1
|
Wang S, Liu D, Ouyang D. Quantitative analysis of excipients to the permeability of BCS class III drugs. Int J Pharm 2025; 668:124958. [PMID: 39550014 DOI: 10.1016/j.ijpharm.2024.124958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/01/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
BCS III drugs exhibit high solubility and low permeability, and some excipients were reported to increase their permeability. Although some permeability-enhancing excipients were investigated, permeability-enhancing strategy still need to be improved. Firstly, we established a database and analyzed the possible effects of excipients. Sodium lauryl sulfate (SLS) was found to be the most-used permeability-enhancing excipients. Moreover, the quantitative models for predicting Papp and Peff of BCS III drugs with SLS were developed, and statistically meaningful descriptors include molecular weight (MW), pKa, logP, solubility, hydrogen bond (HB) count, rotatable bond count (RBC), and topological polar surface area. The models demonstrated a good fit and effective predictive capability with all the correlation R2 values over 0.7. Hydrogen bonding remains the most significant factor in enhancing drug permeability with SLS, while hydrophilicity is also vital in this process. It was also found that MW, logP, pKa, and RBC play significant roles in paracellular transport. In summary, current research did the systematic and quantitative analysis of BCS III drugs and their excipients, which may accelerate formulation research on BCS III products.
Collapse
Affiliation(s)
- Shuo Wang
- Institute of Chinese Medical Sciences (ICMS), State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau
| | - Dongyang Liu
- Drug Clinical Trial Center, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China; Center of Clinical Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.
| | - Defang Ouyang
- Institute of Chinese Medical Sciences (ICMS), State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau; Department of Public Health and Medicinal Administration, Faculty of Health Sciences (FHS), University of Macau, Macau.
| |
Collapse
|
2
|
Samie A, Alavian H. A Perspective on the Permeability of Cocrystals/Organic Salts of Oral Drugs. Mol Pharm 2024; 21:4860-4911. [PMID: 39284012 DOI: 10.1021/acs.molpharmaceut.4c00786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
According to the BCS classification system, the differentiation of drugs is based on two essential parameters of solubility and permeability, meaning the latter is as pivotal as the former in creating marketable pharmaceutical products. Nevertheless, the indispensable role of permeability in pharmaceutical cocrystal profiles has not been sufficiently cherished, which can be most probably attributed to two principal reasons. First, responsibility may be on more user-friendly in vitro measurement procedures for solubility compared to permeability, implying the permeability measurement process seems unexpectedly difficult for researchers, whereas they have a complete understanding of solubility concepts and experiments. Besides, it may be ascribed to the undeniable attraction of introducing new crystal-based structures which mostly leaves the importance of improving the function of existing multicomponents behind. Bringing in new crystalline entities, to rephrase it, researchers have a fairly better chance of achieving high-class publications. Although the Food and Drug Administration (FDA) has provided a golden opportunity for pharmaceutical cocrystals to straightforwardly enter the market by simply considering them as derivatives of the existing active pharmaceutical ingredients, inattention to assessing and scaling up permeability which is intimately linked with solubility has resulted in limited numbers of them in the global pharmaceutical market. Casting a glance at the future, it is apprehended that further development in the field of permeability of pharmaceutical cocrystals and organic salts requires a meticulous perception of achievements to date and potentials to come. Thence, this perspective scrutinizes the pathway of permeation assessment making researchers confront their fear upfront through mapping the simplest way of permeability measurement for multicomponents of oral drugs.
Collapse
Affiliation(s)
- Ali Samie
- Department of Medicinal Chemistry, School of Pharmacy and Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Hoda Alavian
- Department of Medicinal Chemistry, School of Pharmacy and Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| |
Collapse
|
3
|
D’Ambrosio A, Itaj F, Cacace F, Piemonte V. Mathematical Modeling of the Gastrointestinal System for Preliminary Drug Absorption Assessment. Bioengineering (Basel) 2024; 11:813. [PMID: 39199771 PMCID: PMC11352181 DOI: 10.3390/bioengineering11080813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
The objective of this study is to demonstrate the potential of a multicompartmental mathematical model to simulate the activity of the gastrointestinal system after the intake of drugs, with a limited number of parameters. The gastrointestinal system is divided into five compartments, modeled as both continuous systems with discrete events (stomach and duodenum) and systems with delay (jejunum, ileum, and colon). The dissolution of the drug tablet occurs in the stomach and is described through the Noyes-Whitney equation, with pH dependence expressed through the Henderson-Hasselbach relationship. The boluses resulting from duodenal activity enter the jejunum, ileum, and colon compartments, where drug absorption takes place as blood flows countercurrent. The model includes only three parameters with assigned physiological meanings. It was tested and validated using data from in vivo experiments. Specifically, the model was tested with the concentration profiles of nine different drugs and validated using data from two drugs with varying initial concentrations. Overall, the outputs of the model are in good agreement with experimental data, particularly with regard to the time of peak concentration. The primary sources of discrepancy were identified in the concentration decay. The model's main strength is its relatively low computational cost, making it a potentially excellent tool for in silico assessment and prediction of drug adsorption in the intestine.
Collapse
Affiliation(s)
- Antonio D’Ambrosio
- Unit of Chemical-Physics Fundamentals in Chemical Engineering, Department of Science and Technology for Sustainable Development and One Health, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy; (F.I.); (V.P.)
| | - Fatjon Itaj
- Unit of Chemical-Physics Fundamentals in Chemical Engineering, Department of Science and Technology for Sustainable Development and One Health, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy; (F.I.); (V.P.)
| | - Filippo Cacace
- Research Unit of Computer Systems and Bioinformatics, Department of Engineering, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy;
| | - Vincenzo Piemonte
- Unit of Chemical-Physics Fundamentals in Chemical Engineering, Department of Science and Technology for Sustainable Development and One Health, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy; (F.I.); (V.P.)
| |
Collapse
|
4
|
Mekasha YT, Wondie Mekonen A, Nigussie S, Usure RE, Feleke MG. Modeling and comparison of dissolution profiles for different brands of albendazole boluses. BMC Pharmacol Toxicol 2024; 25:48. [PMID: 39123260 PMCID: PMC11316307 DOI: 10.1186/s40360-024-00774-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Addressing critical veterinary drugs, especially drugs with solubility problems like albendazole, and their implications for therapeutic efficacy, in-vitro dissolution studies can indeed provide valuable insights into how different brands of albendazole boluses perform under standardized conditions, helping to assess their dissolution profiles and potential bioavailability. METHODS Six brands of albendazole 300 mg boluses were collected from December 2020 to May 2021 G.C. The laboratory work was conducted from December 2020 to May 2021 in the National Animal Products and Veterinary Drugs and Feed Quality Assessment Centre (APVD-FQAC) laboratories. The collected brands from government veterinary clinics and private veterinary shops were subjected to model independent and dependent parameters. The dissolution test was conducted according to the USP monograph. RESULTS The study found that none of the six brands met the requirements of the dissolution test, as their API release was less than 80% within the specified 60-minute timeframe according to USP standards. Model independence indicated that only one brand (Alb002 = 3.72) achieved a difference factor of ≤ 15%. The remaining four brands (4/6) did not meet this criterion. However, the similarity factor (f2) revealed that all five brands (5/6) were comparable to the comparator products, with f2 values of [Formula: see text]50%. The mean dissolution time results confirmed that three brands (3/6) had the highest dissolution rate and the fastest onset of action. The model-dependent kinetics indicated that the Weibull and Korsemeyer-Peppas models were the best fit for the release of drug substances. CONCLUSION The study highlights issues with albendazole boluses' quality, highlighting the need for national in-vitro dissolution studies. These recommendations could improve quality control, streamline regulatory frameworks, and offer practical, cost-effective methods for evaluating drug efficacy and safety, ensuring veterinary pharmaceuticals meet safety and efficacy standards.
Collapse
Affiliation(s)
- Yesuneh Tefera Mekasha
- Pharmaceutical Sciences, Pharmaceutical Quality Assurance, and Regulatory Affairs, University of Gondar, P.O.BOX:196, Gondar, Ethiopia.
| | - Abibo Wondie Mekonen
- Department of Veterinary Pharmacy, Pharmaceutical supply chain management, University of Gondar, Gondar, Ethiopia
| | - Sete Nigussie
- Department of Veterinary Pharmacy, College of Veterinary medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Rashed Edris Usure
- School of Pharmacy, Department of Pharmaceutical Chemistry, Hawassa University, Hawassa, Ethiopia
| | - Melaku Getahun Feleke
- Department of Veterinary Pharmacy, Pharmaceutical Analysis and Quality Assurance, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
5
|
Roy A, Paul I, Paul T, Hazarika K, Dihidar A, Ray S. An in-silico receptor-pharmacophore based multistep molecular docking and simulation study to evaluate the inhibitory potentials against NS1 of DENV-2. J Biomol Struct Dyn 2024; 42:6136-6164. [PMID: 37517062 DOI: 10.1080/07391102.2023.2239925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/25/2023] [Indexed: 08/01/2023]
Abstract
DENV-2 strain is the most fatal and infectious of the five dengue virus serotypes. The non-structural protein NS1 encoded by its genome is the most significant protein required for viral pathogenesis and replication inside the host body. Thus, targeting the NS1 protein and designing an inhibitor to limit its stability and secretion is a propitious attempt in our fight against dengue. Four novel inhibitors are designed to target the conserved cysteine residues (C55, C313, C316, and C329) and glycosylation sites (N130 and N207) of the NS1 protein in an attempt to halt the spread of the dengue infection in the host body altogether. Numerous computer-aided drug designing techniques including molecular docking, molecular dynamics simulation, virtual screening, principal component analysis, and dynamic cross-correlation matrix were employed to determine the structural and functional activity of the NS1-inhibitor complexes. From our analysis, it was evident that the extent of structural and atomic level fluctuations of the ligand-bound protein exhibited a declining trend in contrast to unbound protein which was prominently noticeable through the RMSD, RMSF, Rg, and SASA graphs. The ADMET analysis of the four ligands revealed a promising pharmacokinetics and pharmacodynamic profile, along with good bioavailability and toxicity properties. The proposed drugs when bound to the targeted cavities resulted in stable conformations in comparison to their unbound state, implying they have good affinity promising effective drug action. Thus, they can be tested in vitro and used as potential anti-dengue drugs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Alankar Roy
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Ishani Paul
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Tanwi Paul
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | | | - Aritrika Dihidar
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Sujay Ray
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| |
Collapse
|
6
|
Nainwal N, Jawla S, Singh R, Banerjee S, Saharan VA. Solubility-permeability interplay of hydrotropic solubilization of piroxicam. Drug Dev Ind Pharm 2024; 50:481-494. [PMID: 38717346 DOI: 10.1080/03639045.2024.2349576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/25/2024] [Indexed: 05/15/2024]
Abstract
OBJECTIVES In this research paper, an investigation has been made to assess the simultaneous effect of a solubility enhancement approach, i.e., hydrotropy on the solubility and apparent permeability of piroxicam. The solubility of piroxicam (PRX) a BCS (biopharmaceutics classification system) class II drug has been increased using a mixed hydrotropy approach. This study is based on identifying the pattern of solubility-permeability interplay and confirming whether every solubility gain results in a concomitant decrease in permeability or permeability remains unaffected. METHOD Solid dispersions of PRX were formulated using two hydrotropes, viz., sodium benzoate (SB) and piperazine (PP) by solvent evaporation method. A comprehensive 32factorial design was employed to study the effect of hydrotropes on the solubility and permeability of PRX. Subsequently, PRX tablets containing these solid dispersions were formulated and evaluated. KEY FINDINGS SB and PP displayed a significant increase in the solubility of PRX ranging from 0.99 to 2.21 mg/mL for F1-F9 batches attributed to the synergistic effect of hydrotropes. However, there is a reduction in PRX permeability with increasing hydrotrope levels. The decline in permeability was notably less pronounced compared to the simultaneous rise in aqueous solubility of PRX. CONCLUSION An evident tradeoff between permeability and solubility emerged through the mixed hydrotropic solubilization for PRX. As PRX has generally higher intrinsic permeability, it has been assumed that this permeability loss will not affect the overall absorption of PRX. However, it may affect the absorption of drugs with limited permeability. Therefore, solubility permeability interplay should be investigated during solubility enhancement.
Collapse
Affiliation(s)
- Nidhi Nainwal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
- Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Saharanpur, Uttar Pradesh, India
- Department of Pharmaceutics, School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Dehradun, Uttarakhand, India
| | - Sunil Jawla
- Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Saharanpur, Uttar Pradesh, India
- Geeta Institute of Pharmacy, Geeta University, Panipat, Haryana, India
| | - Ranjit Singh
- Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Saharanpur, Uttar Pradesh, India
| | - Surojit Banerjee
- Department of Pharmaceutics, School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Dehradun, Uttarakhand, India
| | - Vikas Anand Saharan
- Department of Pharmaceutics, School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Dehradun, Uttarakhand, India
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research, Guwahati (NIPER-G), Guwahati, Assam, India
| |
Collapse
|
7
|
Paramshetti S, Angolkar M, Talath S, Osmani RAM, Spandana A, Al Fatease A, Hani U, Ramesh KVRNS, Singh E. Unravelling the in vivo dynamics of liposomes: Insights into biodistribution and cellular membrane interactions. Life Sci 2024; 346:122616. [PMID: 38599316 DOI: 10.1016/j.lfs.2024.122616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/21/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Liposomes, as a colloidal drug delivery system dating back to the 1960s, remain a focal point of extensive research and stand as a highly efficient drug delivery method. The amalgamation of technological and biological advancements has propelled their evolution, elevating them to their current status. The key attributes of biodegradability and biocompatibility have been instrumental in driving substantial progress in liposome development. Demonstrating a remarkable ability to surmount barriers in drug absorption, enhance stability, and achieve targeted distribution within the body, liposomes have become pivotal in pharmaceutical research. In this comprehensive review, we delve into the intricate details of liposomal drug delivery systems, focusing specifically on their pharmacokinetics and cell membrane interactions via fusion, lipid exchange, endocytosis etc. Emphasizing the nuanced impact of various liposomal characteristics, we explore factors such as lipid composition, particle size, surface modifications, charge, dosage, and administration routes. By dissecting the multifaceted interactions between liposomes and biological barriers, including the reticuloendothelial system (RES), opsonization, enhanced permeability and retention (EPR) effect, ATP-binding cassette (ABC) phenomenon, and Complement Activation-Related Pseudoallergy (CARPA) effect, we provide a deeper understanding of liposomal behaviour in vivo. Furthermore, this review addresses the intricate challenges associated with translating liposomal technology into practical applications, offering insights into overcoming these hurdles. Additionally, we provide a comprehensive analysis of the clinical adoption and patent landscape of liposomes across diverse biomedical domains, shedding light on their potential implications for future research and therapeutic developments.
Collapse
Affiliation(s)
- Sharanya Paramshetti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates.
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Asha Spandana
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - K V R N S Ramesh
- Department of Pharmaceutics, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates.
| | - Ekta Singh
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States.
| |
Collapse
|
8
|
Abonashey SG, Hassan HAFM, Shalaby MA, Fouad AG, Mobarez E, El-Banna HA. Formulation, pharmacokinetics, and antibacterial activity of florfenicol-loaded niosome. Drug Deliv Transl Res 2024; 14:1077-1092. [PMID: 37957473 DOI: 10.1007/s13346-023-01459-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 11/15/2023]
Abstract
The growing interest in employing nano-sized pharmaceutical formulations in veterinary medicine has prompted the exploration of the novel nanocarriers' ability to augment the therapeutic outcome. In this study, we harnessed niosomes, spherical nanocarriers formed through non-ionic surfactant self-assembly, to enhance the therapeutic efficacy of the broad-spectrum antibiotic florfenicol. Pre-formulation studies were conducted to identify the optimal parameters for preparing florfenicol-loaded niosomes (FLNs). These studies revealed that the formulation that consisted of Span 60, cholesterol, and dihexadecyl phosphate (DDP) at a molar ratio of 1:1:0.1 exhibited the highest entrapment efficiency (%EE) and uniform size distribution. In vitro antibacterial testing demonstrated the niosomal capacity to significantly reduce florfenicol minimum inhibitory concentration (MIC) against E. coli and S. aureus. Pharmacokinetic profiles of free florfenicol and FLN were assessed following oral administration of 30 mg florfenicol/kg body weight to healthy or E. coli-infected chickens. FLN exhibited a substantially higher maximum plasma concentration (Cmax) of florfenicol compared to free florfenicol. Furthermore, FLN showed significantly higher area under the curve (AUC0-t) than free florfenicol as revealed from the relative bioavailability studies. Lethal dose (LD) 50 values for both free florfenicol and FLN exceeded 5 g/kg of body weight, indicating high safety profile. Assessment of mortality protection in mice against lethal E. coli infections showed the significantly higher capability of FLN to improve the survival rate (75%) than free florfenicol (25%). Collectively, these findings demonstrate the niosomal ability to improve the oral bioavailability as well as the antibacterial activity of the incorporated veterinary antibiotic florfenicol.
Collapse
Affiliation(s)
- Shimaa G Abonashey
- Department of Biochemistry, Animal Health Research Institute, Dokki, Giza, Egypt
| | - Hatem A F M Hassan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, New Administrative Capital, Cairo, Egypt.
| | - Mostafa A Shalaby
- Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Amr Gamal Fouad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Elham Mobarez
- Department of Biochemistry, Animal Health Research Institute, Dokki, Giza, Egypt
| | - Hossny A El-Banna
- Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
9
|
Pardhi E, Vasave R, Srivastava V, Yadav R, Mehra NK. Nanocrystal technologies in biomedical science: From the bench to the clinic. Drug Discov Today 2024; 29:103913. [PMID: 38340952 DOI: 10.1016/j.drudis.2024.103913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
The pharmaceutical industry is grappling with a pressing crisis in drug development characterized by soaring R&D costs, setbacks in blockbuster drug development due to poor aqueous solubility, and patent-related limitations on newly approved molecules. To combat these challenges, diverse strategies have emerged to enhance the solubility and dissolution rates of Biopharmaceutics Classification System (BCS) II and IV drug molecules. Enter drug nanocrystals, a revolutionary nanotechnology-driven, carrier-free colloidal drug delivery system. This review provides a comprehensive insight into nanocrystal strategies, stabilizer selection criteria, preparation methods, advanced characterization techniques, the evolving nanocrystal technological landscape, current market options, and exciting clinical prospects for reshaping the future of pharmaceuticals.
Collapse
Affiliation(s)
- Ekta Pardhi
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Ravindra Vasave
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Vaibhavi Srivastava
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Rati Yadav
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
10
|
Godase SS, Kulkarni NS, Dhole SN. A Comprehensive Review on Novel Lipid-Based Nano Drug Delivery. Adv Pharm Bull 2024; 14:34-47. [PMID: 38585464 PMCID: PMC10997939 DOI: 10.34172/apb.2024.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 02/21/2023] [Accepted: 10/08/2023] [Indexed: 04/09/2024] Open
Abstract
Novel drug delivery system opens the doors towards nano/micro formulation strategies to overcome the challenges associated with the poorly soluble and permeable drugs. Lipid based nanoparticles are widely accepted that includes liposomes, niosomes and micelles which are FDA approved. Such lipid based drug delivery allows delivery for natural phytoconstituents, biopharmaceutical classification system (BCS) class II and class IV drugs are effectively delivered to improve its solubility, permeability and bioavailability. The article provides the recent advances and application of lipid based dosage form for improvement of therapeutic efficacy.
Collapse
Affiliation(s)
| | - Nilesh Shrikant Kulkarni
- Department of Pharmaceutics, PES Modern college of Pharmacy (for ladies) Moshi, Pune. Affiliated to Savitribai Phule Pune University, Pune, Maharashtra, India
| | | |
Collapse
|
11
|
Islam N, Ullah Khan N, Razzaq A, Ullah Khan Z, Menaa F, Alfaifi MY, Elbehairi SEI, Iqbal H, Ni J. Self-emulsifying micelles as a drug nanocarrier system for itraconazole oral bioavailability enhancement; in vitro and in vivo assessment. Saudi Pharm J 2023; 31:101839. [PMID: 37965489 PMCID: PMC10641562 DOI: 10.1016/j.jsps.2023.101839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/19/2023] [Indexed: 11/16/2023] Open
Abstract
Itraconazole (ITZ) is a renowned antifungal medication, however its therapeutic efficacy is limited by low solubility and oral bioavailability. The current research work attempted to augment the oral bioavailability of ITZ by incorporating into self-emulsifying micelles (SEMCs). To fabricate the SEMCs, various preparation techniques including physical mixture, melt-emulsification, solvent evaporation and kneading, were opted by using different weight ratio of drug and solubilizers i.e. Gelucire-50/13 or Gelucire-44/14 and characterized both in vitro and in vivo. The prepared SEMCs were found to be in the size range from 63.4 ± 5.2 to 284.2 ± 19.5 nm with surface charges ranging from -16 ± 1.2 to -27 ± 2.0 mV. The drug solubility was improved to a reasonable extent with all investigated formulations, however, SEMCs in group 6 prepared by kneading method (KMG6) using Gelucire-44/14: drug (10:1 presented 87.6 folds' increase (964.93 ± 2 μg/mL) compared to solubility of crystalline ITZ (11 ± 2 μg/mL) through kneading method. In addition, KMG6 SEMCs shows the fast drug release compared to other SEMCs. Further, KMG6 SEMCs also exhibited 5.12-fold higher relative intestinal serosal fluid absorption compared to crystalline ITZ. The pharmacokinetic parameters such Cmax, AUC and Tmax of KMG6 SEMCs significantly improved compared to crystalline ITZ. In conclusion, the manipulation of ITZ solubility, dissolution rate and absorption using SEMCs is a promising strategy for bioavailability enhancement.
Collapse
Affiliation(s)
- Nayyer Islam
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, GC University, Faisalabad, Pakistan
| | - Naveed Ullah Khan
- Department of Pharmacy, CECOS University of IT and Emerging Sciences, Peshawar 25000, Pakistan
| | - Anam Razzaq
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Zaheer Ullah Khan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Pakistan
| | - Farid Menaa
- Departments of Oncology and Nanomedicine, California Innovations Corporation, San Diego, CA 92037, USA
| | - Mohammad Y. Alfaifi
- King Khalid University, Faculty of Science, Biology Department, Abha 9004, Saudi Arabia
| | | | - Haroon Iqbal
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Jiang Ni
- Department of Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| |
Collapse
|
12
|
Han J, Tang M, Yang Y, Sun W, Yue Z, Zhang Y, Zhu Y, Liu X, Wang J. Amorphous solid dispersions: Stability mechanism, design strategy and key production technique of hot melt extrusion. Int J Pharm 2023; 646:123490. [PMID: 37805146 DOI: 10.1016/j.ijpharm.2023.123490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Solid dispersion (SD) system has been used as an effective formulation strategy to increase in vitro and in vivo performances of poorly water-soluble drugs, such as solubility/dissolution, stability and bioavailability. This review provides a comprehensive SD classification and identifies the most popular amorphous solid dispersions (ASDs). Meanwhile, this review further puts forward the systematic design strategy of satisfactory ASDs in terms of drug properties, carrier selection, preparation methods and stabilization mechanisms. In addition, hot melt extrusion (HME) as the continuous manufacturing technique is described including the principle and structure of HME instrument, key process parameters and production application, in order to guide the scale-up of ASDs and develop more ASD products to the market in pharmaceutical industry.
Collapse
Affiliation(s)
- Jiawei Han
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China; Changzhou Pharmaceutical Factory Co., LTD, Changzhou 213018, PR China; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Mengyuan Tang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China
| | - Yang Yang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China
| | - Wen Sun
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China
| | - Zhimin Yue
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China
| | - Yunran Zhang
- Changzhou Pharmaceutical Factory Co., LTD, Changzhou 213018, PR China
| | - Yijun Zhu
- Changzhou Pharmaceutical Factory Co., LTD, Changzhou 213018, PR China
| | - Xiaoqian Liu
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China.
| | - Jue Wang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
13
|
Butranova OI, Ushkalova EA, Zyryanov SK, Chenkurov MS, Baybulatova EA. Pharmacokinetics of Antibacterial Agents in the Elderly: The Body of Evidence. Biomedicines 2023; 11:1633. [PMID: 37371728 DOI: 10.3390/biomedicines11061633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Infections are important factors contributing to the morbidity and mortality among elderly patients. High rates of consumption of antimicrobial agents by the elderly may result in increased risk of toxic reactions, deteriorating functions of various organs and systems and leading to the prolongation of hospital stay, admission to the intensive care unit, disability, and lethal outcome. Both safety and efficacy of antibiotics are determined by the values of their plasma concentrations, widely affected by physiologic and pathologic age-related changes specific for the elderly population. Drug absorption, distribution, metabolism, and excretion are altered in different extents depending on functional and morphological changes in the cardiovascular system, gastrointestinal tract, liver, and kidneys. Water and fat content, skeletal muscle mass, nutritional status, use of concomitant drugs are other determinants of pharmacokinetics changes observed in the elderly. The choice of a proper dosing regimen is essential to provide effective and safe antibiotic therapy in terms of attainment of certain pharmacodynamic targets. The objective of this review is to perform a structure of evidence on the age-related changes contributing to the alteration of pharmacokinetic parameters in the elderly.
Collapse
Affiliation(s)
- Olga I Butranova
- Department of General and Clinical Pharmacology, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Elena A Ushkalova
- Department of General and Clinical Pharmacology, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Sergey K Zyryanov
- Department of General and Clinical Pharmacology, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
- State Budgetary Institution of Healthcare of the City of Moscow "City Clinical Hospital No. 24 of the Moscow City Health Department", Pistzovaya Srt. 10, 127015 Moscow, Russia
| | - Mikhail S Chenkurov
- Department of General and Clinical Pharmacology, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Elena A Baybulatova
- Department of General and Clinical Pharmacology, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| |
Collapse
|
14
|
Liu X, Zhao L, Wu B, Chen F. Improving solubility of poorly water-soluble drugs by protein-based strategy: A review. Int J Pharm 2023; 634:122704. [PMID: 36758883 DOI: 10.1016/j.ijpharm.2023.122704] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023]
Abstract
Poorly water-soluble drugs are frequently encountered and present a most challengeable difficulty in pharmaceutical development. Poor solubility of drugs can lead to suboptimal bioavailability and therapeutic efficiency. Increasing efforts have been contributed to improve the solubility of poorly water-soluble drugs for better pharmacokinetics and pharmacodynamics. Among various solubility enhancement technologies, protein-based strategy to address poorly water-soluble drugs issues has special interests for natural advantages including versatile interactions between proteins and hydrophobic drugs, biocompatibility, biodegradation, and metabolization of proteins. The protein-drug formulations could be formed by covalent conjugations or noncovalent interactions to facilitate solubility of poorly water-soluble drugs. This review is to summarize the advances using proteins including plant proteins, mammalian proteins, and recombinant proteins, to enhance water solubility of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Xiaowen Liu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China; Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai 200433, China.
| | - Limin Zhao
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China; Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai 200433, China
| | - Baojian Wu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Fener Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China; Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai 200433, China.
| |
Collapse
|
15
|
Sato K, Mizutani A, Muranaka Y, Yao J, Kobayashi M, Yamazaki K, Nishii R, Nishi K, Nakanishi T, Tamai I, Kawai K. Biological Distribution after Oral Administration of Radioiodine-Labeled Acetaminophen to Estimate Gastrointestinal Absorption Function via OATPs, OATs, and/or MRPs. Pharmaceutics 2023; 15:pharmaceutics15020497. [PMID: 36839818 PMCID: PMC9964641 DOI: 10.3390/pharmaceutics15020497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
We evaluated the whole-body distribution of orally-administered radioiodine-125 labeled acetaminophen (125I-AP) to estimate gastrointestinal absorption of anionic drugs. 125I-AP was added to human embryonic kidney (HEK)293 and Flp293 cells expressing human organic anion transporting polypeptide (OATP)1B1/3, OATP2B1, organic anion transporter (OAT)1/2/3, or carnitine/organic cation transporter (OCTN)2, with and without bromosulfalein (OATP and multidrug resistance-associated protein (MRP) inhibitor) and probenecid (OAT and MRP inhibitor). The biological distribution in mice was determined by oral administration of 125I-AP with and without bromosulfalein and by intravenous administration of 125I-AP. The uptake of 125I-AP was significantly higher in HEK293/OATP1B1, OATP1B3, OATP2B1, OAT1, and OAT2 cells than that in mock cells. Bromosulfalein and probenecid inhibited OATP- and OAT-mediated uptake, respectively. Moreover, 125I-AP was easily excreted in the urine when administered intravenously. The accumulation of 125I-AP was significantly lower in the blood and urinary bladder of mice receiving oral administration of both 125I-AP and bromosulfalein than those receiving only 125I-AP, but significantly higher in the small intestine due to inhibition of OATPs and/or MRPs. This study indicates that whole-body distribution after oral 125I-AP administration can be used to estimate gastrointestinal absorption in the small intestine via OATPs, OATs, and/or MRPs by measuring radioactivity in the urinary bladder.
Collapse
Affiliation(s)
- Kakeru Sato
- Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan
| | - Asuka Mizutani
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan
| | - Yuka Muranaka
- Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan
| | - Jianwei Yao
- Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan
| | - Masato Kobayashi
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan
- Correspondence: ; Tel.: +81-76-265-2500
| | - Kana Yamazaki
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage 263-8555, Japan
| | - Ryuichi Nishii
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage 263-8555, Japan
| | - Kodai Nishi
- Department of Radioisotope Medicine, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Takeo Nakanishi
- Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki 370-0033, Japan
| | - Ikumi Tamai
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Keiichi Kawai
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan
- Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji 910-1193, Japan
| |
Collapse
|
16
|
Shukla E, Kara DD, Katikala T, Rathnanand M. Self-nanoemulsifying drug delivery systems (SNEDDS) of anti-cancer drugs: a multifaceted nanoplatform for the enhancement of oral bioavailability. Drug Dev Ind Pharm 2023; 49:1-16. [PMID: 36803270 DOI: 10.1080/03639045.2023.2182124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
OBJECTIVE A significant problem faced by the health care industry today is that though there are numerous drugs available to tackle diseases like cancer, their intrinsic properties make it difficult to be delivered to patients in a feasible manner. One of the key players that have helped researchers overcome poor solubility and permeability of drugs is Nanotechnology, this article further iterates on the same. SIGNIFICANCE Nanotechnology is used as an umbrella term in pharmaceutics and describes under it multiple technologies. Upcoming nanotechnology is a Self Nanoemulsifying System which is considered to be a futuristic delivery system both due to its scientific simplicity and relative ease of patient delivery. METHODS Self-Nano Emulsifying Drug Delivery Systems (SNEDDS) are homogenous lipidic concoctions containing the drug solubilized in the oil phase and surfactants. The choice of components depends on the physicochemical properties of the drugs, the solubilization capability of oils and the physiological fate of the drug. The article contains further details of various methodologies that have been adopted by scientists to formulate and optimize such systems in order to make anticancer drugs orally deliverable. RESULTS The results that have been generated by scientists across the globe have been summarized in the article and all of the data supports the claim that SNEDDS significantly enhance the solubility and bioavailability of hydrophobic anticancer drugs. CONCLUSIONS This article mainly provides the application of SNEDDS in cancer therapy and concludes to provide a step for the oral administration of several BCS class II and IV anticancer drugs.
Collapse
Affiliation(s)
- Eesha Shukla
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Divya Dhatri Kara
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Tanvi Katikala
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Mahalaxmi Rathnanand
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| |
Collapse
|
17
|
An outlook on permeability escalation through cocrystallization for developing pharmaceuticals with improved biopharmaceutical properties. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Li D. Natural deep eutectic solvents in phytonutrient extraction and other applications. FRONTIERS IN PLANT SCIENCE 2022; 13:1004332. [PMID: 36212381 PMCID: PMC9533057 DOI: 10.3389/fpls.2022.1004332] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Natural deep eutectic solvents (NaDESs) are considered a new type of green solvent with attractive application prospects in many fields because of their simple preparation, low cost, environmental friendliness, low volatility, high solvency capacity, designable structure, and easy biodegradability. Due to their biocompatibility, they are safe to use and are particularly suitable for natural product applications. In recent years, NaDESs have been used to extract phytonutrients (e.g., flavonoids, saponins, polysaccharides, alkaloids, quinones, phenolic acids, volatile oils, etc.) to improve their solubility, stability, and bioavailability. This review is intended to summarize and discuss recent progress in the field of natural products related to materials and preparation methods, physicochemical properties, enhancing extraction and separation, increasing solubility, improving stability and bioavailability, facilitating oral absorption of phytonutrients, and finally, highlighting the challenge for future work.
Collapse
|
19
|
Pivovarova E, Climova A, Świątkowski M, Staszewski M, Walczyński K, Dzięgielewski M, Bauer M, Kamysz W, Krześlak A, Jóźwiak P, Czylkowska A. Synthesis and Biological Evaluation of Thiazole-Based Derivatives with Potential against Breast Cancer and Antimicrobial Agents. Int J Mol Sci 2022; 23:ijms23179844. [PMID: 36077257 PMCID: PMC9456159 DOI: 10.3390/ijms23179844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Investigating novel, biologically-active coordination compounds that may be useful in the design of breast anticancer, antifungal, and antimicrobial agents is still the main challenge for chemists. In order to get closer to solving this problem, three new copper coordination compounds containing thiazole-based derivatives were synthesized. The structures of the synthesized compounds and their physicochemical characterization were evaluated based on elemental analysis, 1H and l3C nuclear magnetic resonance (NMR), flame atomic absorption spectroscopy (F-AAS), single-crystal X-ray diffraction, thermogravimetric analysis (TGA), and Fourier-transform infrared spectroscopy (FTIR). The pharmacokinetics were studied using SwissADME. The results obtained from the computational studies supported the results obtained from the MTT analysis, and the antimicrobial activity was expressed as the minimum inhibitory concentration (MIC).
Collapse
Affiliation(s)
- Ekaterina Pivovarova
- Institute of General and Ecological Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
- Correspondence: (E.P.); (A.C.)
| | - Alina Climova
- Institute of General and Ecological Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
| | - Marcin Świątkowski
- Institute of General and Ecological Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
| | - Marek Staszewski
- Department of Synthesis and Technology of Drugs, Medical University, Muszyńskiego Street 1, 90-145 Łódź, Poland
| | - Krzysztof Walczyński
- Department of Synthesis and Technology of Drugs, Medical University, Muszyńskiego Street 1, 90-145 Łódź, Poland
| | - Marek Dzięgielewski
- Department of Synthesis and Technology of Drugs, Medical University, Muszyńskiego Street 1, 90-145 Łódź, Poland
| | - Marta Bauer
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland
| | - Wojciech Kamysz
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland
| | - Anna Krześlak
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Łódź, Poland
| | - Paweł Jóźwiak
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Łódź, Poland
| | - Agnieszka Czylkowska
- Institute of General and Ecological Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
- Correspondence: (E.P.); (A.C.)
| |
Collapse
|
20
|
Fast-Fed Variability: Insights into Drug Delivery, Molecular Manifestations, and Regulatory Aspects. Pharmaceutics 2022; 14:pharmaceutics14091807. [PMID: 36145555 PMCID: PMC9505616 DOI: 10.3390/pharmaceutics14091807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 12/26/2022] Open
Abstract
Among various drug administration routes, oral drug delivery is preferred and is considered patient-friendly; hence, most of the marketed drugs are available as conventional tablets or capsules. In such cases, the administration of drugs with or without food has tremendous importance on the bioavailability of the drugs. The presence of food may increase (positive effect) or decrease (negative effect) the bioavailability of the drug. Such a positive or negative effect is undesirable since it makes dosage estimation difficult in several diseases. This may lead to an increased propensity for adverse effects of drugs when a positive food effect is perceived. However, a negative food effect may lead to therapeutic insufficiency for patients suffering from life-threatening disorders. This review emphasizes the causes of food effects, formulation strategies to overcome the fast-fed variability, and the regulatory aspects of drugs with food effects, which may open new avenues for researchers to design products that may help to eliminate fast-fed variability.
Collapse
|
21
|
Bioavailability Enhancement Techniques for Poorly Aqueous Soluble Drugs and Therapeutics. Biomedicines 2022; 10:biomedicines10092055. [PMID: 36140156 PMCID: PMC9495787 DOI: 10.3390/biomedicines10092055] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
The low water solubility of pharmacoactive molecules limits their pharmacological potential, but the solubility parameter cannot compromise, and so different approaches are employed to enhance their bioavailability. Pharmaceutically active molecules with low solubility convey a higher risk of failure for drug innovation and development. Pharmacokinetics, pharmacodynamics, and several other parameters, such as drug distribution, protein binding and absorption, are majorly affected by their solubility. Among all pharmaceutical dosage forms, oral dosage forms cover more than 50%, and the drug molecule should be water-soluble. For good therapeutic activity by the drug molecule on the target site, solubility and bioavailability are crucial factors. The pharmaceutical industry’s screening programs identified that around 40% of new chemical entities (NCEs) face various difficulties at the formulation and development stages. These pharmaceuticals demonstrate less solubility and bioavailability. Enhancement of the bioavailability and solubility of drugs is a significant challenge in the area of pharmaceutical formulations. According to the Classification of Biopharmaceutics, Class II and IV drugs (APIs) exhibit poor solubility, lower bioavailability, and less dissolution. Various technologies are discussed in this article to improve the solubility of poorly water-soluble drugs, for example, the complexation of active molecules, the utilization of emulsion formation, micelles, microemulsions, cosolvents, polymeric micelle preparation, particle size reduction technologies, pharmaceutical salts, prodrugs, the solid-state alternation technique, soft gel technology, drug nanocrystals, solid dispersion methods, crystal engineering techniques and nanomorph technology. This review mainly describes several other advanced methodologies for solubility and bioavailability enhancement, such as crystal engineering, micronization, solid dispersions, nano sizing, the use of cyclodextrins, solid lipid nanoparticles, colloidal drug delivery systems and drug conjugates, referring to a number of appropriate research reports.
Collapse
|
22
|
Fliri AF, Kajiji S. Functional characterization of nutraceuticals using spectral clustering: Centrality of caveolae-mediated endocytosis for management of nitric oxide and vitamin D deficiencies and atherosclerosis. Front Nutr 2022; 9:885364. [PMID: 36046126 PMCID: PMC9421303 DOI: 10.3389/fnut.2022.885364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
It is well recognized that redox imbalance, nitric oxide (NO), and vitamin D deficiencies increase risk of cardiovascular, metabolic, and infectious diseases. However, clinical studies assessing efficacy of NO and vitamin D supplementation have failed to produce unambiguous efficacy outcomes suggesting that the understanding of the pharmacologies involved is incomplete. This raises the need for using systems pharmacology tools to better understand cause-effect relationships at biological systems levels. We describe the use of spectral clustering methodology to analyze protein network interactions affected by a complex nutraceutical, Cardio Miracle (CM), that contains arginine, citrulline, vitamin D, and antioxidants. This examination revealed that interactions between protein networks affected by these substances modulate functions of a network of protein complexes regulating caveolae-mediated endocytosis (CME), TGF beta activity, vitamin D efficacy and host defense systems. Identification of this regulatory scheme and the working of embedded reciprocal feedback loops has significant implications for treatment of vitamin D deficiencies, atherosclerosis, metabolic and infectious diseases such as COVID-19.
Collapse
|
23
|
Supramolecular aggregates of myricetin improve its bioavailability and its role in counteracting alcoholism. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Woottisin N, Sukprasert S, Kulsirirat T, Tharavanij T, Sathirakul K. Evaluation of the Intestinal Permeability of Rosmarinic Acid from Thunbergia laurifolia Leaf Water Extract in a Caco-2 Cell Model. Molecules 2022; 27:3884. [PMID: 35745006 PMCID: PMC9227994 DOI: 10.3390/molecules27123884] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/26/2022] Open
Abstract
Thunbergia laurifolia (TL) has been traditionally used as an antidote and an antipyretic drug by folk healers for centuries in Thailand. Rosmarinic acid (RA) is major compound in TL extract and has attracted great interest due to its potential broad pharmacological effects. Herein, the permeability of RA was investigated in TL extract and as a pure compound in a Caco-2 cell model by using high-performance liquid chromatography with a photodiode array detector (HPLC-PDA). The results reveal that the apparent permeability coefficient (Papp) values of RA in TL extracts and pure RA significantly increased after deconjugation by β-glucuronidase/sulfatase enzymes. Our findings exhibit possible saturable biotransformation of RA and/or membrane transport while penetrated through Caco-2 cells. The cumulative amounts of RA as pure compounds and in TL extracts increased with the exposure time, and the efflux ratio (ER) was 0.27-1.14. RA in the TL extract has a similar absorption in the conjugated form and in the pure compound. The intestinal absorption of them is through passive diffusion. Therefore, our findings conclude that the intestinal transport of RA in TL extracts was mainly penetrated as conjugated forms with glucuronic acid and/or sulfate across Caco-2 cells and transported via passive diffusion.
Collapse
Affiliation(s)
- Nanthakarn Woottisin
- Graduate Program in Integrative Medicine, Chulabhorn International College of Medicine, Thammasart University (Rangsit Campus), Pathum Thani 12120, Thailand;
| | - Sophida Sukprasert
- Division of Integrative Medicine, Chulabhorn International College of Medicine, Thammasart University (Rangsit Campus), Pathum Thani 12120, Thailand
| | - Thitianan Kulsirirat
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand;
| | - Thipaporn Tharavanij
- Endocrinology and Metabolism Unit, Department of Internal Medicine, Faculty of Medicine, Thammasat University (Rangsit Campus), Pathum Thani 12120, Thailand;
- Center of Excellence in Applied Epidemiology, Thammasat University (Rangsit Campus), Pathum Thani 12120, Thailand
| | - Korbtham Sathirakul
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand;
| |
Collapse
|
25
|
Kaneko K, Miyasaka R, Hayman R. Nano-hydroxyapatite improves intestinal absorption of acetazolamide (BCS Class IV drug)–but how? PLoS One 2022; 17:e0268067. [PMID: 35588130 PMCID: PMC9119549 DOI: 10.1371/journal.pone.0268067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/22/2022] [Indexed: 12/02/2022] Open
Abstract
We earlier reported that coating poorly water-soluble drugs with nano-hydroxyapatite (nano-HAP) improves bioavailability after oral administration. In the present study, we coated BCS Class IV drug acetazolamide (AZ) with nano-HAP (AZ/HAP formulation), and investigated its bioavailability and nano-HAP’s role in promoting it. We tested AZ bioavailability after a single oral dose of the AZ/HAP formulation in rats, followed by a series of in vitro, ex vivo and in vivo testing. The binding state of AZ and nano-HAP was analyzed by gel filtration chromatography. AZ permeability was studied using a Caco-2 cell monolayer assay kit, to test for tight junction penetration, then using an Ussing chamber mounted with intestinal epithelium, both with and without Peyer’s patch tissue, to examine the role of intracellular transport. Fluorescence-labeled nano-HAP particles were administered orally in rats to investigate their localization in the intestinal tract. The area under the blood concentration time-curve in rats was about 4 times higher in the AZ/HAP formulation group than in the untreated AZ group. Gel filtration analysis showed AZ and nano-HAP were not bound. The Caco-2 study showed equivalent AZ permeability for both groups, but without significant change in transepithelial electrical resistance (TEER), indicating that tight junctions were not penetrated. In the Ussing chamber study, no significant difference in AZ permeability between the two groups was observed for epithelium containing Peyer’s patch tissue, but for epithelium without Peyer’s patch tissue, at high concentration, significantly higher permeability in the AZ/HAP formulation group was observed. Fluorescent labeling showed nano-HAP particles were present in both intestinal villi and Peyer’s patch tissue 30 min after oral administration. Our results suggest that nano-HAP’s enhancement of drug permeability from the small intestine occurs not via tight junctions, but intracellularly, via the intestinal villi. Further study to elucidate the mechanism of this permeability enhancement is required.
Collapse
Affiliation(s)
- Kenichi Kaneko
- Sangi Co., Ltd, Central Research Laboratory, Kasukabe, Saitama, Japan
- * E-mail:
| | - Ryosuke Miyasaka
- Sangi Co., Ltd, Central Research Laboratory, Kasukabe, Saitama, Japan
| | - Roslyn Hayman
- Sangi Co., Ltd, Central Research Laboratory, Kasukabe, Saitama, Japan
| |
Collapse
|
26
|
Sheikholeslami B, Lam NW, Dua K, Haghi M. Exploring the impact of physicochemical properties of liposomal formulations on their in vivo fate. Life Sci 2022; 300:120574. [DOI: 10.1016/j.lfs.2022.120574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 12/16/2022]
|
27
|
González R, Peña MÁ, Torres NS, Torrado G. Design, development, and characterization of amorphous rosuvastatin calcium tablets. PLoS One 2022; 17:e0265263. [PMID: 35312730 PMCID: PMC8936501 DOI: 10.1371/journal.pone.0265263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/26/2022] [Indexed: 11/19/2022] Open
Abstract
This work proposes a methodology for the design, development, optimisation, and evaluation of amorphous rosuvastatin calcium tablets (BCS class II drug). The main goal was to ensure rapid disintegration and high dissolution rate of the active ingredient, thus enhancing its bioavailability. The design started from a careful selection of excipients, which due to their characteristics and proportions within the formulation allowed the use of their properties such as fluidity or granulometric distribution. The formulation was characterised using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetry (TGA), Fourier transform infrared spectroscopy (FT-IR) and powder X-ray diffraction (PXRD) methods. The galenic SeDeM methodology was used to establish the profile of the active ingredient-excipient mixture and guarantee its suitability for producing tablets by the direct compression method. The results demonstrate that the amorphous rosuvastatin calcium tablets formulation developed made it possible to obtain cost-effective tablets by direct compression with optimal pharmacotechnical characteristics that showed a remarkable disintegration and dissolution rate. The manufactured tablets complied with the pharmacopoeia guidelines regarding content uniformity, tablet hardness, thickness, friability, in vitro disintegration time and dissolution profile.
Collapse
Affiliation(s)
- Rocío González
- Faculty of Pharmacy, Department of Biomedical Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Mª Ángeles Peña
- Faculty of Pharmacy, Department of Biomedical Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Norma Sofía Torres
- Faculty of Pharmacy, Department of Biomedical Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Guillermo Torrado
- Faculty of Pharmacy, Department of Biomedical Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
28
|
Barth M, Rudolph S, Kampschulze J, Meyer zu Vilsendorf I, Hanekamp W, Mulac D, Langer K, Lehr M. Hexafluoroisopropyl carbamates as selective MAGL and dual MAGL/FAAH inhibitors: biochemical and physicochemical properties. ChemMedChem 2022; 17:e202100757. [PMID: 35072346 PMCID: PMC9303458 DOI: 10.1002/cmdc.202100757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/13/2022] [Indexed: 11/29/2022]
Abstract
A series of hexafluoroisopropyl carbamates with indolylalkyl‐ and azaindolylalkyl‐substituents at the carbamate nitrogen was synthesized and evaluated for inhibition of the endocannabinoid degrading enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL). The synthesized derivatives with butyl to heptyl spacers between the heteroaryl and the carbamate moiety were inhibitors of both enzymes. For investigated compounds in which the alkyl chain was partially incorporated into a piperidine ring, different results were obtained. Compounds with a methylene spacer between the piperidine ring and the heteroaromatic system were found to be selective MAGL inhibitors, while an extension of the alkyl spacer to two to four atoms resulted in dual inhibition of FAAH/MAGL. The only small change in enzyme inhibitory activity with variation of the heteroaromatic system indicates that the reactive hexafluoroisopropyl carbamate group is mainly responsible for the strength of the inhibitory effect of the compounds. Selected derivatives were also tested for hydrolytic stability in aqueous solution, liver homogenate and blood plasma as well as for aqueous solubility and for permeability in a Caco‐2 cell model. Some compounds showed a slightly higher MAGL inhibitory effect than the known selective MAGL inhibitor ABX‐1431 and also partly surpassed this substance with regard to certain physicochemical and biochemical properties such as water solubility and cell permeability.
Collapse
Affiliation(s)
- Maximilian Barth
- University of Münster: Westfalische Wilhelms-Universitat Munster Institute of Pharmaceutical and Medicinal Chemistry GERMANY
| | - Stefan Rudolph
- University of Münster: Westfalische Wilhelms-Universitat Munster Institute of Pharmaceutical and Medicinal Chemistry GERMANY
| | - Jan Kampschulze
- University of Münster: Westfalische Wilhelms-Universitat Munster Institute of Pharmaceutical and Medicinal Chemistry GERMANY
| | - Imke Meyer zu Vilsendorf
- University of Münster: Westfalische Wilhelms-Universitat Munster Institute of Pharmaceutical and Medicinal Chemistry GERMANY
| | - Walburga Hanekamp
- University of Münster: Westfalische Wilhelms-Universitat Munster Institute of Pharmaceutical and Medicinal Chemistry GERMANY
| | - Dennis Mulac
- University of Münster: Westfalische Wilhelms-Universitat Munster Institute of Pharmaceutical Technology and Biopharmacy GERMANY
| | - Klaus Langer
- University of Münster: Westfalische Wilhelms-Universitat Munster Institute of Pharmaceutical Technology and Biopharmacy GERMANY
| | - Matthias Lehr
- University of Münster Institute of Pharmaceutical and Medicinal Chemistry Corrensstrasse 48 48149 Münster GERMANY
| |
Collapse
|
29
|
De Grandi D, Meghdadi A, LuTheryn G, Carugo D. Facile production of quercetin nanoparticles using 3D printed centrifugal flow reactors. RSC Adv 2022; 12:20696-20713. [PMID: 35919149 PMCID: PMC9295137 DOI: 10.1039/d2ra02745c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
A 3D printed reactor-in-a-centrifuge (RIAC) was developed to produce drug nanocrystals. Quercetin nanocrystals were manufactured at varying operational and formulation conditions, and had a small size (190–302 nm) and low size dispersity (PDI < 0.1).
Collapse
Affiliation(s)
- Davide De Grandi
- Department of Drug Sciences, Faculty of Pharmacy, University of Pavia, Pavia 27100, Italy
- Department of Pharmaceutics, School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Alireza Meghdadi
- Department of Pharmaceutics, School of Pharmacy, University College London, London WC1N 1AX, UK
- Department of Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Gareth LuTheryn
- Department of Pharmaceutics, School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Dario Carugo
- Department of Pharmaceutics, School of Pharmacy, University College London, London WC1N 1AX, UK
| |
Collapse
|
30
|
Kok LY, Bannigan P, Sanaee F, Evans JC, Dunne M, Regenold M, Ahmed L, Dubins D, Allen C. Development and pharmacokinetic evaluation of a self-nanoemulsifying drug delivery system for the oral delivery of cannabidiol. Eur J Pharm Sci 2022; 168:106058. [PMID: 34763088 DOI: 10.1016/j.ejps.2021.106058] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/18/2021] [Accepted: 11/02/2021] [Indexed: 02/02/2023]
Abstract
The number of lipophilic drug candidates in pharmaceutical discovery pipelines has increased in recent years. These drugs often possess physicochemical properties that result in poor oral bioavailability, and their clinical potential may be limited without adequate formulation strategies. Cannabidiol (CBD) is an excellent example of a highly lipophilic compound with poor oral bioavailability, due to low water solubility and extensive first-pass metabolism. An approach that may overcome these limitations is formulation of the drug in self-nanoemulsifying drug delivery systems (SNEDDS). Herein, CBD-SNEDDS formulations were prepared and evaluated in vitro. Promising formulations (F2, F4) were administered to healthy female Sprague-Dawley rats via oral gavage (20 mg/kg CBD). Resulting pharmacokinetic parameters of CBD were compared to those obtained following administration of CBD in two oil-based formulations: a medium-chain triglyceride oil vehicle (MCT-CBD), and a sesame oil-based formulation similar in composition to an FDA-approved formulation of CBD, Epidiolex® (SO-CBD). Compared to MCT-CBD, administration of the SNEDDS formulations led to more rapid absorption of CBD (median Tmax values: 0.5 h (F2), 1 h (F4), 6 h (MCT-CBD)). Administration of F2 and F4 formulations also improved the systemic exposure to CBD by 2.2 and 2.8-fold compared to MCT-CBD; however, no improvement was found compared to SO-CBD.
Collapse
Affiliation(s)
- Lie Yun Kok
- Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| | - Pauric Bannigan
- Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| | - Forugh Sanaee
- Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| | - James C Evans
- Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| | - Michael Dunne
- Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| | | | - Lubabah Ahmed
- Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| | - David Dubins
- Leslie Dan Faculty of Pharmacy, University of Toronto, Canada.
| | - Christine Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, Canada.
| |
Collapse
|
31
|
Xia MY, Zhu BQ, Wang JR, Yang ZE, Mei XF. Superior Dissolution Behavior and Bioavailability of Pharmaceutical Cocrystals and Recent Regulatory Issues. ACS Med Chem Lett 2021; 13:29-37. [PMID: 35059121 PMCID: PMC8762724 DOI: 10.1021/acsmedchemlett.1c00478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/15/2021] [Indexed: 01/16/2023] Open
Abstract
Cocrystallization has been used extensively to optimize the physicochemical properties of active pharmaceutical ingredients (APIs), such as stability, dissolution, and bioavailability. This review summarizes the history and development of cocrystals, the differences between pharmaceutical cocrystals and salts, and the mechanism underlying the improvement of dissolution through cocrystallization. The correlation of in vitro dissolution and in vivo absorption data (IVIVC) of cocrystals has been discussed as well. Subsequently, guidelines for regulatory classification of cocrystals by the U.S. Food and Drug Administration (FDA) and European Medicines Agency (EMA) are introduced. Finally, d-α-tocopherol is used as an example to demonstrate the potential of cocrystals in patent generation.
Collapse
Affiliation(s)
- Meng Y. Xia
- Pharmaceutical
Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy
of Sciences, Shanghai 201203, China,University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Q. Zhu
- Pharmaceutical
Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy
of Sciences, Shanghai 201203, China
| | - Jian-R. Wang
- Pharmaceutical
Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy
of Sciences, Shanghai 201203, China
| | - Ze E. Yang
- Pharmaceutical
Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy
of Sciences, Shanghai 201203, China
| | - Xue F. Mei
- Pharmaceutical
Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy
of Sciences, Shanghai 201203, China,University
of Chinese Academy of Sciences, Beijing 100049, China,
| |
Collapse
|
32
|
Kim HJ, Im DU, Chau GC, Mishra NK, Kim IS, Um SH. Novel anti-adipogenic effect of CF 3-allylated indole in 3T3-L1 cells. Chem Biol Interact 2021; 352:109782. [PMID: 34932954 DOI: 10.1016/j.cbi.2021.109782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 01/03/2023]
Abstract
Indole derivatives from various plants are known to have health benefits because of their anti-cancer, anti-oxidant, anti-inflammatory, and anti-tubercular effects. However, their effects on adipogenesis have not been fully elucidated yet. Herein, we show that a newly synthesized indole derivative, CF3-allylated indole, [(E)-1-(pyrimidin- 2-yl)-2-(4,4,4- trifluorobut-2-enyl)-1H-indole], effectively inhibits adipogenesis. We found that CF3-allylated indole inhibited lipid accumulation and suppressed the expression of CCAAT/enhancer-binding protein α (C/EBPα) and peroxisome proliferator activated receptor γ (PPARγ) in 3T3-L1 cells. The inhibitory effect of CF3-allylated indole primarily occurred at the early phase of adipocyte differentiation by increasing intracellular cyclic adenosine monophosphate (cAMP) levels and enhancing protein kinase A (PKA) and adenosine monophosphate-activated protein kinase (AMPK) signaling. Conversely, depletion of PKA or treatment with a protein kinase A inhibitor (H89) reversed such inhibitory effects of CF3-allylated indole on adipogenesis and PPARγ expression. These results suggest that CF3-allylated indole inhibits early stages of adipogenesis by increasing phosphorylation of PKA/AMPK, leading to decreased expression of adipogenic genes in 3T3-L1 cells. These results indicate that CF3-allylated indole has potential for controlling initial adipocyte differentiation in metabolic disorders such as obesity.
Collapse
Affiliation(s)
- Hee Jung Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, School of Medicine, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Center, Sungkyunkwan University, Seoul, 06351, Republic of Korea
| | - Dong Uk Im
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, School of Medicine, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Center, Sungkyunkwan University, Seoul, 06351, Republic of Korea
| | - Gia Cac Chau
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, School of Medicine, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Neeraj Kumar Mishra
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| | - Sung Hee Um
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, School of Medicine, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Center, Sungkyunkwan University, Seoul, 06351, Republic of Korea; Biomedical Institute Convergence at Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
33
|
Zarei A, Ramazani A, Pourmand S, Sattari A, Rezaei A, Moradi S. In silico evaluation of COVID-19 main protease interactions with honeybee natural products for discovery of high potential antiviral compounds. Nat Prod Res 2021; 36:4254-4260. [PMID: 34498974 DOI: 10.1080/14786419.2021.1974435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This research investigates antiviral potential of extracted honeybee products against COVID-19 main protease (Mpro) by computational methods. The crystal structure of COVID-19 Mpro was obtained from the protein data bank. Six synthetic drugs with antiviral properties were used as control samples in order to compare the results with those of natural ligands. The six honeybee components, namely 3,4,5-Tricaffeoylquinic acid, Kaempferol-3-O-glucoside, (E)-2'-Geranyl-3',4',7-Trihydroxyflavanone, 6-Cinnamylchrysin, (+)-Pinoresinol, and (24E)-3-Oxo-27,28-dihydroxycycloart-24-en-26-oic acid, have represented the lowest binding energies of -9.0, -8.5, -8.2, -7.8, -7.7, -7.3 and -6.7 Kcal/mol, respectively. These natural inhibitors were then picked for further investigations on their pharmacokinetic features. Also a 150 ns of Molecular dynamics simulations were carried out in order to evaluate their effects on protein structure and dynamics. The 3, 4, 5-Tricaffeoylquinic acid is hopefully proposed for COVID-19 Mpro inhibition if further in vitro, in vivo, and clinical trial studies will approve its effectiveness against COVID-19.
Collapse
Affiliation(s)
- Armin Zarei
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Ali Ramazani
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran.,Department of Biotechnology, Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan, Zanjan, Iran
| | - Saeed Pourmand
- Department of Chemical Engineering, Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran
| | - Ahmad Sattari
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Aram Rezaei
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Moradi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
34
|
Huang Y, Yu Q, Chen Z, Wu W, Zhu Q, Lu Y. In vitro and in vivo correlation for lipid-based formulations: Current status and future perspectives. Acta Pharm Sin B 2021; 11:2469-2487. [PMID: 34522595 PMCID: PMC8424225 DOI: 10.1016/j.apsb.2021.03.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/03/2021] [Accepted: 01/15/2021] [Indexed: 12/17/2022] Open
Abstract
Lipid-based formulations (LBFs) have demonstrated a great potential in enhancing the oral absorption of poorly water-soluble drugs. However, construction of in vitro and in vivo correlations (IVIVCs) for LBFs is quite challenging, owing to a complex in vivo processing of these formulations. In this paper, we start with a brief introduction on the gastrointestinal digestion of lipid/LBFs and its relation to enhanced oral drug absorption; based on the concept of IVIVCs, the current status of in vitro models to establish IVIVCs for LBFs is reviewed, while future perspectives in this field are discussed. In vitro tests, which facilitate the understanding and prediction of the in vivo performance of solid dosage forms, frequently fail to mimic the in vivo processing of LBFs, leading to inconsistent results. In vitro digestion models, which more closely simulate gastrointestinal physiology, are a more promising option. Despite some successes in IVIVC modeling, the accuracy and consistency of these models are yet to be validated, particularly for human data. A reliable IVIVC model can not only reduce the risk, time, and cost of formulation development but can also contribute to the formulation design and optimization, thus promoting the clinical translation of LBFs.
Collapse
Key Words
- ANN, artificial neural network
- AUC, area under the curve
- Absorption
- BCS, biopharmaceutics classification system
- BE, bioequivalence
- CETP, cholesterol ester transfer protein
- Cmax, peak plasma concentration
- DDS, drug delivery system
- FDA, US Food and Drug Administration
- GI, gastrointestinal
- HLB, hydrophilic–lipophilic balance
- IVIVC, in vitro and in vivo correlation
- IVIVR, in vitro and in vivo relationship
- In silico prediction
- In vitro and in vivo correlations
- LBF, lipid-based formulation
- LCT, long-chain triglyceride
- Lipid-based formulation
- Lipolysis
- MCT, medium-chain triglyceride
- Model
- Oral delivery
- PBPK, physiologically based pharmacokinetic
- PK, pharmacokinetic
- Perspectives
- SCT, short-chain triglyceride
- SEDDS, self-emulsifying drug delivery system
- SGF, simulated gastric fluid
- SIF, simulated intestinal fluid
- SLS, sodium lauryl sulfate
- SMEDDS, self-microemulsifying drug delivery system
- SNEDDS, self-nanoemulsifying drug delivery system
- TIM, TNO gastrointestinal model
- TNO, Netherlands Organization for Applied Scientific Research
- Tmax, time to reach the peak plasma concentration
Collapse
|
35
|
Ashkar A, Sosnik A, Davidovich-Pinhas M. Structured edible lipid-based particle systems for oral drug-delivery. Biotechnol Adv 2021; 54:107789. [PMID: 34186162 DOI: 10.1016/j.biotechadv.2021.107789] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/12/2021] [Accepted: 06/23/2021] [Indexed: 12/18/2022]
Abstract
Oral administration is the most popular and patient-compliant route for drug delivery, though it raises great challenges due to the involvement of the gastro-intestine (GI) system and the drug bioavailability. Drug bioavailability is directly related to its ability to dissolve, transport and/or absorb through the physiological environment. A great number of drugs are characterized with low water solubility due to their hydrophobic nature, thus limiting their oral bioavailability and clinical use. Therefore, new strategies aiming to provide a protective shell through the GI system and improve drug solubility and permeability in the intestine were developed to overcome this limitation. Lipid-based systems have been proposed as good candidates for such a task owing to their hydrophobic nature which allows high drug loading, drug micellization ability during intestinal digestion due to the lipid content, and the vehicle physical protective environment. The use of edible lipids with high biocompatibility paves the bench-to-bedside translation. Four main types of structured lipid-based drug delivery systems differing in the physical state of the lipid phase have been described in the literature, namely emulsions, solid lipid nanoparticles, nanostructured lipid carriers, and oleogel-based particles. The current review provides a comprehensive overview of the different structured edible lipid-based oral delivery systems investigated up to date and emphasizes the contribution of each system component to the delivery performance, and the oral delivery path of lipids.
Collapse
Affiliation(s)
- Areen Ashkar
- Laboratory of Lipids and Soft Matter, Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Maya Davidovich-Pinhas
- Laboratory of Lipids and Soft Matter, Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel; Russell-Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 3200003, Israel..
| |
Collapse
|
36
|
Potential Applications of Chitosan-Based Nanomaterials to Surpass the Gastrointestinal Physiological Obstacles and Enhance the Intestinal Drug Absorption. Pharmaceutics 2021; 13:pharmaceutics13060887. [PMID: 34203816 PMCID: PMC8232820 DOI: 10.3390/pharmaceutics13060887] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/06/2021] [Accepted: 06/11/2021] [Indexed: 12/29/2022] Open
Abstract
The small intestine provides the major site for the absorption of numerous orally administered drugs. However, before reaching to the systemic circulation to exert beneficial pharmacological activities, the oral drug delivery is hindered by poor absorption/metabolic instability of the drugs in gastrointestinal (GI) tract and the presence of the mucus layer overlying intestinal epithelium. Therefore, a polymeric drug delivery system has emerged as a robust approach to enhance oral drug bioavailability and intestinal drug absorption. Chitosan, a cationic polymer derived from chitin, and its derivatives have received remarkable attention to serve as a promising drug carrier, chiefly owing to their versatile, biocompatible, biodegradable, and non-toxic properties. Several types of chitosan-based drug delivery systems have been developed, including chemical modification, conjugates, capsules, and hybrids. They have been shown to be effective in improving intestinal assimilation of several types of drugs, e.g., antidiabetic, anticancer, antimicrobial, and anti-inflammatory drugs. In this review, the physiological challenges affecting intestinal drug absorption and the effects of chitosan on those parameters impacting on oral bioavailability are summarized. More appreciably, types of chitosan-based nanomaterials enhancing intestinal drug absorption and their mechanisms, as well as potential applications in diabetes, cancers, infections, and inflammation, are highlighted. The future perspective of chitosan applications is also discussed.
Collapse
|
37
|
Wongdee K, Chanpaisaeng K, Teerapornpuntakit J, Charoenphandhu N. Intestinal Calcium Absorption. Compr Physiol 2021; 11:2047-2073. [PMID: 34058017 DOI: 10.1002/cphy.c200014] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this article, we focus on mammalian calcium absorption across the intestinal epithelium in normal physiology. Intestinal calcium transport is essential for supplying calcium for metabolism and bone mineralization. Dietary calcium is transported across the mucosal epithelia via saturable transcellular and nonsaturable paracellular pathways, both of which are under the regulation of 1,25-dihydroxyvitamin D3 and several other endocrine and paracrine factors, such as parathyroid hormone, prolactin, 17β-estradiol, calcitonin, and fibroblast growth factor-23. Calcium absorption occurs in several segments of the small and large intestine with varying rates and capacities. Segmental heterogeneity also includes differential expression of calcium transporters/carriers (e.g., transient receptor potential cation channel and calbindin-D9k ) and the presence of favorable factors (e.g., pH, luminal contents, and gut motility). Other proteins and transporters (e.g., plasma membrane vitamin D receptor and voltage-dependent calcium channels), as well as vesicular calcium transport that probably contributes to intestinal calcium absorption, are also discussed. © 2021 American Physiological Society. Compr Physiol 11:1-27, 2021.
Collapse
Affiliation(s)
- Kannikar Wongdee
- Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand.,Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Krittikan Chanpaisaeng
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.,Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Jarinthorn Teerapornpuntakit
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Narattaphol Charoenphandhu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand.,The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|
38
|
Fu W, Liang Y, Xie Z, Wu H, Zhang Z, Lv H. Preparation and evaluation of lecithin/zein hybrid nanoparticles for the oral delivery of Panax notoginseng saponins. Eur J Pharm Sci 2021; 164:105882. [PMID: 34000426 DOI: 10.1016/j.ejps.2021.105882] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/15/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
Panax Notoginseng Saponins (PNS) has been widely used in the prevention and treatment of cardiovascular and cerebrovascular diseases such as myocardial infarction, heart failure and cerebral infarction. However, oral administration of PNS showed low bioavailability because of its instability and poor membrane permeability in the gastrointestinal tract. Here, lipoprotein-inspired hybrid nanoparticles of PNS-Lecithin-Zein (PLZ-NPs) were prepared by using a simple phase separation method, which possessed a core-shell structure, where zein was used as protein part to replace the animal origin protein to increase the resistance to acid and enzymes while lecithin was used as the lipid composition to improve the oral absorption of PNS as well as to increase the drug loading capacity of PNS into the nanocarriers. The results of stability test showed that PLZ-NPs had robust enzymolysis resistance ability for acid and digestive enzymes of gastrointestinal environments. The fluorescent resonance energy transfer (FRET) assay confirmed the ability of LZ-NPs to be intactly absorbed by Caco-2 cell monolayer. Cell transport studies demonstrated that the permeability of PLZ-NPs in Caco-2/HT29-MTX co-culture cell model was 1.5-fold that of PNS. Meanwhile, the single-pass intestinal perfusion assay proved the absorption parameter Peff of PLZ-NPs was 1.75 and 1.80 times higher than that of PNS in the ileum and jejunum, respectively. Finally, the in vivo pharmacokinetic experiment showed that the relative oral bioavailability of PLZ-NPs was 1.71-fold that of free PNS in SD rat. In summary, the employment of the Lecithin/Zein hybrid nanoparticles could be considered as a promising approach for PNS analogues.
Collapse
Affiliation(s)
- Wen Fu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, China
| | - Yiping Liang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, China
| | - Zhonghui Xie
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, China
| | - Hangyi Wu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, China
| | - Zhenhai Zhang
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210023, China; Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210028, China.
| | - Huixia Lv
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
39
|
Adejumo SA, Oli AN, Okoye EI, Nwakile CD, Ojiako CM, Okezie UM, Okeke IJ, Ofomata CM, Attama AA, Okoyeh JN, Esimone CO. Biosurfactant Production Using Mutant Strains of Pseudomonas aeruginosa and Bacillus subtilis from Agro-industrial Wastes. Adv Pharm Bull 2021; 11:543-556. [PMID: 34513630 PMCID: PMC8421616 DOI: 10.34172/apb.2021.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 12/22/2022] Open
Abstract
Purpose: Biosurfactants are applied in drug formulations to improve drug solubility and in some cases, treat diseases. This study is focused on generating, extracting, purifying and then characterizing biosurfactants from bacterial isolates of palm oil wastes and abattoir soil origins. Methods: Eight bacteria were isolated from the soil and sludge samples, out of which four (50%) were found to produce biosurfactants. Bacillus subtilis (37.5%) and Pseudomonas aeruginosa (50%) were isolated and identified from these samples using mineral salt medium, nutrient agar and Cetrimide agar. Mutant isolates of B. subtilis BS3 and P. aeruginosa PS2 were used to produce biosurfactants using mineral salt medium as enrichment medium and extraction was done using membrane filter. Results: The mutant strains B. subtilis BS3 and P. aeruginosa PS2 generated biosurfactants that displayed significant solubility and dissolution properties by enhancing the percentage solubility of piroxicam to 62.86 and 54.29% respectively, and achieved 51.71 and 48.71% dissolution of the drug in 0.1N HCl. Conclusion: From the results obtained, the produced biosurfactants could serve as a better alternative to conventional surfactants. Notably, the study indicated that the biosurfactant produced by mutant strain of B. subtilis produced more potent activities (surface tension reduction ability, high emulsification) than those of P. aeruginosa.
Collapse
Affiliation(s)
- Samson A. Adejumo
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Nigeria
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Federal University Oye Ekiti, Ekiti State, Nigeria
| | - Angus Nnamdi Oli
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - Ebere Innocent Okoye
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - Calistus Dozie Nwakile
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - Chioma Miracle Ojiako
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Nigeria
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Federal University Oye Ekiti, Ekiti State, Nigeria
| | - Ugochukwu Moses Okezie
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - Ifeanyi Justin Okeke
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - Chijioke M. Ofomata
- Department of Clinical Pharmacy and Pharmacy Management, Faculty of Pharmaceutical Sciences, Agulu, Nnamdi Azikiwe University, Awka
| | - Anthony A. Attama
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Jude N. Okoyeh
- Department of Biology and Clinical Laboratory Science, Division of Arts and Sciences, Neumann University, One Neumann Drive, Aston, PA 19014-1298, USA
| | - Charles Okechukwu Esimone
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Nigeria
| |
Collapse
|
40
|
Agafonov M, Ivanov S, Terekhova I. Improvement of pharmacologically relevant properties of methotrexate by solid dispersion with Pluronic F127. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112059. [PMID: 33947553 DOI: 10.1016/j.msec.2021.112059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/10/2021] [Accepted: 03/13/2021] [Indexed: 02/08/2023]
Abstract
Solid dispersion with Pluronic F127 was proposed as alternative approach to modify the pharmacologically relevant properties of methotrexate (MTX). Solid dispersion of MTX with Pluronic F127 was prepared by fusion method and characterized by powder X-ray diffraction, thermal analysis, scanning electron microscopy and FTIR spectroscopy with the aim to elucidate the physical state of the dispersed MTX and the nature of the interactions occurring between MTX and the carrier. Effect of Pluronic F127 on solubility, dissolution rate, membrane permeability, and pharmacokinetic parameters was revealed in vitro and in vivo. It was found that physical interactions of MTX with Pluronic F127 are predominant in the solid dispersion. The effect of Pluronic F127 on the MTX solubility and release rate of MTX from the solid dispersion is pH dependent. Apparent solubility of MTX released from the solid dispersion is increased in the acidic medium and remains unchanged in the alkaline medium. In comparison with the pristine MTX, the release of MTX from the solid dispersion is faster in the acidic medium and slower in the alkaline medium. Influence of Pluronic F127 on the membrane permeability of MTX is insignificant. Bioavailability of orally administrated solid dispersion in increased. Results from in vitro and in vivo studies suggested that the pharmacokinetic properties of MTX can be improved by solid dispersion with Pluronic F127.
Collapse
Affiliation(s)
- Mikhail Agafonov
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya str., 153045 Ivanovo, Russian Federation
| | - Sergey Ivanov
- Ufa Institute of Chemistry, Ufa Federal Research Center of the Russian Academy of Sciences, 71, pr. Oktyabrya, 450054 Ufa, Russian Federation
| | - Irina Terekhova
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya str., 153045 Ivanovo, Russian Federation.
| |
Collapse
|
41
|
Kono Y, Kawahara I, Shinozaki K, Nomura I, Marutani H, Yamamoto A, Fujita T. Characterization of P-Glycoprotein Inhibitors for Evaluating the Effect of P-Glycoprotein on the Intestinal Absorption of Drugs. Pharmaceutics 2021; 13:pharmaceutics13030388. [PMID: 33804018 PMCID: PMC7999658 DOI: 10.3390/pharmaceutics13030388] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022] Open
Abstract
For developing oral drugs, it is necessary to predict the oral absorption of new chemical entities accurately. However, it is difficult because of the involvement of efflux transporters, including P-glycoprotein (P-gp), in their absorption process. In this study, we conducted a comparative analysis on the inhibitory activities of seven P-gp inhibitors (cyclosporin A, GF120918, LY335979, XR9576, WK-X-34, VX-710, and OC144-093) to evaluate the effect of P-gp on drug absorption. GF120918, LY335979, and XR9576 significantly decreased the basal-to-apical transport of paclitaxel, a P-gp substrate, across Caco-2 cell monolayers. GF120918 also inhibited the basal-to-apical transport of mitoxantrone, a breast cancer resistance protein (BCRP) substrate, in Caco-2 cells, whereas LY335979 hardly affected the mitoxantrone transport. In addition, the absorption rate of paclitaxel after oral administration in wild-type mice was significantly increased by pretreatment with LY335979, and it was similar to that in mdr1a/1b knockout mice. Moreover, the absorption rate of topotecan, a BCRP substrate, in wild-type mice pretreated with LY335979 was similar to that in mdr1a/1b knockout mice but significantly lower than that in bcrp knockout mice. These results indicate that LY335979 has a selective inhibitory activity for P-gp, and would be useful for evaluating the contribution of P-gp to drug absorption.
Collapse
Affiliation(s)
- Yusuke Kono
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan; (Y.K.); (H.M.)
| | - Iichiro Kawahara
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, 5 Misasagi Nakauchi-cho, Yamashina, Kyoto 607-8412, Japan; (I.K.); (K.S.); (I.N.); (A.Y.)
| | - Kohei Shinozaki
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, 5 Misasagi Nakauchi-cho, Yamashina, Kyoto 607-8412, Japan; (I.K.); (K.S.); (I.N.); (A.Y.)
| | - Ikuo Nomura
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, 5 Misasagi Nakauchi-cho, Yamashina, Kyoto 607-8412, Japan; (I.K.); (K.S.); (I.N.); (A.Y.)
| | - Honoka Marutani
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan; (Y.K.); (H.M.)
| | - Akira Yamamoto
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, 5 Misasagi Nakauchi-cho, Yamashina, Kyoto 607-8412, Japan; (I.K.); (K.S.); (I.N.); (A.Y.)
| | - Takuya Fujita
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan; (Y.K.); (H.M.)
- Correspondence: ; Tel.: +81-77-561-5974
| |
Collapse
|
42
|
Wang Z, Lan R, Xu Y, Zuo J, Han X, Phouthapane V, Luo Z, Miao J. Taurine Alleviates Streptococcus uberis-Induced Inflammation by Activating Autophagy in Mammary Epithelial Cells. Front Immunol 2021; 12:631113. [PMID: 33777017 PMCID: PMC7996097 DOI: 10.3389/fimmu.2021.631113] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/21/2021] [Indexed: 12/24/2022] Open
Abstract
Streptococcus uberis infection can cause serious inflammation and damage to mammary epithelial cells and tissues that can be significantly alleviated by taurine. Autophagy plays an important role in regulating immunity and clearing invasive pathogens and may be regulated by taurine. However, the relationships between taurine, autophagy, and S. uberis infection remain unclear. Herein, we demonstrate that taurine augments PTEN activity and inhibits Akt/mTOR signaling, which decreases phosphorylation of ULK1 and ATG13 by mTOR and activates autophagy. Activating autophagy accelerates the degradation of intracellular S. uberis, reduces intracellular bacterial load, inhibits over-activation of the NF-κB pathway, and alleviates the inflammation and damage caused by S. uberis infection. This study increases our understanding of the mechanism through which taurine regulates autophagy and is the first to demonstrate the role of autophagy in S. uberis infected MAC-T cells. Our study also provides a theoretical basis for employing nutritional elements (taurine) to regulate innate immunity and control S. uberis infection. It also provides theoretical support for the development of prophylactic strategies for this important pathogen.
Collapse
Affiliation(s)
- Zhenglei Wang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Riguo Lan
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuanyuan Xu
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jiakun Zuo
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Vanhnaseng Phouthapane
- Biotechnology and Ecology Institute, Ministry of Science and Technology (MOST), Vientiane, Laos
| | - Zhenhua Luo
- School of Water, Energy and Environment, Cranfield University, Cranfield, United Kingdom
| | - Jinfeng Miao
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
43
|
Nayak RR, Alexander M, Deshpande I, Stapleton-Gray K, Rimal B, Patterson AD, Ubeda C, Scher JU, Turnbaugh PJ. Methotrexate impacts conserved pathways in diverse human gut bacteria leading to decreased host immune activation. Cell Host Microbe 2021; 29:362-377.e11. [PMID: 33440172 PMCID: PMC7954989 DOI: 10.1016/j.chom.2020.12.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/24/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023]
Abstract
Immunomodulatory drugs can inhibit bacterial growth, yet their mechanism of action, spectrum, and clinical relevance remain unknown. Methotrexate (MTX), a first-line rheumatoid arthritis (RA) treatment, inhibits mammalian dihydrofolate reductase (DHFR), but whether it directly impacts gut bacteria is unclear. We show that MTX broadly alters the human gut microbiota. Drug sensitivity varied across strains, but the mechanism of action against DHFR appears conserved between mammalian and bacterial cells. RA patient microbiotas were sensitive to MTX, and changes in gut bacterial taxa and gene family abundance were distinct between responders and non-responders. Transplantation of post-treatment samples into germ-free mice given an inflammatory trigger led to reduced immune activation relative to pre-treatment controls, enabling identification of MTX-modulated bacterial taxa associated with intestinal and splenic immune cells. Thus, conservation in cellular pathways across domains of life can result in broad off-target drug effects on the human gut microbiota with consequences for immune function.
Collapse
Affiliation(s)
- Renuka R Nayak
- Rheumatology Division, Department of Medicine, University of California, San Francisco, CA 94143, USA; Department of Microbiology & Immunology, University of California, San Francisco, CA 94143, USA
| | - Margaret Alexander
- Department of Microbiology & Immunology, University of California, San Francisco, CA 94143, USA
| | - Ishani Deshpande
- Department of Microbiology & Immunology, University of California, San Francisco, CA 94143, USA
| | - Kye Stapleton-Gray
- Department of Microbiology & Immunology, University of California, San Francisco, CA 94143, USA
| | - Bipin Rimal
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Carles Ubeda
- Centro Superior de Investigación en Salud Pública - FISABIO, Valencia, Spain; CIBER en Epidemiología y Salud Pública, Madrid, Spain
| | - Jose U Scher
- Department of Medicine, New York University, New York, NY 10003, USA
| | - Peter J Turnbaugh
- Department of Microbiology & Immunology, University of California, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
44
|
Xia Y, Wei Y, Chen H, Qian S, Zhang J, Gao Y. Competitive cocrystallization and its application in the separation of flavonoids. IUCRJ 2021; 8:195-207. [PMID: 33708397 PMCID: PMC7924225 DOI: 10.1107/s2052252520015997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Recently, cocrystallization has been widely employed to tailor physicochemical properties of drugs in the pharmaceutical field. In this study, cocrystallization was applied to separate natural compounds with similar structures. Three flavonoids [baicalein (BAI), quercetin (QUE) and myricetin (MYR)] were used as model compounds. The coformer caffeine (CAF) could form cocrystals with all three flavonoids, namely BAI-CAF (cocrystal 1), QUE-CAF (cocrystal 2) and MYR-CAF (cocrystal 3). After adding CAF to methanol solution containing MYR and QUE (or QUE and BAI), cocrystal 3 (or cocrystal 2) preferentially formed rather than cocrystal 2 (or cocrystal 1), indicating that flavonoid separation could be achieved by competitive cocrystallization. After co-mixing the slurry of two flavonoids with CAF followed by centrifugation, the resolution ratio that could be achieved was 70-80% with purity >90%. Among the three cocrystals, cocrystal 3 showed the lowest formation constant with a negative Gibbs free energy of nucleation and the highest energy gap. Hirshfeld surface analysis and density of states analysis found that cocrystal 3 had the highest strong interaction contribution and the closest electronic density, respectively, followed by cocrystal 2 and cocrystal 1, suggesting CAF could competitively form a cocrystal with MYR much more easily than QUE and BAI. Cocrystallization is a promising approach for green and effective separation of natural products with similar chemical structures.
Collapse
Affiliation(s)
- Yanming Xia
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Yuanfeng Wei
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Hui Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| |
Collapse
|
45
|
Anand J, Ghildiyal T, Madhwal A, Bhatt R, Verma D, Rai N. Computational guided approach for drug repurposing against SARS-CoV-2. Future Virol 2021. [PMCID: PMC7923689 DOI: 10.2217/fvl-2020-0403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background: In the current SARS-CoV-2 outbreak, drug repositioning emerges as a promising approach to develop efficient therapeutics in comparison to de novo drug development. The present investigation screened 130 US FDA-approved drugs including hypertension, cardiovascular diseases, respiratory tract infections (RTI), antibiotics and antiviral drugs for their inhibitory potential against SARS-CoV-2. Materials & methods: The molecular drug targets against SARS-CoV-2 proteins were determined by the iGEMDOCK computational docking tool. The protein homology models were generated through SWISS Model workspace. The pharmacokinetics of all the ligands was determined by ADMET analysis. Results: The study identified 15 potent drugs exhibiting significant inhibitory potential against SARS-CoV-2. Conclusion: Our investigation has identified possible repurposed drug candidates to improve the current modus operandi of the treatment given to COVID-19 patients.
Collapse
Affiliation(s)
- Jigisha Anand
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun, Uttarakhand-248001, India
| | - Tanmay Ghildiyal
- Department of Life Sciences, Graphic Era (Deemed to be University), Clement Town, Dehradun, Uttarakhand-248001, India
| | - Aakanksha Madhwal
- Department of Life Sciences, Graphic Era (Deemed to be University), Clement Town, Dehradun, Uttarakhand-248001, India
| | - Rishabh Bhatt
- Department of Life Sciences, Graphic Era (Deemed to be University), Clement Town, Dehradun, Uttarakhand-248001, India
| | - Devvret Verma
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun, Uttarakhand-248001, India
| | - Nishant Rai
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun, Uttarakhand-248001, India
| |
Collapse
|
46
|
Zou Y, Mei D, Yuan J, Han J, Xu J, Sun N, He H, Yang C, Zhao L. Preparation, Characterization, Pharmacokinetic, and Therapeutic Potential of Novel 6-Mercaptopurine-Loaded Oral Nanomedicines for Acute Lymphoblastic Leukemia. Int J Nanomedicine 2021; 16:1127-1141. [PMID: 33603372 PMCID: PMC7886780 DOI: 10.2147/ijn.s290466] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/07/2021] [Indexed: 01/20/2023] Open
Abstract
Background Acute lymphoblastic leukemia (ALL) is the most common hematologic malignancy in children. It requires a long and rigorous course of chemotherapy treatments. 6-Mercaptopurine (6-MP) is one of the primary drugs used in chemotherapy. Unfortunately, its efficacy has been limited due to its insolubility, poor bioavailability and serious adverse effects. To overcome these drawbacks, we constructed 6-mercaptopurine (6-MP)-loaded nanomedicines (6-MPNs) with biodegradable poly(lactide-co-glycolide) (PLGA) to enhance the anticancer efficacy of 6-MP. Methods We prepared the 6-MPNs using a double-emulsion solvent evaporation method, characterizing them for the physicochemical properties. We then investigated the plasma, intestinal region and other organs in Sprague Dawley (SD) rats for pharmacokinetics. Additionally, we evaluated its anticancer efficacy in vitro on the human T leukemia cell line Jurkat and in vivo on the ALL model mice. Results The 6-MPNs were spherical in shape with uniform particle size and high encapsulation efficiency. The in vitro release profile showed that 6-MPNs exhibited a burst release that a sustained release phase then followed. The apoptosis assay demonstrated that 6-MPNs could improve the in vitro cytotoxicity in Jurkat cells. Pharmacokinetics profiles revealed that 6-MPNs had improved oral bioavailability. Tissue distribution experiments indicated that 6-MPNs increased the duodenum absorption of 6-MP, at the same time having a low accumulation of the toxic metabolites of 6-MP. The in vivo pharmacodynamics study revealed that 6-MPNs could prolong the survival time of the ALL model mice. The prepared 6-MPNs, therefore, have superior properties in terms of anticancer efficacy against ALL with reduced systemic toxicity. Conclusion Our nanomedicines provide a promising delivery strategy for 6-MP; they offer a simple preparation method and high significance for clinical translation.
Collapse
Affiliation(s)
- Yaru Zou
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, People's Republic of China.,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Dong Mei
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, People's Republic of China
| | - Jinjie Yuan
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, People's Republic of China.,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Jiaqi Han
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, People's Republic of China
| | - Jiamin Xu
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, People's Republic of China
| | - Ning Sun
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, People's Republic of China
| | - Huan He
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, People's Republic of China
| | - Changqing Yang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Libo Zhao
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, People's Republic of China
| |
Collapse
|
47
|
Mahmoudian M, Valizadeh H, Löbenberg R, Zakeri-Milani P. Bortezomib-loaded lipidic-nano drug delivery systems; formulation, therapeutic efficacy, and pharmacokinetics. J Microencapsul 2021; 38:192-202. [PMID: 33530812 DOI: 10.1080/02652048.2021.1876175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIM Nano drug delivery systems can provide the opportunity to reduce side effects and improve the therapeutic aspect of a variety of drugs. Bortezomib (BTZ) is a proteasome inhibitor approved for the treatment of multiple myeloma and mantle cell lymphoma. Severe side effects of BTZ are the major dose-limiting factor. Particulate drug delivery systems for BTZ are polymeric and lipidic drug delivery systems. This review focussed on lipidic-nano drug delivery systems (LNDDSs) for the delivery of BTZ. RESULTS LNDDSs including liposomes, solid lipid nanoparticles, and self-nanoemulsifying drug delivery systems showed reduce systemic side effects, improved therapeutic efficacy, and increased intestinal absorption. Besides LNDDSs were used to target-delivery of BTZ to cancer. CONCLUSION Overall, LNDDSs can be considered as a novel delivery system for BTZ to resolve the treatment-associated restrictions.
Collapse
Affiliation(s)
| | - Hadi Valizadeh
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raimar Löbenberg
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Parvin Zakeri-Milani
- Faculty of Pharmacy, Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
48
|
Repin IA, Loebenberg R, DiBella J, Conceição ACL, Minas da Piedade ME, Ferraz HG, Issa MG, Bou-Chacra NA, Ermida CFM, de Araujo GLB. Exploratory Study on Lercanidipine Hydrochloride Polymorphism: pH-Dependent Solubility Behavior and Simulation of its Impact on Pharmacokinetics. AAPS PharmSciTech 2021; 22:54. [PMID: 33475891 DOI: 10.1208/s12249-021-01923-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/01/2021] [Indexed: 11/30/2022] Open
Abstract
This work describes an exploratory experimental and in silico study of the influence of polymorphism, particle size, and physiology on the pharmacokinetics of lercanidipine hydrochloride (LHC). Equilibrium and kinetic solubility studies were performed on LHC forms I and II, as a function of pH and buffer composition. GastroPlus® was used to evaluate the potential effect of solubility differences due to polymorphism, particle size, and physiological conditions, on the drug pharmacokinetics. The results indicated that solubilities of LHC polymorphs are strongly dependent on the composition and pH of the buffer media. The concentration ratio (CI/CII) is particularly large for chloride buffer (CI/CII = 3.3-3.9) and exhibits a slightly decreasing tendency with the pH increase for all other buffers. Based on solubility alone, a higher bioavailability of form I might be expected. However, exploratory PBPK simulations suggested that (i) under usual fasted (pH 1.3) and fed (pH 4.9) gastric conditions, the two polymorphs have similar bioavailability, regardless of the particle size; (ii) at high gastric pH in the fasted state (e.g., pH 3.0), the bioavailability of form II can be considerably lower than that of form I, unless the particle size is < 20 μm. This study demonstrates the importance of investigating the effect of the buffer nature when evaluating the solubility of ionizable polymorphic substances. It also showcases the benefits of using PBPK simulations, to assess the risk and pharmacokinetic relevance of different solubility and particle size between crystal forms, for diverse physiological conditions.
Collapse
|
49
|
Volkova TV, Drozd KV, Surov AO. Effect of polymers and cyclodextrins on solubility, permeability and distribution of enzalutamide and apalutamide antiandrogens. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
50
|
|