1
|
Wang Z, Ma R, Chen B, Yu X, Wang X, Zuo X, Liang B, Yang J. A transcription factor-based bacterial biosensor system and its application for on-site detection of explosives. Biosens Bioelectron 2024; 244:115805. [PMID: 37948915 DOI: 10.1016/j.bios.2023.115805] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/01/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023]
Abstract
Detecting unexploded landmines is critical due to the environmental pollution and potential humanitarian risks caused by buried landmines. Therefore, this study focused on developing a biosensor system capable of detecting explosives safely and efficiently. A novel transcription factor-based Escherichia coli biosensor was designed to detect 1,3-dinitrobenzene (1,3-DNB). The MexT transcription factor from Pseudomonas putida (P. putida) was identified as the fundamental sensing element in this biosensor. The study found that MexT positively regulated the transcription of PP_2827 by binding to the bidirectional promoter region between them, and significantly enhanced the expression of downstream genes under the condition of 1,3-DNB. The MexT-based biosensor for 1,3-DNB was developed by adopting different combinations of the mexT gene and promoters. The optimized biosensor demonstrated adequate sensitivity for detecting 0.1 μg/mL of 1,3-DNB in a liquid solution with satisfactory specificity and long-term stability. Subsequently, the MexT-based biosensor was integrated into a detection device to simulate the in-field exploration of explosives. The system exhibited a detection sensitivity of 0.5 mg/kg for 1,3-DNB in the sand, and realized the detection of on-site and large-scale area and the location of buried 1,3-DNB under the soil. The study provided a novel transcription factor-based bacterial biosensor and a complete system (China Earth Eye, CEE) for sensitive detection of 1,3-DNB. The good performance of this biosensor system can facilitate the development of accurate, on-site, and high-efficient exploration of explosives in real extensive minefields. Moreover, this 1,3-DNB biosensor can be complementary to the 2,4-DNT biosensor reported before, demonstrating its potential applications in military situations.
Collapse
Affiliation(s)
- Zhaobao Wang
- Energy-rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, PR China
| | - Ran Ma
- Energy-rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, PR China
| | - Bingjing Chen
- Energy-rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, PR China
| | - Xiaotong Yu
- Energy-rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, PR China
| | - Xue Wang
- Energy-rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, PR China
| | - Xinyun Zuo
- Energy-rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, PR China
| | - Bo Liang
- Energy-rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, PR China.
| | - Jianming Yang
- Energy-rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, PR China.
| |
Collapse
|
2
|
Piqueret B, Sandoz JC, d’Ettorre P. The neglected potential of invertebrates in detecting disease via olfaction. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.960757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Agents that cause disease alter the cell metabolism of their hosts. Cells with an altered metabolism produce particular profiles of biomolecules, which are different from those of healthy cells. Such differences may be detected by olfaction. Historically, physicians used olfactory cues to diagnose sickness by smelling the breath or the urine of patients. However, other species have been shown to possess excellent olfactory abilities. Dogs, for instance, have been frequently used as biodetectors of human diseases, including cancer, viral and bacterial infections. Other mammalian species, such as rats, have been trained to perform similar tasks, but their disease detection abilities remain poorly explored. Here, we focus on the overlooked potential of invertebrate species and we review the current literature on olfactory detection of diseases by these animals. We discuss the possible advantages of exploring further the abilities of invertebrates as detection tools for human disease.
Collapse
|
3
|
Orlando CG, Possell M, Price C, Banks PB, Mercorelli L, McArthur C. A new conceptual and quantitative approach to exploring and defining potential open-access olfactory information. THE NEW PHYTOLOGIST 2022; 236:1605-1619. [PMID: 35975694 PMCID: PMC9826502 DOI: 10.1111/nph.18432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
All organisms emit odour, providing 'open-access' olfactory information for any receiver with the right sensory apparatus. Characterizing open-access information emitted by groups of organisms, such as plant species, provides the means to answer significant questions about ecological interactions and their evolution. We present a new conceptual framework defining information reliability and a practical method to characterize and recover information from amongst olfactory noise. We quantified odour emissions from two tree species, one focal group and one outgroup, to demonstrate our approach using two new R statistical functions. We explore the consequences of relaxing or tightening criteria defining information and, from thousands of odour combinations, we identify and quantify those few likely to be informative. Our method uses core general principles characterizing information while incorporating knowledge of how receivers detect and discriminate odours. We can now map information in consistency-precision reliability space, explore the concept of information, and test information-noise boundaries, and between cues and signals.
Collapse
Affiliation(s)
| | - Malcolm Possell
- School of Life and Environmental SciencesThe University of SydneySydneyNSW2006Australia
| | - Catherine Price
- School of Life and Environmental SciencesThe University of SydneySydneyNSW2006Australia
| | - Peter B. Banks
- School of Life and Environmental SciencesThe University of SydneySydneyNSW2006Australia
| | - Louis Mercorelli
- The Sydney Informatics HubThe University of SydneySydneyNSW2006Australia
| | - Clare McArthur
- School of Life and Environmental SciencesThe University of SydneySydneyNSW2006Australia
| |
Collapse
|
4
|
Schulte BA, LaDue CA. The Chemical Ecology of Elephants: 21st Century Additions to Our Understanding and Future Outlooks. Animals (Basel) 2021; 11:2860. [PMID: 34679881 PMCID: PMC8532676 DOI: 10.3390/ani11102860] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 01/19/2023] Open
Abstract
Chemical signals are the oldest and most ubiquitous means of mediating intra- and interspecific interactions. The three extant species of elephants, the Asian elephant and the two African species, savanna and forest share sociobiological patterns in which chemical signals play a vital role. Elephants emit secretions and excretions and display behaviors that reveal the importance of odors in their interactions. In this review, we begin with a brief introduction of research in elephant chemical ecology leading up to the 21st century, and then we summarize the body of work that has built upon it and occurred in the last c. 20 years. The 21st century has expanded our understanding on elephant chemical ecology, revealing their use of odors to detect potential threats and make dietary choices. Furthermore, complementary in situ and ex situ studies have allowed the careful observations of captive elephants to be extended to fieldwork involving their wild counterparts. While important advances have been made in the 21st century, further work should investigate the roles of chemical signaling in elephants and how these signals interact with other sensory modalities. All three elephant species are threatened with extinction, and we suggest that chemical ecology can be applied for targeted conservation efforts.
Collapse
Affiliation(s)
- Bruce A. Schulte
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101, USA
| | - Chase A. LaDue
- Department of Environmental Science and Policy, George Mason University, Fairfax, VA 22030, USA;
| |
Collapse
|
5
|
Schulz AK, Ning Wu J, Ha SYS, Kim G, Braccini Slade S, Rivera S, Reidenberg JS, Hu DL. Suction feeding by elephants. J R Soc Interface 2021; 18:20210215. [PMID: 34062103 DOI: 10.1098/rsif.2021.0215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Despite having a trunk that weighs over 100 kg, elephants mainly feed on lightweight vegetation. How do elephants manipulate such small items? In this experimental and theoretical investigation, we filmed elephants at Zoo Atlanta showing that they can use suction to grab food, performing a behaviour that was previously thought to be restricted to fishes. We use a mathematical model to show that an elephant's nostril size and lung capacity enables them to grab items using comparable pressures as the human lung. Ultrasonographic imaging of the elephant sucking viscous fluids show that the elephant's nostrils dilate up to [Formula: see text] in radius, which increases the nasal volume by [Formula: see text]. Based on the pressures applied, we estimate that the elephants can inhale at speeds of over 150 m s-1, nearly 30 times the speed of a human sneeze. These high air speeds enable the elephant to vacuum up piles of rutabaga cubes as well as fragile tortilla chips. We hope these findings inspire further work in suction-based manipulation in both animals and robots.
Collapse
Affiliation(s)
- Andrew K Schulz
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jia Ning Wu
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Sung Yeon Sara Ha
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Greena Kim
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | - Joy S Reidenberg
- Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029-6574, USA
| | - David L Hu
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
6
|
Agranat AJ, Kabessa Y, Shemer B, Shpigel E, Schwartsglass O, Atamneh L, Uziel Y, Ejzenberg M, Mizrachi Y, Garcia Y, Perepelitsa G, Belkin S. An autonomous bioluminescent bacterial biosensor module for outdoor sensor networks, and its application for the detection of buried explosives. Biosens Bioelectron 2021; 185:113253. [PMID: 33930754 DOI: 10.1016/j.bios.2021.113253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/26/2021] [Accepted: 04/12/2021] [Indexed: 11/19/2022]
Abstract
We describe a miniaturized field-deployable biosensor module, designed to function as an element in a sensor network for standoff monitoring and mapping of environmental hazards. The module harbors live bacterial sensor cells, genetically engineered to emit a bioluminescent signal in the presence of preselected target materials, which act as its core sensing elements. The module, which detects and processes the biological signal, composes a digital record that describes its findings, and can be transmitted to a remote receiver. The module is an autonomous self-contained unit that can function either as a standalone sensor, or as a node in a sensor network. The biosensor module can potentially be used for detecting any target material to which the sensor cells were engineered to respond. The module described herein was constructed to detect the presence of buried landmines underneath its footprint. The demonstrated detection sensitivity was 0.25 mg 2,4-dinitrotoluene per Kg soil.
Collapse
Affiliation(s)
- Aharon J Agranat
- Department of Applied Physics and the Brojde Center for Innovative Engineering and Computer Science, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Yossef Kabessa
- Department of Applied Physics and the Brojde Center for Innovative Engineering and Computer Science, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
| | - Benjamin Shemer
- Department of Plant & Environmental Sciences, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Etai Shpigel
- Department of Plant & Environmental Sciences, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Offer Schwartsglass
- Department of Applied Physics and the Brojde Center for Innovative Engineering and Computer Science, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Loay Atamneh
- Department of Applied Physics and the Brojde Center for Innovative Engineering and Computer Science, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Yonatan Uziel
- Department of Applied Physics and the Brojde Center for Innovative Engineering and Computer Science, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Meir Ejzenberg
- Department of Applied Physics and the Brojde Center for Innovative Engineering and Computer Science, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Yosef Mizrachi
- Department of Applied Physics and the Brojde Center for Innovative Engineering and Computer Science, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Yehudit Garcia
- Department of Applied Physics and the Brojde Center for Innovative Engineering and Computer Science, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Galina Perepelitsa
- Department of Applied Physics and the Brojde Center for Innovative Engineering and Computer Science, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Shimshon Belkin
- Department of Plant & Environmental Sciences, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| |
Collapse
|
7
|
Spencer TL, Clark A, Fonollosa J, Virot E, Hu DL. Sniffing speeds up chemical detection by controlling air-flows near sensors. Nat Commun 2021; 12:1232. [PMID: 33623005 PMCID: PMC7902652 DOI: 10.1038/s41467-021-21405-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 01/11/2021] [Indexed: 11/09/2022] Open
Abstract
Most mammals sniff to detect odors, but little is known how the periodic inhale and exhale that make up a sniff helps to improve odor detection. In this combined experimental and theoretical study, we use fluid mechanics and machine olfaction to rationalize the benefits of sniffing at different rates. We design and build a bellows and sensor system to detect the change in current as a function of odor concentration. A fast sniff enables quick odor recognition, but too fast a sniff makes the amplitude of the signal comparable to noise. A slow sniff increases signal amplitude but delays its transmission. This trade-off may inspire the design of future devices that can actively modulate their sniffing frequency according to different odors.
Collapse
Affiliation(s)
- Thomas L Spencer
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Adams Clark
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jordi Fonollosa
- B2SLab, Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Universitat Politècnica de Catalunya, 08028, Barcelona, Spain.,Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.,Institut de Recerca Sant Joan de Déu, 08950, Esplugues de Llobregat, Spain
| | - Emmanuel Virot
- John A, Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, MA, USA
| | - David L Hu
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA. .,School of Biology, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
8
|
Valenta K, Schmitt MH, Ayasse M, Nevo O. The sensory ecology of fear: African elephants show aversion to olfactory predator signals. CONSERVATION SCIENCE AND PRACTICE 2020. [DOI: 10.1111/csp2.333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Kim Valenta
- Department of Anthropology University of Florida Gainesville Florida USA
| | - Melissa H. Schmitt
- Department of Ecology Evolution and Marine Biology University of California Santa Barbara Santa Barbara California USA
- South African Environmental Observation Network, Ndlovu Node Phalaborwa South Africa
| | - Manfred Ayasse
- Ulm University, Institute of Evolutionary Ecology and Conservation Genomics Ulm Germany
| | - Omer Nevo
- Ulm University, Institute of Evolutionary Ecology and Conservation Genomics Ulm Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Friedrich Schiller University Jena, Institute of Biodiversity Jena Germany
| |
Collapse
|
9
|
Janiak MC, Pinto SL, Duytschaever G, Carrigan MA, Melin AD. Genetic evidence of widespread variation in ethanol metabolism among mammals: revisiting the 'myth' of natural intoxication. Biol Lett 2020; 16:20200070. [PMID: 32343936 DOI: 10.1098/rsbl.2020.0070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Humans have a long evolutionary relationship with ethanol, pre-dating anthropogenic sources, and possess unusually efficient ethanol metabolism, through a mutation that evolved in our last common ancestor with African great apes. Increased exposure to dietary ethanol through fermenting fruits and nectars is hypothesized to have selected for this in our lineage. Yet, other mammals have frugivorous and nectarivorous diets, raising the possibility of natural ethanol exposure and adaptation in other taxa. We conduct a comparative genetic analysis of alcohol dehydrogenase class IV (ADH IV) across mammals to provide insight into their evolutionary history with ethanol. We find genetic variation and multiple pseudogenization events in ADH IV, indicating the ability to metabolize ethanol is variable. We suggest that ADH enzymes are evolutionarily plastic and show promise for revealing dietary adaptation. We further highlight the derived condition of humans and draw attention to problems with modelling the physiological responses of other mammals on them, a practice that has led to potentially erroneous conclusions about the likelihood of natural intoxication in wild animals. It is a fallacy to assume that other animals share our metabolic adaptations, rather than taking into consideration each species' unique physiology.
Collapse
Affiliation(s)
- Mareike C Janiak
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr NW, Calgary AB T2N 1N4, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Swellan L Pinto
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr NW, Calgary AB T2N 1N4, Canada
| | - Gwen Duytschaever
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr NW, Calgary AB T2N 1N4, Canada
| | | | - Amanda D Melin
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr NW, Calgary AB T2N 1N4, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Department of Medical Genetics, University of Calgary, AB, Canada
| |
Collapse
|
10
|
Elephant behavior toward the dead: A review and insights from field observations. Primates 2019; 61:119-128. [DOI: 10.1007/s10329-019-00766-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022]
|
11
|
McArthur C, Finnerty PB, Schmitt MH, Shuttleworth A, Shrader AM. Plant volatiles are a salient cue for foraging mammals: elephants target preferred plants despite background plant odour. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Liu R, Li Z, Huang Z, Li K, Lv Y. Biosensors for explosives: State of art and future trends. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Abstract
Animals often face situations that require making decisions based on quantity. Many species, including humans, rely on an ability to differentiate between more and less to make judgments about social relationships, territories, and food. Habitat-related choices require animals to decide between areas with greater and lesser quantities of food while also weighing relative risk of danger based on group size and predation risk. Such decisions can have a significant impact on survival for an animal and its social group. Many species have demonstrated a capacity for differentiating between two quantities of food and choosing the greater of the two, but they have done so based on information provided primarily in the visual domain. Using an object-choice task, we demonstrate that elephants are able to discriminate between two distinct quantities using their olfactory sense alone. We presented the elephants with choices between two containers of sunflower seeds. The relationship between the amount of seeds within the two containers was represented by 11 different ratios. Overall, the elephants chose the larger quantity of food by smelling for it. The elephants' performance was better when the relative difference between the quantities increased and worse when the ratio between the quantities of food increased, but was not affected by the overall quantity of food presented. These results are consistent with the performance of animals tested in the visual domain. This work has implications for the design of future, cross-phylogenetic cognitive comparisons that ought to account for differences in how animals sense their world.
Collapse
|
14
|
Prada PA, Furton KG. Birds and Dogs: Toward a Comparative Perspective on Odor Use and Detection. Front Vet Sci 2018; 5:188. [PMID: 30155472 PMCID: PMC6103309 DOI: 10.3389/fvets.2018.00188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/24/2018] [Indexed: 11/13/2022] Open
Abstract
While canines are generally considered the gold standard for olfactory detection in many situations other animals provide alternatives and offer a unique opportunity to compare biological detection capabilities. Critical components in successfully studying biological detectors is not only understanding their anatomical evidence for olfaction, but also, understanding the life history of the species to better direct the potential of an olfactory task. Here, a brief overview is provided presenting a comparative viewpoint on the use of odors by birds and canines over a range of unique detection scenarios. Similar to canines, birds use olfactory information in various natural oriented contexts where odors are dispersed over a widespread spatial range. Comparing these two distinctive animal models, and current trends in physiological and behavioral assessments may open the door for novel uses of birds as biological sensors in forensic applications.
Collapse
Affiliation(s)
- Paola A Prada
- Department of Environmental Toxicology, Institute for Forensic Science, Texas Tech University, Lubbock, TX, United States
| | - Kenneth G Furton
- Department of Chemistry and Biochemistry, International Forensic Research Institute, Florida International University, Miami, FL, United States
| |
Collapse
|
15
|
Mella VSA, Possell M, Troxell-Smith SM, McArthur C. Visit, consume and quit: Patch quality affects the three stages of foraging. J Anim Ecol 2018; 87:1615-1626. [PMID: 29995984 DOI: 10.1111/1365-2656.12882] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/13/2018] [Indexed: 02/01/2023]
Abstract
Foraging is a three-stage process during which animals visit patches, consume food and quit. Foraging theory exploring relative patch quality has mostly focused on patch use and quitting decisions, ignoring the first crucial step for any forager: finding food. Yet, the decision to visit a patch is just as important as the decision to quit, as quitting theories can only be used if animals visit patches in the first place. Therefore, to better understand the foraging process and predict its outcomes, it is necessary to explore its three stages together. We used the common brushtail possum (Trichosurus vulpecula) as a model to investigate foraging decisions in response to food varying in quality. In particular, we tested whether patch nutritional quality affected the following: (1) patch visits; (2) behaviours at the patch during a foraging visit; and (3) patch quitting decisions (quantified using giving up density-GUD). Free-ranging possums were presented with diets varying in nitrogen content and concomitantly volatile organic compound (VOC) composition at feeding stations in the wild. We found that possums were able to distinguish between different quality foods from afar, despite the location of the diets changed daily. Possums used VOC (i.e. odour cues) emitted by the diets to find and select patches from a distance. High-quality diets with higher protein and lower fibre were visited more often and for longer. Possums spent more time foraging on diets high in nutritional content, resulting in lower GUDs. Our study provides important quantitative evidence that foraging efficiency plays out during all the three stages of the foraging process (i.e. visit, consume and quit), and demonstrates the significance of considering all these stages together in future studies and foraging models. Sensory cues such as food odours play a critical role in helping foragers, including mammalian herbivores, find high-quality food. This allows foragers to make quick, accurate and important decisions about food patches well before patch quitting decisions come into play.
Collapse
Affiliation(s)
- Valentina S A Mella
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Malcolm Possell
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Sandra M Troxell-Smith
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois.,Department of Biological Sciences, Oakland University, Rochester, Minnesota
| | - Clare McArthur
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
16
|
Schmitt MH, Shuttleworth A, Ward D, Shrader AM. African elephants use plant odours to make foraging decisions across multiple spatial scales. Anim Behav 2018. [DOI: 10.1016/j.anbehav.2018.04.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
17
|
African elephants (Loxodonta africana) display remarkable olfactory acuity in human scent matching to sample performance. Appl Anim Behav Sci 2018. [DOI: 10.1016/j.applanim.2017.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Finnerty PB, Stutz RS, Price CJ, Banks PB, McArthur C. Leaf odour cues enable non‐random foraging by mammalian herbivores. J Anim Ecol 2017; 86:1317-1328. [DOI: 10.1111/1365-2656.12748] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/09/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Patrick B. Finnerty
- School of Life & Environmental SciencesThe University of Sydney Sydney NSW Australia
| | - Rebecca S. Stutz
- School of Life & Environmental SciencesThe University of Sydney Sydney NSW Australia
- Department of ZoologyStockholm University Stockholm Sweden
| | - Catherine J. Price
- School of Life & Environmental SciencesThe University of Sydney Sydney NSW Australia
| | - Peter B. Banks
- School of Life & Environmental SciencesThe University of Sydney Sydney NSW Australia
| | - Clare McArthur
- School of Life & Environmental SciencesThe University of Sydney Sydney NSW Australia
| |
Collapse
|
19
|
Miller AK, Maritz B, McKay S, Glaudas X, Alexander GJ. An ambusher's arsenal: chemical crypsis in the puff adder (Bitis arietans). Proc Biol Sci 2017; 282:20152182. [PMID: 26674950 DOI: 10.1098/rspb.2015.2182] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ambush foragers use a hunting strategy that places them at risk of predation by both visual and olfaction-oriented predators. Resulting selective pressures have driven the evolution of impressive visual crypsis in many ambushing species, and may have led to the development of chemical crypsis. However, unlike for visual crypsis, few studies have attempted to demonstrate chemical crypsis. Field observations of puff adders (Bitis arietans) going undetected by several scent-orientated predator and prey species led us to investigate chemical crypsis in this ambushing species. We trained dogs (Canis familiaris) and meerkats (Suricata suricatta) to test whether a canid and a herpestid predator could detect B. arietans using olfaction. We also tested for chemical crypsis in five species of active foraging snakes, predicted to be easily detectable. Dogs and meerkats unambiguously indicated active foraging species, but failed to correctly indicate puff adder, confirming that B. arietans employs chemical crypsis. This is the first demonstration of chemical crypsis anti-predatory behaviour, though the phenomenon may be widespread among ambushers, especially those that experience high mortality rates owing to predation. Our study provides additional evidence for the existence of an ongoing chemically mediated arms race between predator and prey species.
Collapse
Affiliation(s)
- Ashadee Kay Miller
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa, 2050
| | - Bryan Maritz
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa, 2050 Department of Biodiversity and Conservation Biology, University of the Western Cape, Bellville, South Africa, 7535
| | - Shannon McKay
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa, 2050
| | - Xavier Glaudas
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa, 2050
| | - Graham J Alexander
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa, 2050
| |
Collapse
|