1
|
Bojanic T, McCaughey EJ, Finn HT, Humburg P, McBain RA, Lee BB, Gandevia SC, Boswell-Ruys CL, Butler JE. The effect of abdominal functional electrical stimulation on blood pressure in people with high level spinal cord injury. Spinal Cord 2024:10.1038/s41393-024-01046-w. [PMID: 39487221 DOI: 10.1038/s41393-024-01046-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024]
Abstract
STUDY DESIGN Single centre training study. OBJECTIVES To investigate, in a group of people with spinal cord injury (SCI), the effect of transcutaneous functional electrical stimulation of the abdominal muscles (abdominal FES) during cough training on blood pressure (BP), and how it is affected by injury characteristics and alters over time. SETTING Laboratory and community. METHODS Sixteen participants with SCI (C4-T5) underwent 25 of abdominal FES cough training (5 sets of 10 stimulated coughs) over 6 weeks as part of a previously published study on the effect of abdominal FES training on cough. Systolic BP (SBP), diastolic BP (DBP) and calculated mean arterial pressure (MAP) were measured at the completion of each set. RESULTS Abdominal FES coughing resulted in an average ~30% acute increase in BP from initial resting BP across all sessions in almost all participants (p < 0.001). However, the increase in BP during abdominal FES coughs from rest reduced over the 25 sessions of training by ~35% for SBP, MAP and DBP (p = 0.024, p = 0.013 and p = 0.042, respectively). There was no meaningful change in resting BP over time (p = 0.935, p = 0.705 and p = 0.988, respectively). Overall, increases in BP during abdominal FES coughs were greatest for those with chronic injuries and cervical injuries. CONCLUSIONS Transcutaneous abdominal FES during cough training acutely increases BP. However, the magnitude of the increase is reduced after 25 sessions of training. Abdominal FES may offer a solution to combat orthostatic hypotension, but its effectiveness may diminish over time.
Collapse
Affiliation(s)
- Teodora Bojanic
- Spinal Cord Injury Research Centre, Neuroscience Research Australia, Randwick, NSW, 2031, Australia
- University of New South Wales, Kensington, NSW, 2052, Australia
| | - Euan J McCaughey
- Spinal Cord Injury Research Centre, Neuroscience Research Australia, Randwick, NSW, 2031, Australia
- University of New South Wales, Kensington, NSW, 2052, Australia
- Queen Elizabeth National Spinal Injuries Unit, Queen Elizabeth University Hospital, Glasgow, G51 4TF, Scotland, UK
| | - Harrison T Finn
- Spinal Cord Injury Research Centre, Neuroscience Research Australia, Randwick, NSW, 2031, Australia
- University of New South Wales, Kensington, NSW, 2052, Australia
| | - Peter Humburg
- Spinal Cord Injury Research Centre, Neuroscience Research Australia, Randwick, NSW, 2031, Australia
- University of New South Wales, Kensington, NSW, 2052, Australia
| | - Rachel A McBain
- Spinal Cord Injury Research Centre, Neuroscience Research Australia, Randwick, NSW, 2031, Australia
| | - Bonsan B Lee
- Spinal Cord Injury Research Centre, Neuroscience Research Australia, Randwick, NSW, 2031, Australia
- University of New South Wales, Kensington, NSW, 2052, Australia
- Prince of Wales Hospital, Randwick, NSW, 2031, Australia
| | - Simon C Gandevia
- Spinal Cord Injury Research Centre, Neuroscience Research Australia, Randwick, NSW, 2031, Australia
- University of New South Wales, Kensington, NSW, 2052, Australia
- Prince of Wales Hospital, Randwick, NSW, 2031, Australia
| | - Claire L Boswell-Ruys
- Spinal Cord Injury Research Centre, Neuroscience Research Australia, Randwick, NSW, 2031, Australia
- University of New South Wales, Kensington, NSW, 2052, Australia
- Prince of Wales Hospital, Randwick, NSW, 2031, Australia
| | - Jane E Butler
- Spinal Cord Injury Research Centre, Neuroscience Research Australia, Randwick, NSW, 2031, Australia.
- University of New South Wales, Kensington, NSW, 2052, Australia.
| |
Collapse
|
2
|
Halseth M, Mahoney R, Hsiou J, Jones HN, Kimonis V. Remote respiratory resistance exercise training improves respiratory function in individuals with VCP multisystem proteinopathy. Neuromuscul Disord 2024; 34:68-74. [PMID: 38157654 DOI: 10.1016/j.nmd.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/16/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024]
Abstract
Valosin-containing protein (VCP) disease is an autosomal dominant multisystem proteinopathy associated with hereditary inclusion body myopathy, Paget disease of bone, and frontotemporal dementia. Myopathy frequently results in respiratory muscle weakness, leading to early mortality due to respiratory failure. We investigated the effects of a remotely administered inspiratory muscle training program in individuals with VCP disease. Nine adults with VCP mutation-positive familial myopathy without evidence of dementia were recruited for a 40-week remotely administered study. Baseline performance was established during the first 8 weeks, followed by 32 weeks of inspiratory muscle training. The primary outcome was maximum inspiratory pressure (MIP). The secondary and exploratory endpoints included spirometry, grip strength, Inclusion Body Myopathy Functional Rating Scale (IBMFRS), Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS), timed up and go, and six-minute walk test (6MWT). During the treatment phase, MIP increased significantly by a weekly mean of 0.392cm. H2O (p=0.023). In contrast, grip strength and ALSFRS significantly decreased by 0.088 lbs. (p=0.031) and 0.043 points (p=0.004) per week, respectively, as expected from the natural progression of this disease. A remotely administered inspiratory muscle training program is therefore feasible, safe, and well-tolerated in individuals with VCP disease and results in improved inspiratory muscle strength.
Collapse
Affiliation(s)
- Madeline Halseth
- Division of Genetics and Genomic Medicine, Department of Pediatrics, UC Irvine School of Medicine, Irvine, CA, United States
| | - Ryan Mahoney
- Division of Genetics and Genomic Medicine, Department of Pediatrics, UC Irvine School of Medicine, Irvine, CA, United States
| | - Joyce Hsiou
- Division of Genetics and Genomic Medicine, Department of Pediatrics, UC Irvine School of Medicine, Irvine, CA, United States; Western University of Health Sciences, Pomona, CA, United States
| | - Harrison N Jones
- Department of Head and Neck Surgery & Communication Sciences, School of Medicine, Duke University, Durham, NC, United States
| | - Virginia Kimonis
- Division of Genetics and Genomic Medicine, Department of Pediatrics, UC Irvine School of Medicine, Irvine, CA, United States; Department of Neurology, UC Irvine School of Medicine, Irvine, CA, United States; Department of Pathology, UC Irvine School of Medicine, Irvine, CA, United States.
| |
Collapse
|
3
|
Randelman M, Zholudeva LV, Vinit S, Lane MA. Respiratory Training and Plasticity After Cervical Spinal Cord Injury. Front Cell Neurosci 2021; 15:700821. [PMID: 34621156 PMCID: PMC8490715 DOI: 10.3389/fncel.2021.700821] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/11/2021] [Indexed: 12/30/2022] Open
Abstract
While spinal cord injuries (SCIs) result in a vast array of functional deficits, many of which are life threatening, the majority of SCIs are anatomically incomplete. Spared neural pathways contribute to functional and anatomical neuroplasticity that can occur spontaneously, or can be harnessed using rehabilitative, electrophysiological, or pharmacological strategies. With a focus on respiratory networks that are affected by cervical level SCI, the present review summarizes how non-invasive respiratory treatments can be used to harness this neuroplastic potential and enhance long-term recovery. Specific attention is given to "respiratory training" strategies currently used clinically (e.g., strength training) and those being developed through pre-clinical and early clinical testing [e.g., intermittent chemical stimulation via altering inhaled oxygen (hypoxia) or carbon dioxide stimulation]. Consideration is also given to the effect of training on non-respiratory (e.g., locomotor) networks. This review highlights advances in this area of pre-clinical and translational research, with insight into future directions for enhancing plasticity and improving functional outcomes after SCI.
Collapse
Affiliation(s)
- Margo Randelman
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States.,Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Lyandysha V Zholudeva
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States.,Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, United States.,Gladstone Institutes, San Francisco, CA, United States
| | - Stéphane Vinit
- INSERM, END-ICAP, Université Paris-Saclay, UVSQ, Versailles, France
| | - Michael A Lane
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States.,Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
4
|
Leathem JM, Macht-Sliwinski M, Boak S, Courville A, Dearwater M, Gazi S, Scott A. Community exercise for individuals with spinal cord injury with inspiratory muscle training: A pilot study. J Spinal Cord Med 2021; 44:711-719. [PMID: 31525136 PMCID: PMC8477927 DOI: 10.1080/10790268.2019.1655200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Context/Objective: Respiratory disorders are a common cause of rehospitalization, and premature death in individuals with spinal cord injuries (SCI). Respiratory training combined with community exercise programs may be a method to reduce secondary complications in this population.Objective: The present study explores the inclusion of inspiratory muscle training (IMT) in an existing community exercise program.Design: Case series.Setting: Community.Participants: Participants (N = 6) completed the exercise program. Five were male and one was female; four reported incomplete injuries, and two reported complete injuries; four had cervical injuries, and two had thoracic injuries. The average age was 33 years (SD = 18.6) and time since injury was 7 years (SD = 4.0).Interventions: Participants completed an 8-week program, once-per-week for 4 h that included a circuit of resistance training, aerobic exercise, trunk stability, and education. IMT was completed as a home exercise program.Outcome Measures: Transfer test, T-shirt test, four-directional reach, four-directional trunk strength, weekly training diaries, and a subjective interview.Results: Twenty-eight training logs were collected. All measures improved: transfer test (mean = -14.62, SD = 7.00 s), T-shirt test (mean = -7.83, SD = 13.88 s), four-directional reach (mean = 3.75, SD = 8.06 in) and hand-held dynamometer (mean = 6.73, SD = 8.02 kg). Individuals reported a positive impact of the program.Conclusions: This pilot study demonstrated community exercise with IMT use may have positive impact on functional measures for people with SCI who are vulnerable to respiratory compromise. Continued education may increase successful health outcomes.Trial Registration: NCT03743077.
Collapse
Affiliation(s)
- Jessica M. Leathem
- Physical Therapist, JFK Medical Center, Johnson Rehabilitation Institute, Edison, New Jersey, USA,Correspondence to: Jessica M. Leathem, Physical Therapist, JFK Medical Center, Johnson Rehabilitation Institute, 65 James Street, Edison, NJ, 08820, USA.
| | - Martha Macht-Sliwinski
- CUMC, Program in Physical Therapy, Columbia University Medical Center, Columbia University,New York, New York, USA
| | - Sarah Boak
- UCHealth Physical Therapy and Rehabilitation Clinic, Lone Tree Medical Center, University of Colorado Hospital, Lone Tree, Colorado, USA
| | - Aubrey Courville
- Sentara Therapy Center, Careplex Hospital, Hampton, Virginia, USA
| | | | - Sneha Gazi
- EMH Physical Therapy, New York, New York, USA
| | - Allison Scott
- Green Bay Area School District in Green Bay, Peshtigo, Wisconsin, USA
| |
Collapse
|
5
|
Effects of Respiratory Muscle Training on Baroreflex Sensitivity, Respiratory Function, and Serum Oxidative Stress in Acute Cervical Spinal Cord Injury. J Pers Med 2021; 11:jpm11050377. [PMID: 34062971 PMCID: PMC8147917 DOI: 10.3390/jpm11050377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 11/24/2022] Open
Abstract
Background: respiratory complications are a leading cause of morbidity and mortality in individuals with spinal cord injury (SCI). We examined the effects of respiratory muscle training (RMT) in patients with acute cervical SCI. Methods: this prospective trial enrolled 44 adults with acute cervical SCI, of which twenty received RMT and twenty-four did not receive RMT. Respiratory function, cardiovascular autonomic function, and reactive oxidative species (ROS) were compared. The experimental group received 40-min high-intensity home-based RMT 7 days per week for 10 weeks. The control group received a sham intervention for a similar period. The primary outcomes were the effects of RMT on pulmonary and cardiovascular autonomic function, and ROS production in individuals with acute cervical SCI. Results: significant differences between the two groups in cardiovascular autonomic function and the heart rate response to deep breathing (p = 0.017) were found at the 6-month follow-up. After RMT, the maximal inspiratory pressure (p = 0.042) and thiobarbituric acid-reactive substances (TBARS) (p = 0.006) improved significantly, while there was no significant difference in the maximal expiratory pressure. Significant differences between the two groups in tidal volume (p = 0.005) and the rapid shallow breathing index (p = 0.031) were found at 6 months. Notably, the SF-36 (both the physical (PCS) and mental (MCS) component summaries) in the RMT group had decreased significantly at the 6-month follow-up, whereas the clinical scores did not differ significantly (p = 0.333) after RMT therapy. Conclusions: High-intensity home-based RMT can improve pulmonary function and endurance and reduce breathing difficulties in patients with respiratory muscle weakness after injury. It is recommended for rehabilitation after spinal cord injury.
Collapse
|
6
|
da Silva CD, de Abreu RM, Rehder-Santos P, De Noronha M, Catai AM. Can respiratory muscle training change the blood pressure levels in hypertension? A systematic review with meta-analysis. Scand J Med Sci Sports 2021; 31:1384-1394. [PMID: 33630377 DOI: 10.1111/sms.13943] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 08/24/2020] [Accepted: 02/22/2021] [Indexed: 02/07/2023]
Abstract
The aim was to systematically review randomized controlled trials investigating the effects of respiratory training on blood pressure control in hypertensive individuals. Systematic review with meta-analysis was coducted following the guidelines from PRISMA statement. Searches for randomized controlled trials were performed in four electronic databases (PubMed, Cochrane Library, SCOPUS, and PEDro). Studies were included if they were randomized controlled trials that examined the impact of respiratory training on blood pressure of individuals with systemic arterial hypertension and the patients had no other associated disease. Eight studies were included for final analysis (total of 270 participants; 18-85 years) and presented an average score of 6.25 in the PEDro scale, being considered of high methodological quality. The meta-analysis showed a reduction in systolic and diastolic blood pressure for respiratory training when the load was applied [-15.72 (-18.63; -12.81) and -7.08 (-9.03; -5.13) mmHg, respectively]. There was also a reduction in systolic, but not in diastolic blood pressure when the training was performed without load [-5.08 (-7.49; -2.66) and -1.04 (-2.55; +0.46) mmHg, respectively]. The respiratory training has a positive effect in BP in hypertensive patients, however, only when performed with load seems to be able to promote some beneficial effect on diastolic blood pressure reduction.
Collapse
Affiliation(s)
- Claudio D da Silva
- Cardiovascular Physical Therapy Laboratory, Department of Physical Therapy, Federal University of Sao Carlos, Sao Carlos, Brazil
| | - Raphael M de Abreu
- Cardiovascular Physical Therapy Laboratory, Department of Physical Therapy, Federal University of Sao Carlos, Sao Carlos, Brazil
| | - Patrícia Rehder-Santos
- Cardiovascular Physical Therapy Laboratory, Department of Physical Therapy, Federal University of Sao Carlos, Sao Carlos, Brazil
| | | | - Aparecida M Catai
- Cardiovascular Physical Therapy Laboratory, Department of Physical Therapy, Federal University of Sao Carlos, Sao Carlos, Brazil
| |
Collapse
|
7
|
Goode-Roberts M, Bickel SG, Stout DL, Calvery ML, Thompson JE, Behrman AL. Impact of Activity-Based Therapy on Respiratory Outcomes in a Medically Complex Child. CHILDREN-BASEL 2021; 8:children8010036. [PMID: 33435403 PMCID: PMC7827889 DOI: 10.3390/children8010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 11/26/2022]
Abstract
Introduction: Activity-based therapies (ABTs) focus on activating the neuromuscular system below the level of spinal cord injury (SCI) promoting neuromuscular capacity. Case description: A 2 year 7 month old with history of prematurity at 29 weeks, neonatal epidural abscess, resultant cervical SCI, respiratory failure, and global developmental delays presented for enrollment in an outpatient activity-based therapy program. Upon presentation to this program, he required nighttime mechanical ventilation via tracheostomy and daytime suctioning. He could not perform any age-appropriate activities and was described by his mother as ‘present’, neither engaged nor attentive. During and after 7 months of participation in ABTs including locomotor training and neuromuscular electrical stimulation, the patient demonstrated unexpected changes in his respiratory status leading to ventilator weaning with concomitant improvements in head and trunk control, participation, development, and quality of life. Discussion: ABT was not only safe for a medically complex child, but also this intervention had a remarkable effect on unresolved respiratory capacity and a more widespread impact on other functions as well as development. A child with a chronic, severe SCI demonstrated positive and impactful improvements in health, functional status, and quality of life during an episode of ABT.
Collapse
Affiliation(s)
| | - Scott G. Bickel
- Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA; (S.G.B.); (M.L.C.); (J.E.T.)
| | - Danielle L. Stout
- Frazier Rehab Institute, UofL Health, Louisville, KY 40202, USA; (M.G.-R.); (D.L.S.)
| | - Margaret L. Calvery
- Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA; (S.G.B.); (M.L.C.); (J.E.T.)
| | - Jennifer E. Thompson
- Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA; (S.G.B.); (M.L.C.); (J.E.T.)
| | - Andrea L. Behrman
- Department of Neurological Surgery, University of Louisville, Louisville, KY 40202, USA
- Correspondence: ; Tel.: +1-502-582-7451
| |
Collapse
|
8
|
Clinical Implications for Cardiovascular Compromise in Patients With Spinal Cord Injury: A Case Study of Autonomic Dysreflexia, Cardiac Pacing Abnormality, and Orthostatic Hypotension in Contemporary Physical Therapy Management. Cardiopulm Phys Ther J 2020. [DOI: 10.1097/cpt.0000000000000164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Taccola G, Salazar BH, Apicella R, Hogan MK, Horner PJ, Sayenko D. Selective Antagonism of A1 Adenosinergic Receptors Strengthens the Neuromodulation of the Sensorimotor Network During Epidural Spinal Stimulation. Front Syst Neurosci 2020; 14:44. [PMID: 32760254 PMCID: PMC7372902 DOI: 10.3389/fnsys.2020.00044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/16/2020] [Indexed: 01/02/2023] Open
Abstract
Although epidural spinal stimulation (ESS) results in promising therapeutic effects in individuals with spinal cord injury (SCI), its potential to generate functional motor recovery varies between individuals and remains largely unclear. However, both preclinical and clinical studies indicate the capacity of electrical and pharmacological interventions to synergistically increase the engagement of spinal sensorimotor networks and regain motor function after SCI. This study explored whether selective pharmacological antagonism of the adenosine A1 receptor subtype synergizes with ESS, thereby increasing motor response. We hypothesized that selective pharmacological antagonism of A1 receptors during ESS would produce facilitatory effects in spinal sensorimotor networks detected as an increased amplitude of spinally-evoked motor potentials and sustained duration of ESS induced activity. Terminal experiments were performed in adult rats using trains of stereotyped pulses at 40 Hz delivered at L5 with the local administration to the cord of 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). We demonstrated that ESS combined with the blockage of A1 receptors increased the magnitude of the endogenous modulation and postponed the decay of responses that occur during ESS alone. Although DPCPX significantly increased the yield of repetitive stimulation in intact spinal cords, the effects of A1 antagonism on motor evoked responses after an acute spinal transection was not detected. These studies support the future investigation of the optimal dosage, methods of delivery, and systemic effects of the synergistic application of A1 antagonists and spinal stimulation in the intact and injured spinal cord.
Collapse
Affiliation(s)
- Giuliano Taccola
- Department of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Betsy Habeth Salazar
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Rosamaria Apicella
- Department of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Matthew Kevin Hogan
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Philip John Horner
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Dimitry Sayenko
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
10
|
Delta plot analysis of cardiovascular and cardiorespiratory interactions in young women with orthostatic intolerance. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2020.101892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
de Abreu RM, Catai AM, Cairo B, Rehder-Santos P, da Silva CD, Signini ÉDF, Sakaguchi CA, Porta A. A Transfer Entropy Approach for the Assessment of the Impact of Inspiratory Muscle Training on the Cardiorespiratory Coupling of Amateur Cyclists. Front Physiol 2020; 11:134. [PMID: 32158402 PMCID: PMC7052290 DOI: 10.3389/fphys.2020.00134] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 02/07/2020] [Indexed: 12/23/2022] Open
Abstract
The strength of cardiorespiratory interactions diminishes with age. Physical exercise can reduce the rate of this trend. Inspiratory muscle training (IMT) is a technique capable of improving cardiorespiratory interactions. This study evaluates the effect of IMT on cardiorespiratory coupling in amateur cyclists. Thirty male young healthy cyclists underwent a sham IMT of very low intensity (SHAM, n = 9), an IMT of moderate intensity at 60% of the maximal inspiratory pressure (MIP60, n = 10) and an IMT of high intensity at the critical inspiratory pressure (CIP, n = 11). Electrocardiogram, non-invasive arterial pressure, and thoracic respiratory movement (RM) were recorded before (PRE) and after (POST) training at rest in supine position (REST) and during active standing (STAND). The beat-to-beat series of heart period (HP) and systolic arterial pressure (SAP) were analyzed with the RM signal via a traditional non-causal approach, such as squared coherence function, and via a causal model-based transfer entropy (TE) approach. Cardiorespiratory coupling was quantified via the HP-RM squared coherence at the respiratory rate (K 2 HP-R M), the unconditioned TE from RM to HP (TER M → HP) and the TE from RM to HP conditioned on SAP (TER M → HP| SAP). In PRE condition we found that STAND led to a decrease of TER M → HP| SAP. After SHAM and CIP training this tendency was confirmed, while MIP60 inverted it by empowering cardiorespiratory coupling. This behavior was observed in presence of unvaried SAP mean and with usual responses of the baroreflex control and HP mean to STAND. TER M → HP and K 2 HP- RM were not able to detect the post-training increase of cardiorespiratory coupling strength during STAND, thus suggesting that conditioning out SAP is important for the assessment of cardiorespiratory interactions. Since the usual response of HP mean, SAP mean and baroreflex sensitivity to postural stressor were observed after MIP60 training, we conclude that the post-training increase of cardiorespiratory coupling during STAND in MIP60 group might be the genuine effect of some rearrangements at the level of central respiratory network and its interactions with sympathetic drive and vagal activity.
Collapse
Affiliation(s)
| | - Aparecida Maria Catai
- Department of Physical Therapy, Federal University of São Carlos, São Carlos, Brazil
| | - Beatrice Cairo
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | | | | | | | | | - Alberto Porta
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Department of Cardiothoracic – Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, Milan, Italy
| |
Collapse
|
12
|
Repecki C, Sliwinski M, Harding L. Supporting the need for community exercise programs: a case study. Spinal Cord Ser Cases 2019; 5:95. [PMID: 31798970 PMCID: PMC6877531 DOI: 10.1038/s41394-019-0236-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 09/03/2019] [Accepted: 10/11/2019] [Indexed: 11/08/2022] Open
Abstract
Introduction Participation in exercise activities post spinal cord injury (SCI) can positively impact physical functioning and quality of life. Physically active individuals have improved functional performance compared with sedentary individuals with SCI. Consistent exercise interventions following SCI not only prompt neural recovery and offer myriad health benefits but they may also have persisting effects on functional abilities. Case presentation A 29-year-old male subject had a 15-year history of a C5-C6 AIS B SCI. The subject demonstrated improvements in the outcome measures and he reported enhanced ability to cough and to clear secretions, as well as an enhanced overall quality of life, after undergoing a 14-week course of Spinal Mobility training in combination with inspiratory muscle training (IMT). In addition to the Spinal Mobility training and IMT, he continued to partake in his normal exercise routine, which consisted of aerobic and strength training 3 days per week. Discussion This case reaffirms the benefits of consistent exercise training, in combination with IMT, for individuals with SCI. Community programs specifically targeted to individuals with SCI are needed. The subject's functional improvements demonstrate that incorporating Spinal Mobility training into a regular exercise routine may assist with functional gains in the chronic stage of SCI.
Collapse
Affiliation(s)
- Christopher Repecki
- Columbia University Medical Center, Program in Physical Therapy, New York, NY USA
| | - Martha Sliwinski
- Columbia University Medical Center, Program in Physical Therapy, New York, NY USA
| | | |
Collapse
|
13
|
Martins de Abreu R, Porta A, Rehder-Santos P, Cairo B, Donisete da Silva C, De Favari Signini É, Sakaguchi CA, Catai AM. Effects of inspiratory muscle-training intensity on cardiovascular control in amateur cyclists. Am J Physiol Regul Integr Comp Physiol 2019; 317:R891-R902. [PMID: 31596110 DOI: 10.1152/ajpregu.00167.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic effects of inspiratory muscle training (IMT) on autonomic function and baroreflex regulation are poorly studied. This study aims at evaluating chronic effects of different IMT intensities on cardiovascular control in amateur cyclists. A longitudinal, randomized, controlled blind study was performed on 30 recreational male cyclists undergoing IMT for 11 wk. Participants were randomly allocated into sham-trained group (SHAM, n = 9), trained group at 60% of the maximal inspiratory pressure (MIP60, n = 10), and trained group at critical inspiratory pressure (CIP, n = 11). Electrocardiogram, finger arterial pressure, and respiratory movements were recorded before (PRE) and after (POST) training at rest in supine position (REST) and during active standing (STAND). From the beat-to-beat series of heart period (HP) and systolic arterial pressure (SAP), we computed time domain markers, frequency domain indexes in the low frequency (0.04-0.15 Hz) and high frequency (HF, 0.15-0.4 Hz) bands, an entropy-based complexity index (CI), and baroreflex markers estimated from spontaneous HP-SAP sequences. Compared with SHAM, the positive effect of MIP60 over the HP series led to the HF power increase during REST (PRE: 521.2 ± 447.5 ms2; POST: 1,161 ± 878.9 ms2) and the CI rise during STAND (PRE: 0.82 ± 0.18; POST: 0.97 ± 0.13). Conversely, the negative effect of CIP took the form of the decreased HP mean during STAND (PRE: 791 ± 71 ms; POST: 737 ± 95 ms). No effect of IMT was visible over SAP and baroreflex markers. These findings suggest that moderate-intensity IMT might be beneficial when the goal is to limit cardiac sympathetic hyperactivity at REST and/or in response to STAND.
Collapse
Affiliation(s)
| | - Alberto Porta
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.,Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Patricia Rehder-Santos
- Department of Physical Therapy, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Beatrice Cairo
- Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | | | - Étore De Favari Signini
- Department of Physical Therapy, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Camila Akemi Sakaguchi
- Department of Physical Therapy, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Aparecida Maria Catai
- Department of Physical Therapy, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| |
Collapse
|
14
|
Gee CM, Williams AM, Sheel AW, Eves ND, West CR. Respiratory muscle training in athletes with cervical spinal cord injury: effects on cardiopulmonary function and exercise capacity. J Physiol 2019; 597:3673-3685. [DOI: 10.1113/jp277943] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/20/2019] [Indexed: 01/22/2023] Open
Affiliation(s)
- Cameron M. Gee
- International Collaboration on Repair Discoveries Vancouver BC Canada
- School of KinesiologyUniversity of British Columbia Vancouver BC Canada
- Canadian Sport Institute – Pacific Victoria BC Canada
| | - Alexandra M. Williams
- International Collaboration on Repair Discoveries Vancouver BC Canada
- Faculty of MedicineUniversity of British Columbia Kelowna BC Canada
| | - A. William Sheel
- International Collaboration on Repair Discoveries Vancouver BC Canada
- School of KinesiologyUniversity of British Columbia Vancouver BC Canada
| | - Neil D. Eves
- Centre for Heart Lung & Vascular HealthSchool of Health & Exercise SciencesUniversity of British Columbia Kelowna BC Canada
| | - Christopher R. West
- International Collaboration on Repair Discoveries Vancouver BC Canada
- Canadian Sport Institute – Pacific Victoria BC Canada
- Faculty of MedicineUniversity of British Columbia Kelowna BC Canada
| |
Collapse
|
15
|
El- Kader SMA. Impact of respiratory muscle training on blood gases and pulmonary function among patients with cervical spinal cord injury. INTERNATIONAL PHYSICAL MEDICINE & REHABILITATION JOURNAL 2018; 3. [DOI: 10.15406/ipmrj.2018.03.00143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
16
|
Legg Ditterline BE, Asian SC, Randall DC, Harkema SJ, Castillo C, Ovechkin AV. Response to Letter to the Editor regarding "Effects of respiratory training on heart rate variability and baroreflex sensitivity in individuals with chronic spinal cord injury". Arch Phys Med Rehabil 2018; 99:776-777. [PMID: 29580462 PMCID: PMC6037166 DOI: 10.1016/j.apmr.2018.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 12/19/2022]
Affiliation(s)
| | - Sevda C Asian
- Department of Neurological Surgery, University of Louisville, Louisville, KY
| | - David C Randall
- Department of Physiology, University of Kentucky, Lexington, KY
| | - Susan J Harkema
- Departments of Physiology and Neurological Surgery, University of Louisville, Louisville, KY
| | - Camilo Castillo
- Department of Neurological Surgery, University of Louisville, Louisville, KY
| | - Alexander V Ovechkin
- Departments of Physiology and Neurological Surgery, University of Louisville, Louisville, KY
| |
Collapse
|
17
|
Harkema SJ, Wang S, Angeli CA, Chen Y, Boakye M, Ugiliweneza B, Hirsch GA. Normalization of Blood Pressure With Spinal Cord Epidural Stimulation After Severe Spinal Cord Injury. Front Hum Neurosci 2018; 12:83. [PMID: 29568266 PMCID: PMC5852107 DOI: 10.3389/fnhum.2018.00083] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 02/19/2018] [Indexed: 11/18/2022] Open
Abstract
Chronic low blood pressure and orthostatic hypotension remain challenging clinical issues after severe spinal cord injury (SCI), affecting health, rehabilitation, and quality of life. We previously reported that targeted lumbosacral spinal cord epidural stimulation (scES) could promote stand and step functions and restore voluntary movement in patients with chronic motor complete SCI. This study addresses the effects of targeted scES for cardiovascular function (CV-scES) in individuals with severe SCI who suffer from chronic hypotension. We tested the hypothesis that CV-scES can increase resting blood pressure and attenuate chronic hypotension in individuals with chronic cervical SCI. Four research participants with chronic cervical SCI received an implant of a 16-electrode array on the dura (L1–S1 cord segments, T11–L1 vertebrae). Individual-specific CV-scES configurations (anode and cathode electrode selection, voltage, frequency, and pulse width) were identified to maintain systolic blood pressure within targeted normative ranges without skeletal muscle activity of the lower extremities as assessed by electromyography. These individuals completed five 2-h sessions using CV-scES in an upright, seated position during measurement of blood pressure and heart rate. Noninvasive continuous blood pressure was measured from a finger cuff by plethysmograph technique. For each research participant there were statistically significant increases in mean arterial pressure in response to CV-scES that was maintained within normative ranges. This result was reproducible over the five sessions with concomitant decreases or no changes in heart rate using individual-specific CV-scES that was modulated with modest amplitude changes throughout the session. Our study shows that stimulating dorsal lumbosacral spinal cord can effectively and safely activate mechanisms to elevate blood pressures to normal ranges from a chronic hypotensive state in humans with severe SCI with individual-specific CV-scES.
Collapse
Affiliation(s)
- Susan J Harkema
- Frazier Rehab Institute, Louisville, KY, United States.,Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States
| | - Siqi Wang
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States
| | - Claudia A Angeli
- Frazier Rehab Institute, Louisville, KY, United States.,Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States
| | - Yangsheng Chen
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States
| | - Maxwell Boakye
- Department of Neurosurgery, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Beatrice Ugiliweneza
- Department of Neurosurgery, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Glenn A Hirsch
- Division of Cardiology, Department of Medicine, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|
18
|
Goswami N, Blaber AP, Hinghofer-Szalkay H, Montani JP. Orthostatic Intolerance in Older Persons: Etiology and Countermeasures. Front Physiol 2017; 8:803. [PMID: 29163185 PMCID: PMC5677785 DOI: 10.3389/fphys.2017.00803] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/29/2017] [Indexed: 12/16/2022] Open
Abstract
Orthostatic challenge produced by upright posture may lead to syncope if the cardiovascular system is unable to maintain adequate brain perfusion. This review outlines orthostatic intolerance related to the aging process, long-term bedrest confinement, drugs, and disease. Aging-associated illness or injury due to falls often leads to hospitalization. Older patients spend up to 83% of hospital admission lying in bed and thus the consequences of bedrest confinement such as physiological deconditioning, functional decline, and orthostatic intolerance represent a central challenge in the care of the vulnerable older population. This review examines current scientific knowledge regarding orthostatic intolerance and how it comes about and provides a framework for understanding of (patho-) physiological concepts of cardiovascular (in-) stability in ambulatory and bedrest confined senior citizens as well as in individuals with disease conditions [e.g., orthostatic intolerance in patients with diabetes mellitus, multiple sclerosis, Parkinson's, spinal cord injury (SCI)] or those on multiple medications (polypharmacy). Understanding these aspects, along with cardio-postural interactions, is particularly important as blood pressure destabilization leading to orthostatic intolerance affects 3-4% of the general population, and in 4 out of 10 cases the exact cause remains elusive. Reviewed also are countermeasures to orthostatic intolerance such as exercise, water drinking, mental arithmetic, cognitive training, and respiration training in SCI patients. We speculate that optimally applied countermeasures such as mental challenge maintain sympathetic activity, and improve venous return, stroke volume, and consequently, blood pressure during upright standing. Finally, this paper emphasizes the importance of an active life style in old age and why early re-mobilization following bedrest confinement or bedrest is crucial in preventing orthostatic intolerance, falls and falls-related injuries in older persons.
Collapse
Affiliation(s)
- Nandu Goswami
- Gravitational Physiology and Medicine Research Unit, Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Andrew P Blaber
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Helmut Hinghofer-Szalkay
- Gravitational Physiology and Medicine Research Unit, Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Jean-Pierre Montani
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
19
|
de Abreu RM, Rehder-Santos P, Minatel V, Dos Santos GL, Catai AM. Effects of inspiratory muscle training on cardiovascular autonomic control: A systematic review. Auton Neurosci 2017; 208:29-35. [PMID: 28916152 DOI: 10.1016/j.autneu.2017.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/24/2017] [Accepted: 09/05/2017] [Indexed: 11/26/2022]
Abstract
PURPOSE To carry out a systematic review to determine if inspiratory muscle training (IMT) promotes changes in cardiovascular autonomic responses in humans. METHODS The methodology followed the PRISMA statement for reporting systematic review analysis. MEDLINE, PEDro, SCOPUS and PubMed electronic databases were searched from the inception to March 2017. The quality assessment was performed using a PEDro scale. The articles were included if: (1) primary objective was related to the effects of IMT on the cardiovascular autonomic nervous system, and (2) randomized clinical trials and quasi-experimental studies. Exclusion criteria were reviews, short communications, letters, case studies, guidelines, theses, dissertations, qualitative studies, scientific conference abstracts, studies on animals, non-English language articles and articles addressing other breathing techniques. Outcomes evaluated were measures of cardiovascular autonomic control, represented by heart rate variability (HRV) and blood pressure variability (BPV) indexes. RESULTS The search identified 729 citations and a total of 6 studies were included. The results demonstrated that IMT performed at low intensities can chronically promote an increase in the parasympathetic modulation and/or reduction of sympathetic cardiac modulation in patients with diabetes, hypertension, chronic heart failure and gastroesophageal reflux, when assessed by HRV spectral analysis. However, there was no study which evaluated the effects of IMT on cardiovascular autonomic control assessed by BPV. CONCLUSIONS IMT can promote benefits for cardiac autonomic control, however the heterogeneity of populations associated with different protocols, few studies reported in the literature and the lack of randomized controlled trials make the effects of IMT on cardiovascular autonomic control inconclusive.
Collapse
Affiliation(s)
- Raphael Martins de Abreu
- Cardiovascular Physical Therapy Laboratory, Department of Physical Therapy, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Patrícia Rehder-Santos
- Cardiovascular Physical Therapy Laboratory, Department of Physical Therapy, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Vinicius Minatel
- Cardiovascular Physical Therapy Laboratory, Department of Physical Therapy, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Gabriela Lopes Dos Santos
- Laboratory of Neurological Physiotherapy Research, Department of Physical Therapy, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Aparecida Maria Catai
- Cardiovascular Physical Therapy Laboratory, Department of Physical Therapy, Federal University of São Carlos, São Carlos, São Paulo, Brazil.
| |
Collapse
|
20
|
Legg Ditterline BE, Aslan SC, Randall DC, Harkema SJ, Castillo C, Ovechkin AV. Effects of Respiratory Training on Heart Rate Variability and Baroreflex Sensitivity in Individuals With Chronic Spinal Cord Injury. Arch Phys Med Rehabil 2017; 99:423-432. [PMID: 28802811 DOI: 10.1016/j.apmr.2017.06.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/13/2017] [Accepted: 06/27/2017] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To evaluate the effects of pressure threshold respiratory training (RT) on heart rate variability and baroreflex sensitivity in persons with chronic spinal cord injury (SCI). DESIGN Before-after intervention case-controlled clinical study. SETTING SCI research center and outpatient rehabilitation unit. PARTICIPANTS Participants (N=44) consisted of persons with chronic SCI ranging from C2 to T11 who participated in RT (n=24), and untrained control subjects with chronic SCI ranging from C2 to T9 (n=20). INTERVENTIONS A total of 21±2 RT sessions performed 5 days a week during a 4-week period using a combination of pressure threshold inspiratory and expiratory devices. MAIN OUTCOME MEASURES Forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), and beat-to-beat arterial blood pressure and heart rate changes during the 5-second-long maximum expiratory pressure maneuver (5s MEP) and the sit-up orthostatic stress test, acquired before and after the RT program. RESULTS In contrast to the untrained controls, individuals in the RT group experienced significantly increased FVC and FEV1 (both P<.01) in association with improved quality of sleep, cough, and speech. Sympathetically (phase II) and parasympathetically (phase IV) mediated baroreflex sensitivity both significantly (P<.05) increased during the 5s MEP. During the orthostatic stress test, improved autonomic control over heart rate was associated with significantly increased sympathetic and parasympathetic modulation (low- and high-frequency change: P<.01 and P<.05, respectively). CONCLUSIONS Inspiratory-expiratory pressure threshold RT is a promising technique to positively affect both respiratory and cardiovascular dysregulation observed in persons with chronic SCI.
Collapse
Affiliation(s)
- Bonnie E Legg Ditterline
- Department of Physiology, University of Louisville, Louisville, KY; Department of Neurological Surgery, University of Louisville, Louisville, KY
| | - Sevda C Aslan
- Department of Neurological Surgery, University of Louisville, Louisville, KY
| | - David C Randall
- Department of Physiology, University of Kentucky, Lexington, KY
| | - Susan J Harkema
- Department of Physiology, University of Louisville, Louisville, KY; Department of Neurological Surgery, University of Louisville, Louisville, KY
| | - Camilo Castillo
- Department of Neurological Surgery, University of Louisville, Louisville, KY
| | - Alexander V Ovechkin
- Department of Physiology, University of Louisville, Louisville, KY; Department of Neurological Surgery, University of Louisville, Louisville, KY.
| |
Collapse
|