1
|
Mode WJA, Slater T, Pinkney MG, Hough J, James RM, Varley I, James LJ, Clayton DJ. Effects of Morning Vs. Evening exercise on appetite, energy intake, performance and metabolism, in lean males and females. Appetite 2023; 182:106422. [PMID: 36539157 DOI: 10.1016/j.appet.2022.106422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/08/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Exercise is an important component of a weight management strategy. However, little is known about whether circadian variations in physiological and behavioural processes can influence the appetite and energy balance responses to exercise performed at different times of the day. This study compared the effects of morning and evening exercise on appetite, post-exercise energy intake, and voluntary performance. In randomised, counterbalanced order, 16 healthy males and females (n = 8 each) completed two trials, performing morning exercise at 10:30 (AMEx) or evening exercise at 18:30 (PMEx). Exercise consisted of 30 min steady-state cycling (60% V˙ O2peak), and a 15-min performance test. A standardised meal (543 ± 86 kcal) was consumed 2-h before exercise and ad-libitum energy intake was assessed 15 min after exercise, with subjective appetite measured throughout. Absolute ad-libitum energy intake was 152 ± 126 kcal greater during PMEx (P < 0.001), but there was no differences in subjective appetite between trials immediately pre-exercise, or immediately before the post-exercise meal (P ≥ 0.060). Resting energy expenditure (P < 0.01) and carbohydrate oxidation (P < 0.05) were greater during AMEx, but there were no differences in substrate oxidation or energy expenditure during exercise (P ≥ 0.155). Exercise performance was not different between trials (P = 0.628). In conclusion, acute morning and evening exercise prompt similar appetite responses, but post-exercise ad-libitum energy intake is greater following evening exercise. These findings demonstrate discordant responses between subjective appetite and ad-libitum energy intake but suggest that exercise might offset circadian variations in appetite. Longer-term studies are required to determine how exercise timing affects adherence and weight management outcomes to exercise interventions. TRIAL REGISTRATION: NCT04742530, February 8, 2021.
Collapse
Affiliation(s)
- William J A Mode
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Tommy Slater
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Mollie G Pinkney
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - John Hough
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Ruth M James
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Ian Varley
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Lewis J James
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| | - David J Clayton
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK.
| |
Collapse
|
2
|
Slater T, Mode WJA, Hough J, James RM, Sale C, James LJ, Clayton DJ. Effect of the perception of breakfast consumption on subsequent appetite and energy intake in healthy males. Eur J Nutr 2021; 61:1319-1330. [PMID: 34766208 PMCID: PMC8921169 DOI: 10.1007/s00394-021-02727-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/27/2021] [Indexed: 11/27/2022]
Abstract
Purpose This study aimed to assess the effects of consuming a very-low-energy placebo breakfast on subsequent appetite and lunch energy intake. Methods Fourteen healthy males consumed water-only (WAT), very-low-energy, viscous placebo (containing water, low-calorie flavoured squash, and xanthan gum; ~ 16 kcal; PLA), and whole-food (~ 573 kcal; FOOD) breakfasts in a randomised order. Subjects were blinded to the energy content of PLA and specific study aims. Venous blood samples were collected pre-breakfast, 60- and 180-min post-breakfast to assess plasma acylated ghrelin and peptide tyrosine tyrosine concentrations. Subjective appetite was measured regularly, and energy intake was assessed at an ad libitum lunch meal 195-min post-breakfast. Results Lunch energy intake was lower during FOOD compared to WAT (P < 0.05), with no further differences between trials (P ≥ 0.132). Cumulative energy intake (breakfast plus lunch) was lower during PLA (1078 ± 274 kcal) and WAT (1093 ± 249 kcal), compared to FOOD (1554 ± 301 kcal; P < 0.001). Total area under the curve (AUC) for hunger, desire to eat and prospective food consumption were lower, and fullness was greater during PLA and FOOD compared to WAT (P < 0.05). AUC for hunger was lower during FOOD compared to PLA (P < 0.05). During FOOD, acylated ghrelin was suppressed compared to PLA and WAT at 60 min (P < 0.05), with no other hormonal differences between trials (P ≥ 0.071). Conclusion Consuming a very-low-energy placebo breakfast does not alter energy intake at lunch but may reduce cumulative energy intake across breakfast and lunch and attenuate elevations in subjective appetite associated with breakfast omission. Trial registration NCT04735783, 2nd February 2021, retrospectively registered. Supplementary Information The online version contains supplementary material available at 10.1007/s00394-021-02727-5.
Collapse
Affiliation(s)
- Tommy Slater
- Musculoskeletal Physiology Research Group, Nutrition and Exercise Physiology, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Clifton Campus, Nottingham Trent University, Nottingham, NG11 8NS, Nottinghamshire, UK
| | - William J A Mode
- Musculoskeletal Physiology Research Group, Nutrition and Exercise Physiology, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Clifton Campus, Nottingham Trent University, Nottingham, NG11 8NS, Nottinghamshire, UK
| | - John Hough
- Musculoskeletal Physiology Research Group, Nutrition and Exercise Physiology, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Clifton Campus, Nottingham Trent University, Nottingham, NG11 8NS, Nottinghamshire, UK
| | - Ruth M James
- Musculoskeletal Physiology Research Group, Nutrition and Exercise Physiology, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Clifton Campus, Nottingham Trent University, Nottingham, NG11 8NS, Nottinghamshire, UK
| | - Craig Sale
- Musculoskeletal Physiology Research Group, Nutrition and Exercise Physiology, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Clifton Campus, Nottingham Trent University, Nottingham, NG11 8NS, Nottinghamshire, UK
| | - Lewis J James
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, Leicestershire, UK
| | - David J Clayton
- Musculoskeletal Physiology Research Group, Nutrition and Exercise Physiology, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Clifton Campus, Nottingham Trent University, Nottingham, NG11 8NS, Nottinghamshire, UK.
| |
Collapse
|
3
|
Guyenet SJ. Impact of Whole, Fresh Fruit Consumption on Energy Intake and Adiposity: A Systematic Review. Front Nutr 2019; 6:66. [PMID: 31139631 PMCID: PMC6518666 DOI: 10.3389/fnut.2019.00066] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/23/2019] [Indexed: 11/13/2022] Open
Abstract
Background: The energy content of whole, fresh fruit derives primarily from simple sugars, which are currently under heightened scrutiny for their potential contribution to obesity and chronic disease risk. Yet fruit also has a relatively low energy density, moderate palatability/reward value, and high fiber content, which together may limit energy intake. Although reasoned arguments can be made that fruit is fattening or slimming, the question is best resolved empirically. Methods: Methods were preregistered with PROSPERO (CRD42018111830). The primary outcome is the impact of whole, fresh fruit consumption on measures of adiposity including body weight in randomized controlled trials (RCTs). Secondary outcomes are the impact of whole, fresh fruit consumption on energy intake in RCTs, and the association between whole, fresh fruit consumption and changes in measures of adiposity in prospective observational studies. CENTRAL and PubMed databases were searched through October 2018. Cochrane risk of bias tool was used to assess risk of bias in RCTs, and the GRADE method was used to judge and convey the certainty of conclusions. Reporting follows PRISMA guidelines. Results: RCTs, and particularly those of higher quality, suggest that increasing whole, fresh fruit consumption promotes weight maintenance or modest weight loss over periods of 3-24 weeks (moderate certainty), with limited evidence suggesting that a high intake of fruit favors weight loss among people with overweight or obesity. Consistent with this, single-meal RCTs suggest that consuming whole, fresh fruit tends to decrease energy intake, particularly when consumed prior to a meal or when displacing more energy-dense foods (moderate certainty). Prospective observational studies suggest that habitually higher fruit intake is not associated with weight change, or is associated with modest protection against weight gain, over five or more years. Conclusions: Current evidence suggests that whole, fresh fruit consumption is unlikely to contribute to excess energy intake and adiposity, but rather has little effect on these outcomes or constrains them modestly. Single-meal RCTs, RCTs lasting 3-24 weeks, and long-term observational studies are relatively consistent in supporting this conclusion. Whole, fresh fruit probably does not contribute to obesity and may have a place in the prevention and management of excess adiposity.
Collapse
|
4
|
Stote K, Corkum A, Sweeney M, Shakerley N, Kean T, Gottschall-Pass K. Postprandial Effects of Blueberry ( Vaccinium angustifolium) Consumption on Glucose Metabolism, Gastrointestinal Hormone Response, and Perceived Appetite in Healthy Adults: A Randomized, Placebo-Controlled Crossover Trial. Nutrients 2019; 11:nu11010202. [PMID: 30669469 PMCID: PMC6356777 DOI: 10.3390/nu11010202] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/06/2019] [Accepted: 01/15/2019] [Indexed: 01/11/2023] Open
Abstract
The consumption of blueberries, as well as the phenolic compounds they contain, may alter metabolic processes related to type 2 diabetes. The study investigated the effects of adding 140 g of blueberries to a higher-carbohydrate breakfast meal on postprandial glucose metabolism, gastrointestinal hormone response, and perceived appetite. As part of a randomized crossover design study, 17 healthy adults consumed a standardized higher-carbohydrate breakfast along with 2 treatments: (1) 140 g (1 cup) of whole blueberries and (2) a placebo gel (matched for calories, sugars, and fiber of the whole blueberries). Each subject participated in two 2-h meal tests on separate visits ≥8 days apart. Venous blood samples and perceived appetite ratings using visual analog scales were obtained prior to and at 30, 60, 90, and 120 min after consuming the breakfast meals. Results show that glucose metabolism, several gastrointestinal hormones, glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic peptide (GIP), peptide YY (PYY) concentrations and perceived appetite did not change significantly with blueberry consumption. However, pancreatic polypeptide (PP) concentrations were statistically significantly higher (p = 0.0367), and the concentrations were higher during 30, 60, 90, and 120 min after consumption of the blueberry breakfast meal than the placebo breakfast meal. Additional research is needed to determine whether blueberries and other flavonoid-rich foods reduce type 2 diabetes risk by modifying gastrointestinal hormones and perceived appetite.
Collapse
Affiliation(s)
- Kim Stote
- Division of Science, Mathematics and Technology, State University of New York, Empire State College, 113 West Avenue, Saratoga Springs, NY 12866, USA.
| | - Adele Corkum
- Departments of Applied Human Sciences, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| | - Marva Sweeney
- Departments of Biology, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| | - Nicole Shakerley
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, USA.
| | - Terri Kean
- Faculty of Nursing, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| | - Katherine Gottschall-Pass
- Departments of Applied Human Sciences, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| |
Collapse
|
5
|
Dreher ML. Whole Fruits and Fruit Fiber Emerging Health Effects. Nutrients 2018; 10:E1833. [PMID: 30487459 PMCID: PMC6315720 DOI: 10.3390/nu10121833] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 02/07/2023] Open
Abstract
Less than 10% of most Western populations consume adequate levels of whole fruits and dietary fiber with typical intake being about half of the recommended levels. Evidence of the beneficial health effects of consuming adequate levels of whole fruits has been steadily growing, especially regarding their bioactive fiber prebiotic effects and role in improved weight control, wellness and healthy aging. The primary aim of this narrative review article is to examine the increasing number of health benefits which are associated with the adequate intake of whole fruits, especially fruit fiber, throughout the human lifecycle. These potential health benefits include: protecting colonic gastrointestinal health (e.g., constipation, irritable bowel syndrome, inflammatory bowel diseases, and diverticular disease); promoting long-term weight management; reducing risk of cardiovascular disease, type 2 diabetes and metabolic syndrome; defending against colorectal and lung cancers; improving odds of successful aging; reducing the severity of asthma and chronic obstructive pulmonary disease; enhancing psychological well-being and lowering the risk of depression; contributing to higher bone mineral density in children and adults; reducing risk of seborrheic dermatitis; and helping to attenuate autism spectrum disorder severity. Low whole fruit intake represents a potentially more serious global population health threat than previously recognized, especially in light of the emerging research on whole fruit and fruit fiber health benefits.
Collapse
Affiliation(s)
- Mark L Dreher
- Nutrition Science Solutions, LLC, Wimberley, 78676 TX, USA.
| |
Collapse
|
6
|
The effect of preload/meal energy density on energy intake in a subsequent meal: A systematic review and meta-analysis. Eat Behav 2017; 26:6-15. [PMID: 28131006 DOI: 10.1016/j.eatbeh.2016.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 12/20/2016] [Accepted: 12/30/2016] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To conduct a systematic review and meta-analysis of the effects of preload/meal energy density on energy intake in a subsequent meal(s). METHODS Multiple databases were searched for studies published through December 2016 on the effects of preload/meal energy density on energy intake in a subsequent meal(s). We extracted information on mean energy intake in a subsequent meal(s) and on variables that could contribute to between-subject heterogeneity. RESULTS Forty and Thirty nine eligible studies were identified for our systematic review and meta-analysis, respectively. The meta-analysis showed that preload/meal energy density did not affect energy intake in a subsequent meal(s) (95% CI:-21.21, 21.29). As heterogeneity was remarkable among studies, we stratified the studies by intervention type into "meal" or "preload" classifications. In the "preload" subgroup, studies used either fixed energy or fixed weight preloads. The results reveal that in comparison to a high energy-dense (HED) preload, consuming a low energy-dense (LED) preload with same weight resulted in higher energy intake in a subsequent meal (95% CI: 9.72, 56.19). On the other hand, decreased energy intake was observed after consuming an LED preload compared to after consumption of an HED preload with same energy content (95% CI: -138.71, -57.33). In the "meal" subgroup, studies were categorized by different subsequent meal (i.e., "afternoon or evening", "lunch" and "dinner or post-dinner"). Meta-analysis showed that an LED meal resulted in more energy intake only in afternoon or evening meals (95% CI: 14.82, 31.22). CONCLUSION In summary, the current analysis revealed that we can restrict the energy intake by consuming an LED preload. Moreover, consuming an LED preload could favorably affect preload+meal energy intake.
Collapse
|
7
|
The effect of breakfast on appetite regulation, energy balance and exercise performance. Proc Nutr Soc 2015; 75:319-27. [DOI: 10.1017/s0029665115004243] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The belief that breakfast is the most important meal of day has been derived from cross-sectional studies that have associated breakfast consumption with a lower BMI. This suggests that breakfast omission either leads to an increase in energy intake or a reduction in energy expenditure over the remainder of the day, resulting in a state of positive energy balance. However, observational studies do not imply causality. A number of intervention studies have been conducted, enabling more precise determination of breakfast manipulation on indices of energy balance. This review will examine the results from these studies in adults, attempting to identify causal links between breakfast and energy balance, as well as determining whether consumption of breakfast influences exercise performance. Despite the associations in the literature, intervention studies have generally found a reduction in total daily energy intake when breakfast is omitted from the daily meal pattern. Moreover, whilst consumption of breakfast supresses appetite during the morning, this effect appears to be transient as the first meal consumed after breakfast seems to offset appetite to a similar extent, independent of breakfast. Whether breakfast affects energy expenditure is less clear. Whilst breakfast does not seem to affect basal metabolism, breakfast omission may reduce free-living physical activity and endurance exercise performance throughout the day. In conclusion, the available research suggests breakfast omission may influence energy expenditure more strongly than energy intake. Longer term intervention studies are required to confirm this relationship, and determine the impact of these variables on weight management.
Collapse
|