1
|
Yang Q, Abed Jawad M, Ali Alzahrani A, F Hassan Z, Elawady A, Hjazi A, Naghibi M. Synergistic effects of Metformin and Forskolin on oxidative stress induced by diabetes and hepatocellular cancer: An animal study. Toxicon 2024; 243:107720. [PMID: 38614244 DOI: 10.1016/j.toxicon.2024.107720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
AIM This study proposed to assess the synergistic effects of Forskolin and Metformin (alone and in combination) on glucose, hematological, liver serum, and oxidative stress parameters in diabetic, healthy, and hepatocellular carcinoma (HCC) induced rats. MATERIALS AND METHODS Eighty male Wistar rats were divided into 10 experimental groups (8 rats for each group), including 1) healthy group, 2) diabetic group, 3) HCC group, 4) diabet + Metformin (300 mg/kg), 5) diabet + Forskolin (100 mg/kg), 6) diabet + Metformin (300 mg/kg) & Forskolin (100 mg/kg), 7) HCC + Metformin (300 mg/kg), 8) HCC + Forskolin (100 mg/kg), 9) HCC + Metformin (300 mg/kg) & Forskolin (100 mg/kg), and 10) healthy group + Metformin (300 mg/kg) & Forskolin (100 mg/kg). The rats were administrated Forskolin/Metformin daily for 8 weeks. Glucose, hematological, and liver serum parameters were measured and compared among the groups. The levels of malondialdehyde (MDA), and the activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx), as well as 8-hydroxydeoxyguanosine (8 OHdG) levels, were also measured. RESULTS The average blood glucose reduction in diabetic rats with the Forskolin, Metformin, and Forskolin + Metformin treatments was 43.5%, 47.1%, and 53.9%, respectively. These reduction values for HCC rats after the treatments were 21.0%, 16.2%, and 23.7%, respectively. For all the diabetic and HCC rats treated with Forskolin/Metformin, the MDA, SOD, and GPx levels showed significant improvement compared with the diabetic and HCC groups (P < 0.05). Although the rats treated with Forskolin + Metformin experienced a higher reduction in oxidative stress of blood and urine samples compared to the Forskolin group, the differences between this group and rats treated with Metformin were not significant for all parameters. CONCLUSION Metformin and Forskolin reduced oxidative stress in diabetic and HCC-induced rats. The results indicated that the combination of agents (Metformin & Forskolin) had greater therapeutic effects than Forskolin alone in reducing glucose levels in diabetic rats. However, the ameliorative effects of combining Metformin and Forskolin on blood and urine oxidative stress were not statistically higher than those of Metformin alone.
Collapse
Affiliation(s)
- Qian Yang
- Department of Traditional Chinese Medicine, Cangzhou Central Hospital, Cangzhou, 061001, China
| | - Mohammed Abed Jawad
- Department of Medical Laboratories Technology, Al-Nisour University College, Baghdad, Iraq.
| | | | | | - Ahmed Elawady
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Babylon, Iraq.
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.
| | - Mehran Naghibi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Azmoonfar R, Khosravi H, Rafieemehr H, Mirzaei F, Dastan D, Ghiasvand MR, Khorshidi L, Pashaki AS. Radioprotective effect of Malva sylvestris L. against radiation-induced liver, kidney and intestine damages in rat: A histopathological study. Biochem Biophys Rep 2023; 34:101455. [PMID: 36969320 PMCID: PMC10031346 DOI: 10.1016/j.bbrep.2023.101455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Background Ionizing radiation (IR) is widely used in the treatment of cancer in radiotherapy. One of the main concerns of patients with gastrointestinal cancers undergoing radiotherapy is the harmful side effects of IR on normal tissues. The liver, kidney, and duodenum are usually exposed to high doses of radiation in the treatment of some cancers in abdominal region radiotherapy. We aimed to assess the radioprotective effects of Malva sylvestris L. against IR damages to the abdominal region. Materials and methods This current study was conducted on 45 rats divided randomly into nine groups of five: A) negative control group, B) sham group, C) irradiation group, D) mallow treatment-1(200gr/kg), E) mallow treatment-2(400gr/kg), F) mallow treatment-3(600gr/kg), G) mallow treatment-4(200gr/kg) plus irradiation, H) mallow treatment-5(400gr/kg) plus irradiation, I) mallow treatment-6(600gr/kg) plus irradiation. Irradiation was performed with a 6Gy x-ray. Histopathological evaluations were performed 10 days after irradiation. Results The histopathological examination results confirmed that preventive therapy with the effective dose of mallow reduced the liver, kidney, and intestine damage induced by radiation. The dose of 400 mg/kg was more effective than other selected dose in improving the damage caused by irradiation in the studied tissues. Conclusion This study concludes that Malva sylvestris L. contributed to significant improvements in radiation-induced histological parameters of the liver and kidney and, to a lesser extent, in the intestine. These results collectively indicate that mallow is an effective radioprotective agent.
Collapse
Affiliation(s)
- Rasool Azmoonfar
- Department of Radiology, School of Allied Medical Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hossein Khosravi
- Department of Radiology, School of Allied Medical Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hassan Rafieemehr
- Department of Laboratory Sciences, School of Allied Medical Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Mirzaei
- Department of Anatomical Sciences, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Dara Dastan
- Department of Pharmacognosy, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohamad Reza Ghiasvand
- Department of Radiology, School of Allied Medical Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Lavin Khorshidi
- Department of Radiology, School of Allied Medical Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolazim Sedighi Pashaki
- Department of Radiooncology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
3
|
Febrianto NA, Zhu F. Coffee bean processing: Emerging methods and their effects on chemical, biological and sensory properties. Food Chem 2023; 412:135489. [PMID: 36716620 DOI: 10.1016/j.foodchem.2023.135489] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/29/2022] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
Emerging processing methods have been applied in coffee bean processing for improved sensory quality. The processes focus on optimizing the fermentation process of the coffee cherries and beans. This involves various pathways, including the formation of volatiles, flavor precursors and organic acids and the reduction in the concentrations of bioactive compounds. Comprehensive information regarding the effect of these emerging processes on the chemical, biological and sensory properties of the coffee beans is summarized. Emerging processes affected the coffee bean to various degrees depending on the raw material and the method used. The emerging methods promoted the reduction of bioactives such as caffeine and phenolics in coffee beans. Substantial improvement of these processes is needed to obtain coffee beans with improved biological activities. Effort to simplify the methods and optimize the post-fermentation process is crucial for the methods to be easily accessible by the producers and to produce defect-free coffee beans.
Collapse
Affiliation(s)
- Noor Ariefandie Febrianto
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Indonesian Coffee and Cocoa Research Institute (ICCRI), Jl. PB Sudirman No. 90 Jember, East Java, Indonesia
| | - Fan Zhu
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
4
|
Jia Z, Wan L, Huang Z, Zhang W. Quality Evaluation of Hainan Robusta Coffee Bean Oil Produced by Ultrasound Coupled with Coconut Oil Extraction. Foods 2023; 12:foods12112235. [PMID: 37297479 DOI: 10.3390/foods12112235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
This study investigates the treatment of coconut oil using thermosonic treatment in combination with green coffee beans. Under a defined ratio of coconut oil to green coffee beans, the effect of different thermosonic time on the quality parameters, active substance content, antioxidant capacity, and thermal oxidative stability of coconut oil were investigated as a strategy to potentially improve the quality of oil. Results showed that the β-sitosterol content of CCO (coconut coffee oil) treated with the thermal method combined with green coffee bean treatment reached up to 393.80 ± 11.13 mg/kg without affecting the lipid structure. In addition, DPPH clearance equivalents increased from 5.31 ± 1.30 mg EGCG/g to 71.34 ± 0.98 mg EGCG/g, and the ABTS clearance equivalent was 45.38 ± 0.87 mg EGCG/g versus 0 for the untreated sample. The improvement in thermal oxidation stability of treated coconut oil is also significant. The TG (Thermogravimetry) onset temperature was elevated from 277.97 °C to 335.08 °C and the induction time was elevated up to 24.73 ± 0.41 h from 5.17 ± 0.21 h. Thermosonic treatment in combination with green coffee beans is an ideal option to improve the quality of coconut oil. The results of this article provide new ideas for the development of plant-blended oil products and the new utilization of coconut oil and coffee beans.
Collapse
Affiliation(s)
- Zheng Jia
- School of Food Science and Engineering, Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Hainan University, Haikou 570228, China
| | - Liting Wan
- School of Food Science and Engineering, Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Hainan University, Haikou 570228, China
| | - Zhaoxian Huang
- School of Food Science and Engineering, Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Hainan University, Haikou 570228, China
| | - Weimin Zhang
- School of Food Science and Engineering, Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Hainan University, Haikou 570228, China
| |
Collapse
|
5
|
Du S, Wang L, Wang Y, Jin Y, Wang A, Lv C, Abedi-Firouzjah R. The modulator role of Urtica dioica on deleterious effects of retinoic acid high doses on histological parameters and fertilization of rats. Heliyon 2023; 9:e17277. [PMID: 37389058 PMCID: PMC10300214 DOI: 10.1016/j.heliyon.2023.e17277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023] Open
Abstract
Aim This study purposed to evaluate the modulator and protective role of Urtica dioica (UD) extract against deleterious effects of retinoic acid (RA) high doses on histological parameters and fertilization of rats. Materials and methods For the in-vivo phase, 60 female Wistar rats were divided into 6 identical groups as 1) control, 2) 25 mg/kg RA, 3) 25 mg/kg UD extract, 4) 50 mg/kg UD extract, 5) UD extract (25 mg/kg) + RA (25 mg/kg), and 6) UD extract (50 mg/kg) + RA (25 mg/kg). Biochemical parameters, including luteinizing hormone (LH), folliclestimulating hormone (FSH), malondialdehyde (MDA) levels, superoxide dismutase (SOD), and catalase (CAT) activities, were measured. In the in-vitro phase, oocytes were obtained from 10 female rats without injection. In addition to the mentioned parameters, histological parameters (oocytes in various stages) and the results of IVM, IVF, and embryo developments were assessed and compared among the groups with the use of one-way ANOVA and Tukey's post hoc tests. Results The high dosage of RA significantly reduced the LH and FSH levels; however, UD alone and with RA increased the hormone levels in rats. Regarding the reactive oxygen species (ROS) activity levels in rats' blood samples, RA increased the MDA and decreased the SOD and CAT levels. Treatment with UD extract (UD + RA groups) significantly improved the parameters mentioned, showing UD's antioxidant effect. The rate of oocyte maturation, 2-cell-4-cell and 4-cell-8-cell embryos, and blastocyst formation increased significantly in the groups in which UD extracts were administered compared to the control and RA groups. Furthermore, the increases were significant in the UD + RA groups compared to the RA group. Conclusion UD extract can significantly reduce RA high doses side effects on histological parameters and fertilization of rats and has the protective potential against RA deleterious effects.
Collapse
Affiliation(s)
- Shuli Du
- Department of Obstetrics, Laoling People’s Hospital, Dezhou, 253600, China
| | - Lijuan Wang
- Department of Obstetrics, Laoling People’s Hospital, Dezhou, 253600, China
| | - Yinghui Wang
- Department of Gynaecology, Laoling People’s Hospital, Dezhou, 253600, China
| | - Yanna Jin
- Department of Obstetrics, Laoling People’s Hospital, Dezhou, 253600, China
| | - Aijing Wang
- Department of Obstetrics, Laoling People’s Hospital, Dezhou, 253600, China
| | - Cuiting Lv
- Department of Reproductive Medicine, The Fourth Hospital of Hebei Medical University (Hebei Tuor Hospital), Shijiazhuang, 050000, China
| | - Razzagh Abedi-Firouzjah
- Department of Medical Physics Radiobiology and Radiation Protection, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
6
|
Han EJ, Im ST, Ahn G, Lee SH. Radio-protective effects of Thymus quinquecostatus Celak extract in mice. Appl Radiat Isot 2023; 199:110881. [PMID: 37267776 DOI: 10.1016/j.apradiso.2023.110881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/04/2023]
Abstract
Thymus quinquecostatus Celak (TQC) is an aromatic herb, that possesses a wide range of biological properties. In the present study, we investigated the radio-protective effect of TQC water extract (TQCW) in gamma ray-exposed splenocytes, a peripheral immune cell and mice. Our results showed that the treatment with TQCW dose-dependently increased the viability of splenocytes. TQCW significantly increased the proliferation of splenocytes by reducing the production of intracellular reactive oxygen species (ROS) in 2 Gy-exposed splenocytes. Moreover, TQCW enhanced the hemopoietic system as increasing the number of endogenous spleen colony-forming units, and the number and the proliferation of splenocytes in 7 Gy-exposed mice. These results suggest that TQCW protects mice by enhancing the splenocytes proliferation and hemopoietic systems following exposure to gamma rays.
Collapse
Affiliation(s)
- Eui Jeong Han
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu, 59626, Republic of Korea; Research Center for Healthcare and Biomedical Engineering, Chonnam National University, Yeosu, 59626, Republic of Korea
| | - Seung Tae Im
- Department of Pharmaceutical Engineering and Medical Science, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Ginnae Ahn
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu, 59626, Republic of Korea.
| | - Seung-Hong Lee
- Department of Pharmaceutical Engineering and Medical Science, Soonchunhyang University, Asan, 31538, Republic of Korea.
| |
Collapse
|
7
|
Liu L, Liang Z, Ma S, Li L, Liu X. Radioprotective countermeasures for radiation injury (Review). Mol Med Rep 2023; 27:66. [PMID: 36799170 PMCID: PMC9926870 DOI: 10.3892/mmr.2023.12953] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/10/2023] [Indexed: 02/09/2023] Open
Abstract
A series of physiological and pathological changes occur after radiotherapy and accidental exposure to ionizing radiation (IR). These changes cause serious damage to human tissues and can lead to death. Radioprotective countermeasures are radioprotective agents that prevent and reduce IR injury or have therapeutic effects. Based on a good understanding of radiobiology, a number of protective agents have achieved positive results in early clinical trials. The present review grouped known radioprotective agents according to biochemical categories and potential clinical use, and reviewed radiation countermeasures, i.e., radioprotectors, radiation mitigators and radiotherapeutic agents, with an emphasis on their current status and research progress. The aim of the present review is to facilitate the selection and application of suitable radioprotectors for clinicians and researchers, to prevent or reduce IR injury.
Collapse
Affiliation(s)
- Lianchang Liu
- National Health Commission Key Laboratory of Radiobiology, School of Public Health of Jilin University, Jilin, Changchun 130021, P.R. China,School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China,Department of Intervention, The Second Affiliated Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Zhenzhen Liang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, P.R. China
| | - Shumei Ma
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China,Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China,South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou, Zhejiang 325035, P.R. China
| | - Lan Li
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China,Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China,South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou, Zhejiang 325035, P.R. China,Correspondence to: Professor Lan Li, School of Public Health and Management, Wenzhou Medical University, 1 North Zhongxin Road, Chashan, Wenzhou, Zhejiang 325035, P.R. China, E-mail:
| | - Xiaodong Liu
- National Health Commission Key Laboratory of Radiobiology, School of Public Health of Jilin University, Jilin, Changchun 130021, P.R. China,School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China,Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China,South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou, Zhejiang 325035, P.R. China,Professor Xiaodong Liu, National Health Commission Key Laboratory of Radiobiology, School of Public Health of Jilin University, 1163 Xinmin Road, Changchun, Jilin 130021, P.R. China, E-mail:
| |
Collapse
|
8
|
Tsai PW, Tayo LL, Ting JU, Hsieh CY, Lee CJ, Chen CL, Yang HC, Tsai HY, Hsueh CC, Chen BY. Interactive deciphering electron-shuttling characteristics of Coffea arabica leaves and potential bioenergy-steered anti-SARS-CoV-2 RdRp inhibitor via microbial fuel cells. INDUSTRIAL CROPS AND PRODUCTS 2023; 191:115944. [PMID: 36405420 PMCID: PMC9659477 DOI: 10.1016/j.indcrop.2022.115944] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 05/29/2023]
Abstract
Due to the pandemics of COVID-19, herbal medicine has recently been explored for possible antiviral treatment and prevention via novel platform of microbial fuel cells. It was revealed that Coffea arabica leaves was very appropriate for anti-COVID-19 drug development. Antioxidant and anti-inflammatory tests exhibited the most promising activities for C. arabica ethanol extracts and drying approaches were implemented on the leaf samples prior to ethanol extraction. Ethanol extracts of C. arabica leaves were applied to bioenergy evaluation via DC-MFCs, clearly revealing that air-dried leaves (CA-A-EtOH) exhibited the highest bioenergy-stimulating capabilities (ca. 2.72 fold of power amplification to the blank). Furthermore, molecular docking analysis was implemented to decipher the potential of C. arabica leaves metabolites. Chlorogenic acid (-6.5 kcal/mol) owned the highest binding affinity with RdRp of SARS-CoV-2, showing a much lower average RMSF value than an apoprotein. This study suggested C. arabica leaves as an encouraging medicinal herb against SARS-CoV-2.
Collapse
Key Words
- ADMET,, Absorption-distribution-metabolism-excretion-toxicity
- BBB,, Blood-brain barrier
- Biorefinery
- C. arabica,, Coffea arabica
- CA-40-EtOH,, EtOH extract of C. arabica leaves by 40°C oven-dried
- CA-80-EtOH,, EtOH extract of C. arabica leaves by 80°C oven-dried
- CA-A-EtOH,, EtOH extract of C. arabica leaves by air-dried
- CA-AC,, Acetone extract of C. arabica leaves by 40°C oven-dried
- CA-EA,, Ethyl acetate extract of C. arabica leaves by 40°C oven-dried
- CA-F-EtOH,, EtOH extract of C. arabica leaves by freeze-dried
- CA-H2O,, Water extract of C. arabica leaves by 40°C oven-dried
- CA-HX,, Hexane extract of C. arabica leaves by 40°C oven-dried
- COVID-19
- Chlorogenic acid
- Coffea arabica leaves
- DC-MFCs,, Dual Chamber-Microbial Fuel Cells
- DPPH,, 2,2-diphenyl-1-picrylhydrazyl
- FRAP,, Ferric ion reducing antioxidant power
- MFC,, Microbial fuel cell
- Microbial fuel cells
- QSAR,, Quantitative-structure-activity relationship
- RMSF,, Root-mean-square fluctuation
- RdRp
- RdRp,, RNA-dependent RNA polymerase
- SARS-CoV-2,, Severe acute respiratory syndrome coronavirus 2
Collapse
Affiliation(s)
- Po-Wei Tsai
- Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan
| | - Lemmuel L Tayo
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, 1002 Metro Manila, the Philippines
| | - Jasmine U Ting
- Department of Chemistry, College of Science, De La Salle University, Metro Manila 1004, the Philippines
| | - Cheng-Yang Hsieh
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Chia-Jung Lee
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Chih-Ling Chen
- Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan
| | - Hsiao-Chuan Yang
- Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 260, Taiwan
| | - Hsing-Yu Tsai
- Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 260, Taiwan
| | - Chung-Chuan Hsueh
- Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 260, Taiwan
| | - Bor-Yann Chen
- Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 260, Taiwan
| |
Collapse
|
9
|
Protective Role of Natural Compounds under Radiation-Induced Injury. Nutrients 2022; 14:nu14245374. [PMID: 36558533 PMCID: PMC9786992 DOI: 10.3390/nu14245374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/05/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
In recent years, evidence has shown the potential therapeutic effects of different natural compounds for the prevention and treatment of radiotherapy-induced mucositis (RIOM). RIOM represents one of the most frequent side effects associated with anti-neoplastic treatments affecting patients' quality of life and treatment response due to radiation therapy discontinuation. The innate radio-protective ability of natural products obtained from plants is in part due to the numerous antioxidants possessed as a part of their normal secondary metabolic processes. However, oxygen presence is a key point for radiation efficacy on cancer cells. The aim of this review is to describe the most recent evidence on radiation-induced injury and the emerging protective role of natural compounds in preventing and treating this specific damage without compromising treatment efficacy.
Collapse
|
10
|
Naghibi M, Tayefi Nasrabadi H, Soleimani Rad J, Gholami Farashah MS, Mohammadnejad D. The effects of metformin and forskolin on sperm quality parameters and sexual hormones in type II diabetic male rats. Andrologia 2022; 54:1605-1617. [PMID: 35396719 DOI: 10.1111/and.14426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/24/2022] [Accepted: 03/09/2022] [Indexed: 11/28/2022] Open
Abstract
This study aimed to investigate the effects of metformin and forskolin independently and in combinations on the sperm quality parameters and sexual hormones of diabetic male rats. Fifty adult male rats were divided randomly into five identical groups, and diabetes mellitus was induced to the rats, except for the rats in the control group, using a high-fat diet and injection of Streptozotocin. Daily administration of metformin and forskolin independently and in combinations were performed for 8 weeks in different groups. Sperm quality parameters (including sperm count, morphology, sperm motility and Johnson score), testosterone, blood sugar level, Bax to Bcl-2 ratio mRNA expression level and oxidative stress levels were measured and compared between the investigated groups. Treating diabetic rats with metformin and forskolin resulted in significant improvement in sperm quality parameters, increased testosterone levels, reduced oxidative stress in blood and testicular tissue, and decreased blood sugar, and Bax to Bcl-2 ratio level. Although the combination of metformin with forskolin had a higher effect in some parameters such as testosterone levels compared to treatment with metformin or forskolin alone, this combination had not shown a synergistic effect in all the sperm quality parameters. Metformin and forskolin are effective anti-diabetic agents, which significantly improve the sperm quality and sexual hormone levels in diabetic rats. Combining metformin and gorskolin resulted in significantly better testosterone level and antioxidant activity in blood serum without significant effect on sperm quality of diabetic rats.
Collapse
Affiliation(s)
- Mehran Naghibi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Tayefi Nasrabadi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleimani Rad
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Daryoush Mohammadnejad
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Motallebzadeh E, Suliman Maashi M, Z.Mahmoud M, Aliasgharzedeh A, Vakili Z, Talaei SA, Mohseni M. Radioprotective effects of N-acetylcysteine on rats’ brainstem following megavoltage X-irradiations. Appl Radiat Isot 2022; 187:110348. [DOI: 10.1016/j.apradiso.2022.110348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/25/2022] [Accepted: 06/23/2022] [Indexed: 11/24/2022]
|
12
|
Selected Literature Watch. J Caffeine Adenosine Res 2021. [DOI: 10.1089/caff.2021.29022.slw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|