1
|
Gendelev L, Taylor J, Myers-Turnbull D, Chen S, McCarroll MN, Arkin MR, Kokel D, Keiser MJ. Deep phenotypic profiling of neuroactive drugs in larval zebrafish. Nat Commun 2024; 15:9955. [PMID: 39551797 PMCID: PMC11570628 DOI: 10.1038/s41467-024-54375-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/06/2024] [Indexed: 11/19/2024] Open
Abstract
Behavioral larval zebrafish screens leverage a high-throughput small molecule discovery format to find neuroactive molecules relevant to mammalian physiology. We screen a library of 650 central nervous system active compounds in high replicate to train deep metric learning models on zebrafish behavioral profiles. The machine learning initially exploited subtle artifacts in the phenotypic screen, necessitating a complete experimental re-run with rigorous physical well-wise randomization. These large matched phenotypic screening datasets (initial and well-randomized) provide a unique opportunity to quantify and understand shortcut learning in a full-scale, real-world drug discovery dataset. The final deep metric learning model substantially outperforms correlation distance-the canonical way of computing distances between profiles-and generalizes to an orthogonal dataset of diverse drug-like compounds. We validate predictions by prospective in vitro radio-ligand binding assays against human protein targets, achieving a hit rate of 58% despite crossing species and chemical scaffold boundaries. These neuroactive compounds exhibit diverse chemical scaffolds, demonstrating that zebrafish phenotypic screens combined with metric learning achieve robust scaffold hopping capabilities.
Collapse
Affiliation(s)
- Leo Gendelev
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Jack Taylor
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- UCSF Weill Institute for Neurosciences Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Douglas Myers-Turnbull
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Steven Chen
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Matthew N McCarroll
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Michelle R Arkin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - David Kokel
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA.
| | - Michael J Keiser
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA.
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA.
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA.
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
Sneddon LU, Schroeder P, Roque A, Finger-Baier K, Fleming A, Tinman S, Collet B. Pain management in zebrafish : Report from a FELASA Working Group. Lab Anim 2024; 58:261-276. [PMID: 38051824 PMCID: PMC11264547 DOI: 10.1177/00236772231198733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/15/2023] [Indexed: 12/07/2023]
Abstract
Empirical evidence suggests fishes meet the criteria for experiencing pain beyond a reasonable doubt and zebrafish are being increasingly used in studies of pain and nociception. Zebrafish are adopted across a wide range of experimental fields and their use is growing particularly in biomedical studies. Many laboratory procedures in zebrafish involve tissue damage and this may give rise to pain. Therefore, this FELASA Working Group reviewed the evidence for pain in zebrafish, the indicators used to assess pain and the impact of a range of drugs with pain-relieving properties. We report that there are several behavioural indicators that can be used to determine pain, including reduced activity, space use and distance travelled. Pain-relieving drugs prevent these responses, and we highlight the dose and administration route. To minimise or avoid pain, several refinements are suggested for common laboratory procedures. Finally, practical suggestions are made for the management and alleviation of pain in laboratory zebrafish, including recommendations for analgesia. Pain management is an important refinement in experimental animal use and so our report has the potential to improve zebrafish welfare during and after invasive procedures in laboratories across the globe.
Collapse
Affiliation(s)
- Lynne U Sneddon
- Department of Biological and Environmental Sciences, University of Gothenburg, Sweden
| | - Paul Schroeder
- Red Kite Veterinary Consultants, 30 Upper High Street, Thame, Oxon, OX9 3EZ, UK
| | | | - Karin Finger-Baier
- Max Planck Institute of Neurobiology (now: Max Planck Institute for Biological Intelligence), Department Genes – Circuits – Behaviour, Martinsried, Germany
| | - Angeleen Fleming
- Department of Physiology, Development and Neuroscience, University of Cambridge, UK
| | - Simon Tinman
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University Ramat Gan, Israel
| | | |
Collapse
|
3
|
Lucon-Xiccato T, Gatto E, Fontana CM, Bisazza A. Quantity discrimination in newly hatched zebrafish suggests hardwired numerical abilities. Commun Biol 2023; 6:247. [PMID: 36959336 PMCID: PMC10036331 DOI: 10.1038/s42003-023-04595-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 02/14/2023] [Indexed: 03/25/2023] Open
Abstract
An intriguing hypothesis to explain the ubiquity of numerical abilities is that all vertebrates are born with hardwired neuronal networks for processing numbers. To date, only studies on human foetuses have clearly supported this hypothesis. Zebrafish hatch 48-72 h after fertilisation with an embryonic nervous system, providing a unique opportunity for investigating this hypothesis. Here, we demonstrated that zebrafish larvae exposed to vertical bars at birth acquired an attraction for bar stimuli and we developed a numerical discrimination task based on this preference. When tested with a series of discriminations of increasing difficulty (1vs.4, 1vs.3, 1vs.2, and 2vs.4 bars), zebrafish larvae reliably selected the greater numerosity. The preference was significant when stimuli were matched for surface area, luminance, density, and convex hull, thereby suggesting a true capacity to process numerical information. Converging results from two phylogenetically distant species suggests that numerical abilities might be a hallmark feature of vertebrates' brains.
Collapse
Affiliation(s)
- Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| | - Elia Gatto
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | | | - Angelo Bisazza
- Department of General Psychology, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
| |
Collapse
|
4
|
Berg CC, Cox S, Mulreany L, Wolf K, Anderson K. PHARMACOKINETICS OF MELOXICAM AFTER SINGLE ORAL AND INTRAMUSCULAR ADMINISTRATION IN CHINA ROCKFISH ( SEBASTES NEBULOSUS). J Zoo Wildl Med 2023; 54:8-15. [PMID: 36971623 DOI: 10.1638/2022-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2022] [Indexed: 03/29/2023] Open
Abstract
Fish species are important for various purposes including aquaculture stock and display animals, but there are significant gaps in the medical knowledge regarding pharmacological parameters and effective pain management. Meloxicam is a nonsteroidal anti-inflammatory drug (NSAID) that has been studied in few teleost species and with several administration routes. However, these species were typically freshwater or euryhaline fish, and evaluation in marine species is lacking. The pharmacokinetic properties of meloxicam were determined in nine adult China rockfish (Sebastes nebulosus), presumed healthy based on physical examination and benign medical histories. Based on a pilot study, China rockfish were given 1 mg/kg meloxicam via IM injection in the epaxial musculature, and, after a 48-h washout period, 1 mg/kg meloxicam was given by PO gavage. Blood samples were collected from the caudal vein at baseline and at nine time intervals over a 48-h time period following administration of meloxicam. Plasma meloxicam concentrations were determined by reverse phase high-performance liquid chromatography, and noncompartmental analysis was performed. The mean peak plasma concentration after IM injection was 4.9 µg/ml, and the mean terminal half-life was 5.0 h. The mean peak plasma concentration after PO administration was 0.07 µg/ml. Based on these findings, IM injected meloxicam reaches plasma levels consistent with therapeutic concentrations in select mammals, and peak levels were maintained for ≤12 h. Single-dose PO administration failed to achieve similar concentrations, and clinical practicality is unknown. Further studies evaluating NSAID multidose regimes and their pharmacodynamic effects may provide additional dosing information.
Collapse
Affiliation(s)
- Colin C Berg
- Point Defiance Zoo & Aquarium, Tacoma, WA 98407, USA,
| | - Sherry Cox
- University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996, USA
| | | | - Karen Wolf
- Point Defiance Zoo & Aquarium, Tacoma, WA 98407, USA
| | | |
Collapse
|
5
|
Good Anesthesia Practice for Fish and Other Aquatics. BIOLOGY 2022; 11:biology11091355. [PMID: 36138834 PMCID: PMC9495490 DOI: 10.3390/biology11091355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/20/2022]
Abstract
Simple Summary It is vitally important that fish and other aquatic animals are not at risk of pain, suffering, or distress when they are used in procedures. In addition, many procedures involve taking them out of water, which can be very stressful for them as many species cannot breathe out of water. Proper use of anesthesia can reduce the potential suffering for the fish. However, anesthesia must be performed skillfully to achieve the desired effect and to avoid adverse effects. This paper will focus on important factors to support vital functions in anesthetized animals and will include factors to consider before, during, and after anesthesia. I suggest that these are good anesthetic practices for aquatic animals. Abstract Fish and other aquatic animals represent a significant number of species with diverse physiology, size, and housing condition needs. Anesthesia may be necessary for several husbandry procedures as well as treatment of diseases, surgery, or experimental procedures. Choice of drugs and detailed procedures for anesthesia must be adapted to the species in question—there is no “one size fits all” solution. However, there are some basic principles that apply for good anesthetic practice of all animals. These principles include the preparations of animals, personnel, facilities and equipment, monitoring animals under anesthesia, as well as post-anesthetic care to be sure that animals are not lost in the recovery phase. Good anesthesia practice also includes the competence and commitment of personnel involved. Based on professional judgement, key factors will be the focus of this text.
Collapse
|
6
|
Reid CH, Patrick PH, Rytwinski T, Taylor JJ, Willmore WG, Reesor B, Cooke SJ. An updated review of cold shock and cold stress in fish. JOURNAL OF FISH BIOLOGY 2022; 100:1102-1137. [PMID: 35285021 DOI: 10.1111/jfb.15037] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/23/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Temperature is critical in regulating virtually all biological functions in fish. Low temperature stress (cold shock/stress) is an often-overlooked challenge that many fish face as a result of both natural events and anthropogenic activities. In this study, we present an updated review of the cold shock literature based on a comprehensive literature search, following an initial review on the subject by M.R. Donaldson and colleagues, published in a 2008 volume of this journal. We focus on how knowledge on cold shock and fish has evolved over the past decade, describing advances in the understanding of the generalized stress response in fish under cold stress, what metrics may be used to quantify cold stress and what knowledge gaps remain to be addressed in future research. We also describe the relevance of cold shock as it pertains to environmental managers, policymakers and industry professionals, including practical applications of cold shock. Although substantial progress has been made in addressing some of the knowledge gaps identified a decade ago, other topics (e.g., population-level effects and interactions between primary, secondary and tertiary stress responses) have received little or no attention despite their significance to fish biology and thermal stress. Approaches using combinations of primary, secondary and tertiary stress responses are crucial as a research priority to better understand the mechanisms underlying cold shock responses, from short-term physiological changes to individual- and population-level effects, thereby providing researchers with better means of quantifying cold shock in laboratory and field settings.
Collapse
Affiliation(s)
- Connor H Reid
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | | | - Trina Rytwinski
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, Ontario, Canada
- Canadian Centre for Evidence-Based Conservation, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| | - Jessica J Taylor
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, Ontario, Canada
- Canadian Centre for Evidence-Based Conservation, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| | | | | | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
7
|
Leyden C, Brüggemann T, Debinski F, Simacek CA, Dehmelt FA, Arrenberg AB. Efficacy of Tricaine (MS-222) and Hypothermia as Anesthetic Agents for Blocking Sensorimotor Responses in Larval Zebrafish. Front Vet Sci 2022; 9:864573. [PMID: 35419446 PMCID: PMC8996001 DOI: 10.3389/fvets.2022.864573] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/28/2022] [Indexed: 12/12/2022] Open
Abstract
Tricaine, or MS-222, is the most commonly used chemical anesthetic in zebrafish research. It is thought to act via blocking voltage-gated sodium channels, though its mechanism of action, particularly at the neuronal level, is not yet fully understood. Here, we first characterized the effects of tricaine on both body balance and touch responses in freely swimming animals, before determining its effect on the neural activity underlying the optokinetic response at the level of motion perception, sensorimotor signaling and the generation of behavior in immobilized animals. We found that the standard dose for larvae (168 mg/L) induced loss of righting reflex within 30 seconds, which then recovered within 3 minutes. Optokinetic behavior recovered within 15 minutes. Calcium imaging showed that tricaine interferes with optokinetic behavior by interruption of the signals between the pretectum and hindbrain. The motion sensitivity indices of identified sensory neurons were unchanged in larvae exposed to tricaine, though fewer such neurons were detected, leaving a small population of active sensory neurons. We then compared tricaine with gradual cooling, a potential non-chemical alternative method of anesthesia. While neuronal tuning appeared to be affected in a similar manner during gradual cooling, gradual cooling induced a surge in calcium levels in both the pretectum and hindbrain. This calcium surge, alongside a drop in heartrate, is potentially associated with harmful changes in physiology and suggests that tricaine is a better anesthetic agent than gradual cooling for zebrafish laboratory research.
Collapse
Affiliation(s)
- Claire Leyden
- Werner Reichardt Centre for Integrative Neuroscience and Institute for Neurobiology, University of Tuebingen, Tuebingen, Germany.,Graduate Training Centre of Neuroscience, University of Tuebingen, Tuebingen, Germany
| | - Timo Brüggemann
- Werner Reichardt Centre for Integrative Neuroscience and Institute for Neurobiology, University of Tuebingen, Tuebingen, Germany
| | - Florentyna Debinski
- Werner Reichardt Centre for Integrative Neuroscience and Institute for Neurobiology, University of Tuebingen, Tuebingen, Germany
| | - Clara A Simacek
- Werner Reichardt Centre for Integrative Neuroscience and Institute for Neurobiology, University of Tuebingen, Tuebingen, Germany
| | - Florian A Dehmelt
- Werner Reichardt Centre for Integrative Neuroscience and Institute for Neurobiology, University of Tuebingen, Tuebingen, Germany
| | - Aristides B Arrenberg
- Werner Reichardt Centre for Integrative Neuroscience and Institute for Neurobiology, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
8
|
Mocho JP, Lang F, Valentin G, Bedu S, McKimm R, Ramos J, Saavedra Torres Y, Wheatley SE, Higgins J, Millington ME, Lundegaard PR, Chamorro Valverde R, Jenčič V, von Krogh K. A Multi-Site Assessment of Anesthetic Overdose, Hypothermic Shock, and Electrical Stunning as Methods of Euthanasia for Zebrafish ( Danio rerio) Embryos and Larvae. BIOLOGY 2022; 11:546. [PMID: 35453745 PMCID: PMC9027676 DOI: 10.3390/biology11040546] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022]
Abstract
Euthanasia in zebrafish (Danio rerio) younger than 5 days post fertilization (dpf) is poorly described in the literature, and standardized protocols are lacking, most likely because larvae not capable of independent feeding are often not protected under national legislations. We assessed the euthanasia efficacy in laboratories in different countries of a one hour anesthetic overdose immersion with buffered lidocaine hydrochloride (1 g/L, with or without 50 mL/L of ethanol), buffered tricaine (1 g/L), clove oil (0.1%), benzocaine (1 g/L), or 2-phenoxyethanol (3 mL/L), as well as the efficacy of hypothermic shock (one hour immersion) and electrical stunning (for one minute), on zebrafish at <12 h post fertilization (hpf), 24 hpf, and 4 dpf. Based on the survival/recovery rates 24 h after treatment, the most effective methods were clove oil, lidocaine with ethanol, and electrical stunning. For 4 dpf larvae, signs of aversion during treatment demonstrated that all anesthetics, except lidocaine, induced aversive behavior. Therefore, the most suited euthanasic treatment was lidocaine hydrochloride 1 g/L, buffered with 2 g/L of sodium bicarbonate and mixed with 50 mL/L of ethanol, which euthanized both embryos and larvae in an efficient and stress-free manner. Electrical stunning also euthanized embryos and larvae efficiently and without signs of aversion; this method needs further assessment in other laboratories to draw firm conclusions.
Collapse
Affiliation(s)
| | - Florian Lang
- Center of PhenoGenomics, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland; (F.L.); (G.V.)
| | - Guillaume Valentin
- Center of PhenoGenomics, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland; (F.L.); (G.V.)
| | - Sébastien Bedu
- Zebrafish Neurogenetics Unit, Institut Pasteur, UMR3738, CNRS, 75015 Paris, France;
| | - Robin McKimm
- Electro Fishing Services Ltd., Donaghadee BT21 0LN, UK;
| | - Juan Ramos
- Cellular Biology, Physiology and Immunology Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
| | | | - Sarah E. Wheatley
- The Francis Crick Institute, London NW1 1AT, UK; (Y.S.T.); (S.E.W.); (J.H.); (M.E.M.)
| | - Joseph Higgins
- The Francis Crick Institute, London NW1 1AT, UK; (Y.S.T.); (S.E.W.); (J.H.); (M.E.M.)
| | - Mollie E. Millington
- The Francis Crick Institute, London NW1 1AT, UK; (Y.S.T.); (S.E.W.); (J.H.); (M.E.M.)
| | - Pia Rengtved Lundegaard
- Department of Biomedical sciences, Faculty of Health and Medical sciences, University of Copenhagen, 1017 Copenhagen, Denmark;
| | - Rubén Chamorro Valverde
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas, 36208 Vigo, Spain;
| | - Vlasta Jenčič
- Institute of Pathology, Wild Animals, Fish and Bees, University of Ljubljana-Veterinary Faculty, 1000 Ljubljana, Slovenia;
| | | |
Collapse
|
9
|
Gusso D, Cruz FF, Fritsch PM, da Silva Gobbo MO, Morrone FB, Bonan CD. Pannexin channel 1, P2X7 receptors, and Dimethyl Sulfoxide mediate pain responses in zebrafish. Behav Brain Res 2022; 423:113786. [DOI: 10.1016/j.bbr.2022.113786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/19/2022] [Accepted: 02/01/2022] [Indexed: 12/15/2022]
|
10
|
de Abreu MS, Giacomini ACVV, Genario R, Demin KA, Amstislavskaya TG, Costa F, Rosemberg DB, Sneddon LU, Strekalova T, Soares MC, Kalueff AV. Understanding early-life pain and its effects on adult human and animal emotionality: Translational lessons from rodent and zebrafish models. Neurosci Lett 2022; 768:136382. [PMID: 34861343 DOI: 10.1016/j.neulet.2021.136382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 10/19/2022]
Abstract
Critical for organismal survival, pain evokes strong physiological and behavioral responses in various sentient species. Clinical and preclinical (animal) studies markedly increase our understanding of biological consequences of developmental (early-life) adversity, as well as acute and chronic pain. However, the long-term effects of early-life pain exposure on human and animal emotional responses remain poorly understood. Here, we discuss experimental models of nociception in rodents and zebrafish, and summarize mounting evidence of the role of early-life pain in shaping emotional traits later in life. We also call for further development of animal models to probe the impact of early-life pain exposure on behavioral traits, brain disorders and novel therapeutic treatments.
Collapse
Affiliation(s)
- Murilo S de Abreu
- Bioscreening Platform, School of Pharmacy, Southwest University, Chongqing, China; Bioscience Institute, University of Passo Fundo, Passo Fundo, RS, Brazil; Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA.
| | - Ana C V V Giacomini
- Bioscience Institute, University of Passo Fundo, Passo Fundo, RS, Brazil; Postgraduate Program in Environmental Sciences, University of Passo Fundo, Passo Fundo, RS, Brazil
| | - Rafael Genario
- Bioscience Institute, University of Passo Fundo, Passo Fundo, RS, Brazil
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medcial Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Granov Russian Scientific Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Tamara G Amstislavskaya
- Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| | - Fabiano Costa
- Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, Brazil; Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
| | - Denis B Rosemberg
- Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| | - Lynne U Sneddon
- University of Gothenburg, Department of Biological and Environmental Sciences, Gothenburg, Sweden
| | - Tatyana Strekalova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands; Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov 1st Moscow State Medical University, Moscow, Russia; Institute of General Pathology and Pathophysiology, Moscow, Russia; Department of Preventive Medicine, Maastricht Medical Center Annadal, Maastricht, Netherlands
| | - Marta C Soares
- CIBIO, Research Centre in Biodiversity and Genetic Resources, University of Porto, Campus Agrário de Vairão, Vairão, Portugal
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia; Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia.
| |
Collapse
|
11
|
Ohnesorge N, Heinl C, Lewejohann L. Current Methods to Investigate Nociception and Pain in Zebrafish. Front Neurosci 2021; 15:632634. [PMID: 33897350 PMCID: PMC8061727 DOI: 10.3389/fnins.2021.632634] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Pain is an unpleasant, negative emotion and its debilitating effects are complex to manage. Mammalian models have long dominated research on nociception and pain, but there is increasing evidence for comparable processes in fish. The need to improve existing pain models for drug research and the obligation for 3R refinement of fish procedures facilitated the development of numerous new assays of nociception and pain in fish. The zebrafish is already a well-established animal model in many other research areas like toxicity testing, as model for diseases or regeneration and has great potential in pain research, too. Methods of electrophysiology, molecular biology, analysis of reflexive or non-reflexive behavior and fluorescent imaging are routinely applied but it is the combination of these tools what makes the zebrafish model so powerful. Simultaneously, observing complex behavior in free-swimming larvae, as well as their neuronal activity at the cellular level, opens new avenues for pain research. This review aims to supply a toolbox for researchers by summarizing current methods to study nociception and pain in zebrafish. We identify treatments with the best algogenic potential, be it chemical, thermal or electric stimuli and discuss options of analgesia to counter effects of nociception and pain by opioids, non-steroidal anti-inflammatory drugs (NSAIDs) or local anesthetics. In addition, we critically evaluate these practices, identify gaps of knowledge and outline potential future developments.
Collapse
Affiliation(s)
- Nils Ohnesorge
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
| | - Céline Heinl
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
| | - Lars Lewejohann
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
12
|
Identification of Individual Zebrafish ( Danio rerio): A Refined Protocol for VIE Tagging Whilst Considering Animal Welfare and the Principles of the 3Rs. Animals (Basel) 2021; 11:ani11030616. [PMID: 33652779 PMCID: PMC7996851 DOI: 10.3390/ani11030616] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 02/20/2021] [Indexed: 12/16/2022] Open
Abstract
In aquatic ecology, studies have commonly employed a tagging technique known as visible implant elastomer (VIE). This method has not been widely adopted by the zebrafish research community and also lacks refinement with regard to animal welfare. The current paper introduces a new VIE tagging protocol, with the aim of improving existing tagging techniques by placing particular emphasis on the Three Rs. To improve animal welfare and fish survival, we added the use of an analgesic compound (lidocaine) through the marking procedure, followed by after-treatment with antiseptics (melaleuca, aloe vera, and PVP-I as active ingredients) to improve tissue regeneration and healing. The newly improved protocol has been quantitatively evaluated on different populations and age groups of zebrafish. This study will be useful to the scientific zebrafish community and to the wider field including biologist and aquarists, especially in consideration of animal welfare, where tagging techniques are considered as a potential noxious stimulus for fish.
Collapse
|
13
|
Ramos J, Balasch JC, Tort L. About Welfare and Stress in the Early Stages of Fish. Front Vet Sci 2021; 8:634434. [PMID: 33693043 PMCID: PMC7937697 DOI: 10.3389/fvets.2021.634434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/25/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- Juan Ramos
- Department Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, Bellaterra, Spain
| | - Joan Carles Balasch
- Department Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, Bellaterra, Spain
| | - Lluis Tort
- Department Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
14
|
Kelly JR, Benson SA. Inconsistent ethical regulation of larval zebrafish in research. JOURNAL OF FISH BIOLOGY 2020; 97:324-327. [PMID: 32445206 DOI: 10.1111/jfb.14405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Jeffrey R Kelly
- Department of Psychology, University of Tennessee Knoxville, Knoxville, Tennessee, USA
| | - Scott A Benson
- Department of Psychology, University of Tennessee Knoxville, Knoxville, Tennessee, USA
| |
Collapse
|
15
|
Thomson JS, Deakin AG, Cossins AR, Spencer JW, Young IS, Sneddon LU. Acute and chronic stress prevents responses to pain in zebrafish: evidence for stress-induced analgesia. ACTA ACUST UNITED AC 2020; 223:223/14/jeb224527. [PMID: 32699156 PMCID: PMC7391404 DOI: 10.1242/jeb.224527] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/10/2020] [Indexed: 12/31/2022]
Abstract
The state of an animal prior to the application of a noxious stimulus can have a profound effect on their nociceptive threshold and subsequent behaviour. In mammals, the presence of acute stress preceding a painful event can have an analgesic effect whereas the presence of chronic stress can result in hyperalgesia. While considerable research has been conducted on the ability of stress to modulate mammalian responses to pain, relatively little is known about fish. This is of particular concern given that zebrafish (Danio rerio) are an extensively used model organism subject to a wide array of invasive procedures where the level of stress prior to experimentation could pose a major confounding factor. This study, therefore, investigated the impact of both acute and chronic stress on the behaviour of zebrafish subjected to a potentially painful laboratory procedure, the fin clip. In stress-free individuals, those subjected to the fin clip spent more time in the bottom of the tank, had reduced swimming speeds and less complex swimming trajectories; however, these behavioural changes were absent in fin-clipped fish that were first subject to either chronic or acute stress, suggesting the possibility of stress-induced analgesia (SIA). To test this, the opioid antagonist naloxone was administered to fish prior to the application of both the stress and fin-clip procedure. After naloxone, acutely stressed fin-clipped zebrafish exhibited the same behaviours as stress-free fin-clipped fish. This indicates the presence of SIA and the importance of opioid signalling in this mechanism. As stress reduced nociceptive responses in zebrafish, this demonstrates the potential for an endogenous analgesic system akin to the mammalian system. Future studies should delineate the neurobiological basis of stress-induced analgesia in fish. Summary: Exposure of zebrafish to acute or chronic stress prior to fin clipping prevents behavioural changes normally seen after fin clip; naloxone treatment prevented this effect, demonstrating stress-induced analgesia.
Collapse
Affiliation(s)
- Jack S Thomson
- School of Environmental Sciences, University of Liverpool, Liverpool L69 3GP, UK
| | - Anthony G Deakin
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, UK.,Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Andrew R Cossins
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Joseph W Spencer
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, UK
| | - Iain S Young
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Lynne U Sneddon
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
16
|
|
17
|
Gallardo-Rodríguez J, Astuya-Villalón A, Avello V, Llanos-Rivera A, Krock B, Agurto-Muñoz C, Sánchez-Mirón A, García-Camacho F. Production of extracts with anaesthetic activity from the culture of Heterosigma akashiwo in pilot-scale photobioreactors. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Message R, Greenhough B. "But It's Just a Fish": Understanding the Challenges of Applying the 3Rs in Laboratory Aquariums in the UK. Animals (Basel) 2019; 9:E1075. [PMID: 31816968 PMCID: PMC6940918 DOI: 10.3390/ani9121075] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 01/26/2023] Open
Abstract
Adopting a social science perspective and qualitative methodology on the problem of laboratory fish welfare, this paper examines some underlying social factors and drivers that influence thinking, priorities and implementation of fish welfare initiatives and the 3Rs (Replacement, Reduction and Refinement) for fish. Drawing on original qualitative interviews with stakeholders, animal technologists and scientists who work with fish-especially zebrafish-to illustrate the case, this paper explores some key social factors influencing the take up of the 3Rs in this context. Our findings suggest the relevance of factors including ambient cultural perceptions of fish, disagreements about the evidence on fish pain and suffering, the discourse of regulators, and the experiences of scientists and animal technologists who develop and put the 3Rs into practice. The discussion is focused on the UK context, although the main themes will be pertinent around the world.
Collapse
Affiliation(s)
- Reuben Message
- School of Geography and the Environment, University of Oxford, Oxford OX1 2JD, UK;
| | | |
Collapse
|
19
|
van Reij RR, Joosten EA, van den Hoogen NJ. Dopaminergic neurotransmission and genetic variation in chronification of post-surgical pain. Br J Anaesth 2019; 123:853-864. [DOI: 10.1016/j.bja.2019.07.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/10/2019] [Accepted: 07/26/2019] [Indexed: 01/30/2023] Open
|
20
|
Abstract
In order to survive, animals must avoid injury and be able to detect potentially damaging stimuli via nociceptive mechanisms. If the injury is accompanied by a negative affective component, future behaviour should be altered and one can conclude the animal experienced the discomfort associated with pain. Fishes are the most successful vertebrate group when considering the number of species that have filled a variety of aquatic niches. The empirical evidence for nociception in fishes from the underlying molecular biology, neurobiology and anatomy of nociceptors through to whole animal behavioural responses is reviewed to demonstrate the evolutionary conservation of nociception and pain from invertebrates to vertebrates. Studies in fish have shown that the biology of the nociceptive system is strikingly similar to that found in mammals. Further, potentially painful events result in behavioural and physiological changes such as reduced activity, guarding behaviour, suspension of normal behaviour, increased ventilation rate and abnormal behaviours which are all prevented by the use of pain-relieving drugs. Fish also perform competing tasks less well when treated with a putative painful stimulus. Therefore, there is ample evidence to demonstrate that it is highly likely that fish experience pain and that pain-related behavioural changes are conserved across vertebrates. This article is part of the Theo Murphy meeting issue 'Evolution of mechanisms and behaviour important for pain'.
Collapse
|
21
|
Thomson JS, Al-Temeemy AA, Isted H, Spencer JW, Sneddon LU. Assessment of behaviour in groups of zebrafish (Danio rerio) using an intelligent software monitoring tool, the chromatic fish analyser. J Neurosci Methods 2019; 328:108433. [PMID: 31520651 DOI: 10.1016/j.jneumeth.2019.108433] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 02/01/2023]
Abstract
BACKGROUND Zebrafish (Danio rerio) are an increasingly popular model species within a variety of biomedical and neurobiological contexts. Researchers are required to prevent any negative states, such as pain, when using experimental animals to optimise fish welfare but analysis tools for zebrafish are lacking. NEW METHOD The chromatic fish analyser (CFA) is a computer-based monitoring system that has the potential to identify changes in fish behaviour via spatial chromatic analysis of video images. The CFA was used to monitor the behaviour of groups of six fish, where none, one, three or six fish were given a fin clip. Additionally a drug with pain-relieving properties, lidocaine, was administered to determine if this ameliorated any alterations in behaviour. The CFA measured hue horizontally and vertically reflecting the position of the fish in their tank. Saturation (indicates clustering distribution) and lightness were measured to reflect overall zebrafish activity. RESULTS Changes in vertical hue demonstrated that all fin clipped animals were closer to the bottom of the tank relative to pre-treatment; this was not observed in control groups, and was alleviated in those treated with lidocaine. Saturation (clustering) and lightness alterations indicated fin clipped groups reduced activity after receiving the fin clip. Lidocaine was effective in preventing the behavioural changes when 1 or 3 fish were clipped. CONCLUSIONS The CFA proved powerful enough to identify significant changes in behaviour taken directly from video images. With further development this monitoring tool represents a step forward in detecting behavioural changes in groups of zebrafish indicating welfare.
Collapse
Affiliation(s)
- Jack S Thomson
- School of Environmental Sciences, University of Liverpool, Liverpool, L69 3GP, UK
| | - Ali A Al-Temeemy
- Department of Laser and Optoelectronics Engineering, College of Engineering, Al-Nahrain University, Baghdad, Iraq; Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, L69 3GJ, UK
| | - Helen Isted
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Joseph W Spencer
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, L69 3GJ, UK
| | - Lynne U Sneddon
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| |
Collapse
|
22
|
Sneddon LU. Where to draw the line? Should the age of protection for zebrafish be lowered? Altern Lab Anim 2019; 46:309-311. [PMID: 30657327 DOI: 10.1177/026119291804600605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Zebrafish are not protected by legislation in many countries until they reach the first feed stage, typically at five days post-fertilisation. If they exhibit similar responses to adults when responding to pain and other stimuli should they be given more protection?
Collapse
|
23
|
Sloman KA, Bouyoucos IA, Brooks EJ, Sneddon LU. Ethical considerations in fish research. JOURNAL OF FISH BIOLOGY 2019; 94:556-577. [PMID: 30838660 DOI: 10.1111/jfb.13946] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Abstract
Fishes are used in a wide range of scientific studies, from conservation research with potential benefits to the species used to biomedical research with potential human benefits. Fish research can take place in both laboratories and field environments and methods used represent a continuum from non-invasive observations, handling, through to experimental manipulation. While some countries have legislation or guidance regarding the use of fish in research, many do not and there exists a diversity of scientific opinions on the sentience of fish and how we determine welfare. Nevertheless, there is a growing pressure on the scientific community to take more responsibility for the animals they work with through maximising the benefits of their research to humans or animals while minimising welfare or survival costs to their study animals. In this review, we focus primarily on the refinement of common methods used in fish research based on emerging knowledge with the aim of improving the welfare of fish used in scientific studies. We consider the use of anaesthetics and analgesics and how we mark individuals for identification purposes. We highlight the main ethical concerns facing researchers in both laboratory and field environments and identify areas that need urgent future research. We hope that this review will help inform those who wish to refine their ethical practices and stimulate thought among fish researchers for further avenues of refinement. Improved ethics and welfare of fishes will inevitably lead to increased scientific rigour and is in the best interests of both fishes and scientists.
Collapse
Affiliation(s)
- Katherine A Sloman
- School of Health and Life Sciences, University of the West of Scotland, Paisley, UK
| | - Ian A Bouyoucos
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan Cedex, France
| | - Edward J Brooks
- Cape Eleuthera Island School, Rock Sound, Eleuthera, The Bahamas
| | - Lynne U Sneddon
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
24
|
do Nascimento JET, de Morais SM, de Lisboa DS, de Oliveira Sousa M, Santos SAAR, Magalhães FEA, Campos AR. The orofacial antinociceptive effect of Kaempferol-3-O-rutinoside, isolated from the plant Ouratea fieldingiana, on adult zebrafish (Danio rerio). Biomed Pharmacother 2018; 107:1030-1036. [PMID: 30257314 DOI: 10.1016/j.biopha.2018.08.089] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/04/2018] [Accepted: 08/15/2018] [Indexed: 01/29/2023] Open
Abstract
The aim of this study was to evaluate the antinociceptive effect of Kaempferol-3-O-rutinoside (KR), isolated from the plant Ouratea fieldingiana, on the orofacial nociception and possible mechanisms of action. Adult zebrafish (Danio rerio) were tested as a behavioral model to study formalin, glutamate, capsaicin, cinnamaldehyde and acidic saline-induced orofacial nociception, using as parameter the number of times the fish crossed the lines between the quadrants of a glass Petri dish during a specific time. Morphine was used as positive control. The effect of KR was tested for modulation by opioid (naloxone), nitrergic (L-NAME), TRPV1 (ruthenium red), TRPA1 (camphor) or ASIC (amiloride) antagonists. The effect of KR on zebrafish locomotor behavior was evaluated with the open field test. KR did not alter the fish's locomotor system and significantly reduced the orofacial nociceptive behavior induced by all noxious agents compared to the control group. The antinociceptive effect of KR was similar to morphine. All antagonists inhibited the antinociceptive effect of KR. KR has pharmacological potential for the treatment of acute orofacial pain and this effect is modulated by the opioid and nitrergic systems as well as TRPV1, TRPA1 and ASIC channels. These results can lead to the development of a new natural product for the treatment of orofacial pain and confirm the popular use of O. fieldingiana leaf for pain relief.
Collapse
Affiliation(s)
- José Eranildo Teles do Nascimento
- Programa de Pós-Graduação em Ciências Veterinárias, Núcleo de Pesquisa em Sanidade Animal, Universidade Estadual do Ceará, Brazil; Laboratório de Química de Produtos Naturais (LQPN), Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil; Instituto Federal do Ceará, Campus Itapipoca, Ceará, Brazil
| | - Selene Maia de Morais
- Programa de Pós-Graduação em Ciências Veterinárias, Núcleo de Pesquisa em Sanidade Animal, Universidade Estadual do Ceará, Brazil; Laboratório de Química de Produtos Naturais (LQPN), Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil.
| | - Daniele Silva de Lisboa
- Laboratório de Química de Produtos Naturais (LQPN), Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Matheus de Oliveira Sousa
- Laboratório de Química de Produtos Naturais (LQPN), Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Sacha Aubrey Alves Rodrigues Santos
- Núcleo de Biologia Experimental, Universidade de Fortaleza, Fortaleza, Ceará, Brazil; Laboratório de Bioprospecção de Produtos Naturais e Biotecnologia (LBPNB), Universidade Estadual do Ceará (UECE), Tauá, Ceará, Brazil
| | - Francisco Ernani Alves Magalhães
- Núcleo de Biologia Experimental, Universidade de Fortaleza, Fortaleza, Ceará, Brazil; Laboratório de Bioprospecção de Produtos Naturais e Biotecnologia (LBPNB), Universidade Estadual do Ceará (UECE), Tauá, Ceará, Brazil
| | - Adriana Rolim Campos
- Núcleo de Biologia Experimental, Universidade de Fortaleza, Fortaleza, Ceará, Brazil
| |
Collapse
|
25
|
Steenbergen PJ. Response of zebrafish larvae to mild electrical stimuli: A 96-well setup for behavioural screening. J Neurosci Methods 2018. [DOI: 10.1016/j.jneumeth.2018.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Sneddon LU, Halsey LG, Bury NR. Considering aspects of the 3Rs principles within experimental animal biology. ACTA ACUST UNITED AC 2018; 220:3007-3016. [PMID: 28855318 DOI: 10.1242/jeb.147058] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The 3Rs - Replacement, Reduction and Refinement - are embedded into the legislation and guidelines governing the ethics of animal use in experiments. Here, we consider the advantages of adopting key aspects of the 3Rs into experimental biology, represented mainly by the fields of animal behaviour, neurobiology, physiology, toxicology and biomechanics. Replacing protected animals with less sentient forms or species, cells, tissues or computer modelling approaches has been broadly successful. However, many studies investigate specific models that exhibit a particular adaptation, or a species that is a target for conservation, such that their replacement is inappropriate. Regardless of the species used, refining procedures to ensure the health and well-being of animals prior to and during experiments is crucial for the integrity of the results and legitimacy of the science. Although the concepts of health and welfare are developed for model organisms, relatively little is known regarding non-traditional species that may be more ecologically relevant. Studies should reduce the number of experimental animals by employing the minimum suitable sample size. This is often calculated using power analyses, which is associated with making statistical inferences based on the P-value, yet P-values often leave scientists on shaky ground. We endorse focusing on effect sizes accompanied by confidence intervals as a more appropriate means of interpreting data; in turn, sample size could be calculated based on effect size precision. Ultimately, the appropriate employment of the 3Rs principles in experimental biology empowers scientists in justifying their research, and results in higher-quality science.
Collapse
Affiliation(s)
- Lynne U Sneddon
- Institute of Integrative Biology, Department of Evolution, Ecology and Behaviour, University of Liverpool, The BioScience Building, Liverpool L69 7ZB, UK
| | - Lewis G Halsey
- Department of Life Sciences, University of Roehampton, London SW15 4JD, UK
| | - Nic R Bury
- University of Suffolk, Faculty of Health Sciences and Technology, James Hehir Building, Neptune Quay, Ipswich IP4 1QJ, Suffolk, UK
| |
Collapse
|
27
|
Sneddon LU. Comparative Physiology of Nociception and Pain. Physiology (Bethesda) 2018; 33:63-73. [DOI: 10.1152/physiol.00022.2017] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 11/22/2022] Open
Abstract
The study of diverse animal groups allows us to discern the evolution of the neurobiology of nociception. Nociception functions as an important alarm system alerting the individual to potential and actual tissue damage. All animals possess nociceptors, and, in some animal groups, it has been demonstrated that there are consistent physiological mechanisms underpinning the nociceptive system. This review considers the comparative biology of nociception and pain from an evolutionary perspective.
Collapse
Affiliation(s)
- Lynne U. Sneddon
- University of Liverpool, Institute of Integrative Biology, The BioScience Building, Liverpool, United Kingdom
| |
Collapse
|
28
|
Behavioural responses of fish larvae modulated by analgesic drugs after a stress exposure. Appl Anim Behav Sci 2017. [DOI: 10.1016/j.applanim.2017.05.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Magalhães FEA, de Sousa CÁPB, Santos SAAR, Menezes RB, Batista FLA, Abreu ÂO, de Oliveira MV, Moura LFWG, Raposo RDS, Campos AR. Adult Zebrafish (Danio rerio): An Alternative Behavioral Model of Formalin-Induced Nociception. Zebrafish 2017; 14:422-429. [DOI: 10.1089/zeb.2017.1436] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Francisco Ernani Alves Magalhães
- LBPNB (Laboratório de Bioprospecção de Produtos Naturais e Biotecnologia), Universidade Estadual do Ceará (UECE), Tauá, Ceará, Brazil
- NUBEX (Núcleo de Biologia Experimental), Universidade de Fortaleza (UNIFOR), Fortaleza, Ceará, Brazil
| | | | | | - Renata Barbosa Menezes
- NUBEX (Núcleo de Biologia Experimental), Universidade de Fortaleza (UNIFOR), Fortaleza, Ceará, Brazil
| | - Francisco Lucas Alves Batista
- LBPNB (Laboratório de Bioprospecção de Produtos Naturais e Biotecnologia), Universidade Estadual do Ceará (UECE), Tauá, Ceará, Brazil
| | - Ângela Oliveira Abreu
- LBPNB (Laboratório de Bioprospecção de Produtos Naturais e Biotecnologia), Universidade Estadual do Ceará (UECE), Tauá, Ceará, Brazil
| | - Messias Vital de Oliveira
- LBPNB (Laboratório de Bioprospecção de Produtos Naturais e Biotecnologia), Universidade Estadual do Ceará (UECE), Tauá, Ceará, Brazil
| | | | - Ramon da Silva Raposo
- NUBEX (Núcleo de Biologia Experimental), Universidade de Fortaleza (UNIFOR), Fortaleza, Ceará, Brazil
| | - Adriana Rolim Campos
- NUBEX (Núcleo de Biologia Experimental), Universidade de Fortaleza (UNIFOR), Fortaleza, Ceará, Brazil
| |
Collapse
|
30
|
Sneddon LU, Lopez-Luna J, Wolfenden DCC, Leach MC, Valentim AM, Steenbergen PJ, Bardine N, Currie AD, Broom DM, Brown C. Response to: Responses of larval zebrafish to low pH immersion assay. Comment on Lopez-Luna et al. ACTA ACUST UNITED AC 2017; 220:3192-3194. [PMID: 28855325 DOI: 10.1242/jeb.163451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
| | - Javier Lopez-Luna
- University of Liverpool, Institute of Integrative Biology, The BioScience Building, Liverpool L69 7ZB, UK
| | | | - Matthew C Leach
- School of Agriculture, Food & Rural Development, Agriculture Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Ana M Valentim
- Institute for Research and Innovation in Health (i3S), Institute of Molecular and Cell Biology (IBMC), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Peter J Steenbergen
- Department of Pediatrics I, University Children's Hospital, University of Heidelberg, 69126 Heidelberg, Germany
| | | | - Amanda D Currie
- Macalester College, Psychology, 1600 Grand Avenue, Saint Paul, MN 55105-1899, USA
| | - Donald M Broom
- Centre for Animal Welfare and Anthrozoology, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Culum Brown
- Macquarie University, Department of Biological Sciences, Level 2, Building E8B, NSW 2109, Australia
| |
Collapse
|
31
|
Lopez-Luna J, Al-Jubouri Q, Al-Nuaimy W, Sneddon LU. Impact of stress, fear and anxiety on the nociceptive responses of larval zebrafish. PLoS One 2017; 12:e0181010. [PMID: 28767661 PMCID: PMC5540279 DOI: 10.1371/journal.pone.0181010] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/20/2017] [Indexed: 11/19/2022] Open
Abstract
Both adult and larval zebrafish have been demonstrated to show behavioural responses to noxious stimulation but also to potentially stress- and fear or anxiety- eliciting situations. The pain or nociceptive response can be altered and modulated by these situations in adult fish through a mechanism called stress-induced analgesia. However, this phenomenon has not been described in larval fish yet. Therefore, this study explores the behavioural changes in larval zebrafish after noxious stimulation and exposure to challenges that can trigger a stress, fear or anxiety reaction. Five-day post fertilization zebrafish were exposed to either a stressor (air emersion), a predatory fear cue (alarm substance) or an anxiogenic (caffeine) alone or prior to immersion in acetic acid 0.1%. Pre- and post-stimulation behaviour (swimming velocity and time spent active) was recorded using a novel tracking software in 25 fish at once. Results show that larvae reduced both velocity and activity after exposure to the air emersion and alarm substance challenges and that these changes were attenuated using etomidate and diazepam, respectively. Exposure to acetic acid decreased velocity and activity as well, whereas air emersion and alarm substance inhibited these responses, showing no differences between pre- and post-stimulation. Therefore, we hypothesize that an antinociceptive mechanism, activated by stress and/or fear, occur in 5dpf zebrafish, which could have prevented the larvae to display the characteristic responses to pain.
Collapse
Affiliation(s)
- Javier Lopez-Luna
- Department of Evolution, Ecology and Behaviour, Institute of Integrative Biology, University of Liverpool. Liverpool, United Kingdom
- * E-mail:
| | - Qussay Al-Jubouri
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, United Kingdom
| | - Waleed Al-Nuaimy
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, United Kingdom
| | - Lynne U. Sneddon
- Department of Evolution, Ecology and Behaviour, Institute of Integrative Biology, University of Liverpool. Liverpool, United Kingdom
| |
Collapse
|
32
|
Taylor JC, Dewberry LS, Totsch SK, Yessick LR, DeBerry JJ, Watts SA, Sorge RE. A novel zebrafish-based model of nociception. Physiol Behav 2017; 174:83-88. [DOI: 10.1016/j.physbeh.2017.03.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/07/2017] [Accepted: 03/09/2017] [Indexed: 12/21/2022]
|