
- *Correspondence: Leonardo Boccuni
| | - Lucio Marinelli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Department of Neuroscience, Division of Clinical Neurophysiology, Genova, Italy
| | - Carlo Trompetto
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Department of Neuroscience, Division of Neurorehabilitation, Genova, Italy
| | - Alvaro Pascual-Leone
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Spain
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, United States
- Department of Neurology and Harvard Medical School, Boston, MA, United States
| | - José María Tormos Muñoz
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Spain
- Universitat Autònoma de Barcelona, Bellaterra, Spain
- Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| |
Collapse
|
25
|
Remsik AB, van Kan PLE, Gloe S, Gjini K, Williams L, Nair V, Caldera K, Williams JC, Prabhakaran V. BCI-FES With Multimodal Feedback for Motor Recovery Poststroke. Front Hum Neurosci 2022; 16:725715. [PMID: 35874158 PMCID: PMC9296822 DOI: 10.3389/fnhum.2022.725715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 05/26/2022] [Indexed: 01/31/2023] Open
Abstract
An increasing number of research teams are investigating the efficacy of brain-computer interface (BCI)-mediated interventions for promoting motor recovery following stroke. A growing body of evidence suggests that of the various BCI designs, most effective are those that deliver functional electrical stimulation (FES) of upper extremity (UE) muscles contingent on movement intent. More specifically, BCI-FES interventions utilize algorithms that isolate motor signals-user-generated intent-to-move neural activity recorded from cerebral cortical motor areas-to drive electrical stimulation of individual muscles or muscle synergies. BCI-FES interventions aim to recover sensorimotor function of an impaired extremity by facilitating and/or inducing long-term motor learning-related neuroplastic changes in appropriate control circuitry. We developed a non-invasive, electroencephalogram (EEG)-based BCI-FES system that delivers closed-loop neural activity-triggered electrical stimulation of targeted distal muscles while providing the user with multimodal sensory feedback. This BCI-FES system consists of three components: (1) EEG acquisition and signal processing to extract real-time volitional and task-dependent neural command signals from cerebral cortical motor areas, (2) FES of muscles of the impaired hand contingent on the motor cortical neural command signals, and (3) multimodal sensory feedback associated with performance of the behavioral task, including visual information, linked activation of somatosensory afferents through intact sensorimotor circuits, and electro-tactile stimulation of the tongue. In this report, we describe device parameters and intervention protocols of our BCI-FES system which, combined with standard physical rehabilitation approaches, has proven efficacious in treating UE motor impairment in stroke survivors, regardless of level of impairment and chronicity.
Collapse
Affiliation(s)
- Alexander B. Remsik
- Department of Radiology, University of Wisconsin–Madison, Madison, WI, United States
- School of Medicine and Public Health, Institute for Clinical and Translational Research, University of Wisconsin–Madison, Madison, WI, United States
- Department of Kinesiology, University of Wisconsin–Madison, Madison, WI, United States
| | - Peter L. E. van Kan
- Department of Kinesiology, University of Wisconsin–Madison, Madison, WI, United States
- Neuroscience Training Program, University of Wisconsin–Madison, Madison, WI, United States
| | - Shawna Gloe
- Department of Radiology, University of Wisconsin–Madison, Madison, WI, United States
| | - Klevest Gjini
- Department of Radiology, University of Wisconsin–Madison, Madison, WI, United States
- Department of Neurology, University of Wisconsin–Madison, Madison, WI, United States
| | - Leroy Williams
- Department of Radiology, University of Wisconsin–Madison, Madison, WI, United States
- Department of Educational Psychology, University of Wisconsin–Madison, Madison, WI, United States
| | - Veena Nair
- Department of Radiology, University of Wisconsin–Madison, Madison, WI, United States
| | - Kristin Caldera
- Department of Orthopedics and Rehabilitation, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI, United States
| | - Justin C. Williams
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI, United States
- Department of Neurological Surgery, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI, United States
| | - Vivek Prabhakaran
- Department of Radiology, University of Wisconsin–Madison, Madison, WI, United States
- Neuroscience Training Program, University of Wisconsin–Madison, Madison, WI, United States
- Department of Neurology, University of Wisconsin–Madison, Madison, WI, United States
- Department of Psychiatry, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI, United States
- Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI, United States
- Department of Psychology, University of Wisconsin–Madison, Madison, WI, United States
| |
Collapse
|
26
|
Devittori G, Ranzani R, Dinacci D, Romiti D, Califfi A, Petrillo C, Rossi P, Gassert R, Lambercy O. Automatic and Personalized Adaptation of Therapy Parameters for Unsupervised Robot-Assisted Rehabilitation: a Pilot Evaluation. IEEE Int Conf Rehabil Robot 2022; 2022:1-6. [PMID: 36176083 DOI: 10.1109/icorr55369.2022.9896527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Growing evidence shows that increasing the dose of upper limb therapy after stroke might improve functional outcomes and unsupervised robot-assisted therapy may be a solution to achieve such an increase without adding workload on therapists. However, most of existing robotic devices still need frequent supervision by trained personnel and are currently not designed or ready for unsupervised use. One reason for this is that most rehabilitation devices are not capable of delivering and adapting personalized therapy without external intervention. Here we present a set of clinically-inspired algorithms that automatically adapt therapy parameters in a personalized way and guide the course of robot-assisted therapy sessions. We implemented these algorithms on a robotic device for hand rehabilitation and tested them in a pilot study with 5 subacute stroke subjects over 10 robot-assisted therapy sessions, some of which unsupervised. Results show that our algorithms could adapt the therapy difficulty throughout the whole study without requiring external intervention, maintaining performance around a predefined 70% target value (mean performance for all the subjects over all the sessions: 64.5%). Moreover, the algorithms could guide patients through the therapy sessions, minimizing the number of actions that subjects had to learn and perform. These results open the door to the use of robotic devices in an unsupervised setting to increase therapy dose after stroke.
Collapse
|
27
|
Stockley RC, Christian DL. A focus group study of therapists' views on using a novel neuroanimation virtual reality game to deliver intensive upper-limb rehabilitation early after stroke. Arch Physiother 2022; 12:15. [PMID: 35701828 PMCID: PMC9199178 DOI: 10.1186/s40945-022-00139-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 04/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Intensive training can significantly reduce upper-limb impairments after stroke but delivering interventions of sufficiently high intensity is extremely difficult in routine practice. The MindPod Dolphin® system is a novel neuroanimation experience which provides motivating and intensive virtual reality based training for the upper-limb. However several studies report that health professionals have reservations about using technology in rehabilitation. Therefore, this study sought to explore the views of therapists who had used this novel neuroanimation therapy (NAT) in a clinical centre to deliver intensive for the upper-limb of people after stroke in a phase 2 trial (SMARTS2). METHODS Four therapists (three female, two physical and two occupational therapists) who delivered NAT participated in a focus group conducted by two independent researchers. The theoretical domains framework and COM-B behaviour change models informed the discussion schedule for the focus group. An inductive approach to content analysis was used. Recordings were transcribed, coded and thematically analysed. Generated key themes were cross-checked with participants. RESULTS Whilst therapists had some initial concerns about using NAT, these were reduced by training, reference materials and face-to-face technical support. Therapists noted several significant benefits to using NAT including multi-system involvement, carry-over to functional tasks and high levels of patient engagement. CONCLUSIONS These findings illuminate key areas that clinicians, technology developers and researchers should consider when designing, developing and implementing NAT. Specifically, they highlight the importance of planning the implementation of rehabilitation technologies, ensuring technologies are robust and suggest a range of benefits that might be conferred to patients when using intensive NAT as part of rehabilitation for the upper-limb after stroke.
Collapse
Affiliation(s)
- Rachel C Stockley
- Stroke Research Team, Faculty of Health and Wellbeing, University of Central Lancashire, PrestonPreston, PR1 2HE, UK.
| | - Danielle L Christian
- Stroke Research Team, Faculty of Health and Wellbeing, University of Central Lancashire, PrestonPreston, PR1 2HE, UK
| |
Collapse
|
28
|
A low-dimensional representation of arm movements and hand grip forces in post-stroke individuals. Sci Rep 2022; 12:7601. [PMID: 35534629 PMCID: PMC9085765 DOI: 10.1038/s41598-022-11806-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 04/28/2022] [Indexed: 11/24/2022] Open
Abstract
Characterizing post-stroke impairments in the sensorimotor control of arm and hand is essential to better understand altered mechanisms of movement generation. Herein, we used a decomposition algorithm to characterize impairments in end-effector velocity and hand grip force data collected from an instrumented functional task in 83 healthy control and 27 chronic post-stroke individuals with mild-to-moderate impairments. According to kinematic and kinetic raw data, post-stroke individuals showed reduced functional performance during all task phases. After applying the decomposition algorithm, we observed that the behavioural data from healthy controls relies on a low-dimensional representation and demonstrated that this representation is mostly preserved post-stroke. Further, it emerged that reduced functional performance post-stroke correlates to an abnormal variance distribution of the behavioural representation, except when reducing hand grip forces. This suggests that the behavioural repertoire in these post-stroke individuals is mostly preserved, thereby pointing towards therapeutic strategies that optimize movement quality and the reduction of grip forces to improve performance of daily life activities post-stroke.
Collapse
|
29
|
Dawson J, Abdul-Rahim AH. Paired vagus nerve stimulation for treatment of upper extremity impairment after stroke. Int J Stroke 2022; 17:1061-1066. [PMID: 35377261 DOI: 10.1177/17474930221094684] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The use of a paired vagus nerve stimulation (VNS) system for the treatment of moderate to severe upper extremity motor deficits associated with chronic ischaemic stroke has recently been approved by the U.S Food and Drug Administration. This treatment aims to increase task specific neuroplasticity through activation of cholinergic and noradrenergic networks during rehabilitation therapy. A recent pivotal phase III trial showed that VNS paired with rehabilitation led to improvements in upper extremity impairment and function in people with moderate to severe arm weakness an average of three years after ischaemic stroke. The between group difference following six weeks of in-clinic therapy and 90 days of home exercise therapy was three points on the upper extremity Fugl Meyer score. A clinically meaningful response defined as a greater than or equal to six point improvement was seen in approximately half of people treated with VNS compared to approximately a quarter of people treated with rehabilitation alone. Further post-marketing research should aim to establish whether the treatment is also of use for people with intracerebral haemorrhage, in people with more severe arm weakness, and for other post stroke impairments. In addition, high quality randomised studies of non-invasive VNS are required.
Collapse
Affiliation(s)
- Jesse Dawson
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 9QQ, UK 236381
| | - Azmil Husin Abdul-Rahim
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 9QQ, UK 3526
| |
Collapse
|
30
|
Nataraj R, Sanford S, Liu M, Harel NY. Hand dominance in the performance and perceptions of virtual reach control. Acta Psychol (Amst) 2022; 223:103494. [PMID: 35045355 PMCID: PMC11056909 DOI: 10.1016/j.actpsy.2022.103494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/24/2021] [Accepted: 01/03/2022] [Indexed: 11/26/2022] Open
Abstract
PURPOSE Efforts to optimize human-computer interactions are becoming increasingly prevalent, especially with virtual reality (VR) rehabilitation paradigms that utilize engaging interfaces. We hypothesized that motor and perceptional behaviors within a virtual environment are modulated uniquely through different modes of control of a hand avatar depending on limb dominance. This study investigated the effects of limb dominance on performance and concurrent changes in perceptions, such as time-based measures for intentional binding, during virtual reach-to-grasp. METHODS Participants (n = 16, healthy) controlled a virtual hand through their own hand motions with control adaptations in speed, noise, and automation. RESULTS A significant (p < 0.01) positive relationship between performance (reaching pathlength) and binding (time-interval estimation of beep-sound after grasp contact) was observed for the dominant hand. Unique changes in performance (p < 0.0001) and binding (p < 0.0001) were observed depending on handedness and which control mode was applied. CONCLUSIONS Developers of VR paradigms should consider limb dominance to optimize settings that facilitate better performance and perceptional engagement. Adapting VR rehabilitation for handedness may particularly benefit unilateral impairments, like hemiparesis or single-limb amputation.
Collapse
Affiliation(s)
- Raviraj Nataraj
- Movement Control Rehabilitation (MOCORE) Laboratory, Altorfer Complex, Room 201, Stevens Institute of Technology, Hoboken, NJ, USA; Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, USA.
| | - Sean Sanford
- Movement Control Rehabilitation (MOCORE) Laboratory, Altorfer Complex, Room 201, Stevens Institute of Technology, Hoboken, NJ, USA; Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Mingxiao Liu
- Movement Control Rehabilitation (MOCORE) Laboratory, Altorfer Complex, Room 201, Stevens Institute of Technology, Hoboken, NJ, USA; Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Noam Y Harel
- Spinal Cord Damage Research Center, James J. Peters VA Medical Center, Bronx, NY, USA; Departments of Neurology and Rehabilitation & Human Performance, Icahn School of Medicine at Mount Sinai, USA
| |
Collapse
|
31
|
Pundik S, McCabe J, Skelly M, Salameh A, Naft J, Chen Z, Tatsuoka C, Fatone S. Myoelectric Arm Orthosis in Motor Learning-Based Therapy for Chronic Deficits After Stroke and Traumatic Brain Injury. Front Neurol 2022; 13:791144. [PMID: 35211080 PMCID: PMC8863049 DOI: 10.3389/fneur.2022.791144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/04/2022] [Indexed: 11/15/2022] Open
Abstract
Background Technologies that enhance motor learning-based therapy and are clinically deployable may improve outcome for those with neurological deficits. The MyoPro™ is a customized myoelectric upper extremity orthosis that utilizes volitionally generated weak electromyographic signals from paretic muscles to assist movement of an impaired arm. Our purpose was to evaluate MyoPro as a tool for motor learning-based therapy for individuals with chronic upper limb weakness. Methods This was a pilot study of thirteen individuals with chronic moderate/severe arm weakness due to either stroke (n = 7) or TBI (n = 6) who participated in a single group interventional study consisting of 2 phases. The in-clinic phase included 18 sessions (2x per week, 27hrs of face-to-face therapy) plus a home exercise program. The home phase included practice of the home exercise program. The study did not include a control group. Outcomes were collected at baseline and at weeks 3, 5, 7, 9, 12, 15, and 18. Statistics included mixed model regression analysis. Results Statistically significant and clinically meaningful improvements were observed on Fugl-Meyer (+7.5 points). Gains were seen at week 3, increased further through the in-clinic phase and were maintained during the home phase. Statistically significant changes in Modified Ashworth Scale, Range of Motion, and Chedoke Arm and Hand Activity Inventory were seen early during the in-clinic phase. Orthotic and Prosthetic User's Survey demonstrated satisfaction with the device throughout study participation. Both stroke and TBI participants responded to the intervention. Conclusions Use of MyoPro in motor learning-based therapy resulted in clinically significant gains with a relatively short duration of in-person treatment. Further studies are warranted. Clinical Trial Registration www.ClinicalTrials.gov, identifier: NCT03215771.
Collapse
Affiliation(s)
- Svetlana Pundik
- Brain Plasticity and NeuroRecovery Laboratory, Cleveland Functional Electrical Stimulation Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States.,Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Jessica McCabe
- Brain Plasticity and NeuroRecovery Laboratory, Cleveland Functional Electrical Stimulation Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Margaret Skelly
- Brain Plasticity and NeuroRecovery Laboratory, Cleveland Functional Electrical Stimulation Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Ahlam Salameh
- Brain Plasticity and NeuroRecovery Laboratory, Cleveland Functional Electrical Stimulation Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States.,Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Jonathan Naft
- Geauga Rehabilitation Engineering, Cleveland, OH, United States
| | - Zhengyi Chen
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Curtis Tatsuoka
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Stefania Fatone
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
32
|
Hernandez A, Bubyr L, Archambault PS, Higgins J, Levin MF, Kairy D. VR-based rehabilitation as a Feasible and Engaging Tool for the Management of Chronic Post-Stroke Upper Extremity Function Recovery: A Randomized Controlled Trial (Preprint). JMIR Serious Games 2022; 10:e37506. [PMID: 36166289 PMCID: PMC9555337 DOI: 10.2196/37506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/27/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Alejandro Hernandez
- Centre for Interdisciplinary Research in Rehabilitation, Montreal, QC, Canada
| | | | - Philippe S Archambault
- Centre for Interdisciplinary Research in Rehabilitation, Montreal, QC, Canada
- School of Physical & Occupational Therapy, McGill University, Montreal, QC, Canada
| | - Johanne Higgins
- Centre for Interdisciplinary Research in Rehabilitation, Montreal, QC, Canada
- Ecole de sciences de la réadaptation, Université de Montréal, Montreal, QC, Canada
| | - Mindy F Levin
- Centre for Interdisciplinary Research in Rehabilitation, Montreal, QC, Canada
- School of Physical & Occupational Therapy, McGill University, Montreal, QC, Canada
| | - Dahlia Kairy
- Centre for Interdisciplinary Research in Rehabilitation, Montreal, QC, Canada
- Ecole de sciences de la réadaptation, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
33
|
Scano A, Mira RM, Gabbrielli G, Molteni F, Terekhov V. Whole-Body Adaptive Functional Electrical Stimulation Kinesitherapy Can Promote the Restoring of Physiological Muscle Synergies for Neurological Patients. SENSORS 2022; 22:s22041443. [PMID: 35214345 PMCID: PMC8877830 DOI: 10.3390/s22041443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/28/2022] [Accepted: 02/11/2022] [Indexed: 12/03/2022]
Abstract
Background: Neurological diseases and traumas are major factors that may reduce motor functionality. Functional electrical stimulation is a technique that helps regain motor function, assisting patients in daily life activities and in rehabilitation practices. In this study, we evaluated the efficacy of a treatment based on whole-body Adaptive Functional Electrical Stimulation Kinesitherapy (AFESK™) with the use of muscle synergies, a well-established method for evaluation of motor coordination. The evaluation is performed on retrospectively gathered data of neurological patients executing whole-body movements before and after AFESK-based treatments. Methods: Twenty-four chronic neurologic patients and 9 healthy subjects were recruited in this study. The patient group was further subdivided in 3 subgroups: hemiplegic, tetraplegic and paraplegic. All patients underwent two acquisition sessions: before treatment and after a FES based rehabilitation treatment at the VIKTOR Physio Lab. Patients followed whole-body exercise protocols tailored to their needs. The control group of healthy subjects performed all movements in a single session and provided reference data for evaluating patients’ performance. sEMG was recorded on relevant muscles and muscle synergies were extracted for each patient’s EMG data and then compared to the ones extracted from the healthy volunteers. To evaluate the effect of the treatment, the motricity index was measured and patients’ extracted synergies were compared to the control group before and after treatment. Results: After the treatment, patients’ motricity index increased for many of the screened body segments. Muscle synergies were more similar to those of healthy people. Globally, the normalized synergy similarity in respect to the control group was 0.50 before the treatment and 0.60 after (p < 0.001), with improvements for each subgroup of patients. Conclusions: AFESK treatment induced favorable changes in muscle activation patterns in chronic neurologic patients, partially restoring muscular patterns similar to healthy people. The evaluation of the synergic relationships of muscle activity when performing test exercises allows to assess the results of rehabilitation measures in patients with impaired locomotor functions.
Collapse
Affiliation(s)
- Alessandro Scano
- UOS STIIMA Lecco—Human-Centered, Smart & Safe, Living Environment, Italian National Research Council (CNR), Via Previati 1/E, 23900 Lecco, Italy;
- Correspondence: (A.S.); (V.T.)
| | - Robert Mihai Mira
- UOS STIIMA Lecco—Human-Centered, Smart & Safe, Living Environment, Italian National Research Council (CNR), Via Previati 1/E, 23900 Lecco, Italy;
| | | | - Franco Molteni
- Villa Beretta Rehabilitation Center, Ospedale Valduce, Via N. Sauro 17, 23845 Costa Masnaga, Italy;
| | - Viktor Terekhov
- VIKTOR S.r.l.—Via Pasubio, 5, 24044 Dalmine (BG), Italy;
- Correspondence: (A.S.); (V.T.)
| |
Collapse
|
34
|
Neuromuscular Stimulation as an Intervention Tool for Recovery from Upper Limb Paresis after Stroke and the Neural Basis. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Neuromodulators at the periphery, such as neuromuscular electrical stimulation (NMES), have been developed as add-on tools to regain upper extremity (UE) paresis after stroke, but this recovery has often been limited. To overcome these limits, novel strategies to enhance neural reorganization and functional recovery are needed. This review aims to discuss possible strategies for enhancing the benefits of NMES. To date, NMES studies have involved some therapeutic concerns that have been addressed under various conditions, such as the time of post-stroke and stroke severity and/or with heterogeneous stimulation parameters, such as target muscles, doses or durations of treatment and outcome measures. We began by identifying factors sensitive to NMES benefits among heterogeneous conditions and parameters, based on the “progress rate (PR)”, defined as the gains in UE function scores per intervention duration. Our analysis disclosed that the benefits might be affected by the target muscles, stroke severity and time period after stroke. Likewise, repetitive peripheral neuromuscular magnetic stimulation (rPMS) is expected to facilitate motor recovery, as already demonstrated by a successful study. In parallel, our efforts should be devoted to further understanding the precise neural mechanism of how neuromodulators make UE function recovery occur, thereby leading to overcoming the limits. In this study, we discuss the possible neural mechanisms.
Collapse
|
35
|
Liew SL, Lin DJ, Cramer SC. Interventions to Improve Recovery After Stroke. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00061-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Gutierrez-Martinez J, Mercado-Gutierrez JA, Carvajal-Gámez BE, Rosas-Trigueros JL, Contreras-Martinez AE. Artificial Intelligence Algorithms in Visual Evoked Potential-Based Brain-Computer Interfaces for Motor Rehabilitation Applications: Systematic Review and Future Directions. Front Hum Neurosci 2021; 15:772837. [PMID: 34899220 PMCID: PMC8656949 DOI: 10.3389/fnhum.2021.772837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Brain-Computer Interface (BCI) is a technology that uses electroencephalographic (EEG) signals to control external devices, such as Functional Electrical Stimulation (FES). Visual BCI paradigms based on P300 and Steady State Visually Evoked potentials (SSVEP) have shown high potential for clinical purposes. Numerous studies have been published on P300- and SSVEP-based non-invasive BCIs, but many of them present two shortcomings: (1) they are not aimed for motor rehabilitation applications, and (2) they do not report in detail the artificial intelligence (AI) methods used for classification, or their performance metrics. To address this gap, in this paper the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) methodology was applied to prepare a systematic literature review (SLR). Papers older than 10 years, repeated or not related to a motor rehabilitation application, were excluded. Of all the studies, 51.02% referred to theoretical analysis of classification algorithms. Of the remaining, 28.48% were for spelling, 12.73% for diverse applications (control of wheelchair or home appliances), and only 7.77% were focused on motor rehabilitation. After the inclusion and exclusion criteria were applied and quality screening was performed, 34 articles were selected. Of them, 26.47% used the P300 and 55.8% the SSVEP signal. Five applications categories were established: Rehabilitation Systems (17.64%), Virtual Reality environments (23.52%), FES (17.64%), Orthosis (29.41%), and Prosthesis (11.76%). Of all the works, only four performed tests with patients. The most reported machine learning (ML) algorithms used for classification were linear discriminant analysis (LDA) (48.64%) and support vector machine (16.21%), while only one study used a deep learning algorithm: a Convolutional Neural Network (CNN). The reported accuracy ranged from 38.02 to 100%, and the Information Transfer Rate from 1.55 to 49.25 bits per minute. While LDA is still the most used AI algorithm, CNN has shown promising results, but due to their high technical implementation requirements, many researchers do not justify its implementation as worthwile. To achieve quick and accurate online BCIs for motor rehabilitation applications, future works on SSVEP-, P300-based and hybrid BCIs should focus on optimizing the visual stimulation module and the training stage of ML and DL algorithms.
Collapse
Affiliation(s)
- Josefina Gutierrez-Martinez
- División de Investigación en Ingeniería Médica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Jorge A. Mercado-Gutierrez
- División de Investigación en Ingeniería Médica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | | | | | | |
Collapse
|
37
|
Clark B, Whitall J, Kwakkel G, Mehrholz J, Ewings S, Burridge J. The effect of time spent in rehabilitation on activity limitation and impairment after stroke. Cochrane Database Syst Rev 2021; 10:CD012612. [PMID: 34695300 PMCID: PMC8545241 DOI: 10.1002/14651858.cd012612.pub2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Stroke affects millions of people every year and is a leading cause of disability, resulting in significant financial cost and reduction in quality of life. Rehabilitation after stroke aims to reduce disability by facilitating recovery of impairment, activity, or participation. One aspect of stroke rehabilitation that may affect outcomes is the amount of time spent in rehabilitation, including minutes provided, frequency (i.e. days per week of rehabilitation), and duration (i.e. time period over which rehabilitation is provided). Effect of time spent in rehabilitation after stroke has been explored extensively in the literature, but findings are inconsistent. Previous systematic reviews with meta-analyses have included studies that differ not only in the amount provided, but also type of rehabilitation. OBJECTIVES To assess the effect of 1. more time spent in the same type of rehabilitation on activity measures in people with stroke; 2. difference in total rehabilitation time (in minutes) on recovery of activity in people with stroke; and 3. rehabilitation schedule on activity in terms of: a. average time (minutes) per week undergoing rehabilitation, b. frequency (number of sessions per week) of rehabilitation, and c. total duration of rehabilitation. SEARCH METHODS We searched the Cochrane Stroke Group trials register, CENTRAL, MEDLINE, Embase, eight other databases, and five trials registers to June 2021. We searched reference lists of identified studies, contacted key authors, and undertook reference searching using Web of Science Cited Reference Search. SELECTION CRITERIA We included randomised controlled trials (RCTs) of adults with stroke that compared different amounts of time spent, greater than zero, in rehabilitation (any non-pharmacological, non-surgical intervention aimed to improve activity after stroke). Studies varied only in the amount of time in rehabilitation between experimental and control conditions. Primary outcome was activities of daily living (ADLs); secondary outcomes were activity measures of upper and lower limbs, motor impairment measures of upper and lower limbs, and serious adverse events (SAE)/death. DATA COLLECTION AND ANALYSIS Two review authors independently screened studies, extracted data, assessed methodological quality using the Cochrane RoB 2 tool, and assessed certainty of the evidence using GRADE. For continuous outcomes using different scales, we calculated pooled standardised mean difference (SMDs) and 95% confidence intervals (CIs). We expressed dichotomous outcomes as risk ratios (RR) with 95% CIs. MAIN RESULTS The quantitative synthesis of this review comprised 21 parallel RCTs, involving analysed data from 1412 participants. Time in rehabilitation varied between studies. Minutes provided per week were 90 to 1288. Days per week of rehabilitation were three to seven. Duration of rehabilitation was two weeks to six months. Thirteen studies provided upper limb rehabilitation, five general rehabilitation, two mobilisation training, and one lower limb training. Sixteen studies examined participants in the first six months following stroke; the remaining five included participants more than six months poststroke. Comparison of stroke severity or level of impairment was limited due to variations in measurement. The risk of bias assessment suggests there were issues with the methodological quality of the included studies. There were 76 outcome-level risk of bias assessments: 15 low risk, 37 some concerns, and 24 high risk. When comparing groups that spent more time versus less time in rehabilitation immediately after intervention, we found no difference in rehabilitation for ADL outcomes (SMD 0.13, 95% CI -0.02 to 0.28; P = 0.09; I2 = 7%; 14 studies, 864 participants; very low-certainty evidence), activity measures of the upper limb (SMD 0.09, 95% CI -0.11 to 0.29; P = 0.36; I2 = 0%; 12 studies, 426 participants; very low-certainty evidence), and activity measures of the lower limb (SMD 0.25, 95% CI -0.03 to 0.53; P = 0.08; I2 = 48%; 5 studies, 425 participants; very low-certainty evidence). We found an effect in favour of more time in rehabilitation for motor impairment measures of the upper limb (SMD 0.32, 95% CI 0.06 to 0.58; P = 0.01; I2 = 10%; 9 studies, 287 participants; low-certainty evidence) and of the lower limb (SMD 0.71, 95% CI 0.15 to 1.28; P = 0.01; 1 study, 51 participants; very low-certainty evidence). There were no intervention-related SAEs. More time in rehabilitation did not affect the risk of SAEs/death (RR 1.20, 95% CI 0.51 to 2.85; P = 0.68; I2 = 0%; 2 studies, 379 participants; low-certainty evidence), but few studies measured these outcomes. Predefined subgroup analyses comparing studies with a larger difference of total time spent in rehabilitation between intervention groups to studies with a smaller difference found greater improvements for studies with a larger difference. This was statistically significant for ADL outcomes (P = 0.02) and activity measures of the upper limb (P = 0.04), but not for activity measures of the lower limb (P = 0.41) or motor impairment measures of the upper limb (P = 0.06). AUTHORS' CONCLUSIONS An increase in time spent in the same type of rehabilitation after stroke results in little to no difference in meaningful activities such as activities of daily living and activities of the upper and lower limb but a small benefit in measures of motor impairment (low- to very low-certainty evidence for all findings). If the increase in time spent in rehabilitation exceeds a threshold, this may lead to improved outcomes. There is currently insufficient evidence to recommend a minimum beneficial daily amount in clinical practice. The findings of this study are limited by a lack of studies with a significant contrast in amount of additional rehabilitation provided between control and intervention groups. Large, well-designed, high-quality RCTs that measure time spent in all rehabilitation activities (not just interventional) and provide a large contrast (minimum of 1000 minutes) in amount of rehabilitation between groups would provide further evidence for effect of time spent in rehabilitation.
Collapse
Affiliation(s)
- Beth Clark
- School of Health Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Jill Whitall
- Department of Physical Therapy and Rehabilitation Science, University of Maryland, Baltimore, Maryland, USA
| | - Gert Kwakkel
- Department of Rehabilitation Medicine, Amsterdam Movement Sciences and Amsterdam, Amsterdam Neurosciences, VU University Medical Center, Amsterdam, Netherlands
| | - Jan Mehrholz
- Department of Public Health, Dresden Medical School, Technical University Dresden, Dresden, Germany
| | - Sean Ewings
- Southampton Statistical Sciences Research Institute, University of Southampton, Southampton, UK
| | - Jane Burridge
- Research Group, Faculty of Health Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
38
|
Ravindran A, Rieke JD, Zapata JDA, White KD, Matarasso A, Yusufali MM, Rana M, Gunduz A, Modarres M, Sitaram R, Daly JJ. Four methods of brain pattern analyses of fMRI signals associated with wrist extension versus wrist flexion studied for potential use in future motor learning BCI. PLoS One 2021; 16:e0254338. [PMID: 34403422 PMCID: PMC8370644 DOI: 10.1371/journal.pone.0254338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 06/24/2021] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE In stroke survivors, a treatment-resistant problem is inability to volitionally differentiate upper limb wrist extension versus flexion. When one intends to extend the wrist, the opposite occurs, wrist flexion, rendering the limb non-functional. Conventional therapeutic approaches have had limited success in achieving functional recovery of patients with chronic and severe upper extremity impairments. Functional magnetic resonance imaging (fMRI) neurofeedback is an emerging strategy that has shown potential for stroke rehabilitation. There is a lack of information regarding unique blood-oxygenation-level dependent (BOLD) cortical activations uniquely controlling execution of wrist extension versus uniquely controlling wrist flexion. Therefore, a first step in providing accurate neural feedback and training to the stroke survivor is to determine the feasibility of classifying (or differentiating) brain activity uniquely associated with wrist extension from that of wrist flexion, first in healthy adults. APPROACH We studied brain signal of 10 healthy adults, who performed wrist extension and wrist flexion during fMRI data acquisition. We selected four types of analyses to study the feasibility of differentiating brain signal driving wrist extension versus wrist flexion, as follows: 1) general linear model (GLM) analysis; 2) support vector machine (SVM) classification; 3) 'Winner Take All'; and 4) Relative Dominance. RESULTS With these four methods and our data, we found that few voxels were uniquely active during either wrist extension or wrist flexion. SVM resulted in only minimal classification accuracies. There was no significant difference in activation magnitude between wrist extension versus flexion; however, clusters of voxels showed extension signal > flexion signal and other clusters vice versa. Spatial patterns of activation differed among subjects. SIGNIFICANCE We encountered a number of obstacles to obtaining clear group results in healthy adults. These obstacles included the following: high variability across healthy adults in all measures studied; close proximity of uniquely active voxels to voxels that were common to both the extension and flexion movements; in general, higher magnitude of signal for the voxels common to both movements versus the magnitude of any given uniquely active voxel for one type of movement. Our results indicate that greater precision in imaging will be required to develop a truly effective method for differentiating wrist extension versus wrist flexion from fMRI data.
Collapse
Affiliation(s)
- Aniruddh Ravindran
- J. Pruitt Family Department of Biomedical Engineering, College of Engineering, University of Florida, Gainesville, Florida, United States of America
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, Florida, United States of America
| | - Jake D. Rieke
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, Florida, United States of America
| | - Jose Daniel Alcantara Zapata
- J. Pruitt Family Department of Biomedical Engineering, College of Engineering, University of Florida, Gainesville, Florida, United States of America
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, Florida, United States of America
| | - Keith D. White
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, Florida, United States of America
- Department of Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, United States of America
| | - Avi Matarasso
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, Florida, United States of America
- Department of Chemical Engineering, College of Engineering, University of Florida, Gainesville, Florida, United States of America
| | - M. Minhal Yusufali
- J. Pruitt Family Department of Biomedical Engineering, College of Engineering, University of Florida, Gainesville, Florida, United States of America
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, Florida, United States of America
| | - Mohit Rana
- Laboratory for Brain-Machine Interfaces and Neuromodulation, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Aysegul Gunduz
- J. Pruitt Family Department of Biomedical Engineering, College of Engineering, University of Florida, Gainesville, Florida, United States of America
| | - Mo Modarres
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, Florida, United States of America
| | - Ranganatha Sitaram
- Laboratory for Brain-Machine Interfaces and Neuromodulation, Pontificia Universidad Católica de Chile, Santiago, Chile
- Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Psychiatry and Division of Neuroscience, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Janis J. Daly
- J. Pruitt Family Department of Biomedical Engineering, College of Engineering, University of Florida, Gainesville, Florida, United States of America
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, Florida, United States of America
- Department of Neurology, College of Medicine, University of Florida, Gainesville, United States of America
| |
Collapse
|
39
|
Control of a hybrid upper-limb orthosis device based on a data-driven artificial neural network classifier of electromyography signals. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
Lee SI, Adans-Dester CP, OBrien AT, Vergara-Diaz GP, Black-Schaffer R, Zafonte R, Dy JG, Bonato P. Predicting and Monitoring Upper-Limb Rehabilitation Outcomes Using Clinical and Wearable Sensor Data in Brain Injury Survivors. IEEE Trans Biomed Eng 2021; 68:1871-1881. [PMID: 32997621 PMCID: PMC8723794 DOI: 10.1109/tbme.2020.3027853] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Rehabilitation specialists have shown considerable interest for the development of models, based on clinical data, to predict the response to rehabilitation interventions in stroke and traumatic brain injury survivors. However, accurate predictions are difficult to obtain due to the variability in patients' response to rehabilitation interventions. This study aimed to investigate the use of wearable technology in combination with clinical data to predict and monitor the recovery process and assess the responsiveness to treatment on an individual basis. METHODS Gaussian Process Regression-based algorithms were developed to estimate rehabilitation outcomes (i.e., Functional Ability Scale scores) using either clinical or wearable sensor data or a combination of the two. RESULTS The algorithm based on clinical data predicted rehabilitation outcomes with a Pearson's correlation of 0.79 compared to actual clinical scores provided by clinicians but failed to model the variability in responsiveness to the intervention observed across individuals. In contrast, the algorithm based on wearable sensor data generated rehabilitation outcome estimates with a Pearson's correlation of 0.91 and modeled the individual responses to rehabilitation more accurately. Furthermore, we developed a novel approach to combine estimates derived from the clinical data and the sensor data using a constrained linear model. This approach resulted in a Pearson's correlation of 0.94 between estimated and clinician-provided scores. CONCLUSION This algorithm could enable the design of patient-specific interventions based on predictions of rehabilitation outcomes relying on clinical and wearable sensor data. SIGNIFICANCE This is important in the context of developing precision rehabilitation interventions.
Collapse
|
41
|
Mattos DJS, Rutlin J, Hong X, Zinn K, Shimony JS, Carter AR. White matter integrity of contralesional and transcallosal tracts may predict response to upper limb task-specific training in chronic stroke. NEUROIMAGE-CLINICAL 2021; 31:102710. [PMID: 34126348 PMCID: PMC8209270 DOI: 10.1016/j.nicl.2021.102710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/19/2022]
Abstract
Increase in upper limb function post task specific training in chronic stroke. Motor improvements were not accompanied by changes in white matter integrity. Integrity in contralesional fibers predicted larger motor recovery in Responders. Non-responders had more severe damage of transcallosal fibers than Responders.
Objective To investigate white matter (WM) plasticity induced by intensive upper limb (UL) task specific training (TST) in chronic stroke. Methods Diffusion tensor imaging data and UL function measured by the Action Research Arm Test (ARAT) were collected in 30 individuals with chronic stroke prior to and after intensive TST. ANOVAs tested the effects of training on the entire sample and on the Responders [ΔARAT ≥ 5.8, N = 13] and Non-Responders [ΔARAT < 5.8, N = 17] groups. Baseline fractional anisotropy (FA) values were correlated with ARATpost TST controlling for baseline ARAT and age to identify voxels predictive of response to TST. Results. While ARAT scores increased following training (p < 0.0001), FA changes within major WM tracts were not significant at p < 0.05. In the Responder group, larger baseline FA of both contralesional (CL) and transcallosal tracts predicted larger ARAT scores post-TST. Subcortical lesions and more severe damage to transcallosal tracts were more pronounced in the Non-Responder than in the Responder group. Conclusions The motor improvements post-TST in the Responder group may reflect the engagement of interhemispheric processes not available to the Non-Responder group. Future studies should clarify differences in the role of CL and transcallosal pathways as biomarkers of recovery in response to training for individuals with cortical and subcortical stroke. This knowledge may help to identify sources of heterogeneity in stroke recovery, which is necessary for the development of customized rehabilitation interventions.
Collapse
Affiliation(s)
- Daniela J S Mattos
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Jerrel Rutlin
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Xin Hong
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Kristina Zinn
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Alexandre R Carter
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110 USA.
| |
Collapse
|
42
|
Matarasso AK, Rieke JD, White K, Yusufali MM, Daly JJ. Combined real-time fMRI and real time fNIRS brain computer interface (BCI): Training of volitional wrist extension after stroke, a case series pilot study. PLoS One 2021; 16:e0250431. [PMID: 33956845 PMCID: PMC8101762 DOI: 10.1371/journal.pone.0250431] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 04/01/2021] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Pilot testing of real time functional magnetic resonance imaging (rt-fMRI) and real time functional near infrared spectroscopy (rt-fNIRS) as brain computer interface (BCI) neural feedback systems combined with motor learning for motor recovery in chronic severely impaired stroke survivors. APPROACH We enrolled a four-case series and administered three sequential rt-fMRI and ten rt-fNIRS neural feedback sessions interleaved with motor learning sessions. Measures were: Arm Motor Assessment Tool, functional domain (AMAT-F; 13 complex functional tasks), Fugl-Meyer arm coordination scale (FM); active wrist extension range of motion (ROM); volume of activation (fMRI); and fNIRS HbO concentration. Performance during neural feedback was assessed, in part, using percent successful brain modulations during rt-fNIRS. MAIN RESULTS Pre-/post-treatment mean clinically significant improvement in AMAT-F (.49 ± 0.22) and FM (10.0 ± 3.3); active wrist ROM improvement ranged from 20° to 50°. Baseline to follow-up change in brain signal was as follows: fMRI volume of activation was reduced in almost all ROIs for three subjects, and for one subject there was an increase or no change; fNIRS HbO was within normal range, except for one subject who increased beyond normal at post-treatment. During rt-fNIRS neural feedback training, there was successful brain signal modulation (42%-78%). SIGNIFICANCE Severely impaired stroke survivors successfully engaged in spatially focused BCI systems, rt-fMRI and rt-fNIRS, to clinically significantly improve motor function. At the least, equivalency in motor recovery was demonstrated with prior long-duration motor learning studies (without neural feedback), indicating that no loss of motor improvement resulted from substituting neural feedback sessions for motor learning sessions. Given that the current neural feedback protocol did not prevent the motor improvements observed in other long duration studies, even in the presence of fewer sessions of motor learning in the current work, the results support further study of neural feedback and its potential for recovery of motor function in stroke survivors. In future work, expanding the sophistication of either or both rt-fMRI and rt-fNIRS could hold the potential for further reducing the number of hours of training needed and/or the degree of recovery. ClinicalTrials.gov ID: NCT02856035.
Collapse
Affiliation(s)
- Avi K. Matarasso
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, Florida, United States of America
- Department of Chemical Engineering, College of Engineering, University of Florida, Gainesville, Florida, United States of America
| | - Jake D. Rieke
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, Florida, United States of America
| | - Keith White
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, Florida, United States of America
| | - M. Minhal Yusufali
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, Florida, United States of America
- J. Pruitt Family Department of Biomedical Engineering, College of Engineering, University of Florida, Gainesville, Florida, United States of America
| | - Janis J. Daly
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, Florida, United States of America
- Department of Neurology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
43
|
Bower KJ, Verdonck M, Hamilton A, Williams G, Tan D, Clark RA. What Factors Influence Clinicians' Use of Technology in Neurorehabilitation? A Multisite Qualitative Study. Phys Ther 2021; 101:6124063. [PMID: 33522582 DOI: 10.1093/ptj/pzab031] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/30/2020] [Accepted: 12/31/2020] [Indexed: 11/14/2022]
Abstract
OBJECTIVE Technology is being increasingly used for physical assessment and interventions in health care settings. However, clinical adoption is relatively slow, and the factors affecting use remain underexplored. This study aimed to investigate factors influencing technology use by clinicians working in neurorehabilitation. METHODS In this qualitative study, 9 physical therapists and 9 occupational therapists (N = 18) were recruited from urban and regional locations in Australia and in Singapore. Three 60-minute focus groups were conducted via video conferencing. Each group comprised 3 physical therapists and 3 occupational therapists working across different neurorehabilitation settings. Participants were asked to discuss which technologies they used in their workplace for physical assessment and treatment and barriers, motivators, and future desires for technology use. Transcripts were analyzed independently using an inductive approach to generate codes and themes. RESULTS Our results comprised 3 themes and 7 categories. These were encompassed by a single overarching theme, namely "Technology use is influenced by the benefits and challenges of the technology itself, users, and organizational context." Themes showed that technology should promote effective interventions, is preferred if easy to use, and should be dependable. Furthermore, clinical reasoning is important, and users have varying levels of receptivity and confidence in technology use. Also, organizational resources are required, along with supportive cultures and processes, to facilitate technology use. CONCLUSIONS The themes identified multiple and interlinking factors influencing clinicians' use of technology in neurorehabilitation settings. Clinicians often consider context-specific benefits and challenges when deciding whether to use technology. Although our study found that clinicians generally perceived technology as having a beneficial role in improving health outcomes, there were several challenges raised. Therefore, the characteristics of the technology itself, individual users, and organizational context should be considered. IMPACT These findings will guide successful technology implementation and future developments.
Collapse
Affiliation(s)
- Kelly J Bower
- The University of Melbourne, Department of Physiotherapy, Melbourne School of Health Sciences, Alan Gilbert Building, 161 Barry St, Carlton VIC Australia 3053.,University of the Sunshine Coast, School of Health and Sport Sciences, Sippy Downs, Queensland, Australia
| | - Michele Verdonck
- University of the Sunshine Coast, School of Health and Sport Sciences, Sippy Downs, Queensland, Australia
| | - Anita Hamilton
- University of the Sunshine Coast, School of Health and Sport Sciences, Sippy Downs, Queensland, Australia
| | - Gavin Williams
- The University of Melbourne, Department of Physiotherapy, Melbourne School of Health Sciences, Alan Gilbert Building, 161 Barry St, Carlton VIC Australia 3053.,Epworth HealthCare, Department of Physiotherapy, Richmond, Victoria, Australia
| | - Dawn Tan
- Singapore General Hospital, Department of Physiotherapy, National Heart Centre Building, Singapore
| | - Ross A Clark
- University of the Sunshine Coast, School of Health and Sport Sciences, Sippy Downs, Queensland, Australia
| |
Collapse
|
44
|
Ranzani R, Eicher L, Viggiano F, Engelbrecht B, Held JPO, Lambercy O, Gassert R. Towards a Platform for Robot-Assisted Minimally-Supervised Therapy of Hand Function: Design and Pilot Usability Evaluation. Front Bioeng Biotechnol 2021; 9:652380. [PMID: 33937218 PMCID: PMC8082072 DOI: 10.3389/fbioe.2021.652380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/15/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Robot-assisted therapy can increase therapy dose after stroke, which is often considered insufficient in clinical practice and after discharge, especially with respect to hand function. Thus far, there has been a focus on rather complex systems that require therapist supervision. To better exploit the potential of robot-assisted therapy, we propose a platform designed for minimal therapist supervision, and present the preliminary evaluation of its immediate usability, one of the main and frequently neglected challenges for real-world application. Such an approach could help increase therapy dose by allowing the training of multiple patients in parallel by a single therapist, as well as independent training in the clinic or at home. METHODS We implemented design changes on a hand rehabilitation robot, considering aspects relevant to enabling minimally-supervised therapy, such as new physical/graphical user interfaces and two functional therapy exercises to train hand motor coordination, somatosensation and memory. Ten participants with chronic stroke assessed the usability of the platform and reported the perceived workload during a single therapy session with minimal supervision. The ability to independently use the platform was evaluated with a checklist. RESULTS Participants were able to independently perform the therapy session after a short familiarization period, requiring assistance in only 13.46 (7.69-19.23)% of the tasks. They assigned good-to-excellent scores on the System Usability Scale to the user-interface and the exercises [85.00 (75.63-86.88) and 73.75 (63.13-83.75) out of 100, respectively]. Nine participants stated that they would use the platform frequently. Perceived workloads lay within desired workload bands. Object grasping with simultaneous control of forearm pronosupination and stiffness discrimination were identified as the most difficult tasks. DISCUSSION Our findings demonstrate that a robot-assisted therapy device can be rendered safely and intuitively usable upon first exposure with minimal supervision through compliance with usability and perceived workload requirements. The preliminary usability evaluation identified usability challenges that should be solved to allow real-world minimally-supervised use. Such a platform could complement conventional therapy, allowing to provide increased dose with the available resources, and establish a continuum of care that progressively increases therapy lead of the patient from the clinic to the home.
Collapse
Affiliation(s)
- Raffaele Ranzani
- Rehabilitation Engineering Laboratory, D-HEST, ETH Zürich, Zurich, Switzerland
| | - Lucas Eicher
- Rehabilitation Engineering Laboratory, D-HEST, ETH Zürich, Zurich, Switzerland
| | - Federica Viggiano
- Rehabilitation Engineering Laboratory, D-HEST, ETH Zürich, Zurich, Switzerland
| | | | - Jeremia P. O. Held
- Department of Neurology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Olivier Lambercy
- Rehabilitation Engineering Laboratory, D-HEST, ETH Zürich, Zurich, Switzerland
| | - Roger Gassert
- Rehabilitation Engineering Laboratory, D-HEST, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
45
|
Norouzi-Gheidari N, Archambault PS, Monte-Silva K, Kairy D, Sveistrup H, Trivino M, Levin MF, Milot MH. Feasibility and preliminary efficacy of a combined virtual reality, robotics and electrical stimulation intervention in upper extremity stroke rehabilitation. J Neuroeng Rehabil 2021; 18:61. [PMID: 33853614 PMCID: PMC8045249 DOI: 10.1186/s12984-021-00851-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 03/16/2021] [Indexed: 12/11/2022] Open
Abstract
Background Approximately 80% of individuals with chronic stroke present with long lasting upper extremity (UE) impairments. We designed the perSonalized UPper Extremity Rehabilitation (SUPER) intervention, which combines robotics, virtual reality activities, and neuromuscular electrical stimulation (NMES). The objectives of our study were to determine the feasibility and the preliminary efficacy of the SUPER intervention in individuals with moderate/severe stroke. Methods Stroke participants (n = 28) received a 4-week intervention (3 × per week), tailored to their functional level. The functional integrity of the corticospinal tract was assessed using the Predict Recovery Potential algorithm, involving measurements of motor evoked potentials and manual muscle testing. Those with low potential for hand recovery (shoulder group; n = 18) received a robotic-rehabilitation intervention focusing on elbow and shoulder movements only. Those with a good potential for hand recovery (hand group; n = 10) received EMG-triggered NMES, in addition to robot therapy. The primary outcomes were the Fugl-Meyer UE assessment and the ABILHAND assessment. Secondary outcomes included the Motor Activity Log and the Stroke Impact Scale. Results Eighteen participants (64%), in either the hand or the shoulder group, showed changes in the Fugl-Meyer UE or in the ABILHAND assessment superior to the minimal clinically important difference. Conclusions This indicates that our personalized approach is feasible and may be beneficial in improving UE function in individuals with moderate to severe impairments due to stroke. Trial registration ClinicalTrials.gov NCT03903770. Registered 4 April 2019. Registered retrospectively. Supplementary Information The online version contains supplementary material available at 10.1186/s12984-021-00851-1.
Collapse
Affiliation(s)
- Nahid Norouzi-Gheidari
- School of Physical & Occupational Therapy, McGill University, Montreal, Canada.,Interdisciplinary Research Center in Rehabilitation, Montreal, Canada
| | - Philippe S Archambault
- School of Physical & Occupational Therapy, McGill University, Montreal, Canada. .,Interdisciplinary Research Center in Rehabilitation, Montreal, Canada.
| | - Katia Monte-Silva
- Physical Therapy Department, Universidade Federal de Pernambuco, Recife, Brazil
| | - Dahlia Kairy
- Interdisciplinary Research Center in Rehabilitation, Montreal, Canada.,School of Rehabilitation, University of Montreal, Montreal, Canada
| | - Heidi Sveistrup
- Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Michael Trivino
- Interdisciplinary Research Center in Rehabilitation, Montreal, Canada.,Centre Intégré de santé et services sociaux de Laval, Laval, Canada
| | - Mindy F Levin
- School of Physical & Occupational Therapy, McGill University, Montreal, Canada.,Interdisciplinary Research Center in Rehabilitation, Montreal, Canada
| | - Marie-Hélène Milot
- School of Rehabilitation, University of Sherbrooke, Sherbrooke, Canada.,Research Center on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke, Canada
| |
Collapse
|
46
|
Wu J, Cheng H, Zhang J, Yang S, Cai S. Robot-Assisted Therapy for Upper Extremity Motor Impairment After Stroke: A Systematic Review and Meta-Analysis. Phys Ther 2021; 101:6103015. [PMID: 33454787 DOI: 10.1093/ptj/pzab010] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/31/2020] [Accepted: 12/06/2020] [Indexed: 01/02/2023]
Abstract
OBJECTIVE The purpose of this study was to review the effects of robot-assisted therapy (RT) for improving poststroke upper extremity motor impairment. METHODS The PubMed, Embase, Medline, and Web of Science databases were searched from inception to April 8, 2020. Randomized controlled trials that were conducted to evaluate the effects of RT on upper extremity motor impairment poststroke and that used Fugl-Meyer assessment for upper extremity scores as an outcome were included. Two authors independently screened articles, extracted data, and assessed the methodological quality of the included studies using the Physiotherapy Evidence Database (PEDro) scale. A random-effects meta-analysis was performed to pool the effect sizes across the studies. RESULTS Forty-one randomized controlled trials with 1916 stroke patients were included. Compared with dose-matched conventional rehabilitation, RT significantly improved the Fugl-Meyer assessment for upper extremity scores of the patients with stroke, with a small effect size (Hedges g = 0.25; 95% CI, 0.11-0.38; I2 = 45.9%). The subgroup analysis revealed that the effects of unilateral RT, but not that of bilateral RT, were superior to conventional rehabilitation (Hedges g = 0.32; 95% CI, 0.15-0.50; I2 = 55.9%). Regarding the type of robot devices, the effects of the end effector device (Hedges g = 0.22; 95% CI, 0.09-0.36; I2 = 35.4%), but not the exoskeleton device, were superior to conventional rehabilitation. Regarding the stroke stage, the between-group difference (ie, RT vs convention rehabilitation) was significant only for people with late subacute or chronic stroke (Hedges g = 0.33; 95% CI, 0.16-0.50; I2 = 34.2%). CONCLUSION RT might be superior to conventional rehabilitation in improving upper extremity motor impairment in people after stroke with notable upper extremity hemiplegia and limited potential for spontaneous recovery.
Collapse
Affiliation(s)
- Jingyi Wu
- Rehabilitation Hospital affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian, China
| | - Hao Cheng
- Rehabilitation Hospital affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian, China
| | - Jiaqi Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Shanli Yang
- Rehabilitation Hospital affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian, China
| | - Sufang Cai
- Rehabilitation Hospital affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian, China
| |
Collapse
|
47
|
Krakauer JW, Kitago T, Goldsmith J, Ahmad O, Roy P, Stein J, Bishop L, Casey K, Valladares B, Harran MD, Cortés JC, Forrence A, Xu J, DeLuzio S, Held JP, Schwarz A, Steiner L, Widmer M, Jordan K, Ludwig D, Moore M, Barbera M, Vora I, Stockley R, Celnik P, Zeiler S, Branscheidt M, Kwakkel G, Luft AR. Comparing a Novel Neuroanimation Experience to Conventional Therapy for High-Dose Intensive Upper-Limb Training in Subacute Stroke: The SMARTS2 Randomized Trial. Neurorehabil Neural Repair 2021; 35:393-405. [PMID: 33745372 DOI: 10.1177/15459683211000730] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Evidence from animal studies suggests that greater reductions in poststroke motor impairment can be attained with significantly higher doses and intensities of therapy focused on movement quality. These studies also indicate a dose-timing interaction, with more pronounced effects if high-intensity therapy is delivered in the acute/subacute, rather than chronic, poststroke period. OBJECTIVE To compare 2 approaches of delivering high-intensity, high-dose upper-limb therapy in patients with subacute stroke: a novel exploratory neuroanimation therapy (NAT) and modified conventional occupational therapy (COT). METHODS A total of 24 patients were randomized to NAT or COT and underwent 30 sessions of 60 minutes time-on-task in addition to standard care. The primary outcome was the Fugl-Meyer Upper Extremity motor score (FM-UE). Secondary outcomes included Action Research Arm Test (ARAT), grip strength, Stroke Impact Scale hand domain, and upper-limb kinematics. Outcomes were assessed at baseline, and days 3, 90, and 180 posttraining. Both groups were compared to a matched historical cohort (HC), which received only 30 minutes of upper-limb therapy per day. RESULTS There were no significant between-group differences in FM-UE change or any of the secondary outcomes at any timepoint. Both high-dose groups showed greater recovery on the ARAT (7.3 ± 2.9 points; P = .011) but not the FM-UE (1.4 ± 2.6 points; P = .564) when compared with the HC. CONCLUSIONS Neuroanimation may offer a new, enjoyable, efficient, and scalable way to deliver high-dose and intensive upper-limb therapy.
Collapse
Affiliation(s)
| | - Tomoko Kitago
- Burke Neurological Institute, White Plains, NY, USA.,Weill Cornell Medicine, New York, NY, USA.,Columbia University, New York, NY, USA
| | - Jeff Goldsmith
- Columbia University Mailman School of Public Health, New York, NY, USA
| | - Omar Ahmad
- Johns Hopkins University, Baltimore, MD, USA
| | - Promit Roy
- Johns Hopkins University, Baltimore, MD, USA
| | - Joel Stein
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Lauri Bishop
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Kelly Casey
- Johns Hopkins University, Baltimore, MD, USA
| | - Belen Valladares
- cereneo Center for Neurology and Rehabilitation, Vitznau, Switzerland.,University Hospital and University of Zurich, Switzerland
| | | | - Juan Camilo Cortés
- Johns Hopkins University, Baltimore, MD, USA.,Columbia University, New York, NY, USA
| | | | - Jing Xu
- Johns Hopkins University, Baltimore, MD, USA
| | | | - Jeremia P Held
- University Hospital and University of Zurich, Switzerland
| | - Anne Schwarz
- University Hospital and University of Zurich, Switzerland
| | - Levke Steiner
- University Hospital and University of Zurich, Switzerland
| | - Mario Widmer
- cereneo Center for Neurology and Rehabilitation, Vitznau, Switzerland
| | | | | | | | | | - Isha Vora
- Johns Hopkins University, Baltimore, MD, USA
| | | | | | | | | | - Gert Kwakkel
- Vrije Universiteit Amsterdam, Netherlands.,Amsterdam Rehabilitation Research Centre, Reade, Netherlands
| | - Andreas R Luft
- cereneo Center for Neurology and Rehabilitation, Vitznau, Switzerland.,University Hospital and University of Zurich, Switzerland
| |
Collapse
|
48
|
Meyer S, Verheyden G, Kempeneers K, Michielsen M. Arm-Hand Boost Therapy During Inpatient Stroke Rehabilitation: A Pilot Randomized Controlled Trial. Front Neurol 2021; 12:652042. [PMID: 33716948 PMCID: PMC7952763 DOI: 10.3389/fneur.2021.652042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/05/2021] [Indexed: 11/15/2022] Open
Abstract
Objective: It was the aim to assess feasibility, safety, and potential efficacy of a new intensive, focused arm-hand BOOST program and to investigate whether there is a difference between early vs. late delivery of the program in the sub-acute phase post stroke. Methods: In this pilot RCT, patients with stroke were randomized to the immediate group (IG): 4 weeks (4 w) BOOST +4 w CONTROL or the delayed group (DG): 4 w CONTROL +4 w BOOST, on top of their usual inpatient care program. The focused arm-hand BOOST program (1 h/day, 5x/week, 4 weeks) consisted of group exercises with focus on scapula-setting, core-stability, manipulation and complex ADL tasks. Additionally, 1 h per week the Armeo®Power (Hocoma AG, Switzerland) was used. The CONTROL intervention comprised a dose-matched program (24 one-hour sessions in 4 w) of lower limb strengthening exercises and general reconditioning. At baseline, after 4 and 8 weeks of training, the Fugl-Meyer assessment upper extremity (FMA-UE), action research arm test (ARAT), and stroke upper limb capacity scale (SULCS) were administered. Results: Eighteen participants (IG: n = 10, DG: n = 8) were included, with a median (IQR) time post stroke of 8.6 weeks (5-12). No adverse events were experienced. After 4 weeks of training, significant between-group differences were found for FMA-UE (p = 0.003) and SULCS (p = 0.033) and a trend for ARAT (p = 0.075) with median (IQR) change scores for the IG of 9 (7-16), 2 (1-3), and 12.5 (1-18), respectively, and for the DG of 0.5 (-3 to 3), 1 (0-1), and 1.5 (-1 to 9), respectively. In the IG, 80% of patients improved beyond the minimal clinical important difference of FMA-UE after 4 weeks, compared to none of the DG patients. Between 4 and 8 weeks of training, patients in the DG tend to show larger improvements when compared to the IG, however, between-group comparisons did not reach significance. Conclusions: Results of this pilot RCT showed that an intensive, specific arm-hand BOOST program, on top of usual care, is feasible and safe in the sub-acute phase post stroke and suggests positive, clinical meaningful effects on upper limb function, especially when delivered in the early sub-acute phase post stroke. Clinical Trial Registration: www.ClinicalTrials.gov, identifier NCT04584177.
Collapse
Affiliation(s)
- Sarah Meyer
- Jessa Hospital, Rehabilitation Centre, Campus Sint-Ursula, Herk-de-Stad, Belgium
| | - Geert Verheyden
- Department of Rehabilitation Sciences, KU Leuven-University of Leuven, Leuven, Belgium
| | - Kristof Kempeneers
- Jessa Hospital, Rehabilitation Centre, Campus Sint-Ursula, Herk-de-Stad, Belgium
| | - Marc Michielsen
- Jessa Hospital, Rehabilitation Centre, Campus Sint-Ursula, Herk-de-Stad, Belgium
| |
Collapse
|
49
|
Stoykov ME, King E, David FJ, Vatinno A, Fogg L, Corcos DM. Bilateral motor priming for post stroke upper extremity hemiparesis: A randomized pilot study. Restor Neurol Neurosci 2021; 38:11-22. [PMID: 31609714 DOI: 10.3233/rnn-190943] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Bilateral priming, device assisted bilateral symmetrical wrist flexion/extension, is a noninvasive neuromodulation technique that can be used in the clinic. OBJECTIVE We examined the additive effect of bilateral motor priming and task specific training in individuals with severe upper limb hemiparesis. METHODS This is a parallel assignment, single-masked, randomized exploratory pilot study with three timepoints (pre-/post-intervention and follow up). Participants received either bilateral motor priming or health care education followed by task specific training. Sixteen participants who were at least 6 months post-stroke and had a Fugl Meyer Upper Extremity (FMUE) score between 23 and 38 were randomized. Our primary and secondary measures were Chedoke Arm & Hand Activity Index 9 (CAHAI-9) and the FMUE respectively. We determined changes in interhemispheric inhibition using transcranial magnetic stimulation. We hypothesized that improvement in the priming group would persist at follow up. RESULTS There was no between-group difference in the CAHAI. The improvement in the FMUE was significantly greater in the experimental group at follow up (t = 2.241, p = 0.045). CONCLUSIONS Both groups improved in the CAHAI. There was a significant between-group difference in the secondary outcome measure (FMUE) where the bilateral priming group had an average increase of 10 points from pre-intervention to follow up.
Collapse
Affiliation(s)
- Mary Ellen Stoykov
- Shirley Ryan Ability Lab, Chicago, IL, USA.,Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA
| | - Erin King
- Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL, USA
| | - Fabian J David
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA
| | - Amanda Vatinno
- Department of Health Sciences and Research, Medical College of South Carolina, Charleston, SC, USA
| | - Louis Fogg
- Department of Nursing, Rush University Medical Center, Chicago, IL, USA
| | - Daniel M Corcos
- Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL, USA.,Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA
| |
Collapse
|
50
|
Cramer SC, Le V, Saver JL, Dodakian L, See J, Augsburger R, McKenzie A, Zhou RJ, Chiu NL, Heckhausen J, Cassidy JM, Scacchi W, Smith MT, Barrett AM, Knutson J, Edwards D, Putrino D, Agrawal K, Ngo K, Roth EJ, Tirschwell DL, Woodbury ML, Zafonte R, Zhao W, Spilker J, Wolf SL, Broderick JP, Janis S. Intense Arm Rehabilitation Therapy Improves the Modified Rankin Scale Score: Association Between Gains in Impairment and Function. Neurology 2021; 96:e1812-e1822. [PMID: 33589538 DOI: 10.1212/wnl.0000000000011667] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/23/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To evaluate the effect of intensive rehabilitation on the modified Rankin Scale (mRS), a measure of activities limitation commonly used in acute stroke studies, and to define the specific changes in body structure/function (motor impairment) most related to mRS gains. METHODS Patients were enrolled >90 days poststroke. Each was evaluated before and 30 days after a 6-week course of daily rehabilitation targeting the arm. Activity gains, measured using the mRS, were examined and compared to body structure/function gains, measured using the Fugl-Meyer (FM) motor scale. Additional analyses examined whether activity gains were more strongly related to specific body structure/function gains. RESULTS At baseline (160 ± 48 days poststroke), patients (n = 77) had median mRS score of 3 (interquartile range, 2-3), decreasing to 2 [2-3] 30 days posttherapy (p < 0.0001). Similarly, the proportion of patients with mRS score ≤2 increased from 46.8% at baseline to 66.2% at 30 days posttherapy (p = 0.015). These findings were accounted for by the mRS score decreasing in 24 (31.2%) patients. Patients with a treatment-related mRS score improvement, compared to those without, had similar overall motor gains (change in total FM score, p = 0.63). In exploratory analysis, improvement in several specific motor impairments, such as finger flexion and wrist circumduction, was significantly associated with higher likelihood of mRS decrease. CONCLUSIONS Intensive arm motor therapy is associated with improved mRS in a substantial fraction (31.2%) of patients. Exploratory analysis suggests specific motor impairments that might underlie this finding and may be optimal targets for rehabilitation therapies that aim to reduce activities limitations. CLINICAL TRIAL Clinicaltrials.gov identifier: NCT02360488. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that for patients >90 days poststroke with persistent arm motor deficits, intensive arm motor therapy improved mRS in a substantial fraction (31.2%) of patients.
Collapse
Affiliation(s)
- Steven C Cramer
- From the Department of Neurology (S.C.C., J.L.S.), University of California, Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles; Department of Neurology (S.C.C., V.L., L.D., J. See, R.A., A.M., R.J.Z., N.L.C., J.M.C.), Department of Psychological Science (J.H.), Institute for Software Research (W.S.), and Department of Statistics (M.T.S.), University of California, Irvine; Department of Physical Therapy (A.M.), Chapman University, Irvine, CA; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill; Department of Stroke Rehabilitation Research (A.M.B.), Kessler Foundation; Department of Stroke Rehabilitation (A.M.B.), Kessler Institute for Rehabilitation, West Orange, NJ; Department of Physical Medicine and Rehabilitation (J.K.), MetroHealth System, Case Western Reserve University, Cleveland, OH; Brain Stimulation and Robotics Laboratory (D.E.), Burke Neurological Institute; Department of Telemedicine and Virtual Rehabilitation (D.P.), Burke Medical Research Institute, White Plains, NY; Abilities Research Center (D.P.), Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Clinical Neurosciences (K.A.), University of California, San Diego, La Jolla; Brooks Rehabilitation Clinical Research Center (K.N.), Brooks Rehabilitation, Jacksonville, FL; Department of Physical Medicine and Rehabilitation (E.J.R.), Northwestern University, Chicago, IL; Department of Neurology (D.L.T.), University of Washington, Seattle; Departments of Health Science and Research (M.L.W.) and Public Health Sciences (W.Z.), Medical University of South Carolina, Charleston; Department of Physical Medicine and Rehabilitation (R.Z.), Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA; Department of Neurology (J. Spilker, J.P.B.), University of Cincinnati, OH; Department of Rehabilitation Medicine (S.L.W.), Division of Physical Therapy Education, Emory University, Atlanta, GA; Atlanta VA Health Care System (S.L.W.), Center for Visual and Neurocognitive Rehabilitation, Decatur, GA; and NINDS (S.J.), NIH, Bethesda, MD.
| | - Vu Le
- From the Department of Neurology (S.C.C., J.L.S.), University of California, Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles; Department of Neurology (S.C.C., V.L., L.D., J. See, R.A., A.M., R.J.Z., N.L.C., J.M.C.), Department of Psychological Science (J.H.), Institute for Software Research (W.S.), and Department of Statistics (M.T.S.), University of California, Irvine; Department of Physical Therapy (A.M.), Chapman University, Irvine, CA; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill; Department of Stroke Rehabilitation Research (A.M.B.), Kessler Foundation; Department of Stroke Rehabilitation (A.M.B.), Kessler Institute for Rehabilitation, West Orange, NJ; Department of Physical Medicine and Rehabilitation (J.K.), MetroHealth System, Case Western Reserve University, Cleveland, OH; Brain Stimulation and Robotics Laboratory (D.E.), Burke Neurological Institute; Department of Telemedicine and Virtual Rehabilitation (D.P.), Burke Medical Research Institute, White Plains, NY; Abilities Research Center (D.P.), Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Clinical Neurosciences (K.A.), University of California, San Diego, La Jolla; Brooks Rehabilitation Clinical Research Center (K.N.), Brooks Rehabilitation, Jacksonville, FL; Department of Physical Medicine and Rehabilitation (E.J.R.), Northwestern University, Chicago, IL; Department of Neurology (D.L.T.), University of Washington, Seattle; Departments of Health Science and Research (M.L.W.) and Public Health Sciences (W.Z.), Medical University of South Carolina, Charleston; Department of Physical Medicine and Rehabilitation (R.Z.), Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA; Department of Neurology (J. Spilker, J.P.B.), University of Cincinnati, OH; Department of Rehabilitation Medicine (S.L.W.), Division of Physical Therapy Education, Emory University, Atlanta, GA; Atlanta VA Health Care System (S.L.W.), Center for Visual and Neurocognitive Rehabilitation, Decatur, GA; and NINDS (S.J.), NIH, Bethesda, MD
| | - Jeffrey L Saver
- From the Department of Neurology (S.C.C., J.L.S.), University of California, Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles; Department of Neurology (S.C.C., V.L., L.D., J. See, R.A., A.M., R.J.Z., N.L.C., J.M.C.), Department of Psychological Science (J.H.), Institute for Software Research (W.S.), and Department of Statistics (M.T.S.), University of California, Irvine; Department of Physical Therapy (A.M.), Chapman University, Irvine, CA; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill; Department of Stroke Rehabilitation Research (A.M.B.), Kessler Foundation; Department of Stroke Rehabilitation (A.M.B.), Kessler Institute for Rehabilitation, West Orange, NJ; Department of Physical Medicine and Rehabilitation (J.K.), MetroHealth System, Case Western Reserve University, Cleveland, OH; Brain Stimulation and Robotics Laboratory (D.E.), Burke Neurological Institute; Department of Telemedicine and Virtual Rehabilitation (D.P.), Burke Medical Research Institute, White Plains, NY; Abilities Research Center (D.P.), Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Clinical Neurosciences (K.A.), University of California, San Diego, La Jolla; Brooks Rehabilitation Clinical Research Center (K.N.), Brooks Rehabilitation, Jacksonville, FL; Department of Physical Medicine and Rehabilitation (E.J.R.), Northwestern University, Chicago, IL; Department of Neurology (D.L.T.), University of Washington, Seattle; Departments of Health Science and Research (M.L.W.) and Public Health Sciences (W.Z.), Medical University of South Carolina, Charleston; Department of Physical Medicine and Rehabilitation (R.Z.), Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA; Department of Neurology (J. Spilker, J.P.B.), University of Cincinnati, OH; Department of Rehabilitation Medicine (S.L.W.), Division of Physical Therapy Education, Emory University, Atlanta, GA; Atlanta VA Health Care System (S.L.W.), Center for Visual and Neurocognitive Rehabilitation, Decatur, GA; and NINDS (S.J.), NIH, Bethesda, MD
| | - Lucy Dodakian
- From the Department of Neurology (S.C.C., J.L.S.), University of California, Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles; Department of Neurology (S.C.C., V.L., L.D., J. See, R.A., A.M., R.J.Z., N.L.C., J.M.C.), Department of Psychological Science (J.H.), Institute for Software Research (W.S.), and Department of Statistics (M.T.S.), University of California, Irvine; Department of Physical Therapy (A.M.), Chapman University, Irvine, CA; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill; Department of Stroke Rehabilitation Research (A.M.B.), Kessler Foundation; Department of Stroke Rehabilitation (A.M.B.), Kessler Institute for Rehabilitation, West Orange, NJ; Department of Physical Medicine and Rehabilitation (J.K.), MetroHealth System, Case Western Reserve University, Cleveland, OH; Brain Stimulation and Robotics Laboratory (D.E.), Burke Neurological Institute; Department of Telemedicine and Virtual Rehabilitation (D.P.), Burke Medical Research Institute, White Plains, NY; Abilities Research Center (D.P.), Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Clinical Neurosciences (K.A.), University of California, San Diego, La Jolla; Brooks Rehabilitation Clinical Research Center (K.N.), Brooks Rehabilitation, Jacksonville, FL; Department of Physical Medicine and Rehabilitation (E.J.R.), Northwestern University, Chicago, IL; Department of Neurology (D.L.T.), University of Washington, Seattle; Departments of Health Science and Research (M.L.W.) and Public Health Sciences (W.Z.), Medical University of South Carolina, Charleston; Department of Physical Medicine and Rehabilitation (R.Z.), Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA; Department of Neurology (J. Spilker, J.P.B.), University of Cincinnati, OH; Department of Rehabilitation Medicine (S.L.W.), Division of Physical Therapy Education, Emory University, Atlanta, GA; Atlanta VA Health Care System (S.L.W.), Center for Visual and Neurocognitive Rehabilitation, Decatur, GA; and NINDS (S.J.), NIH, Bethesda, MD
| | - Jill See
- From the Department of Neurology (S.C.C., J.L.S.), University of California, Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles; Department of Neurology (S.C.C., V.L., L.D., J. See, R.A., A.M., R.J.Z., N.L.C., J.M.C.), Department of Psychological Science (J.H.), Institute for Software Research (W.S.), and Department of Statistics (M.T.S.), University of California, Irvine; Department of Physical Therapy (A.M.), Chapman University, Irvine, CA; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill; Department of Stroke Rehabilitation Research (A.M.B.), Kessler Foundation; Department of Stroke Rehabilitation (A.M.B.), Kessler Institute for Rehabilitation, West Orange, NJ; Department of Physical Medicine and Rehabilitation (J.K.), MetroHealth System, Case Western Reserve University, Cleveland, OH; Brain Stimulation and Robotics Laboratory (D.E.), Burke Neurological Institute; Department of Telemedicine and Virtual Rehabilitation (D.P.), Burke Medical Research Institute, White Plains, NY; Abilities Research Center (D.P.), Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Clinical Neurosciences (K.A.), University of California, San Diego, La Jolla; Brooks Rehabilitation Clinical Research Center (K.N.), Brooks Rehabilitation, Jacksonville, FL; Department of Physical Medicine and Rehabilitation (E.J.R.), Northwestern University, Chicago, IL; Department of Neurology (D.L.T.), University of Washington, Seattle; Departments of Health Science and Research (M.L.W.) and Public Health Sciences (W.Z.), Medical University of South Carolina, Charleston; Department of Physical Medicine and Rehabilitation (R.Z.), Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA; Department of Neurology (J. Spilker, J.P.B.), University of Cincinnati, OH; Department of Rehabilitation Medicine (S.L.W.), Division of Physical Therapy Education, Emory University, Atlanta, GA; Atlanta VA Health Care System (S.L.W.), Center for Visual and Neurocognitive Rehabilitation, Decatur, GA; and NINDS (S.J.), NIH, Bethesda, MD
| | - Renee Augsburger
- From the Department of Neurology (S.C.C., J.L.S.), University of California, Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles; Department of Neurology (S.C.C., V.L., L.D., J. See, R.A., A.M., R.J.Z., N.L.C., J.M.C.), Department of Psychological Science (J.H.), Institute for Software Research (W.S.), and Department of Statistics (M.T.S.), University of California, Irvine; Department of Physical Therapy (A.M.), Chapman University, Irvine, CA; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill; Department of Stroke Rehabilitation Research (A.M.B.), Kessler Foundation; Department of Stroke Rehabilitation (A.M.B.), Kessler Institute for Rehabilitation, West Orange, NJ; Department of Physical Medicine and Rehabilitation (J.K.), MetroHealth System, Case Western Reserve University, Cleveland, OH; Brain Stimulation and Robotics Laboratory (D.E.), Burke Neurological Institute; Department of Telemedicine and Virtual Rehabilitation (D.P.), Burke Medical Research Institute, White Plains, NY; Abilities Research Center (D.P.), Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Clinical Neurosciences (K.A.), University of California, San Diego, La Jolla; Brooks Rehabilitation Clinical Research Center (K.N.), Brooks Rehabilitation, Jacksonville, FL; Department of Physical Medicine and Rehabilitation (E.J.R.), Northwestern University, Chicago, IL; Department of Neurology (D.L.T.), University of Washington, Seattle; Departments of Health Science and Research (M.L.W.) and Public Health Sciences (W.Z.), Medical University of South Carolina, Charleston; Department of Physical Medicine and Rehabilitation (R.Z.), Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA; Department of Neurology (J. Spilker, J.P.B.), University of Cincinnati, OH; Department of Rehabilitation Medicine (S.L.W.), Division of Physical Therapy Education, Emory University, Atlanta, GA; Atlanta VA Health Care System (S.L.W.), Center for Visual and Neurocognitive Rehabilitation, Decatur, GA; and NINDS (S.J.), NIH, Bethesda, MD
| | - Alison McKenzie
- From the Department of Neurology (S.C.C., J.L.S.), University of California, Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles; Department of Neurology (S.C.C., V.L., L.D., J. See, R.A., A.M., R.J.Z., N.L.C., J.M.C.), Department of Psychological Science (J.H.), Institute for Software Research (W.S.), and Department of Statistics (M.T.S.), University of California, Irvine; Department of Physical Therapy (A.M.), Chapman University, Irvine, CA; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill; Department of Stroke Rehabilitation Research (A.M.B.), Kessler Foundation; Department of Stroke Rehabilitation (A.M.B.), Kessler Institute for Rehabilitation, West Orange, NJ; Department of Physical Medicine and Rehabilitation (J.K.), MetroHealth System, Case Western Reserve University, Cleveland, OH; Brain Stimulation and Robotics Laboratory (D.E.), Burke Neurological Institute; Department of Telemedicine and Virtual Rehabilitation (D.P.), Burke Medical Research Institute, White Plains, NY; Abilities Research Center (D.P.), Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Clinical Neurosciences (K.A.), University of California, San Diego, La Jolla; Brooks Rehabilitation Clinical Research Center (K.N.), Brooks Rehabilitation, Jacksonville, FL; Department of Physical Medicine and Rehabilitation (E.J.R.), Northwestern University, Chicago, IL; Department of Neurology (D.L.T.), University of Washington, Seattle; Departments of Health Science and Research (M.L.W.) and Public Health Sciences (W.Z.), Medical University of South Carolina, Charleston; Department of Physical Medicine and Rehabilitation (R.Z.), Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA; Department of Neurology (J. Spilker, J.P.B.), University of Cincinnati, OH; Department of Rehabilitation Medicine (S.L.W.), Division of Physical Therapy Education, Emory University, Atlanta, GA; Atlanta VA Health Care System (S.L.W.), Center for Visual and Neurocognitive Rehabilitation, Decatur, GA; and NINDS (S.J.), NIH, Bethesda, MD
| | - Robert J Zhou
- From the Department of Neurology (S.C.C., J.L.S.), University of California, Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles; Department of Neurology (S.C.C., V.L., L.D., J. See, R.A., A.M., R.J.Z., N.L.C., J.M.C.), Department of Psychological Science (J.H.), Institute for Software Research (W.S.), and Department of Statistics (M.T.S.), University of California, Irvine; Department of Physical Therapy (A.M.), Chapman University, Irvine, CA; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill; Department of Stroke Rehabilitation Research (A.M.B.), Kessler Foundation; Department of Stroke Rehabilitation (A.M.B.), Kessler Institute for Rehabilitation, West Orange, NJ; Department of Physical Medicine and Rehabilitation (J.K.), MetroHealth System, Case Western Reserve University, Cleveland, OH; Brain Stimulation and Robotics Laboratory (D.E.), Burke Neurological Institute; Department of Telemedicine and Virtual Rehabilitation (D.P.), Burke Medical Research Institute, White Plains, NY; Abilities Research Center (D.P.), Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Clinical Neurosciences (K.A.), University of California, San Diego, La Jolla; Brooks Rehabilitation Clinical Research Center (K.N.), Brooks Rehabilitation, Jacksonville, FL; Department of Physical Medicine and Rehabilitation (E.J.R.), Northwestern University, Chicago, IL; Department of Neurology (D.L.T.), University of Washington, Seattle; Departments of Health Science and Research (M.L.W.) and Public Health Sciences (W.Z.), Medical University of South Carolina, Charleston; Department of Physical Medicine and Rehabilitation (R.Z.), Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA; Department of Neurology (J. Spilker, J.P.B.), University of Cincinnati, OH; Department of Rehabilitation Medicine (S.L.W.), Division of Physical Therapy Education, Emory University, Atlanta, GA; Atlanta VA Health Care System (S.L.W.), Center for Visual and Neurocognitive Rehabilitation, Decatur, GA; and NINDS (S.J.), NIH, Bethesda, MD
| | - Nina L Chiu
- From the Department of Neurology (S.C.C., J.L.S.), University of California, Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles; Department of Neurology (S.C.C., V.L., L.D., J. See, R.A., A.M., R.J.Z., N.L.C., J.M.C.), Department of Psychological Science (J.H.), Institute for Software Research (W.S.), and Department of Statistics (M.T.S.), University of California, Irvine; Department of Physical Therapy (A.M.), Chapman University, Irvine, CA; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill; Department of Stroke Rehabilitation Research (A.M.B.), Kessler Foundation; Department of Stroke Rehabilitation (A.M.B.), Kessler Institute for Rehabilitation, West Orange, NJ; Department of Physical Medicine and Rehabilitation (J.K.), MetroHealth System, Case Western Reserve University, Cleveland, OH; Brain Stimulation and Robotics Laboratory (D.E.), Burke Neurological Institute; Department of Telemedicine and Virtual Rehabilitation (D.P.), Burke Medical Research Institute, White Plains, NY; Abilities Research Center (D.P.), Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Clinical Neurosciences (K.A.), University of California, San Diego, La Jolla; Brooks Rehabilitation Clinical Research Center (K.N.), Brooks Rehabilitation, Jacksonville, FL; Department of Physical Medicine and Rehabilitation (E.J.R.), Northwestern University, Chicago, IL; Department of Neurology (D.L.T.), University of Washington, Seattle; Departments of Health Science and Research (M.L.W.) and Public Health Sciences (W.Z.), Medical University of South Carolina, Charleston; Department of Physical Medicine and Rehabilitation (R.Z.), Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA; Department of Neurology (J. Spilker, J.P.B.), University of Cincinnati, OH; Department of Rehabilitation Medicine (S.L.W.), Division of Physical Therapy Education, Emory University, Atlanta, GA; Atlanta VA Health Care System (S.L.W.), Center for Visual and Neurocognitive Rehabilitation, Decatur, GA; and NINDS (S.J.), NIH, Bethesda, MD
| | - Jutta Heckhausen
- From the Department of Neurology (S.C.C., J.L.S.), University of California, Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles; Department of Neurology (S.C.C., V.L., L.D., J. See, R.A., A.M., R.J.Z., N.L.C., J.M.C.), Department of Psychological Science (J.H.), Institute for Software Research (W.S.), and Department of Statistics (M.T.S.), University of California, Irvine; Department of Physical Therapy (A.M.), Chapman University, Irvine, CA; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill; Department of Stroke Rehabilitation Research (A.M.B.), Kessler Foundation; Department of Stroke Rehabilitation (A.M.B.), Kessler Institute for Rehabilitation, West Orange, NJ; Department of Physical Medicine and Rehabilitation (J.K.), MetroHealth System, Case Western Reserve University, Cleveland, OH; Brain Stimulation and Robotics Laboratory (D.E.), Burke Neurological Institute; Department of Telemedicine and Virtual Rehabilitation (D.P.), Burke Medical Research Institute, White Plains, NY; Abilities Research Center (D.P.), Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Clinical Neurosciences (K.A.), University of California, San Diego, La Jolla; Brooks Rehabilitation Clinical Research Center (K.N.), Brooks Rehabilitation, Jacksonville, FL; Department of Physical Medicine and Rehabilitation (E.J.R.), Northwestern University, Chicago, IL; Department of Neurology (D.L.T.), University of Washington, Seattle; Departments of Health Science and Research (M.L.W.) and Public Health Sciences (W.Z.), Medical University of South Carolina, Charleston; Department of Physical Medicine and Rehabilitation (R.Z.), Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA; Department of Neurology (J. Spilker, J.P.B.), University of Cincinnati, OH; Department of Rehabilitation Medicine (S.L.W.), Division of Physical Therapy Education, Emory University, Atlanta, GA; Atlanta VA Health Care System (S.L.W.), Center for Visual and Neurocognitive Rehabilitation, Decatur, GA; and NINDS (S.J.), NIH, Bethesda, MD
| | - Jessica M Cassidy
- From the Department of Neurology (S.C.C., J.L.S.), University of California, Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles; Department of Neurology (S.C.C., V.L., L.D., J. See, R.A., A.M., R.J.Z., N.L.C., J.M.C.), Department of Psychological Science (J.H.), Institute for Software Research (W.S.), and Department of Statistics (M.T.S.), University of California, Irvine; Department of Physical Therapy (A.M.), Chapman University, Irvine, CA; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill; Department of Stroke Rehabilitation Research (A.M.B.), Kessler Foundation; Department of Stroke Rehabilitation (A.M.B.), Kessler Institute for Rehabilitation, West Orange, NJ; Department of Physical Medicine and Rehabilitation (J.K.), MetroHealth System, Case Western Reserve University, Cleveland, OH; Brain Stimulation and Robotics Laboratory (D.E.), Burke Neurological Institute; Department of Telemedicine and Virtual Rehabilitation (D.P.), Burke Medical Research Institute, White Plains, NY; Abilities Research Center (D.P.), Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Clinical Neurosciences (K.A.), University of California, San Diego, La Jolla; Brooks Rehabilitation Clinical Research Center (K.N.), Brooks Rehabilitation, Jacksonville, FL; Department of Physical Medicine and Rehabilitation (E.J.R.), Northwestern University, Chicago, IL; Department of Neurology (D.L.T.), University of Washington, Seattle; Departments of Health Science and Research (M.L.W.) and Public Health Sciences (W.Z.), Medical University of South Carolina, Charleston; Department of Physical Medicine and Rehabilitation (R.Z.), Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA; Department of Neurology (J. Spilker, J.P.B.), University of Cincinnati, OH; Department of Rehabilitation Medicine (S.L.W.), Division of Physical Therapy Education, Emory University, Atlanta, GA; Atlanta VA Health Care System (S.L.W.), Center for Visual and Neurocognitive Rehabilitation, Decatur, GA; and NINDS (S.J.), NIH, Bethesda, MD
| | - Walt Scacchi
- From the Department of Neurology (S.C.C., J.L.S.), University of California, Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles; Department of Neurology (S.C.C., V.L., L.D., J. See, R.A., A.M., R.J.Z., N.L.C., J.M.C.), Department of Psychological Science (J.H.), Institute for Software Research (W.S.), and Department of Statistics (M.T.S.), University of California, Irvine; Department of Physical Therapy (A.M.), Chapman University, Irvine, CA; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill; Department of Stroke Rehabilitation Research (A.M.B.), Kessler Foundation; Department of Stroke Rehabilitation (A.M.B.), Kessler Institute for Rehabilitation, West Orange, NJ; Department of Physical Medicine and Rehabilitation (J.K.), MetroHealth System, Case Western Reserve University, Cleveland, OH; Brain Stimulation and Robotics Laboratory (D.E.), Burke Neurological Institute; Department of Telemedicine and Virtual Rehabilitation (D.P.), Burke Medical Research Institute, White Plains, NY; Abilities Research Center (D.P.), Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Clinical Neurosciences (K.A.), University of California, San Diego, La Jolla; Brooks Rehabilitation Clinical Research Center (K.N.), Brooks Rehabilitation, Jacksonville, FL; Department of Physical Medicine and Rehabilitation (E.J.R.), Northwestern University, Chicago, IL; Department of Neurology (D.L.T.), University of Washington, Seattle; Departments of Health Science and Research (M.L.W.) and Public Health Sciences (W.Z.), Medical University of South Carolina, Charleston; Department of Physical Medicine and Rehabilitation (R.Z.), Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA; Department of Neurology (J. Spilker, J.P.B.), University of Cincinnati, OH; Department of Rehabilitation Medicine (S.L.W.), Division of Physical Therapy Education, Emory University, Atlanta, GA; Atlanta VA Health Care System (S.L.W.), Center for Visual and Neurocognitive Rehabilitation, Decatur, GA; and NINDS (S.J.), NIH, Bethesda, MD
| | - Megan Therese Smith
- From the Department of Neurology (S.C.C., J.L.S.), University of California, Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles; Department of Neurology (S.C.C., V.L., L.D., J. See, R.A., A.M., R.J.Z., N.L.C., J.M.C.), Department of Psychological Science (J.H.), Institute for Software Research (W.S.), and Department of Statistics (M.T.S.), University of California, Irvine; Department of Physical Therapy (A.M.), Chapman University, Irvine, CA; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill; Department of Stroke Rehabilitation Research (A.M.B.), Kessler Foundation; Department of Stroke Rehabilitation (A.M.B.), Kessler Institute for Rehabilitation, West Orange, NJ; Department of Physical Medicine and Rehabilitation (J.K.), MetroHealth System, Case Western Reserve University, Cleveland, OH; Brain Stimulation and Robotics Laboratory (D.E.), Burke Neurological Institute; Department of Telemedicine and Virtual Rehabilitation (D.P.), Burke Medical Research Institute, White Plains, NY; Abilities Research Center (D.P.), Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Clinical Neurosciences (K.A.), University of California, San Diego, La Jolla; Brooks Rehabilitation Clinical Research Center (K.N.), Brooks Rehabilitation, Jacksonville, FL; Department of Physical Medicine and Rehabilitation (E.J.R.), Northwestern University, Chicago, IL; Department of Neurology (D.L.T.), University of Washington, Seattle; Departments of Health Science and Research (M.L.W.) and Public Health Sciences (W.Z.), Medical University of South Carolina, Charleston; Department of Physical Medicine and Rehabilitation (R.Z.), Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA; Department of Neurology (J. Spilker, J.P.B.), University of Cincinnati, OH; Department of Rehabilitation Medicine (S.L.W.), Division of Physical Therapy Education, Emory University, Atlanta, GA; Atlanta VA Health Care System (S.L.W.), Center for Visual and Neurocognitive Rehabilitation, Decatur, GA; and NINDS (S.J.), NIH, Bethesda, MD
| | - A M Barrett
- From the Department of Neurology (S.C.C., J.L.S.), University of California, Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles; Department of Neurology (S.C.C., V.L., L.D., J. See, R.A., A.M., R.J.Z., N.L.C., J.M.C.), Department of Psychological Science (J.H.), Institute for Software Research (W.S.), and Department of Statistics (M.T.S.), University of California, Irvine; Department of Physical Therapy (A.M.), Chapman University, Irvine, CA; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill; Department of Stroke Rehabilitation Research (A.M.B.), Kessler Foundation; Department of Stroke Rehabilitation (A.M.B.), Kessler Institute for Rehabilitation, West Orange, NJ; Department of Physical Medicine and Rehabilitation (J.K.), MetroHealth System, Case Western Reserve University, Cleveland, OH; Brain Stimulation and Robotics Laboratory (D.E.), Burke Neurological Institute; Department of Telemedicine and Virtual Rehabilitation (D.P.), Burke Medical Research Institute, White Plains, NY; Abilities Research Center (D.P.), Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Clinical Neurosciences (K.A.), University of California, San Diego, La Jolla; Brooks Rehabilitation Clinical Research Center (K.N.), Brooks Rehabilitation, Jacksonville, FL; Department of Physical Medicine and Rehabilitation (E.J.R.), Northwestern University, Chicago, IL; Department of Neurology (D.L.T.), University of Washington, Seattle; Departments of Health Science and Research (M.L.W.) and Public Health Sciences (W.Z.), Medical University of South Carolina, Charleston; Department of Physical Medicine and Rehabilitation (R.Z.), Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA; Department of Neurology (J. Spilker, J.P.B.), University of Cincinnati, OH; Department of Rehabilitation Medicine (S.L.W.), Division of Physical Therapy Education, Emory University, Atlanta, GA; Atlanta VA Health Care System (S.L.W.), Center for Visual and Neurocognitive Rehabilitation, Decatur, GA; and NINDS (S.J.), NIH, Bethesda, MD
| | - Jayme Knutson
- From the Department of Neurology (S.C.C., J.L.S.), University of California, Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles; Department of Neurology (S.C.C., V.L., L.D., J. See, R.A., A.M., R.J.Z., N.L.C., J.M.C.), Department of Psychological Science (J.H.), Institute for Software Research (W.S.), and Department of Statistics (M.T.S.), University of California, Irvine; Department of Physical Therapy (A.M.), Chapman University, Irvine, CA; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill; Department of Stroke Rehabilitation Research (A.M.B.), Kessler Foundation; Department of Stroke Rehabilitation (A.M.B.), Kessler Institute for Rehabilitation, West Orange, NJ; Department of Physical Medicine and Rehabilitation (J.K.), MetroHealth System, Case Western Reserve University, Cleveland, OH; Brain Stimulation and Robotics Laboratory (D.E.), Burke Neurological Institute; Department of Telemedicine and Virtual Rehabilitation (D.P.), Burke Medical Research Institute, White Plains, NY; Abilities Research Center (D.P.), Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Clinical Neurosciences (K.A.), University of California, San Diego, La Jolla; Brooks Rehabilitation Clinical Research Center (K.N.), Brooks Rehabilitation, Jacksonville, FL; Department of Physical Medicine and Rehabilitation (E.J.R.), Northwestern University, Chicago, IL; Department of Neurology (D.L.T.), University of Washington, Seattle; Departments of Health Science and Research (M.L.W.) and Public Health Sciences (W.Z.), Medical University of South Carolina, Charleston; Department of Physical Medicine and Rehabilitation (R.Z.), Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA; Department of Neurology (J. Spilker, J.P.B.), University of Cincinnati, OH; Department of Rehabilitation Medicine (S.L.W.), Division of Physical Therapy Education, Emory University, Atlanta, GA; Atlanta VA Health Care System (S.L.W.), Center for Visual and Neurocognitive Rehabilitation, Decatur, GA; and NINDS (S.J.), NIH, Bethesda, MD
| | - Dylan Edwards
- From the Department of Neurology (S.C.C., J.L.S.), University of California, Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles; Department of Neurology (S.C.C., V.L., L.D., J. See, R.A., A.M., R.J.Z., N.L.C., J.M.C.), Department of Psychological Science (J.H.), Institute for Software Research (W.S.), and Department of Statistics (M.T.S.), University of California, Irvine; Department of Physical Therapy (A.M.), Chapman University, Irvine, CA; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill; Department of Stroke Rehabilitation Research (A.M.B.), Kessler Foundation; Department of Stroke Rehabilitation (A.M.B.), Kessler Institute for Rehabilitation, West Orange, NJ; Department of Physical Medicine and Rehabilitation (J.K.), MetroHealth System, Case Western Reserve University, Cleveland, OH; Brain Stimulation and Robotics Laboratory (D.E.), Burke Neurological Institute; Department of Telemedicine and Virtual Rehabilitation (D.P.), Burke Medical Research Institute, White Plains, NY; Abilities Research Center (D.P.), Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Clinical Neurosciences (K.A.), University of California, San Diego, La Jolla; Brooks Rehabilitation Clinical Research Center (K.N.), Brooks Rehabilitation, Jacksonville, FL; Department of Physical Medicine and Rehabilitation (E.J.R.), Northwestern University, Chicago, IL; Department of Neurology (D.L.T.), University of Washington, Seattle; Departments of Health Science and Research (M.L.W.) and Public Health Sciences (W.Z.), Medical University of South Carolina, Charleston; Department of Physical Medicine and Rehabilitation (R.Z.), Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA; Department of Neurology (J. Spilker, J.P.B.), University of Cincinnati, OH; Department of Rehabilitation Medicine (S.L.W.), Division of Physical Therapy Education, Emory University, Atlanta, GA; Atlanta VA Health Care System (S.L.W.), Center for Visual and Neurocognitive Rehabilitation, Decatur, GA; and NINDS (S.J.), NIH, Bethesda, MD
| | - David Putrino
- From the Department of Neurology (S.C.C., J.L.S.), University of California, Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles; Department of Neurology (S.C.C., V.L., L.D., J. See, R.A., A.M., R.J.Z., N.L.C., J.M.C.), Department of Psychological Science (J.H.), Institute for Software Research (W.S.), and Department of Statistics (M.T.S.), University of California, Irvine; Department of Physical Therapy (A.M.), Chapman University, Irvine, CA; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill; Department of Stroke Rehabilitation Research (A.M.B.), Kessler Foundation; Department of Stroke Rehabilitation (A.M.B.), Kessler Institute for Rehabilitation, West Orange, NJ; Department of Physical Medicine and Rehabilitation (J.K.), MetroHealth System, Case Western Reserve University, Cleveland, OH; Brain Stimulation and Robotics Laboratory (D.E.), Burke Neurological Institute; Department of Telemedicine and Virtual Rehabilitation (D.P.), Burke Medical Research Institute, White Plains, NY; Abilities Research Center (D.P.), Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Clinical Neurosciences (K.A.), University of California, San Diego, La Jolla; Brooks Rehabilitation Clinical Research Center (K.N.), Brooks Rehabilitation, Jacksonville, FL; Department of Physical Medicine and Rehabilitation (E.J.R.), Northwestern University, Chicago, IL; Department of Neurology (D.L.T.), University of Washington, Seattle; Departments of Health Science and Research (M.L.W.) and Public Health Sciences (W.Z.), Medical University of South Carolina, Charleston; Department of Physical Medicine and Rehabilitation (R.Z.), Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA; Department of Neurology (J. Spilker, J.P.B.), University of Cincinnati, OH; Department of Rehabilitation Medicine (S.L.W.), Division of Physical Therapy Education, Emory University, Atlanta, GA; Atlanta VA Health Care System (S.L.W.), Center for Visual and Neurocognitive Rehabilitation, Decatur, GA; and NINDS (S.J.), NIH, Bethesda, MD
| | - Kunal Agrawal
- From the Department of Neurology (S.C.C., J.L.S.), University of California, Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles; Department of Neurology (S.C.C., V.L., L.D., J. See, R.A., A.M., R.J.Z., N.L.C., J.M.C.), Department of Psychological Science (J.H.), Institute for Software Research (W.S.), and Department of Statistics (M.T.S.), University of California, Irvine; Department of Physical Therapy (A.M.), Chapman University, Irvine, CA; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill; Department of Stroke Rehabilitation Research (A.M.B.), Kessler Foundation; Department of Stroke Rehabilitation (A.M.B.), Kessler Institute for Rehabilitation, West Orange, NJ; Department of Physical Medicine and Rehabilitation (J.K.), MetroHealth System, Case Western Reserve University, Cleveland, OH; Brain Stimulation and Robotics Laboratory (D.E.), Burke Neurological Institute; Department of Telemedicine and Virtual Rehabilitation (D.P.), Burke Medical Research Institute, White Plains, NY; Abilities Research Center (D.P.), Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Clinical Neurosciences (K.A.), University of California, San Diego, La Jolla; Brooks Rehabilitation Clinical Research Center (K.N.), Brooks Rehabilitation, Jacksonville, FL; Department of Physical Medicine and Rehabilitation (E.J.R.), Northwestern University, Chicago, IL; Department of Neurology (D.L.T.), University of Washington, Seattle; Departments of Health Science and Research (M.L.W.) and Public Health Sciences (W.Z.), Medical University of South Carolina, Charleston; Department of Physical Medicine and Rehabilitation (R.Z.), Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA; Department of Neurology (J. Spilker, J.P.B.), University of Cincinnati, OH; Department of Rehabilitation Medicine (S.L.W.), Division of Physical Therapy Education, Emory University, Atlanta, GA; Atlanta VA Health Care System (S.L.W.), Center for Visual and Neurocognitive Rehabilitation, Decatur, GA; and NINDS (S.J.), NIH, Bethesda, MD
| | - Kenneth Ngo
- From the Department of Neurology (S.C.C., J.L.S.), University of California, Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles; Department of Neurology (S.C.C., V.L., L.D., J. See, R.A., A.M., R.J.Z., N.L.C., J.M.C.), Department of Psychological Science (J.H.), Institute for Software Research (W.S.), and Department of Statistics (M.T.S.), University of California, Irvine; Department of Physical Therapy (A.M.), Chapman University, Irvine, CA; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill; Department of Stroke Rehabilitation Research (A.M.B.), Kessler Foundation; Department of Stroke Rehabilitation (A.M.B.), Kessler Institute for Rehabilitation, West Orange, NJ; Department of Physical Medicine and Rehabilitation (J.K.), MetroHealth System, Case Western Reserve University, Cleveland, OH; Brain Stimulation and Robotics Laboratory (D.E.), Burke Neurological Institute; Department of Telemedicine and Virtual Rehabilitation (D.P.), Burke Medical Research Institute, White Plains, NY; Abilities Research Center (D.P.), Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Clinical Neurosciences (K.A.), University of California, San Diego, La Jolla; Brooks Rehabilitation Clinical Research Center (K.N.), Brooks Rehabilitation, Jacksonville, FL; Department of Physical Medicine and Rehabilitation (E.J.R.), Northwestern University, Chicago, IL; Department of Neurology (D.L.T.), University of Washington, Seattle; Departments of Health Science and Research (M.L.W.) and Public Health Sciences (W.Z.), Medical University of South Carolina, Charleston; Department of Physical Medicine and Rehabilitation (R.Z.), Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA; Department of Neurology (J. Spilker, J.P.B.), University of Cincinnati, OH; Department of Rehabilitation Medicine (S.L.W.), Division of Physical Therapy Education, Emory University, Atlanta, GA; Atlanta VA Health Care System (S.L.W.), Center for Visual and Neurocognitive Rehabilitation, Decatur, GA; and NINDS (S.J.), NIH, Bethesda, MD
| | - Elliot J Roth
- From the Department of Neurology (S.C.C., J.L.S.), University of California, Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles; Department of Neurology (S.C.C., V.L., L.D., J. See, R.A., A.M., R.J.Z., N.L.C., J.M.C.), Department of Psychological Science (J.H.), Institute for Software Research (W.S.), and Department of Statistics (M.T.S.), University of California, Irvine; Department of Physical Therapy (A.M.), Chapman University, Irvine, CA; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill; Department of Stroke Rehabilitation Research (A.M.B.), Kessler Foundation; Department of Stroke Rehabilitation (A.M.B.), Kessler Institute for Rehabilitation, West Orange, NJ; Department of Physical Medicine and Rehabilitation (J.K.), MetroHealth System, Case Western Reserve University, Cleveland, OH; Brain Stimulation and Robotics Laboratory (D.E.), Burke Neurological Institute; Department of Telemedicine and Virtual Rehabilitation (D.P.), Burke Medical Research Institute, White Plains, NY; Abilities Research Center (D.P.), Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Clinical Neurosciences (K.A.), University of California, San Diego, La Jolla; Brooks Rehabilitation Clinical Research Center (K.N.), Brooks Rehabilitation, Jacksonville, FL; Department of Physical Medicine and Rehabilitation (E.J.R.), Northwestern University, Chicago, IL; Department of Neurology (D.L.T.), University of Washington, Seattle; Departments of Health Science and Research (M.L.W.) and Public Health Sciences (W.Z.), Medical University of South Carolina, Charleston; Department of Physical Medicine and Rehabilitation (R.Z.), Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA; Department of Neurology (J. Spilker, J.P.B.), University of Cincinnati, OH; Department of Rehabilitation Medicine (S.L.W.), Division of Physical Therapy Education, Emory University, Atlanta, GA; Atlanta VA Health Care System (S.L.W.), Center for Visual and Neurocognitive Rehabilitation, Decatur, GA; and NINDS (S.J.), NIH, Bethesda, MD
| | - David L Tirschwell
- From the Department of Neurology (S.C.C., J.L.S.), University of California, Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles; Department of Neurology (S.C.C., V.L., L.D., J. See, R.A., A.M., R.J.Z., N.L.C., J.M.C.), Department of Psychological Science (J.H.), Institute for Software Research (W.S.), and Department of Statistics (M.T.S.), University of California, Irvine; Department of Physical Therapy (A.M.), Chapman University, Irvine, CA; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill; Department of Stroke Rehabilitation Research (A.M.B.), Kessler Foundation; Department of Stroke Rehabilitation (A.M.B.), Kessler Institute for Rehabilitation, West Orange, NJ; Department of Physical Medicine and Rehabilitation (J.K.), MetroHealth System, Case Western Reserve University, Cleveland, OH; Brain Stimulation and Robotics Laboratory (D.E.), Burke Neurological Institute; Department of Telemedicine and Virtual Rehabilitation (D.P.), Burke Medical Research Institute, White Plains, NY; Abilities Research Center (D.P.), Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Clinical Neurosciences (K.A.), University of California, San Diego, La Jolla; Brooks Rehabilitation Clinical Research Center (K.N.), Brooks Rehabilitation, Jacksonville, FL; Department of Physical Medicine and Rehabilitation (E.J.R.), Northwestern University, Chicago, IL; Department of Neurology (D.L.T.), University of Washington, Seattle; Departments of Health Science and Research (M.L.W.) and Public Health Sciences (W.Z.), Medical University of South Carolina, Charleston; Department of Physical Medicine and Rehabilitation (R.Z.), Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA; Department of Neurology (J. Spilker, J.P.B.), University of Cincinnati, OH; Department of Rehabilitation Medicine (S.L.W.), Division of Physical Therapy Education, Emory University, Atlanta, GA; Atlanta VA Health Care System (S.L.W.), Center for Visual and Neurocognitive Rehabilitation, Decatur, GA; and NINDS (S.J.), NIH, Bethesda, MD
| | - Michelle L Woodbury
- From the Department of Neurology (S.C.C., J.L.S.), University of California, Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles; Department of Neurology (S.C.C., V.L., L.D., J. See, R.A., A.M., R.J.Z., N.L.C., J.M.C.), Department of Psychological Science (J.H.), Institute for Software Research (W.S.), and Department of Statistics (M.T.S.), University of California, Irvine; Department of Physical Therapy (A.M.), Chapman University, Irvine, CA; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill; Department of Stroke Rehabilitation Research (A.M.B.), Kessler Foundation; Department of Stroke Rehabilitation (A.M.B.), Kessler Institute for Rehabilitation, West Orange, NJ; Department of Physical Medicine and Rehabilitation (J.K.), MetroHealth System, Case Western Reserve University, Cleveland, OH; Brain Stimulation and Robotics Laboratory (D.E.), Burke Neurological Institute; Department of Telemedicine and Virtual Rehabilitation (D.P.), Burke Medical Research Institute, White Plains, NY; Abilities Research Center (D.P.), Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Clinical Neurosciences (K.A.), University of California, San Diego, La Jolla; Brooks Rehabilitation Clinical Research Center (K.N.), Brooks Rehabilitation, Jacksonville, FL; Department of Physical Medicine and Rehabilitation (E.J.R.), Northwestern University, Chicago, IL; Department of Neurology (D.L.T.), University of Washington, Seattle; Departments of Health Science and Research (M.L.W.) and Public Health Sciences (W.Z.), Medical University of South Carolina, Charleston; Department of Physical Medicine and Rehabilitation (R.Z.), Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA; Department of Neurology (J. Spilker, J.P.B.), University of Cincinnati, OH; Department of Rehabilitation Medicine (S.L.W.), Division of Physical Therapy Education, Emory University, Atlanta, GA; Atlanta VA Health Care System (S.L.W.), Center for Visual and Neurocognitive Rehabilitation, Decatur, GA; and NINDS (S.J.), NIH, Bethesda, MD
| | - Ross Zafonte
- From the Department of Neurology (S.C.C., J.L.S.), University of California, Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles; Department of Neurology (S.C.C., V.L., L.D., J. See, R.A., A.M., R.J.Z., N.L.C., J.M.C.), Department of Psychological Science (J.H.), Institute for Software Research (W.S.), and Department of Statistics (M.T.S.), University of California, Irvine; Department of Physical Therapy (A.M.), Chapman University, Irvine, CA; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill; Department of Stroke Rehabilitation Research (A.M.B.), Kessler Foundation; Department of Stroke Rehabilitation (A.M.B.), Kessler Institute for Rehabilitation, West Orange, NJ; Department of Physical Medicine and Rehabilitation (J.K.), MetroHealth System, Case Western Reserve University, Cleveland, OH; Brain Stimulation and Robotics Laboratory (D.E.), Burke Neurological Institute; Department of Telemedicine and Virtual Rehabilitation (D.P.), Burke Medical Research Institute, White Plains, NY; Abilities Research Center (D.P.), Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Clinical Neurosciences (K.A.), University of California, San Diego, La Jolla; Brooks Rehabilitation Clinical Research Center (K.N.), Brooks Rehabilitation, Jacksonville, FL; Department of Physical Medicine and Rehabilitation (E.J.R.), Northwestern University, Chicago, IL; Department of Neurology (D.L.T.), University of Washington, Seattle; Departments of Health Science and Research (M.L.W.) and Public Health Sciences (W.Z.), Medical University of South Carolina, Charleston; Department of Physical Medicine and Rehabilitation (R.Z.), Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA; Department of Neurology (J. Spilker, J.P.B.), University of Cincinnati, OH; Department of Rehabilitation Medicine (S.L.W.), Division of Physical Therapy Education, Emory University, Atlanta, GA; Atlanta VA Health Care System (S.L.W.), Center for Visual and Neurocognitive Rehabilitation, Decatur, GA; and NINDS (S.J.), NIH, Bethesda, MD
| | - Wenle Zhao
- From the Department of Neurology (S.C.C., J.L.S.), University of California, Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles; Department of Neurology (S.C.C., V.L., L.D., J. See, R.A., A.M., R.J.Z., N.L.C., J.M.C.), Department of Psychological Science (J.H.), Institute for Software Research (W.S.), and Department of Statistics (M.T.S.), University of California, Irvine; Department of Physical Therapy (A.M.), Chapman University, Irvine, CA; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill; Department of Stroke Rehabilitation Research (A.M.B.), Kessler Foundation; Department of Stroke Rehabilitation (A.M.B.), Kessler Institute for Rehabilitation, West Orange, NJ; Department of Physical Medicine and Rehabilitation (J.K.), MetroHealth System, Case Western Reserve University, Cleveland, OH; Brain Stimulation and Robotics Laboratory (D.E.), Burke Neurological Institute; Department of Telemedicine and Virtual Rehabilitation (D.P.), Burke Medical Research Institute, White Plains, NY; Abilities Research Center (D.P.), Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Clinical Neurosciences (K.A.), University of California, San Diego, La Jolla; Brooks Rehabilitation Clinical Research Center (K.N.), Brooks Rehabilitation, Jacksonville, FL; Department of Physical Medicine and Rehabilitation (E.J.R.), Northwestern University, Chicago, IL; Department of Neurology (D.L.T.), University of Washington, Seattle; Departments of Health Science and Research (M.L.W.) and Public Health Sciences (W.Z.), Medical University of South Carolina, Charleston; Department of Physical Medicine and Rehabilitation (R.Z.), Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA; Department of Neurology (J. Spilker, J.P.B.), University of Cincinnati, OH; Department of Rehabilitation Medicine (S.L.W.), Division of Physical Therapy Education, Emory University, Atlanta, GA; Atlanta VA Health Care System (S.L.W.), Center for Visual and Neurocognitive Rehabilitation, Decatur, GA; and NINDS (S.J.), NIH, Bethesda, MD
| | - Judith Spilker
- From the Department of Neurology (S.C.C., J.L.S.), University of California, Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles; Department of Neurology (S.C.C., V.L., L.D., J. See, R.A., A.M., R.J.Z., N.L.C., J.M.C.), Department of Psychological Science (J.H.), Institute for Software Research (W.S.), and Department of Statistics (M.T.S.), University of California, Irvine; Department of Physical Therapy (A.M.), Chapman University, Irvine, CA; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill; Department of Stroke Rehabilitation Research (A.M.B.), Kessler Foundation; Department of Stroke Rehabilitation (A.M.B.), Kessler Institute for Rehabilitation, West Orange, NJ; Department of Physical Medicine and Rehabilitation (J.K.), MetroHealth System, Case Western Reserve University, Cleveland, OH; Brain Stimulation and Robotics Laboratory (D.E.), Burke Neurological Institute; Department of Telemedicine and Virtual Rehabilitation (D.P.), Burke Medical Research Institute, White Plains, NY; Abilities Research Center (D.P.), Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Clinical Neurosciences (K.A.), University of California, San Diego, La Jolla; Brooks Rehabilitation Clinical Research Center (K.N.), Brooks Rehabilitation, Jacksonville, FL; Department of Physical Medicine and Rehabilitation (E.J.R.), Northwestern University, Chicago, IL; Department of Neurology (D.L.T.), University of Washington, Seattle; Departments of Health Science and Research (M.L.W.) and Public Health Sciences (W.Z.), Medical University of South Carolina, Charleston; Department of Physical Medicine and Rehabilitation (R.Z.), Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA; Department of Neurology (J. Spilker, J.P.B.), University of Cincinnati, OH; Department of Rehabilitation Medicine (S.L.W.), Division of Physical Therapy Education, Emory University, Atlanta, GA; Atlanta VA Health Care System (S.L.W.), Center for Visual and Neurocognitive Rehabilitation, Decatur, GA; and NINDS (S.J.), NIH, Bethesda, MD
| | - Steven L Wolf
- From the Department of Neurology (S.C.C., J.L.S.), University of California, Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles; Department of Neurology (S.C.C., V.L., L.D., J. See, R.A., A.M., R.J.Z., N.L.C., J.M.C.), Department of Psychological Science (J.H.), Institute for Software Research (W.S.), and Department of Statistics (M.T.S.), University of California, Irvine; Department of Physical Therapy (A.M.), Chapman University, Irvine, CA; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill; Department of Stroke Rehabilitation Research (A.M.B.), Kessler Foundation; Department of Stroke Rehabilitation (A.M.B.), Kessler Institute for Rehabilitation, West Orange, NJ; Department of Physical Medicine and Rehabilitation (J.K.), MetroHealth System, Case Western Reserve University, Cleveland, OH; Brain Stimulation and Robotics Laboratory (D.E.), Burke Neurological Institute; Department of Telemedicine and Virtual Rehabilitation (D.P.), Burke Medical Research Institute, White Plains, NY; Abilities Research Center (D.P.), Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Clinical Neurosciences (K.A.), University of California, San Diego, La Jolla; Brooks Rehabilitation Clinical Research Center (K.N.), Brooks Rehabilitation, Jacksonville, FL; Department of Physical Medicine and Rehabilitation (E.J.R.), Northwestern University, Chicago, IL; Department of Neurology (D.L.T.), University of Washington, Seattle; Departments of Health Science and Research (M.L.W.) and Public Health Sciences (W.Z.), Medical University of South Carolina, Charleston; Department of Physical Medicine and Rehabilitation (R.Z.), Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA; Department of Neurology (J. Spilker, J.P.B.), University of Cincinnati, OH; Department of Rehabilitation Medicine (S.L.W.), Division of Physical Therapy Education, Emory University, Atlanta, GA; Atlanta VA Health Care System (S.L.W.), Center for Visual and Neurocognitive Rehabilitation, Decatur, GA; and NINDS (S.J.), NIH, Bethesda, MD
| | - Joseph P Broderick
- From the Department of Neurology (S.C.C., J.L.S.), University of California, Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles; Department of Neurology (S.C.C., V.L., L.D., J. See, R.A., A.M., R.J.Z., N.L.C., J.M.C.), Department of Psychological Science (J.H.), Institute for Software Research (W.S.), and Department of Statistics (M.T.S.), University of California, Irvine; Department of Physical Therapy (A.M.), Chapman University, Irvine, CA; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill; Department of Stroke Rehabilitation Research (A.M.B.), Kessler Foundation; Department of Stroke Rehabilitation (A.M.B.), Kessler Institute for Rehabilitation, West Orange, NJ; Department of Physical Medicine and Rehabilitation (J.K.), MetroHealth System, Case Western Reserve University, Cleveland, OH; Brain Stimulation and Robotics Laboratory (D.E.), Burke Neurological Institute; Department of Telemedicine and Virtual Rehabilitation (D.P.), Burke Medical Research Institute, White Plains, NY; Abilities Research Center (D.P.), Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Clinical Neurosciences (K.A.), University of California, San Diego, La Jolla; Brooks Rehabilitation Clinical Research Center (K.N.), Brooks Rehabilitation, Jacksonville, FL; Department of Physical Medicine and Rehabilitation (E.J.R.), Northwestern University, Chicago, IL; Department of Neurology (D.L.T.), University of Washington, Seattle; Departments of Health Science and Research (M.L.W.) and Public Health Sciences (W.Z.), Medical University of South Carolina, Charleston; Department of Physical Medicine and Rehabilitation (R.Z.), Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA; Department of Neurology (J. Spilker, J.P.B.), University of Cincinnati, OH; Department of Rehabilitation Medicine (S.L.W.), Division of Physical Therapy Education, Emory University, Atlanta, GA; Atlanta VA Health Care System (S.L.W.), Center for Visual and Neurocognitive Rehabilitation, Decatur, GA; and NINDS (S.J.), NIH, Bethesda, MD
| | - Scott Janis
- From the Department of Neurology (S.C.C., J.L.S.), University of California, Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles; Department of Neurology (S.C.C., V.L., L.D., J. See, R.A., A.M., R.J.Z., N.L.C., J.M.C.), Department of Psychological Science (J.H.), Institute for Software Research (W.S.), and Department of Statistics (M.T.S.), University of California, Irvine; Department of Physical Therapy (A.M.), Chapman University, Irvine, CA; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill; Department of Stroke Rehabilitation Research (A.M.B.), Kessler Foundation; Department of Stroke Rehabilitation (A.M.B.), Kessler Institute for Rehabilitation, West Orange, NJ; Department of Physical Medicine and Rehabilitation (J.K.), MetroHealth System, Case Western Reserve University, Cleveland, OH; Brain Stimulation and Robotics Laboratory (D.E.), Burke Neurological Institute; Department of Telemedicine and Virtual Rehabilitation (D.P.), Burke Medical Research Institute, White Plains, NY; Abilities Research Center (D.P.), Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Clinical Neurosciences (K.A.), University of California, San Diego, La Jolla; Brooks Rehabilitation Clinical Research Center (K.N.), Brooks Rehabilitation, Jacksonville, FL; Department of Physical Medicine and Rehabilitation (E.J.R.), Northwestern University, Chicago, IL; Department of Neurology (D.L.T.), University of Washington, Seattle; Departments of Health Science and Research (M.L.W.) and Public Health Sciences (W.Z.), Medical University of South Carolina, Charleston; Department of Physical Medicine and Rehabilitation (R.Z.), Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA; Department of Neurology (J. Spilker, J.P.B.), University of Cincinnati, OH; Department of Rehabilitation Medicine (S.L.W.), Division of Physical Therapy Education, Emory University, Atlanta, GA; Atlanta VA Health Care System (S.L.W.), Center for Visual and Neurocognitive Rehabilitation, Decatur, GA; and NINDS (S.J.), NIH, Bethesda, MD
| |
Collapse
|