1
|
Ashwini M, Sudheer P, Sogali BS. Nanostructured Lipid Carrier-Mediated Transdermal Delivery System of Glibenclamide for Gestational Diabetes: Pharmacokinetic and Pharmacodynamic Evaluation. Curr Drug Deliv 2024; 21:1386-1407. [PMID: 38213159 DOI: 10.2174/0115672018274038231212105440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/26/2023] [Accepted: 10/26/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) poses significant risks during pregnancy for both mother and fetus. Adherence to oral antidiabetic medications, like glibenclamide (GB), can be challenging, necessitating novel drug delivery methods. Nanostructured lipid carriers (NLC) offer a promising approach by efficiently permeating the skin due to their small size and lipid-based composition. OBJECTIVE This study aimed to develop and evaluate transdermal patches loaded with glibenclamide NLCs to treat GDM. METHODS Glibenclamide NLCs were prepared using hot homogenization with ultrasonication and melt dispersion method. A central composite design was utilized to optimize the formulations. Transdermal patches containing optimized NLCs were developed using HPMC K 100 and Eudragit L polymers. The patches were evaluated for various parameters, and their pharmacokinetic and pharmacodynamic studies were carried out to assess their safety and efficacy. RESULTS Optimized NLCs efficiently permeated rat skin. Cell viability studies indicated the nontoxicity of the formulations. NLC-loaded transdermal patches (F2 and F7) showed drug release of 1098 μg/cm2 and 1001.83 μg/cm2 in 24 h, with a 2.5-fold higher flux and permeation coefficient than the GB patch. Pharmacokinetic analysis revealed Tmax of 8 and 10 h and Cmax of 7127 ng/ml and 7960 ng/ml for F2 and F7, respectively, ensuring sustained drug action. AUC0-α was 625681 ng/ml·h and 363625 ng/ml·h for F2 and F7, respectively, indicating improved bioavailability. CONCLUSION Transdermal patches incorporating NLCs hold promise for enhancing glibenclamide's therapeutic efficacy in GDM treatment. Improved skin permeation, sustained drug release, and enhanced bioavailability make NLC-based transdermal patches a potential alternative with better patient compliance.
Collapse
Affiliation(s)
- M Ashwini
- Department of Pharmaceutics, Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Mangaluru, Karnataka 575018, India
| | - Preethi Sudheer
- Krupanidhi College of Pharmacy, Bengaluru, Karnataka 560035, India
| | | |
Collapse
|
2
|
Mehta D, Li M, Nakamura N, Chidambaram M, He X, Bryant MS, Patton R, Davis K, Fisher J. In vivo pharmacokinetic analyses of placental transfer of three drugs of different physicochemical properties in pregnant rats. Reprod Toxicol 2022; 111:194-203. [PMID: 35714934 DOI: 10.1016/j.reprotox.2022.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/25/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022]
Abstract
Although the use of medication during pregnancy is common, information on exposure to the developing fetus and potential teratogenic effects is often lacking. This study used a rat model to examine the placental transfer of three small-molecule drugs with molecular weights ranging from approximately 300 to 800 Da with different physicochemical properties. Time-mated Sprague Dawley (Hsd:SD) rats aged 11-13 weeks were administered either glyburide, rifaximin, or fentanyl at gestational day 15. Maternal blood, placentae, and fetuses were collected at 5 min, 30 min, 1 h, 4 h, 8 h, 24 h, 48 h, and 96 h post-dose. To characterize the rate and extent of placental drug transfer, we calculated several pharmacokinetic parameters such as maximum concentration (Cmax), time to maximum concentration (Tmax), area under the concentration-time curve (AUC), half-life (t1/2), clearance (CL), and volume of distribution (Vd) for plasma, placenta, and fetus tissues. The results indicated showed that fetal exposure was lowest for glyburide, accounting for only 2.2 % of maternal plasma exposure as measured by their corresponding AUC ratio, followed by rifaximin (37.9 %) and fentanyl (172.4 %). The fetus/placenta AUC ratios were found to be 10.7 % for glyburide, 11.8 % for rifaximin, and 39.1 % for fentanyl. These findings suggest that although the placenta acts as a protective shield for the fetus, the extent of protection varies for different drugs and depends on factors such as molecular weight, lipid solubility, transporter-mediated efflux, and binding to maternal and fetal plasma proteins.
Collapse
Affiliation(s)
- Darshan Mehta
- Division of Biochemical Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Miao Li
- Division of Biochemical Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Noriko Nakamura
- Division of Systems Biology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA.
| | - Mani Chidambaram
- Office of Scientific Coordination, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Xiaobo He
- Office of Scientific Coordination, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Matthew S Bryant
- Office of Scientific Coordination, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Ralph Patton
- Toxicologic Pathology Associates, Jefferson, AR 72079, USA
| | - Kelly Davis
- Toxicologic Pathology Associates, Jefferson, AR 72079, USA
| | - Jeffrey Fisher
- Division of Biochemical Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| |
Collapse
|
3
|
Radice C, Korzekwa K, Nagar S. Predicting impact of food and feeding time on oral absorption of drugs with a novel rat continuous intestinal absorption model. Drug Metab Dispos 2022; 50:750-761. [PMID: 35339986 DOI: 10.1124/dmd.122.000831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/17/2022] [Indexed: 11/22/2022] Open
Abstract
Intricacies in intestinal physiology, drug properties, and food effects should be incorporated into models to predict complex oral drug absorption. A previously published human continuous intestinal absorption model based on the convection-diffusion equation was modified specifically for the male Sprague-Dawley rat in this report. Species-specific physiological conditions along intestinal length 'x' - experimental velocity and pH under fasted and fed conditions, were measured and incorporated into the intestinal absorption model. Concentration- time (C-t) profiles were measured upon a single IV and PO dose for three drugs, amlodipine (AML), digoxin (DIG), and glyburide (GLY). Absorption profiles were predicted and compared with experimentally collected data under three feeding conditions: 12-hr fasted rats were provided food at two specific times after oral drug dose (1 hr and 2 hr for AML and GLY, 0.5 hr and 1 hr for DIG), or were provided food for the entire study. IV versus PO C-t profiles suggested absorption even at later times, and informed design of appropriate mathematical input functions based on experimental feeding times. With this model, AML, DIG and GLY oral C-t profiles for all feeding groups were generally well predicted, with exposure overlap coefficients (EOC) in the range of 0.80 - 0.97. Efflux transport for DIG and uptake and efflux transport for GLY were included, modeling uptake transporter inhibition in the presence of food. Results indicate that the continuous intestinal rat model incorporates complex physiological processes and feeding times relative to drug dose, into a simple framework to provide accurate prediction of oral absorption. Significance Statement A novel rat continuous intestinal model predicts drug absorption with respect to time and intestinal length. Feeding time relative to dose was modeled as a key effect. Experimental fasted/fed intestinal pH and velocity, efflux and uptake transporter expression along intestinal length, and uptake transporter inhibition in the presence of food, were modeled. The model uses the pharmacokinetic profiles of three model drugs and provides a novel framework to study food effects on absorption.
Collapse
Affiliation(s)
- Casey Radice
- Pharmaceutical Sciences, Temple University School of Pharmacy, United States
| | - Ken Korzekwa
- Pharmaceutical Sciences, Temple University School of Pharmacy, United States
| | - Swati Nagar
- Pharmaceutical Sciences, Temple University School of Pharmacy, United States
| |
Collapse
|
4
|
Colburn TD, Weber RE, Hageman KS, Caldwell JT, Schulze KM, Ade CJ, Behnke BJ, Poole DC, Musch TI. Vascular ATP-sensitive K + channels support maximal aerobic capacity and critical speed via convective and diffusive O 2 transport. J Physiol 2020; 598:4843-4858. [PMID: 32798233 PMCID: PMC7874302 DOI: 10.1113/jp280232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/13/2020] [Indexed: 12/26/2022] Open
Abstract
KEY POINTS Oral sulphonylureas, widely prescribed for diabetes, inhibit pancreatic ATP-sensitive K+ (KATP ) channels to increase insulin release. However, KATP channels are also located within vascular (endothelium and smooth muscle) and muscle (cardiac and skeletal) tissue. We evaluated left ventricular function at rest, maximal aerobic capacity ( V ̇ O2 max) and submaximal exercise tolerance (i.e. speed-duration relationship) during treadmill running in rats, before and after systemic KATP channel inhibition via glibenclamide. Glibenclamide impaired critical speed proportionally more than V ̇ O2 max but did not alter resting cardiac output. Vascular KATP channel function (topical glibenclamide superfused onto hindlimb skeletal muscle) resolved a decreased blood flow and interstitial PO2 during twitch contractions reflecting impaired O2 delivery-to-utilization matching. Our findings demonstrate that systemic KATP channel inhibition reduces V ̇ O2 max and critical speed during treadmill running in rats due, in part, to impaired convective and diffusive O2 delivery, and thus V ̇ O2 , especially within fast-twitch oxidative skeletal muscle. ABSTRACT Vascular ATP-sensitive K+ (KATP ) channels support skeletal muscle blood flow and microvascular oxygen delivery-to-utilization matching during exercise. However, oral sulphonylurea treatment for diabetes inhibits pancreatic KATP channels to enhance insulin release. Herein we tested the hypotheses that: i) systemic KATP channel inhibition via glibenclamide (GLI; 10 mg kg-1 i.p.) would decrease cardiac output at rest (echocardiography), maximal aerobic capacity ( V ̇ O2 max) and the speed-duration relationship (i.e. lower critical speed (CS)) during treadmill running; and ii) local KATP channel inhibition (5 mg kg-1 GLI superfusion) would decrease blood flow (15 µm microspheres), interstitial space oxygen pressures (PO2 is; phosphorescence quenching) and convective and diffusive O2 transport ( Q ̇ O2 and DO2 , respectively; Fick Principle and Law of Diffusion) in contracting fast-twitch oxidative mixed gastrocnemius muscle (MG: 9% type I+IIa fibres). At rest, GLI slowed left ventricular relaxation (2.11 ± 0.59 vs. 1.70 ± 0.23 cm s-1 ) and decreased heart rate (321 ± 23 vs. 304 ± 22 bpm, both P < 0.05) while cardiac output remained unaltered (219 ± 64 vs. 197 ± 39 ml min-1 , P > 0.05). During exercise, GLI reduced V ̇ O2 max (71.5 ± 3.1 vs. 67.9 ± 4.8 ml kg-1 min-1 ) and CS (35.9 ± 2.4 vs. 31.9 ± 3.1 m min-1 , both P < 0.05). Local KATP channel inhibition decreased MG blood flow (52 ± 25 vs. 34 ± 13 ml min-1 100 g tissue-1 ) and PO2 isnadir (5.9 ± 0.9 vs. 4.7 ± 1.1 mmHg) during twitch contractions. Furthermore, MG V ̇ O2 was reduced via impaired Q ̇ O2 and DO2 (P < 0.05 for each). Collectively, these data support that vascular KATP channels help sustain submaximal exercise tolerance in healthy rats. For patients taking sulfonylureas, KATP channel inhibition may exacerbate exercise intolerance.
Collapse
Affiliation(s)
- Trenton D Colburn
- Department of Kinesiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Ramona E Weber
- Department of Kinesiology, Kansas State University, Manhattan, KS, 66506, USA
| | - K Sue Hageman
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Jacob T Caldwell
- Department of Kinesiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Kiana M Schulze
- Department of Kinesiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Carl J Ade
- Department of Kinesiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Brad J Behnke
- Department of Kinesiology, Kansas State University, Manhattan, KS, 66506, USA
| | - David C Poole
- Department of Kinesiology, Kansas State University, Manhattan, KS, 66506, USA
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Timothy I Musch
- Department of Kinesiology, Kansas State University, Manhattan, KS, 66506, USA
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
5
|
Chen M, Xu J, Wang Y, Wang Z, Guo L, Li X, Huang L. Arctium lappa L. polysaccharide can regulate lipid metabolism in type 2 diabetic rats through the SREBP-1/SCD-1 axis. Carbohydr Res 2020; 494:108055. [DOI: 10.1016/j.carres.2020.108055] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/13/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022]
|
6
|
Hypoglycemic and Toxic Effect of Morus mesozygia Leaf Extract on the Liver and Kidneys of Alloxan-Induced Hyperglycemic Wistar Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:6712178. [PMID: 32030095 PMCID: PMC6770302 DOI: 10.1155/2019/6712178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/20/2019] [Accepted: 08/28/2019] [Indexed: 01/30/2023]
Abstract
Purpose We investigated the hypoglycemic and toxic effect of Morus mesozygia leaf extract on the liver and kidneys of alloxan-induced hyperglycemic wistar rats. Method Phytochemical analysis was done. Diabetes was induced by the use of alloxan monohydrate in six groups of rats, i.e., 200 mg/kg, 400 mg/kg, 800 mg/kg, glibenclamide, normal saline, and normal control group. Blood glucose was measured at the time of inoculation, then at 1, 2, 3, and 4 hours after. After 14 days, rats were killed under anesthesia; blood collected for measurement of total protein, albumin, TAGs, cholesterol, AST, ALT, urea, and creatinine; and whole tissue of liver and kidneys used for histological studies. Results The extract possessed antidiabetic effects between 400 mg/kg and 800 mg/kg doses, which we attributed to the presence of flavonoids, tannins, terpenoids, and amino acids. There was a drop in total protein and albumin with no statistical significance (P ≥ 0.05). The changes in levels of ALT, TAGs, cholesterol, AST, creatinine, and urea were not statistically different from the standard diabetic drug. The extract was protective against histological damage as there were no significant lesions suggestive of toxicities in the liver and kidneys at doses below 800 mg/kg. Conclusion We established credible evidence that Morus mesozygia leaf extract has hypoglycemic effects between 400 mg/kg and 800 mg/kg and that it is safe on the liver and kidneys of wistar rats at doses less than 800 mg/kg.
Collapse
|
7
|
Ali HS, Hanafy AF. Glibenclamide Nanocrystals in a Biodegradable Chitosan Patch for Transdermal Delivery: Engineering, Formulation, and Evaluation. J Pharm Sci 2017; 106:402-410. [DOI: 10.1016/j.xphs.2016.10.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/28/2016] [Accepted: 10/13/2016] [Indexed: 12/16/2022]
|
8
|
Simultaneous quantification method for comparative pharmacokinetics studies of two major metabolites from geniposide and genipin by online mircrodialysis-UPLC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1041-1042:11-18. [PMID: 27992786 DOI: 10.1016/j.jchromb.2016.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 11/28/2016] [Accepted: 12/07/2016] [Indexed: 01/17/2023]
Abstract
Genipin-1-o-glucuronic acid and genipin-monosulfate are two major metabolites from geniposide and genipin. Based on diabetic rat model, we developed a simultaneous quantification method to investigate their comparative pharmacokinetics by online mircrodialysis-ultra performance liquid chromatography-mass spectrometry (MD-UPLC-MS/MS) without their standard compounds. Online microdialysis sampling could avoid unexpected contamination or degradation of the analytes during the storage and transfer steps. Combined with good sensitivity, selectivity and selectivity of UPLC-MS/MS, online MD-UPLC-MS/MS method could real-timely monitor metabolites in rat blood for quantitative analysis. Our research found that AUC0→t of genipin-1-o-glucuronic acid and genipin-monosulfate in blood of diabetic group were 17.68 and 7.58 times than those in normal group, respectively, and AUC0→t of genipin-1-o-glucuronic acid was 2.28 times than that of genipin-monosulfate in blood of diabetic group, which revealed the effect of diabetes on the pharmacokinetic properties of the two metabolites. This study not only provides an approach for pharmacokinetic studies for various metabolites from herb medicines, but also can predict druggability of their bioactive metabolites. The insight obtained should facilitate drug development and toxicity research.
Collapse
|
9
|
Zhang F, Wei Y, Zhou Y, Wang D, Zhou L, Zhang J, Wu X. Pharmacokinetics and hepatic uptake of gliquidone affected by Huangqi injection. Eur J Drug Metab Pharmacokinet 2013; 39:255-61. [DOI: 10.1007/s13318-013-0154-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 08/30/2013] [Indexed: 12/20/2022]
|