1
|
Wang M, Wang Y, Zhang P, Gu C, Zhao X, Gong X, Yang X, Pan J, Xi Y. Neutrophil-like cell membrane-coated metal-organic frameworks for siRNA delivery targeting NOX4 to alleviate oxidative stress in acute ischemic injury. Acta Biomater 2025:S1742-7061(25)00157-6. [PMID: 40024424 DOI: 10.1016/j.actbio.2025.02.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/13/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Although reperfusion is the most effective treatment for acute ischemic stroke, it often results in serious secondary ischemia/reperfusion (I/R) injury due to oxidative stress. This oxidative stress primarily results from the overproduction of reactive oxygen species (ROS) during reperfusion which, in turn, is largely induced by high expression of NADPH oxidase 4 (NOX4). Inhibiting NOX4 gene expression has therefore been proposed as a direct approach to reduce ROS production and promote angiogenesis. Recognizing both the potential of siRNA-based therapies for selective gene silencing and the critical role of neutrophil-endothelial interactions during I/R injury, here we present a unique therapeutic approach where neutrophil-like cell membrane coated porous metal-organic framework nanoparticles are loaded with siNOX4 (M-MOF-siNOX4) and designed to target damaged brain microvascular tissue. These then mitigate oxidative stress by suppressing NOX4 expression. Using an in vitro oxygen-glucose deprivation/re-oxygenation model, we demonstrate that M-MOF-siNOX4 nanoparticles specifically bind to activated endothelial cells, effectively reducing NOX4 expression, decreasing both ROS production and cell apoptosis, and restoring cell viability. Use of an in vivo mouse model of middle cerebral artery occlusion further confirmed M-MOF-siNOX4 nanoparticles to substantially alleviate brain damage and protect neurological function following ischemic stroke. Taken together, our study presents an innovative and effective siRNA-based strategy for reducing oxidative stress in ischemic stroke therapy. STATEMENT OF SIGNIFICANCE: Ischemia/reperfusion (I/R) injury, a major complication of acute ischemic stroke, is primarily driven by oxidative stress due to the excessive production of reactive oxygen species (ROS). Current treatments targeting oxidative stress and cell death often lack specificity, leading to off-target effects. This study introduces an innovative nanoparticle-based therapy using neutrophil-like cell membrane-coated metal-organic frameworks (MOFs) to deliver siNOX4, an siRNA targeting NOX4, a key ROS-producing enzyme. This approach enhances targeted delivery, reduces ROS production and cell death, and significantly improves neurological recovery in stroke models. By overcoming the limitations of existing therapies, this strategy holds strong potential for revolutionizing ischemic stroke treatment and addressing other disorders related to oxidative stress.
Collapse
Affiliation(s)
- Min Wang
- Center for Genetic Medicine and Department of Neurosurgery, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China; Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang 310058, China; Center for Genetic Medicine, Zhejiang University International Institute of Medicine, Yiwu, Zhejiang 322000, China; Zheiiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang 310058, China
| | - Yunbo Wang
- Center for Genetic Medicine and Department of Neurosurgery, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China; Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang 310058, China; Center for Genetic Medicine, Zhejiang University International Institute of Medicine, Yiwu, Zhejiang 322000, China; Zheiiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang 310058, China
| | - Pengqi Zhang
- Center for Genetic Medicine and Department of Neurosurgery, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China; Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang 310058, China; Center for Genetic Medicine, Zhejiang University International Institute of Medicine, Yiwu, Zhejiang 322000, China; Zheiiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang 310058, China
| | - Chenjie Gu
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Xianlei Zhao
- Center for Genetic Medicine and Department of Neurosurgery, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China; Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang 310058, China; Center for Genetic Medicine, Zhejiang University International Institute of Medicine, Yiwu, Zhejiang 322000, China; Zheiiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang 310058, China
| | - Xinghan Gong
- Center for Genetic Medicine and Department of Neurosurgery, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China; Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang 310058, China; Center for Genetic Medicine, Zhejiang University International Institute of Medicine, Yiwu, Zhejiang 322000, China; Zheiiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang 310058, China
| | - Xiaohang Yang
- Center for Genetic Medicine and Department of Neurosurgery, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China; Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang 310058, China; Center for Genetic Medicine, Zhejiang University International Institute of Medicine, Yiwu, Zhejiang 322000, China; Zheiiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang 310058, China.
| | - Jianwei Pan
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China.
| | - Yongmei Xi
- Center for Genetic Medicine and Department of Neurosurgery, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China; Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang 310058, China; Center for Genetic Medicine, Zhejiang University International Institute of Medicine, Yiwu, Zhejiang 322000, China; Zheiiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
2
|
Liu Y, Wu H, Liang G. Combined Strategies for Nanodrugs Noninvasively Overcoming the Blood-Brain Barrier and Actively Targeting Glioma Lesions. Biomater Res 2025; 29:0133. [PMID: 39911305 PMCID: PMC11794768 DOI: 10.34133/bmr.0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 02/07/2025] Open
Abstract
Drugs for tumor treatment face various challenges, including poor solubility, poor stability, short blood half-life, nontargeting ability, and strong toxic side effects. Fortunately, nanodrug delivery systems provide excellent solution to these problems. However, nanodrugs for glioma treatment also face some key challenges including overcoming the blood-brain barrier (BBB) and, specifically, accumulation in glioma lesions. In this review, we systematically summarize the advantages and disadvantages of combined strategies for nanodrugs noninvasively overcoming BBB and actively targeting glioma lesions to achieve effective glioma therapy. Common noninvasive strategies for nanodrugs overcoming the BBB include bypassing the BBB via the nose-to-brain route, opening the tight junction of the BBB by focused ultrasound with microbubbles, and transendothelial cell transport by intact cell loading, ligand decoration, or cell membrane camouflage of nanodrugs. Actively targeting glioma lesions after overcoming the BBB is another key factor helping nanodrugs accurately treat in situ gliomas. This aim can also be achieved by loading nanodrugs into intact cells and modifying ligand or cell membrane fragments on the surface of nanodrugs. Targeting decorated nanodrugs can guarantee precise glioma killing and avoid side effects on normal brain tissues that contribute to the specific recognition of glioma lesions. Furthermore, the challenges and prospects of nanodrugs in clinical glioma treatment are discussed.
Collapse
Affiliation(s)
- Yuanyuan Liu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan Province 471000, China
| | - Haigang Wu
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan Province 475004, China
| | - Gaofeng Liang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan Province 471000, China
| |
Collapse
|
3
|
Cardellini J, Normak K, Gerlt M, Makasewicz K, Seiffert C, Capasso Palmiero U, Ye S, González Gómez MA, Piñero Y, Rivas J, Bongiovanni A, Bergese P, Arosio P. Microfluidics-Driven Manufacturing and Multiscale Analytical Characterization of Nanoparticle-Vesicle Hybrids. Adv Healthc Mater 2025; 14:e2403264. [PMID: 39722148 PMCID: PMC11804839 DOI: 10.1002/adhm.202403264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/04/2024] [Indexed: 12/28/2024]
Abstract
Coating synthetic nanoparticles (NPs) with lipid membranes is a promising approach to enhance the performance of nanomaterials in various biological applications, including therapeutic delivery to target organs. Current methods for achieving this coating often rely on bulk approaches which can result in low efficiency and poor reproducibility. Continuous processes coupled with quality control represent an attractive strategy to manufacture products with consistent attributes and high yields. Here, this concept is implemented by developing an acoustic microfluidic device together with an analytical platform to prepare nanoparticle-vesicle hybrids and quantitatively characterize the nanoparticle coverage using fluorescence-based techniques at different levels of resolution. With this approach polymethyl methacrylate (PMMA) nanoparticles are successfully coated with liposomes and extracellular vesicles (EVs), achieving a high encapsulation efficiency of 70%. Moreover, the approach enables the identification of design rules to control the efficiency of encapsulation by tuning various operational parameters and material properties, including buffer composition, nanoparticle/vesicle ratio, and vesicle rigidity.
Collapse
Affiliation(s)
- Jacopo Cardellini
- ETH Zürich, Department of Chemistry and Applied BiosciencesInstitute for Chemical and Bioengineering8093ZürichSwitzerland
- Department of Chemistry “Ugo Schiff,” University of Florence50019 FlorenceItaly
| | - Karl Normak
- ETH Zürich, Department of Chemistry and Applied BiosciencesInstitute for Chemical and Bioengineering8093ZürichSwitzerland
| | - Michael Gerlt
- ETH Zürich, Department of Chemistry and Applied BiosciencesInstitute for Chemical and Bioengineering8093ZürichSwitzerland
| | - Katarzyna Makasewicz
- ETH Zürich, Department of Chemistry and Applied BiosciencesInstitute for Chemical and Bioengineering8093ZürichSwitzerland
| | - Charlotte Seiffert
- ETH Zürich, Department of Chemistry and Applied BiosciencesInstitute for Chemical and Bioengineering8093ZürichSwitzerland
| | - Umberto Capasso Palmiero
- ETH Zürich, Department of Chemistry and Applied BiosciencesInstitute for Chemical and Bioengineering8093ZürichSwitzerland
| | - Suiying Ye
- ETH Zürich, Department of Chemistry and Applied BiosciencesInstitute for Chemical and Bioengineering8093ZürichSwitzerland
| | - Manuel A. González Gómez
- Nanotechnology and Magnetism Lab — NANOMAG, Materials Institute ‐ iMATUS, Health Research Institute ‐ IDIS, Department of Applied PhysicsUniversidade de Santiago de Compostela15782SantiagoSpain
| | - Yolanda Piñero
- Nanostructured Materials Group, International Iberian Nanotechnology Laboratory (INL)Avenida Mestre Jose VeigaBraga4715‐330Portugal
| | - José Rivas
- Nanotechnology and Magnetism Lab — NANOMAG, Materials Institute ‐ iMATUS, Health Research Institute ‐ IDIS, Department of Applied PhysicsUniversidade de Santiago de Compostela15782SantiagoSpain
| | - Antonella Bongiovanni
- Cell‐Tech HUB at Institute for Research and Biomedical InnovationNational Research Council of Italy (CNR)90146 PalermoItaly
| | - Paolo Bergese
- Department of Molecular and Translational MedicineUniversità degli Studi di BresciaViale Europa 1125123BresciaItaly
- Center for Colloid and Surface Science (CSGI)Via della Lastruccia 350019Sesto FiorentinoFirenzeItaly
| | - Paolo Arosio
- ETH Zürich, Department of Chemistry and Applied BiosciencesInstitute for Chemical and Bioengineering8093ZürichSwitzerland
| |
Collapse
|
4
|
Liu M, Sun Y, Wei Q, Zhang A, Wang S, Wang D, Dong Z, Ma X, Yan R, Wang Y. 4T1 Cell Membrane Biomimetic Nanovehicle for Enhanced Breast Cancer Treatment. ACS Med Chem Lett 2025; 16:51-58. [PMID: 39811139 PMCID: PMC11726363 DOI: 10.1021/acsmedchemlett.4c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
In this study, hollow mesoporous silica nanoparticles (HMSN) coated with a 4T1 tumor cell membrane were used to construct biomimetic nanomaterials (DTX@CHMSN) for the treatment of breast cancer. The nanodrug can improve the water solubility of polyenetaxel (DTX) by taking advantage of the special structure, good biocompatibility, and adjustable surface chemical properties of HMSN. Hollow mesoporous silica nanoparticles are coated with 4T1 cell membranes derived from homologous tumors (CHMSN). Adhesion glycoproteins on cancer cell membranes specifically bind to receptors on the cell membranes of the same cancer cell to target specific breast cancer tissues. At the same time, the cell membrane of the 4T1 tumor also contains CD47 protein, which can be specifically recognized by the immune system to produce immune escape. Therefore, the biomimetic nanomedicine DTX@CHMSN, with homologous targeting and immune escape ability, can accumulate in large quantities at the tumor site, reduce systemic toxicity, and thus improve the therapeutic effect.
Collapse
Affiliation(s)
- Mengkang Liu
- Key
Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Yufeng Sun
- Key
Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Qiuxian Wei
- Key
Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Anna Zhang
- Key
Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - SaiFei Wang
- Key
Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Dan Wang
- Key
Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Zhipeng Dong
- Key
Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaonan Ma
- The Public
Laboratory Platform, China Pharmaceutical
University, Nanjing 211198, China
| | - Ran Yan
- Key
Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Yue Wang
- Key
Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
5
|
Aalhate M, Mahajan S, Dhuri A, Singh PK. Biohybrid nano-platforms manifesting effective cancer therapy: Fabrication, characterization, challenges and clinical perspective. Adv Colloid Interface Sci 2025; 335:103331. [PMID: 39522420 DOI: 10.1016/j.cis.2024.103331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 10/01/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Nanotechnology-based delivery systems have brought a paradigm shift in the management of cancer. However, the main obstacles to nanocarrier-based delivery are their limited circulation duration, excessive immune clearance, inefficiency in interacting effectively in a biological context and overcoming biological barriers. This demands effective engineering of nanocarriers to achieve maximum efficacy. Nanocarriers can be maneuvered with biological components to acquire biological identity for further regulating their biodistribution and cell-to-cell cross-talk. Thus, the integration of synthetic and biological components to deliver therapeutic cargo is called a biohybrid delivery system. These delivery systems possess the advantage of synthetic nanocarriers, such as high drug loading, engineerable surface, reproducibility, adequate communication and immune evasion ability of biological constituents. The biohybrid delivery vectors offer an excellent opportunity to harness the synergistic properties of the best entities of the two worlds for improved therapeutic outputs. The major spotlights of this review are different biological components, synthetic counterparts of biohybrid nanocarriers, recent advances in hybridization techniques, and the design of biohybrid delivery systems for cancer therapy. Moreover, this review provides an overview of biohybrid systems with therapeutic and diagnostic applications. In a nutshell, this article summarizes the advantages and limitations of various biohybrid nano-platforms, their clinical potential and future directions for successful translation in cancer management.
Collapse
Affiliation(s)
- Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad 500037, India
| | - Anish Dhuri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad 500037, India.
| |
Collapse
|
6
|
Marinho A, Reis S, Nunes C. On the design of cell membrane-coated nanoparticles to treat inflammatory conditions. NANOSCALE HORIZONS 2024; 10:38-55. [PMID: 39499543 DOI: 10.1039/d4nh00457d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Biomimetic-based drug delivery systems (DDS) attempt to recreate the complex interactions that occur naturally between cells. Cell membrane-coated nanoparticles (CMCNPs) have been one of the main strategies in this area to prevent opsonization and clearance. Moreover, coating nanoparticles with cell membranes allows them to acquire functions and properties inherent to the mother cells. In particular, cells from bloodstream show to have specific advantages depending on the cell type to be used for that application, specifically in cases of chronic inflammation. Thus, this review focuses on the biomimetic strategies that use membranes from blood cells to target and treat inflammatory conditions.
Collapse
Affiliation(s)
- Andreia Marinho
- LAQV, REQUIMTE, Faculdade de Farmácia, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4500-313 Porto, Portugal.
- LAQV, REQUIMTE, Faculdade de Ciências, Universidade do Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Salette Reis
- LAQV, REQUIMTE, Faculdade de Farmácia, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4500-313 Porto, Portugal.
| | - Cláudia Nunes
- LAQV, REQUIMTE, Faculdade de Farmácia, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4500-313 Porto, Portugal.
- LAQV, REQUIMTE, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4500-313 Porto, Portugal
| |
Collapse
|
7
|
He Y, Zhang S, She Y, Liu Z, Zhu Y, Cheng Q, Ji X. Innovative utilization of cell membrane-coated nanoparticles in precision cancer therapy. EXPLORATION (BEIJING, CHINA) 2024; 4:20230164. [PMID: 39713200 PMCID: PMC11655310 DOI: 10.1002/exp.20230164] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/03/2024] [Indexed: 12/24/2024]
Abstract
Cell membrane-coated nanoparticles (CMNPs) have recently emerged as a promising platform for cancer therapy. By encapsulating therapeutic agents within a cell membrane-derived coating, these nanoparticles combine the advantages of synthetic nanoparticles and natural cell membranes. This review provides a comprehensive overview of the recent advancements in utilizing CMNPs as effective drug delivery vehicles for cancer therapy. The synthesis and fabrication methods of CMNPs are comprehensively discussed. Various techniques, such as extrusion, sonication, and self-assembly, are employed to coat synthetic nanoparticles with cell membranes derived from different cell types. The cell membrane coating enables biocompatibility, reducing the risk of an immune response and enhancing the stability of the nanoparticles in the bloodstream. Moreover, functionalization strategies for CMNPs, primarily chemical modification, genetic engineering, and external stimuli, are highlighted. The presence of specific cell surface markers on the coated membrane allows targeted drug delivery to cancer cells and maximizes therapeutic efficacy. Preclinical studies utilizing CMNPs for cancer therapy demonstrated the successful delivery of various therapeutic agents, such as chemotherapeutic drugs, nucleic acids, and immunotherapeutic agents, using CMNPs. Furthermore, the article explores the future directions and challenges of this technology while offering insights into its clinical potential.
Collapse
Affiliation(s)
- Yiling He
- Department of PharmacyJinhua Municipal Central HospitalJinhuaZhejiangChina
| | - Shuquan Zhang
- Department of OrthopedicsIntegrated Chinese and Western Medicine HospitalTianjin UniversityTianjinChina
- Department of OrthopedicsTianjin Nankai HospitalTianjinChina
- Department of OrthopedicsTianjin Hospital of Integrated Chinese and Western MedicineTianjinChina
| | - Yaoguang She
- Department of General SurgeryFirst Medical CenterChinese People's Liberation Army (PLA) General HospitalBeijingChina
| | - Zhaoshan Liu
- Laboratory of Immune Cell BiologyCenter for Cancer ResearchNational Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Yalan Zhu
- Department of PharmacyJinhua Municipal Central HospitalJinhuaZhejiangChina
| | - Qinzhen Cheng
- Department of PharmacyJinhua Municipal Central HospitalJinhuaZhejiangChina
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjinChina
| |
Collapse
|
8
|
Zhang Y, Zhang Q, Li C, Zhou Z, Lei H, Liu M, Zhang D. Advances in cell membrane-based biomimetic nanodelivery systems for natural products. Drug Deliv 2024; 31:2361169. [PMID: 38828914 PMCID: PMC11149581 DOI: 10.1080/10717544.2024.2361169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Active components of natural products, which include paclitaxel, curcumin, gambogic acid, resveratrol, triptolide and celastrol, have promising anti-inflammatory, antitumor, anti-oxidant, and other pharmacological activities. However, their clinical application is limited due to low solubility, instability, low bioavailability, rapid metabolism, short half-life, and strong off-target toxicity. To overcome these drawbacks, cell membrane-based biomimetic nanosystems have emerged that avoid clearance by the immune system, enhance targeting, and prolong drug circulation, while also improving drug solubility and bioavailability, enhancing drug efficacy, and reducing side effects. This review summarizes recent advances in the preparation and coating of cell membrane-coated biomimetic nanosystems and in their applications to disease for targeted natural products delivery. Current challenges, limitations, and prospects in this field are also discussed, providing a research basis for the development of multifunctional biomimetic nanosystems for natural products.
Collapse
Affiliation(s)
- Yifeng Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, P. R. China
| | - Qian Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, P. R. China
| | - Chunhong Li
- School of Pharmacy, Southwest Medical University, Luzhou, P. R. China
| | - Ziyun Zhou
- School of Pharmacy, Southwest Medical University, Luzhou, P. R. China
| | - Hui Lei
- School of Pharmacy, Southwest Medical University, Luzhou, P. R. China
| | - Minghua Liu
- School of Pharmacy, Southwest Medical University, Luzhou, P. R. China
| | - Dan Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, P. R. China
| |
Collapse
|
9
|
Hou X, Zhang H. Research Progress of Hyaluronic Acid-Coated Nanocarriers in Targeted Cancer Therapy. Cancer Biother Radiopharm 2024. [PMID: 39611654 DOI: 10.1089/cbr.2024.0143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024] Open
Abstract
Background: Hyaluronic acid (HA), as a critical ingredient of extracellular matrix (ECM) and synovial fluid, has attracted extensive attention in targeted tumor thearpy. The superiority of HA is reflected as its great biocompatibility, biodegradability and special binding ability to CD44 receptor. Moreover, CD44 receptor proteins are overexpressed in many kinds of tumor cells and cancer stem cells (CSCs). Therefore, HA is commonly used as ligands for the surface modification of versatile nanocarriers applied in various tumor therapy approaches. Methods: We reviewed a large amount of literature and summarized the unique properties of HA, the rationale for the use of HA as tumor-specific carrier for drug delivery, catabolism of HA coated nanocarriers and research achievements of frequently-used HA-modified organic and inorganic nanocarries. Results: We concluded the significant applications of HA coated nanocarriers in tumor Chemotherapy and chemoresistance, Combination therapy and Cancer theranostics. Conclusion: The application prospect of HA-coated nanocarriers will be more extensive for various targeting combination therapy and theranostics. was concluded so as to provide some potential thoughts for targeted tumor thearpy and even diagnosis.
Collapse
Affiliation(s)
- Xinxin Hou
- School of Medicine of Henan Polytechnic University, Jiaozuo, P.R. China
| | - Hao Zhang
- Department of Nuclear Medicine, Affiliated Hospital of North Sichuan Medical College North Sichuan Medical College, Sichuan, China
| |
Collapse
|
10
|
Tian Y, Sun D, Liu N, Zhao J, Zhao T, Liu X, Dong X, Dong L, Wang W, Jiao P, Ma J. Biomimetic mesenchymal stem cell membrane-coated nanoparticle delivery of MKP5 inhibits hepatic fibrosis through the IRE/XBP1 pathway. J Nanobiotechnology 2024; 22:741. [PMID: 39609656 PMCID: PMC11606114 DOI: 10.1186/s12951-024-03029-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024] Open
Abstract
Hepatic fibrosis is a common disease with high morbidity and mortality rates. The complex and poorly understood mechanisms underlying hepatic fibrosis represent a significant challenge for the development of more effective therapeutic strategies. MKP5 is a potential regulator of multiple fibrotic diseases. However, its precise role and mechanism of action in hepatic fibrosis remains unclear. This study identified a reduction in MKP5 expression in fibrotic liver tissues of mice treated with CCl4 and observed that MKP5 knockout mice exhibited a more pronounced development of hepatic fibrosis. In addition, RNA-seq data indicated activation of protein processing in the endoplasmic reticulum signalling pathway in fibrotic liver tissues of mice lacking MKP5. Mechanistically, MKP5 inhibits the activation of hepatic stellate cells (HSCs) and hepatocyte apoptosis through the regulation of the IRE/XBP1 pathway. Based on these findings, we developed PLGA-MKP5 nanoparticles coated with a mesenchymal stem cell membrane (MSCM). Our results demonstrated that MSCM-PLGA-MKP5 was most effective in attenuating hepatic inflammation and fibrosis in murine models by modulating the IRE/XBP1 axis. This study contributes to the current understanding of the pathogenesis of hepatic fibrosis, suggesting that the targeted delivery of MKP5 via a nano-delivery system may represent a promising therapeutic approach to treat hepatic fibrosis.
Collapse
Affiliation(s)
- Yafei Tian
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, 130021, Jilin, China
| | - Dandan Sun
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, 130021, Jilin, China
| | - Na Liu
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, 130021, Jilin, China
| | - Jianan Zhao
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, 130021, Jilin, China
| | - Tongjian Zhao
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, 130021, Jilin, China
| | - Xiaonan Liu
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, 130021, Jilin, China
| | - Xinzhe Dong
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, 130021, Jilin, China
| | - Li Dong
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, 130021, Jilin, China
| | - Wei Wang
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, 130021, Jilin, China
| | - Ping Jiao
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, 130021, Jilin, China.
| | - Jie Ma
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, 130021, Jilin, China.
| |
Collapse
|
11
|
Jiang T, Zhan Y, Ding J, Song Z, Zhang Y, Li J, Su T. Biomimetic Cell Membrane-Coated Nanoparticles for Cancer Theranostics. ChemMedChem 2024; 19:e202400410. [PMID: 39264862 DOI: 10.1002/cmdc.202400410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/15/2024] [Indexed: 09/14/2024]
Abstract
Nanoparticles can enhance drugs accumulating at the tumor site and hold tremendous promise for achieving effective tumor treatment. However, due to the complexity of cancer heterogeneity and suppressive tumor microenvironment, the delivery of traditional nanoparticles has poor infiltration and off-target effects, making it difficult to control the drug release rate and causing off-target toxicity. In recent years, cell membrane-coated biomimetic nanoparticles have been developed, which have both the natural characteristics of biomembranes and the physical characteristics of traditional nanoparticles, thus improving the homologous targeting ability of nanoparticles to tumor cells and better biocompatibility. In this paper, we reviewed the application of single cell membrane and hybrid cell membrane-coated biomimetic nanoparticles in the integration for tumor diagnosis and treatment. We talked about the preparation methods of cell membrane-coated nanoparticles, the targeting mechanisms, and the effects of imaging and therapeutic outcomes of different cell membrane-coated biomimetic nanoparticles in detail. Finally, we discussed the existing problems and prospects of cell membrane-coated biomimetic nanomaterials.
Collapse
Affiliation(s)
- Tiantian Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Yiduo Zhan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Jiayao Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Zheming Song
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Yijing Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Jingchao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Ting Su
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
12
|
Obuobi S, Škalko-Basnet N. Understanding vaginal biofilms: The first step in harnessing antimicrobial nanomedicine. J Control Release 2024; 376:1190-1208. [PMID: 39510257 DOI: 10.1016/j.jconrel.2024.10.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/02/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
In spite of multipurpose technologies offering broad-spectrum prevention for sexually transmitted infections (STIs) and contraception, the STIs incidences rise worldwide. The situation is even more alarming considering continuous rise in antimicrobial resistance (AMR) that limits therapy options. In this review we address the specific challenges of efficiently treating vaginal infections locally, at the infection site, by understanding the underlying barriers to efficient treatment such as vaginal biofilms. Knowledge on vaginal biofilms remains, up to now, rather scarce and requires more attention. We therefore propose a 'back to basics' insight that seeks to probe the complexity and role of the vaginal microbiota, its relationship with vaginal biofilms and implications to future therapeutic modalities utilizing advanced nano delivery systems. Our key objective is to highlight the interplay between biofilm, (nano)formulation and therapy outcome rather than provide an overview of all nanoformulations that were challenged against biofilms. We focused on the anatomy of the female reproductive organ and its physiological changes from birth, the unique vaginal microenvironment in premenopausal and postmenopausal women, vaginal biofilm infections and current nanomedicine-based approaches to treat infections in the vaginal site. Finally, we offer our perspectives on the current challenges associated with vaginal delivery and key considerations that can aid in the design and development of safer and potent products against persisting vaginal infections.
Collapse
Affiliation(s)
- Sybil Obuobi
- Drug Transport and Delivery Research Group, Faculty of Health Sciences, University of Tromsø The Arctic University of Norway, Tromsø, Norway.
| | - Nataša Škalko-Basnet
- Drug Transport and Delivery Research Group, Faculty of Health Sciences, University of Tromsø The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
13
|
Jin X, Lopes D, Lopes J, Hua Z, Lei Y, Ghanbari R, Nazarzadeh Zare E, Borzacchiello A, Karimi Male H, Iravani S, Sillanpää M, Prakash C, Wang X, Cláudia Paiva-Santos A, Makvandi P, Xu Y. Bioengineered Abiotic Nanomaterials Through Cell Membrane-Camouflaging: Advancements and Challenges in Lung Cancer. Adv Healthc Mater 2024; 13:e2401525. [PMID: 38978444 DOI: 10.1002/adhm.202401525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/28/2024] [Indexed: 07/10/2024]
Abstract
Lung cancer remains a major global health concern with high mortality rates and poor prognosis. Bridging the gap between the chemical and cellular understanding of cell-decorated biomimetic nanocomposites and their clinical translation is crucial for developing effective therapies. Nanocomposites show promise in targeted drug delivery and diagnostics, but their clinical application is hindered by biocompatibility and clearance issues. To overcome these challenges, biomimetic approaches utilizing cell membrane-coated nanomaterials emerge. By camouflaging nanomaterials with cell membranes, the biointerfaces are enhanced, and the inherent properties of the donor cell membranes are acquired. This review provides an overview of recent advancements on cell membrane-coated nanocomposites for lung cancer diagnosis and treatment. It discusses fabrication techniques, biomedical applications, challenges, and future prospects. The incorporation of cell membranes into nanocomposites holds potential for improved lung cancer therapy, but further development and refinement are needed for precise tumor targeting. Addressing the identified challenges will pave the way for clinical translation of these biomimetic nanoplatforms and advance lung cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Xuru Jin
- Department of Respiratory and Critical Care Medicine, NanoBioMed Group, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Daniela Lopes
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, 3000-548, Portugal
| | - Joana Lopes
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, 3000-548, Portugal
| | - Zhidan Hua
- Department of Respiratory and Critical Care Medicine, NanoBioMed Group, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
| | - Ying Lei
- Department of Respiratory and Critical Care Medicine, NanoBioMed Group, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
| | - Roham Ghanbari
- School of Chemistry, College of Science, University of Tehran, Tehran, 14174-66191, Iran
| | | | - Assunta Borzacchiello
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Viale J.F. Kennedy 54, Naples, 80125, Italy
| | - Hassan Karimi Male
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, 610054, P. R. China
- Department of chemical engineering, Quchan university of Technology, Quchan, Iran
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran
| | - Mika Sillanpää
- Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah, Kuwait, 32093, Kuwait
- Adnan Kassar School of Business, Lebanese American University, Beirut, 03797751, Lebanon
| | - Chander Prakash
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140413, India
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, 3000-548, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, 3000-548, Portugal
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
- University Centre for Research & Development, Chandigarh University, Mohali, Punjab, 140413, India
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, 600077, India
| | - Yi Xu
- Department of Science & Technology, Department of Urology, NanoBioMed Group, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
| |
Collapse
|
14
|
Wei P, Wang Y, Feng H, Zhang F, Ji Z, Zhang K, Zhang Q, Jiang L, Qian Y, Fu Y. Gene-Engineered Cerium-Exosomes Mediate Atherosclerosis Therapy Through Remodeling of the Inflammatory Microenvironment and DNA Damage Repair. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404463. [PMID: 39235409 DOI: 10.1002/smll.202404463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/10/2024] [Indexed: 09/06/2024]
Abstract
The pro-inflammatory immune microenvironment in the localized lesion areas and the absence of DNA damage repair mechanisms in endothelial cells serve as essential accelerating factors in the development of atherosclerosis. The lack of targeted therapeutic strategies represents a significant limitation in the efficacy of therapeutic agents for atherosclerosis. In this study, Genetically engineered SNHG12-loaded cerium-macrophage exosomes (Ce-Exo) are designed as atherosclerosis-targeting agents. In vivo studies demonstrated that Ce-Exo exhibited multivalent targeting properties for macrophages, with a 4.1-fold higher atherosclerotic plaque-aggregation ability than that of the control drugs. This suggests that Ce-Exo has a higher homing capacity and deeper penetration into the atherosclerotic plaque. In apolipoprotein E-deficient mice, Ce-Exo found to effectively remodel the immune microenvironment in the lesion area, repair endothelial cell damage, and inhibit the development of atherosclerosis. This study provides a novel approach to the treatment of atherosclerosis and demonstrates the potential of cell-derived drug carriers in biomedicine.
Collapse
Affiliation(s)
- Peng Wei
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Yifan Wang
- Department of Emergency Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Haiyan Feng
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P. R. China
| | - Fan Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China
| | - Zhenyan Ji
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Kai Zhang
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Qiang Zhang
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Lixian Jiang
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Yuxuan Qian
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Yimu Fu
- Department of Emergency Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| |
Collapse
|
15
|
Villa A, Crescenti D, De Mitri Z, Crippa E, Rosa S, Rizzi N, Shojaei-Ghahrizjani F, Rebecchi M, Vincenti S, Selmin F, Brunialti E, Simonotti N, Maspero M, Dei Cas M, Recordati C, Paltrinieri S, Giordano A, Paroni R, Galassi M, Ladisa V, Arienti F, Cilurzo F, Mazzaferro V, Ciana P. Preclinical pharmacology of patient-derived extracellular vesicles for the intraoperative imaging of tumors. Theranostics 2024; 14:6301-6318. [PMID: 39431003 PMCID: PMC11488097 DOI: 10.7150/thno.98671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/14/2024] [Indexed: 10/22/2024] Open
Abstract
Extracellular vesicles (EVs) derived from the plasma of oncological patients exhibit significant tumor-targeting properties, unlike those from healthy individuals. We have previously shown the feasibility of formulating the near-infrared (NIR) fluorescent dye indocyanine green (ICG) with patient-derived extracellular vesicles (PDEVs) for selective delivery to neoplastic tissue. This staining protocol holds promise for clinical application in intraoperative tumor margin imaging, enabling precise neoplastic tissue resection. To this end, we propose the ONCOGREEN protocol, involving PDEV isolation, ICG loading, and reinfusion into the same patients. Methods: By in vivo studies on mice, we outlined key pharmacological parameters of PDEVs-ICG for intraoperative tumor imaging, PDEV biodistribution kinetics, and potential treatment-related toxicological effects. Additionally, we established a plasmapheresis-based protocol for isolating autologous PDEVs, ensuring the necessary large-scale dosage for human treatment. A potential lyophilization-based preservation method was also explored to facilitate the storage and transport of PDEVs. Results: The study identified the effective dose of PDEVs-ICG necessary for clear intraoperative tumor margin imaging. The biodistribution kinetics of PDEVs showed favorable targeting to neoplastic tissues, without off-target distribution. Toxicological assessments revealed no significant adverse effects associated with the treatment. The plasmapheresis-based isolation protocol successfully yielded a sufficient quantity of autologous PDEVs, and the lyophilization preservation method maintained the functional integrity of PDEVs for subsequent clinical application. Conclusions: Our research lays the groundwork for the direct clinical application of autologous PDEVs, initially focusing on intraoperative imaging. Utilizing autologous PDEVs has the potential to accelerate the integration of EVs as a targeted delivery tool for anti-neoplastic agents to cancerous tissue. This approach promises to enhance the precision of neoplastic tissue resection and improve overall surgical outcomes for oncological patients.
Collapse
Affiliation(s)
- Alessandro Villa
- Department of Health Sciences, University of Milan, Milan, Italy
| | | | - Zemira De Mitri
- Department of Health Sciences, University of Milan, Milan, Italy
| | | | - Silvia Rosa
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Nicoletta Rizzi
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | | - Monica Rebecchi
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Simona Vincenti
- Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Francesca Selmin
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | | - Nicolò Simonotti
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Marianna Maspero
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Michele Dei Cas
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Camilla Recordati
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| | - Saverio Paltrinieri
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| | - Alessia Giordano
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| | - Rita Paroni
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Margherita Galassi
- HPB Surgery and Liver Transplantation, Istituto Nazionale Tumori IRCCS Foundation (INT), Milan, Italy
| | - Vito Ladisa
- HPB Surgery and Liver Transplantation, Istituto Nazionale Tumori IRCCS Foundation (INT), Milan, Italy
| | - Flavio Arienti
- HPB Surgery and Liver Transplantation, Istituto Nazionale Tumori IRCCS Foundation (INT), Milan, Italy
| | - Francesco Cilurzo
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Vincenzo Mazzaferro
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- HPB Surgery and Liver Transplantation, Istituto Nazionale Tumori IRCCS Foundation (INT), Milan, Italy
| | - Paolo Ciana
- Department of Health Sciences, University of Milan, Milan, Italy
| |
Collapse
|
16
|
Longobardi G, Moore TL, Conte C, Ungaro F, Satchi‐Fainaro R, Quaglia F. Polyester nanoparticles delivering chemotherapeutics: Learning from the past and looking to the future to enhance their clinical impact in tumor therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1990. [PMID: 39217459 PMCID: PMC11670051 DOI: 10.1002/wnan.1990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Polymeric nanoparticles (NPs), specifically those comprised of biodegradable and biocompatible polyesters, have been heralded as a game-changing drug delivery platform. In fact, poly(α-hydroxy acids) such as polylactide (PLA), poly(lactide-co-glycolide) (PLGA), and poly(ε-caprolactone) (PCL) have been heavily researched in the past three decades as the material basis of polymeric NPs for drug delivery applications. As materials, these polymers have found success in resorbable sutures, biodegradable implants, and even monolithic, biodegradable platforms for sustained release of therapeutics (e.g., proteins and small molecules) and diagnostics. Few fields have gained more attention in drug delivery through polymeric NPs than cancer therapy. However, the clinical translational of polymeric nanomedicines for treating solid tumors has not been congruent with the fervor or funding in this particular field of research. Here, we attempt to provide a comprehensive snapshot of polyester NPs in the context of chemotherapeutic delivery. This includes a preliminary exploration of the polymeric nanomedicine in the cancer research space. We examine the various processes for producing polyester NPs, including methods for surface-functionalization, and related challenges. After a detailed overview of the multiple factors involved with the delivery of NPs to solid tumors, the crosstalk between particle design and interactions with biological systems is discussed. Finally, we report state-of-the-art approaches toward effective delivery of NPs to tumors, aiming at identifying new research areas and re-evaluating the reasons why some research avenues have underdelivered. We hope our effort will contribute to a better understanding of the gap to fill and delineate the future research work needed to bring polyester-based NPs closer to clinical application. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
| | - Thomas Lee Moore
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Claudia Conte
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Francesca Ungaro
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Ronit Satchi‐Fainaro
- Department of Physiology and Pharmacology, Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Sagol School of NeurosciencesTel Aviv UniversityTel AvivIsrael
| | - Fabiana Quaglia
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| |
Collapse
|
17
|
Kumar J, Karim A, Sweety UH, Sarma H, Nurunnabi M, Narayan M. Bioinspired Approaches for Central Nervous System Targeted Gene Delivery. ACS APPLIED BIO MATERIALS 2024; 7:4975-4997. [PMID: 38100377 DOI: 10.1021/acsabm.3c00842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Disorders of the central nervous system (CNS) which include a wide range of neurodegenerative and neurological conditions have become a serious global issue. The presence of CNS barriers poses a significant challenge to the progress of designing effective therapeutic delivery systems, limiting the effectiveness of drugs, genes, and other therapeutic agents. Natural nanocarriers present in biological systems have inspired researchers to design unique delivery systems through biomimicry. As natural resource derived delivery systems are more biocompatible, current research has been focused on the development of delivery systems inspired by bacteria, viruses, fungi, and mammalian cells. Despite their structural potential and extensive physiological function, making them an excellent choice for biomaterial engineering, the delivery of nucleic acids remains challenging due to their instability in biological systems. Similarly, the efficient delivery of genetic material within the tissues of interest remains a hurdle due to a lack of selectivity and targeting ability. Considering that gene therapies are the holy grail for intervention in diseases, including neurodegenerative disorders such as Alzheimer's disease, Parkinson's Disease, and Huntington's disease, this review centers around recent advances in bioinspired approaches to gene delivery for the prevention of CNS disorders.
Collapse
Affiliation(s)
- Jyotish Kumar
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Afroz Karim
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Ummy Habiba Sweety
- Environmental Science and Engineering, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Hemen Sarma
- Bioremediation Technology Research Group, Department of Botany, Bodoland University, Rangalikhata, Deborgaon, 783370, Kokrajhar (BTR), Assam, India
| | - Md Nurunnabi
- The Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| |
Collapse
|
18
|
Deshmukh R, Sethi P, Singh B, Shiekmydeen J, Salave S, Patel RJ, Ali N, Rashid S, Elossaily GM, Kumar A. Recent Review on Biological Barriers and Host-Material Interfaces in Precision Drug Delivery: Advancement in Biomaterial Engineering for Better Treatment Therapies. Pharmaceutics 2024; 16:1076. [PMID: 39204421 PMCID: PMC11360117 DOI: 10.3390/pharmaceutics16081076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Preclinical and clinical studies have demonstrated that precision therapy has a broad variety of treatment applications, making it an interesting research topic with exciting potential in numerous sectors. However, major obstacles, such as inefficient and unsafe delivery systems and severe side effects, have impeded the widespread use of precision medicine. The purpose of drug delivery systems (DDSs) is to regulate the time and place of drug release and action. They aid in enhancing the equilibrium between medicinal efficacy on target and hazardous side effects off target. One promising approach is biomaterial-assisted biotherapy, which takes advantage of biomaterials' special capabilities, such as high biocompatibility and bioactive characteristics. When administered via different routes, drug molecules deal with biological barriers; DDSs help them overcome these hurdles. With their adaptable features and ample packing capacity, biomaterial-based delivery systems allow for the targeted, localised, and prolonged release of medications. Additionally, they are being investigated more and more for the purpose of controlling the interface between the host tissue and implanted biomedical materials. This review discusses innovative nanoparticle designs for precision and non-personalised applications to improve precision therapies. We prioritised nanoparticle design trends that address heterogeneous delivery barriers, because we believe intelligent nanoparticle design can improve patient outcomes by enabling precision designs and improving general delivery efficacy. We additionally reviewed the most recent literature on biomaterials used in biotherapy and vaccine development, covering drug delivery, stem cell therapy, gene therapy, and other similar fields; we have also addressed the difficulties and future potential of biomaterial-assisted biotherapies.
Collapse
Affiliation(s)
- Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India;
| | - Pranshul Sethi
- Department of Pharmacology, College of Pharmacy, Shri Venkateshwara University, Gajraula 244236, India;
| | - Bhupendra Singh
- School of Pharmacy, Graphic Era Hill University, Dehradun 248002, India;
- Department of Pharmacy, S.N. Medical College, Agra 282002, India
| | | | - Sagar Salave
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India;
| | - Ravish J. Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Anand 388421, India;
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia;
| | - Gehan M. Elossaily
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia;
| | - Arun Kumar
- School of Pharmacy, Sharda University, Greater Noida 201310, India
| |
Collapse
|
19
|
Wang C, Li Q, Song K, Wang W, Zhang N, Dai L, Di W. Nanoparticle co-delivery of carboplatin and PF543 restores platinum sensitivity in ovarian cancer models through inhibiting platinum-induced pro-survival pathway activation. NANOSCALE ADVANCES 2024; 6:4082-4093. [PMID: 39114142 PMCID: PMC11302180 DOI: 10.1039/d4na00227j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/29/2024] [Indexed: 08/10/2024]
Abstract
Resistance to platinum-based chemotherapy is the major cause of poor prognosis and cancer-associated mortality in ovarian cancer patients, so novel therapeutic strategies to restore platinum sensitivity are needed to improve patient outcomes. Sphingosine Kinase (SphK) 1 is involved in regulating multiple pro-survival pathways, key mediators in the sensitivity of tumor cells toward platinum. By encapsulating CBP and the SphK1 inhibitor PF543 in PLGA (poly lactic-co-glycolic acid) nanoparticles, a dual-drug delivery system (C/PNPs) was formed to simultaneously deliver CBP and PF543. The physicochemical characteristics, cell uptake rate and biodistribution behavior of C/PNPs were evaluated. Then the anti-tumor ability of C/PNPs in vitro and in vivo was further investigated. The C/PNPs could deliver CBP and PF543 simultaneously to a platinum-insensitive cell line (SKOV3) both in vitro and in vivo. Furthermore, benefiting from the enhanced permeability and retention (EPR) effect of PLGA NPs, C/PNPs exhibited an improved tumor region accumulation. As a result, a synergistic anti-tumor effect was found in the SKOV3 tumor-bearing mice, with tumor volume inhibiting rates of 84.64% and no side effects in major organs. The mechanistic studies confirmed that the inhibition of SphK1 by PF543 sensitized SKOV3 cells to CBP chemotherapy, partly by inhibiting the CBP-induced activation of pro-survival pathways, including ERK, AKT and STAT3 signaling. Our study reveals that C/PNPs can serve as an efficient dual-drug delivery system to restore platinum sensitivity in ovarian cancer models partly through inhibiting platinum-induced pro-survival pathway activation.
Collapse
Affiliation(s)
- Chen Wang
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| | - Qing Li
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| | - Keqi Song
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| | - Wenjing Wang
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| | - Ning Zhang
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| | - Lan Dai
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| | - Wen Di
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| |
Collapse
|
20
|
Zhu M, Wu Y, Zhu T, Chen J, Chen Z, Ding H, Tan S, He J, Zeng Q, Huang X. Multifunctional Bispecific Nanovesicles Targeting SLAMF7 Trigger Potent Antitumor Immunity. Cancer Immunol Res 2024; 12:1007-1021. [PMID: 38819238 DOI: 10.1158/2326-6066.cir-23-1102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/03/2024] [Accepted: 05/29/2024] [Indexed: 06/01/2024]
Abstract
The effectiveness of immune checkpoint inhibitor (ICI) therapy is hindered by the ineffective infiltration and functioning of cytotoxic T cells and the immunosuppressive tumor microenvironment (TME). Signaling lymphocytic activation molecule family member 7 (SLAMF7) is a pivotal co-stimulatory receptor thought to simultaneously trigger NK-cell, T-cell, and macrophage antitumor cytotoxicity. However, the potential of this collaborative immune stimulation in antitumor immunity for solid tumors is underexplored due to the exclusive expression of SLAMF7 by hematopoietic cells. Here, we report the development and characterization of multifunctional bispecific nanovesicles (NVs) targeting SLAMF7 and glypican-3-a hepatocellular carcinoma (HCC)-specific tumor antigen. We found that by effectively "decorating" the surfaces of solid tumors with SLAMF7, these NVs directly induced potent and specific antitumor immunity and remodeled the immunosuppressive TME, sensitizing the tumors to programmed cell death protein 1 (PD1) blockade. Our findings highlight the potential of SLAMF7-targeted multifunctional bispecific NVs as an anticancer strategy with implications for designing next-generation targeted cancer therapies.
Collapse
Affiliation(s)
- Manman Zhu
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yongjian Wu
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Tianchuan Zhu
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Jian Chen
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Zhenxing Chen
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Kingcell Regenerative Medicine (Guangdong) Co., Zhuhai, China
| | - Hanxi Ding
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Cancer Center, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Siyi Tan
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Jianzhong He
- Department of Pathology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Qi Zeng
- Cancer Center, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Xi Huang
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
21
|
Liang L, Deng Y, Ao Z, Liao C, Tian J, Li C, Yu X. Recent progress in biomimetic nanomedicines based on versatile targeting strategy for atherosclerosis therapy. J Drug Target 2024; 32:606-623. [PMID: 38656224 DOI: 10.1080/1061186x.2024.2347353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
Atherosclerosis (AS) is considered to be one of the major causes of cardiovascular disease. Its pathological microenvironment is characterised by increased production of reactive oxygen species, lipid oxides, and excessive inflammatory factors, which accumulate at the monolayer endothelial cells in the vascular wall to form AS plaques. Therefore, intervention in the pathological microenvironment would be beneficial in delaying AS. Researchers have designed biomimetic nanomedicines with excellent biocompatibility and the ability to avoid being cleared by the immune system through different therapeutic strategies to achieve better therapeutic effects for the characteristics of AS. Biomimetic nanomedicines can further enhance delivery efficiency and improve treatment efficacy due to their good biocompatibility and ability to evade clearance by the immune system. Biomimetic nanomedicines based on therapeutic strategies such as neutralising inflammatory factors, ROS scavengers, lipid clearance and integration of diagnosis and treatment are versatile approaches for effective treatment of AS. The review firstly summarises the targeting therapeutic strategy of biomimetic nanomedicine for AS in recent 5 years. Biomimetic nanomedicines using cell membranes, proteins, and extracellular vesicles as carriers have been developed for AS.
Collapse
Affiliation(s)
- Lijuan Liang
- Department of Pharmacy, Hejiang County People's Hospital, Luzhou, Sichuan, China
| | - Yiping Deng
- Analysis and Testing Center, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Zuojin Ao
- Analysis and Testing Center, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Changli Liao
- Science and Technology Department, Southwest Medical University, Luzhou, Sichuan, China
| | - Ji Tian
- Analysis and Testing Center, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Xin Yu
- Chinese Pharmacy Laboratory, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
22
|
Xu Z, Zhou H, Li T, Yi Q, Thakur A, Zhang K, Ma X, Qin JJ, Yan Y. Application of biomimetic nanovaccines in cancer immunotherapy: A useful strategy to help combat immunotherapy resistance. Drug Resist Updat 2024; 75:101098. [PMID: 38833804 DOI: 10.1016/j.drup.2024.101098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/06/2024]
Abstract
Breakthroughs in actual clinical applications have begun through vaccine-based cancer immunotherapy, which uses the body's immune system, both humoral and cellular, to attack malignant cells and fight diseases. However, conventional vaccine approaches still face multiple challenges eliciting effective antigen-specific immune responses, resulting in immunotherapy resistance. In recent years, biomimetic nanovaccines have emerged as a promising alternative to conventional vaccine approaches by incorporating the natural structure of various biological entities, such as cells, viruses, and bacteria. Biomimetic nanovaccines offer the benefit of targeted antigen-presenting cell (APC) delivery, improved antigen/adjuvant loading, and biocompatibility, thereby improving the sensitivity of immunotherapy. This review presents a comprehensive overview of several kinds of biomimetic nanovaccines in anticancer immune response, including cell membrane-coated nanovaccines, self-assembling protein-based nanovaccines, extracellular vesicle-based nanovaccines, natural ligand-modified nanovaccines, artificial antigen-presenting cells-based nanovaccines and liposome-based nanovaccines. We also discuss the perspectives and challenges associated with the clinical translation of emerging biomimetic nanovaccine platforms for sensitizing cancer cells to immunotherapy.
Collapse
Affiliation(s)
- Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Haiyan Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Tongfei Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Qiaoli Yi
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Abhimanyu Thakur
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Kui Zhang
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Xuelei Ma
- Department of Biotherapy, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China.
| | - Jiang-Jiang Qin
- Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
23
|
Jia G, Wang J, Wang H, Hu X, Long F, Yuan C, Liang C, Wang F. New insights into red blood cells in tumor precision diagnosis and treatment. NANOSCALE 2024; 16:11863-11878. [PMID: 38841898 DOI: 10.1039/d4nr01454e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Red blood cells (RBCs), which function as material transporters in organisms, are rich in materials that are exchanged with metabolically active tumor cells. Recent studies have demonstrated that tumor cells can regulate biological changes in RBCs, including influencing differentiation, maturation, and morphology. RBCs play an important role in tumor development and immune regulation. Notably, the novel scientific finding that RBCs absorb fragments of tumor-carrying DNA overturns the conventional wisdom that RBCs do not contain nucleic acids. RBC membranes are excellent biomimetic materials with significant advantages in terms of their biocompatibility, non-immunogenicity, non-specific adsorption resistance, and biodegradability. Therefore, RBCs provide a new research perspective for the development of tumor liquid biopsies, molecular imaging, drug delivery, and other tumor precision diagnosis and treatment technologies.
Collapse
Affiliation(s)
- Gaihua Jia
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Jun Wang
- Department of Laboratory Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430016, China.
| | - Hu Wang
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Xin Hu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Fei Long
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Chunhui Yuan
- Department of Laboratory Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430016, China.
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Chen Liang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
24
|
Canlas KKV, Park H. Applications of Biomolecular Nanostructures for Anti-Angiogenic Theranostics. Int J Nanomedicine 2024; 19:6485-6497. [PMID: 38946886 PMCID: PMC11214753 DOI: 10.2147/ijn.s459928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/10/2024] [Indexed: 07/02/2024] Open
Abstract
Angiogenesis is a physiological process of forming new blood vessels that has pathological importance in seemingly unrelated illnesses like cancer, diabetes, and various inflammatory diseases. Treatment targeting angiogenesis has shown promise for these types of diseases, but current anti-angiogenic agents have critical limitations in delivery and side-effects. This necessitates exploration of alternative approaches like biomolecule-based drugs. Proteins, lipids, and oligonucleotides have recently become popular in biomedicine, specifically as biocompatible components of therapeutic drugs. Their excellent bioavailability and potential bioactive and immunogenic properties make them prime candidates for drug discovery or drug delivery systems. Lipid-based liposomes have become standard vehicles for targeted nanoparticle (NP) delivery, while protein and nucleotide NPs show promise for environment-sensitive delivery as smart NPs. Their therapeutic applications have initially been hampered by short circulation times and difficulty of fabrication but recent developments in nanofabrication and NP engineering have found ways to circumvent these disadvantages, vastly improving the practicality of biomolecular NPs. In this review, we are going to briefly discuss how biomolecule-based NPs have improved anti-angiogenesis-based therapy.
Collapse
Affiliation(s)
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Korea
| |
Collapse
|
25
|
Fei S, Ma Y, Zhou B, Chen X, Zhang Y, Yue K, Li Q, Gui Y, Xiang T, Liu J, Yang B, Wang L, Huang X. Platelet membrane biomimetic nanoparticle-targeted delivery of TGF-β1 siRNA attenuates renal inflammation and fibrosis. Int J Pharm 2024; 659:124261. [PMID: 38782155 DOI: 10.1016/j.ijpharm.2024.124261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/03/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024]
Abstract
The progression of renal fibrosis to end-stage renal disease (ESRD) is significantly influenced by transforming growth factor-beta (TGF-beta) signal pathway. This study aimed to develop nanoparticles (PMVs@PLGA complexes) with platelet membrane camouflage, which can transport interfering RNA to target and regulate the TGF-β1 pathway in damaged renal tissues. The aim is to reduce the severity of acute kidney injury and to reduce fibrosis in chronic kidney disease. Hence, we formulated PMVs@TGF-β1-siRNA NP complexes and employed them for both in vitro and in vivo therapy. From the experimental findings we know that the PMVs@siRNA NPs could effectively target the kidneys in unilateral ureteral obstruction (UUO) mice and ischemia/reperfusion injury (I/R) mice. In animal models of treatment, PMVs@siRNA NP complexes effectively decreased the expression of TGF-β1 and mitigated inflammation and fibrosis in the kidneys by blocking the TGF-β1/Smad3 pathway. Therefore, these PMVs@siRNA NP complexes can serve as a promising biological delivery system for treating kidney diseases.
Collapse
Affiliation(s)
- Shengnan Fei
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong 226001, PR China; Medical School of Nantong University, Nantong 226001, PR China
| | - Yidan Ma
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong 226001, PR China; Medical School of Nantong University, Nantong 226001, PR China
| | - Bing Zhou
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong 226001, PR China; Medical School of Nantong University, Nantong 226001, PR China
| | - Xu Chen
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong 226001, PR China
| | - Yuan Zhang
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong 226001, PR China
| | - Kun Yue
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong 226001, PR China; Medical School of Nantong University, Nantong 226001, PR China
| | - Qingxin Li
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong 226001, PR China; Medical School of Nantong University, Nantong 226001, PR China
| | - Yuanyuan Gui
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong 226001, PR China; Medical School of Nantong University, Nantong 226001, PR China
| | - Tianya Xiang
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong 226001, PR China; Medical School of Nantong University, Nantong 226001, PR China
| | - Jianhang Liu
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong 226001, PR China; Medical School of Nantong University, Nantong 226001, PR China
| | - Bin Yang
- Department of Cardiovascular Sciences, College of Life Sciences, University of Leicester LE1 9HN, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Lei Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, Jiangsu, PR China; Nantong Egens Biotechnology Co., Ltd, Nantong 226001, Jiangsu, PR China.
| | - Xinzhong Huang
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong 226001, PR China.
| |
Collapse
|
26
|
Liu T, Zhang M, Zhang J, Kang N, Zheng L, Ding Z. Targeted Delivery of Macrophage Membrane Biomimetic Liposomes Through Intranasal Administration for Treatment of Ischemic Stroke. Int J Nanomedicine 2024; 19:6177-6199. [PMID: 38911498 PMCID: PMC11194020 DOI: 10.2147/ijn.s458656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024] Open
Abstract
Purpose Ginsenoside Rg3 (Rg3) and Panax notoginseng saponins (PNS) can be used for ischemic stroke treatment, however, the lack of targeting to the ischemic region limits the therapeutic effect. To address this, we leveraged the affinity of macrophage membrane proteins for inflamed brain microvascular endothelial cells to develop a macrophage membrane-cloaked liposome loaded with Rg3 and PNS (MM-Lip-Rg3/PNS), which can precisely target brain lesion region through intranasal administration. Methods MM-Lip-Rg3/PNS was prepared by co-extrusion method and was performed by characterization, stability, surface protein, and morphology. The cellular uptake, immune escape ability, and blood-brain barrier crossing ability of MM-Lip-Rg3/PNS were studied in vitro. The in vivo brain targeting, biodistribution and anti-ischemic efficacy of MM-Lip-Rg3/PNS were evaluated in MACO rats, and we determined the diversity of the nasal brain pathway through the olfactory nerve blockade model in rats. Finally, the pharmacokinetics and brain targeting index of MM-Lip-Rg3/PNS were investigated. Results Our results indicated that MM-Lip-Rg3/PNS was spherical with a shell-core structure. MM-Lip-Rg3/PNS can avoid mononuclear phagocytosis, actively bind to inflammatory endothelial cells, and have the ability to cross the blood-brain barrier. Moreover, MM-Lip-Rg3/PNS could specifically target ischemic sites, even microglia, increase the cumulative number of drugs in the brain, improve the inflammatory environment of the brain, and reduce the infarct size. By comparing olfactory nerve-blocking rats with normal rats, it was found that there are direct and indirect pathways for nasal entry into the brain. Pharmacokinetics demonstrated that MM-Lip-Rg3/PNS exhibited stronger brain targeting and prolonged drug half-life. Conclusion MM-Lip-Rg3/PNS might contribute to the accumulation of Rg3 and PNS in the ischemic brain area to improve treatment efficacy. This biomimetic nano-drug delivery system provides a new and promising strategy for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Tianshu Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, People’s Republic of China
| | - Mengfan Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, People’s Republic of China
| | - Jin Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, People’s Republic of China
| | - Naijin Kang
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, People’s Republic of China
| | - Linlin Zheng
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, People’s Republic of China
| | - Zhiying Ding
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, People’s Republic of China
| |
Collapse
|
27
|
Saadh MJ, Mustafa MA, Kumar A, Alamir HTA, Kumar A, Khudair SA, Faisal A, Alubiady MHS, Jalal SS, Shafik SS, Ahmad I, Khry FAF, Abosaoda MK. Stealth Nanocarriers in Cancer Therapy: a Comprehensive Review of Design, Functionality, and Clinical Applications. AAPS PharmSciTech 2024; 25:140. [PMID: 38890191 DOI: 10.1208/s12249-024-02843-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Nanotechnology has significantly transformed cancer treatment by introducing innovative methods for delivering drugs effectively. This literature review provided an in-depth analysis of the role of nanocarriers in cancer therapy, with a particular focus on the critical concept of the 'stealth effect.' The stealth effect refers to the ability of nanocarriers to evade the immune system and overcome physiological barriers. The review investigated the design and composition of various nanocarriers, such as liposomes, micelles, and inorganic nanoparticles, highlighting the importance of surface modifications and functionalization. The complex interaction between the immune system, opsonization, phagocytosis, and the protein corona was examined to understand the stealth effect. The review carefully evaluated strategies to enhance the stealth effect, including surface coating with polymers, biomimetic camouflage, and targeting ligands. The in vivo behavior of stealth nanocarriers and their impact on pharmacokinetics, biodistribution, and toxicity were also systematically examined. Additionally, the review presented clinical applications, case studies of approved nanocarrier-based cancer therapies, and emerging formulations in clinical trials. Future directions and obstacles in the field, such as advancements in nanocarrier engineering, personalized nanomedicine, regulatory considerations, and ethical implications, were discussed in detail. The review concluded by summarizing key findings and emphasizing the transformative potential of stealth nanocarriers in revolutionizing cancer therapy. This review enhanced the comprehension of nanocarrier-based cancer therapies and their potential impact by providing insights into advanced studies, clinical applications, and regulatory considerations.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan.
| | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, University of Imam Jaafar AL-Sadiq, Baghdad, Iraq
| | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan, India
| | | | - Abhishek Kumar
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, 247341, Uttar Pradesh, India
- Department of Pharmacy, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | | | - Ahmed Faisal
- Department of Pharmacy, Al-Noor University College, Nineveh, Iraq
| | | | - Sarah Salah Jalal
- College of Pharmacy, National University of Science and Technology, Nasiriyah, Dhi Qar, Iraq
| | - Shafik Shaker Shafik
- Experimental Nuclear Radiation Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Iraq
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Faeza A F Khry
- Faculty of pharmacy, department of pharmaceutics, Al-Esraa University, Baghdad, Iraq
| | - Munther Kadhim Abosaoda
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Qadisiyyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
28
|
Qian R, Guo Y, Wang R, Wang S, Gao X, Zhu Z, Wang K, Zhu K, Jia B, Chen Y, Wang Z, Ren J, Duan X, Han X. Cell Membrane Hybrid Lipid Nanovesicles Enhance Innate Immunity for Synergistic Immunotherapy by Promoting Immunogenic Cell Death and cGAS Activation. Biomater Res 2024; 28:0038. [PMID: 38868091 PMCID: PMC11168305 DOI: 10.34133/bmr.0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 05/08/2024] [Indexed: 06/14/2024] Open
Abstract
Immunotherapy shows great therapeutic potential for long-term protection against tumor relapse and metastasis. Innate immune sensors, such as cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING), dissolve DNA and induce type I interferon. Through activation of the cGAS/STING pathway, chemotherapy drugs and reversine (REV) may provide synergetic anti-tumor effects. Here, we prepared drug-loaded cell membrane hybrid lipid nanovesicles (LEVs) (designated LEV@DOX@REV) by fusion of cell membranes, phospholipids, doxorubicin (DOX), and REV, to realize accurate delivery to tumors and chemo-immunotherapy. The cell membranes of LEVs confer "homing" abilities. DOX can induce immunogenic cell death as a result of its specific immunomodulatory effects, which promotes the maturation of immune cells and improves the microenvironment of the immune system. REV is proven to efficiently activate cGAS/STING signaling, thereby enhancing the immune system. The antitumor efficacy of LEV@DOX@REV was evaluated in a 4T1 subcutaneous tumor xenograft model, a distant metastatic tumor model, and a liver metastatic tumor model. LEV@DOX@REV facilitated the infiltration of cytotoxic T lymphocytes within tumors, increased the secretion of proinflammatory cytokines, and modified the tumor microenvironment. In conclusion, LEV@DOX@REV displayed favorable antitumor effects and extended the survival of tumor-bearing mice. We therefore successfully developed nanoparticles capable of enhancing immune activation that have potential therapeutic applications for cancer immunotherapy.
Collapse
Affiliation(s)
- Ruijie Qian
- Department of Interventional Radiology,
The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yawen Guo
- Department of Immuno-Oncology,
The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ruihua Wang
- Department of Nuclear Medicine, The First Affiliated Hospital, College of Medicine, Henan Medical Key Laboratory of Molecular Imaging,
Zhengzhou University, Jianshe East Road, Zhengzhou 450052, Henan, China
| | - Shuai Wang
- Department of Medical Technology,
Nanyang Medical College, Nanyang 473000, Henan, China
| | - Xuemei Gao
- Department of Nuclear Medicine, The First Affiliated Hospital, College of Medicine, Henan Medical Key Laboratory of Molecular Imaging,
Zhengzhou University, Jianshe East Road, Zhengzhou 450052, Henan, China
| | - Ziyang Zhu
- Department of Nuclear Medicine, Sichuan Provincial People’s Hospital, Chengdu, Sichuan 610072, China
| | - Kun Wang
- Department of Nuclear Medicine, Shanghai East Hospital, School of Medicine,
Tongji University, Shanghai 200120, China
| | - Ke Zhu
- Department of Cardiology, Shanghai East Hospital, School of Medicine,
Tongji University, Shanghai 200120, China
| | - Baosong Jia
- Department of Breast and Thyroid Surgery,
The Second People’s Hospital of Lianyungang, Lianyungang, China
| | - Yijian Chen
- Department of Radiology,
Beijing Jingmei Group General Hospital, Beijing, China
| | - Zhiyu Wang
- Department of Immuno-Oncology,
The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jianzhuang Ren
- Department of Interventional Radiology,
The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xuhua Duan
- Department of Interventional Radiology,
The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinwei Han
- Department of Interventional Radiology,
The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
29
|
Liao J, Gong L, Xu Q, Wang J, Yang Y, Zhang S, Dong J, Lin K, Liang Z, Sun Y, Mu Y, Chen Z, Lu Y, Zhang Q, Lin Z. Revolutionizing Neurocare: Biomimetic Nanodelivery Via Cell Membranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402445. [PMID: 38583077 DOI: 10.1002/adma.202402445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Brain disorders represent a significant challenge in medical science due to the formidable blood-brain barrier (BBB), which severely limits the penetration of conventional therapeutics, hindering effective treatment strategies. This review delves into the innovative realm of biomimetic nanodelivery systems, including stem cell-derived nanoghosts, tumor cell membrane-coated nanoparticles, and erythrocyte membrane-based carriers, highlighting their potential to circumvent the BBB's restrictions. By mimicking native cell properties, these nanocarriers emerge as a promising solution for enhancing drug delivery to the brain, offering a strategic advantage in overcoming the barrier's selective permeability. The unique benefits of leveraging cell membranes from various sources is evaluated and advanced technologies for fabricating cell membrane-encapsulated nanoparticles capable of masquerading as endogenous cells are examined. This enables the targeted delivery of a broad spectrum of therapeutic agents, ranging from small molecule drugs to proteins, thereby providing an innovative approach to neurocare. Further, the review contrasts the capabilities and limitations of these biomimetic nanocarriers with traditional delivery methods, underlining their potential to enable targeted, sustained, and minimally invasive treatment modalities. This review is concluded with a perspective on the clinical translation of these biomimetic systems, underscoring their transformative impact on the therapeutic landscape for intractable brain diseases.
Collapse
Affiliation(s)
- Jun Liao
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Lidong Gong
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Qingqiang Xu
- Department of Pharmaceutics, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Jingya Wang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yuanyuan Yang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Shiming Zhang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Junwei Dong
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Kerui Lin
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Zichao Liang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yuhan Sun
- Department of Pharmaceutics, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Yongxu Mu
- The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014040, China
| | - Zhengju Chen
- Pooling Medical Research Institutes of 100Biotech, Beijing, 100006, China
| | - Ying Lu
- Department of Pharmaceutics, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Qiang Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhiqiang Lin
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
30
|
Wang F, Zhang N, Niu R, Lu Y, Zhang W, He Z. Identification of biomimetic nanoplatform-mediated delivery of si-ISG15 for treatment of triple-negative breast cancer. Cell Signal 2024; 118:111117. [PMID: 38401776 DOI: 10.1016/j.cellsig.2024.111117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
Triple-negative breast cancer (TNBC) is recognized as the most malicious form of breast cancer and exhibits an alarming tendency for recurrence, a heightened propensity for metastasis, and an overwhelmingly grim prognosis. Therefore, effective therapy approaches for TNBC are urgently required. In this study, the interferon-stimulated gene 15 (ISG15) expression level was analyzed by bioinformatics and verified by Western blot analysis. The effects of ISG15 on the proliferation and metastasis of TNBC cells were assessed using MTT, Colony formation, EdU, Transwell, and Flow cytometry assays. We also developed a cancer cell-biomimetic nanoparticle delivery system and evaluated its therapeutic efficacy in vivo. In this study, we reported that ISG15 was upregulated in TNBC, and its high expression level correlated with an increased risk of tumorigenesis. Through in vitro and in vivo studies, we discovered that ISG15 knockdown drastically suppressed cell proliferation, invasion, and migration and induced apoptosis in TNBC cells. Our findings revealed that ISG15 was a candidate therapeutic target in TNBC because of its key role in malignant growth and invasion. Moreover, co-immunoprecipitation showed that ISG15 exerted oncogenic functions through its interaction with ATP binding cassette subfamily E member 1 and activated the Janus kinase/signal transducers and activators of the transcription signaling pathway. Furthermore, we created a nanoparticle-based siRNA camouflaged using a cancer cell membrane vesicle delivery system (the CM@NP complex) and confirmed its therapeutic effects in vivo. Our findings confirmed that ISG15 may play a pivotal oncogenic role in the development of TNBC and that CM@siRNA-NP complexes are an effective delivery system and a novel biological strategy for treating TNBC.
Collapse
Affiliation(s)
- Feiran Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Nannan Zhang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Ruishu Niu
- Department of General Surgery, Huaian Hospital of Huaian City, Huaian, China
| | - Yunpeng Lu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Wei Zhang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Zhixian He
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
31
|
Tang C, Wang Y, Wu M, Wang Z, Zhou Y, Lin Y, Wang Y, Xu H. Cancer cell membrane-camouflaged biomimetic nanoparticles for enhancing chemo-radiation therapy efficacy in glioma. J Biomed Res 2024; 39:87-102. [PMID: 38812286 PMCID: PMC11873587 DOI: 10.7555/jbr.38.20240100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024] Open
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive and lethal brain tumor with limited treatment options. To improve therapeutic efficacy, we developed a novel multifunctional nanoplatform, GM@P(T/S), comprised of polymeric nanoparticles coated with GBM cell membranes as well as co-loaded with temozolomide (TMZ) and superparamagnetic iron oxide (SPIO) nanoparticles. The successful preparation was confirmed in terms of particle size, morphology, stability, the in vitro drug release, and cellular uptake assays. We demonstrated that GM@P(T/S) exhibited the enhanced homotypic targeting, the prolonged blood circulation, and efficient blood-brain barrier penetration in both in vitro and in vivo studies. The combination of TMZ and SPIO nanoparticles within GM@P(T/S) synergistically improved chemo-radiation therapy, leading to a reduced tumor growth, an increased survival, and minimal systemic toxicity in the orthotopic GBM mouse models. Our findings suggest that GM@P(T/S) holds a great promise as a targeted and efficient therapeutic strategy for GBM.
Collapse
Affiliation(s)
- Chunming Tang
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yanling Wang
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Min Wu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Zhiji Wang
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yupeng Zhou
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ya Lin
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yijun Wang
- Department of Pharmacy, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210003, China
| | - Huae Xu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
32
|
Huang D, Wang X, Wang W, Li J, Zhang X, Xia B. Cell-membrane engineering strategies for clinic-guided design of nanomedicine. Biomater Sci 2024; 12:2865-2884. [PMID: 38686665 DOI: 10.1039/d3bm02114a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Cells are the fundamental units of life. The cell membrane primarily composed of two layers of phospholipids (a bilayer) structurally defines the boundary of a cell, which can protect its interior from external disturbances and also selectively exchange substances and conduct signals from the extracellular environment. The complexity and particularity of transmembrane proteins provide the foundation for versatile cellular functions. Nanomedicine as an emerging therapeutic strategy holds tremendous potential in the healthcare field. However, it is susceptible to recognition and clearance by the immune system. To overcome this bottleneck, the technology of cell membrane coating has been extensively used in nanomedicines for their enhanced therapeutic efficacy, attributed to the favorable fluidity and biocompatibility of cell membranes with various membrane-anchored proteins. Meanwhile, some engineering strategies of cell membranes through various chemical, physical and biological ways have been progressively developed to enable their versatile therapeutic functions against complex diseases. In this review, we summarized the potential clinical applications of four typical cell membranes, elucidated their underlying therapeutic mechanisms, and outlined their current engineering approaches. In addition, we further discussed the limitation of this technology of cell membrane coating in clinical applications, and possible solutions to address these challenges.
Collapse
Affiliation(s)
- Di Huang
- College of Science, State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Xiaoyu Wang
- College of Science, State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Wentao Wang
- College of Science, State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Jiachen Li
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen/University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Xiaomei Zhang
- College of Science, State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Bing Xia
- College of Science, State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, P. R. China.
- Department of Geriatric Oncology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, P. R. China
| |
Collapse
|
33
|
Ozsoy F, Mohammed M, Jan N, Lulek E, Ertas YN. T Cell and Natural Killer Cell Membrane-Camouflaged Nanoparticles for Cancer and Viral Therapies. ACS APPLIED BIO MATERIALS 2024; 7:2637-2659. [PMID: 38687958 PMCID: PMC11110059 DOI: 10.1021/acsabm.4c00074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
Extensive research has been conducted on the application of nanoparticles in the treatment of cancer and infectious diseases. Due to their exceptional characteristics and flexible structure, they are classified as highly efficient drug delivery systems, ensuring both safety and targeted delivery. Nevertheless, nanoparticles still encounter obstacles, such as biological instability, absence of selectivity, recognition as unfamiliar elements, and quick elimination, which restrict their remedial capacity. To surmount these drawbacks, biomimetic nanotechnology has been developed that utilizes T cell and natural killer (NK) cell membrane-encased nanoparticles as sophisticated methods of administering drugs. These nanoparticles can extend the duration of drug circulation and avoid immune system clearance. During the membrane extraction and coating procedure, the surface proteins of immunological cells are transferred to the biomimetic nanoparticles. Such proteins present on the surface of cells confer several benefits to nanoparticles, including prolonged circulation, enhanced targeting, controlled release, specific cellular contact, and reduced in vivo toxicity. This review focuses on biomimetic nanosystems that are derived from the membranes of T cells and NK cells and their comprehensive extraction procedure, manufacture, and applications in cancer treatment and viral infections. Furthermore, potential applications, prospects, and existing challenges in their medical implementation are highlighted.
Collapse
Affiliation(s)
- Fatma Ozsoy
- ERNAM−Nanotechnology
Research and Application Center, Erciyes
University, Kayseri 38039, Turkey
- Department
of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey
| | - Mahir Mohammed
- ERNAM−Nanotechnology
Research and Application Center, Erciyes
University, Kayseri 38039, Turkey
| | - Nasrullah Jan
- Department
of Pharmacy, The University of Chenab, Gujrat, Punjab 50700, Pakistan
| | - Elif Lulek
- ERNAM−Nanotechnology
Research and Application Center, Erciyes
University, Kayseri 38039, Turkey
- Department
of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey
| | - Yavuz Nuri Ertas
- ERNAM−Nanotechnology
Research and Application Center, Erciyes
University, Kayseri 38039, Turkey
- Department
of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey
- UNAM−National
Nanotechnology Research Center, Bilkent
University, Ankara 06800, Turkey
| |
Collapse
|
34
|
Li Z, Zhang Q, Li Z, Ren L, Pan D, Gong Q, Gu Z, Cai H, Luo K. Branched glycopolymer prodrug-derived nanoassembly combined with a STING agonist activates an immuno-supportive status to boost anti-PD-L1 antibody therapy. Acta Pharm Sin B 2024; 14:2194-2209. [PMID: 38799622 PMCID: PMC11121173 DOI: 10.1016/j.apsb.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Accepted: 01/20/2024] [Indexed: 05/29/2024] Open
Abstract
Despite the great potential of anti-PD-L1 antibodies for immunotherapy, their low response rate due to an immunosuppressive tumor microenvironment has hampered their application. To address this issue, we constructed a cell membrane-coated nanosystem (mB4S) to reverse an immunosuppressive microenvironment to an immuno-supportive one for strengthening the anti-tumor effect. In this system, Epirubicin (EPI) as an immunogenic cell death (ICD) inducer was coupled to a branched glycopolymer via hydrazone bonds and diABZI as a stimulator of interferon genes (STING) agonist was encapsulated into mB4S. After internalization of mB4S, EPI was acidic-responsively released to induce ICD, which was characterized by an increased level of calreticulin (CRT) exposure and enhanced ATP secretion. Meanwhile, diABZI effectively activated the STING pathway. Treatment with mB4S in combination with an anti-PD-L1 antibody elicited potent immune responses by increasing the ratio of matured dendritic cells (DCs) and CD8+ T cells, promoting cytokines secretion, up-regulating M1-like tumor-associated macrophages (TAMs) and down-regulating immunosuppressive myeloid-derived suppressor cells (MDSCs). Therefore, this nanosystem for co-delivery of an ICD inducer and a STING agonist achieved promotion of DCs maturation and CD8+ T cells infiltration, creating an immuno-supportive microenvironment, thus potentiating the therapy effect of the anti-PD-L1 antibody in both 4T1 breast and CT26 colon tumor mice.
Collapse
Affiliation(s)
- Zhilin Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Clinical Research Center for Breast, Department of Breast Surgery, Department of Thoracic Surgery and Institute of Thoracic Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu 610041, China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China
| | - Qianfeng Zhang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Clinical Research Center for Breast, Department of Breast Surgery, Department of Thoracic Surgery and Institute of Thoracic Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu 610041, China
| | - Zhiqian Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Clinical Research Center for Breast, Department of Breast Surgery, Department of Thoracic Surgery and Institute of Thoracic Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu 610041, China
| | - Long Ren
- Department of Radiology, Huaxi MR Research Center (HMRRC), Clinical Research Center for Breast, Department of Breast Surgery, Department of Thoracic Surgery and Institute of Thoracic Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu 610041, China
| | - Dayi Pan
- Department of Radiology, Huaxi MR Research Center (HMRRC), Clinical Research Center for Breast, Department of Breast Surgery, Department of Thoracic Surgery and Institute of Thoracic Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), Clinical Research Center for Breast, Department of Breast Surgery, Department of Thoracic Surgery and Institute of Thoracic Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen 361021, China
| | - Zhongwei Gu
- Department of Radiology, Huaxi MR Research Center (HMRRC), Clinical Research Center for Breast, Department of Breast Surgery, Department of Thoracic Surgery and Institute of Thoracic Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu 610041, China
| | - Hao Cai
- Department of Radiology, Huaxi MR Research Center (HMRRC), Clinical Research Center for Breast, Department of Breast Surgery, Department of Thoracic Surgery and Institute of Thoracic Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu 610041, China
| | - Kui Luo
- Department of Radiology, Huaxi MR Research Center (HMRRC), Clinical Research Center for Breast, Department of Breast Surgery, Department of Thoracic Surgery and Institute of Thoracic Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| |
Collapse
|
35
|
Zhang J, Chen Z, Chen Q. Advanced Nano-Drug Delivery Systems in the Treatment of Ischemic Stroke. Molecules 2024; 29:1848. [PMID: 38675668 PMCID: PMC11054753 DOI: 10.3390/molecules29081848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, the frequency of strokes has been on the rise year by year and has become the second leading cause of death around the world, which is characterized by a high mortality rate, high recurrence rate, and high disability rate. Ischemic strokes account for a large percentage of strokes. A reperfusion injury in ischemic strokes is a complex cascade of oxidative stress, neuroinflammation, immune infiltration, and mitochondrial damage. Conventional treatments are ineffective, and the presence of the blood-brain barrier (BBB) leads to inefficient drug delivery utilization, so researchers are turning their attention to nano-drug delivery systems. Functionalized nano-drug delivery systems have been widely studied and applied to the study of cerebral ischemic diseases due to their favorable biocompatibility, high efficiency, strong specificity, and specific targeting ability. In this paper, we briefly describe the pathological process of reperfusion injuries in strokes and focus on the therapeutic research progress of nano-drug delivery systems in ischemic strokes, aiming to provide certain references to understand the progress of research on nano-drug delivery systems (NDDSs).
Collapse
Affiliation(s)
- Jiajie Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (J.Z.); (Z.C.)
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (J.Z.); (Z.C.)
| | - Qi Chen
- Interdisciplinary Institute for Medical Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
36
|
Zhu Y, Xu L, Kang Y, Cheng Q, He Y, Ji X. Platelet-derived drug delivery systems: Pioneering treatment for cancer, cardiovascular diseases, infectious diseases, and beyond. Biomaterials 2024; 306:122478. [PMID: 38266348 DOI: 10.1016/j.biomaterials.2024.122478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/14/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
Platelets play a critical role as circulating cells in the human body and contribute to essential physiological processes such as blood clotting, hemostasis, vascular repair, and thrombus formation. Currently, platelets are extensively employed in the development of innovative biomimetic drug delivery systems, offering significant enhancements in circulation time, biocompatibility, and targeted delivery efficiency compared to conventional drug delivery approaches. Leveraging the unique physiological functions of platelets, these platelet-derived drug delivery systems (DDSs) hold great promise for the treatment of diverse diseases, including cancer, cardiovascular diseases, infectious diseases, wound healing and other diseases. This review primarily focuses on the design and characteristics of existing platelet-derived DDSs, including their preparation and characterization methods. Furthermore, this review comprehensively outlines the applications of these materials across various diseases, offering a holistic understanding of their therapeutic potential. This study aimed to provide a comprehensive overview of the potential value of these materials in clinical treatment, serving as a valuable reference for the advancement of novel platelet-derived DDSs and their broader utilization in the field of disease treatment.
Collapse
Affiliation(s)
- Yalan Zhu
- Department of Pharmacy, Jinhua Municipal Central Hospital, Jinhua, Zhejiang, 321000, China
| | - Lingling Xu
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Yong Kang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Qinzhen Cheng
- Department of Pharmacy, Jinhua Municipal Central Hospital, Jinhua, Zhejiang, 321000, China.
| | - Yiling He
- Department of Pharmacy, Jinhua Municipal Central Hospital, Jinhua, Zhejiang, 321000, China.
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China; Medical College, Linyi University, Linyi, 276000, China.
| |
Collapse
|
37
|
Xu X, Zhang J, Wang T, Li J, Rong Y, Wang Y, Bai C, Yan Q, Ran X, Wang Y, Zhang T, Sun J, Jiang Q. Emerging non-antibody‒drug conjugates (non-ADCs) therapeutics of toxins for cancer treatment. Acta Pharm Sin B 2024; 14:1542-1559. [PMID: 38572098 PMCID: PMC10985036 DOI: 10.1016/j.apsb.2023.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/31/2023] [Accepted: 11/23/2023] [Indexed: 04/05/2024] Open
Abstract
The non-selective cytotoxicity of toxins limits the clinical relevance of the toxins. In recent years, toxins have been widely used as warheads for antibody‒drug conjugates (ADCs) due to their efficient killing activity against various cancer cells. Although ADCs confer certain targeting properties to the toxins, low drug loading capacity, possible immunogenicity, and other drawbacks also limit the potential application of ADCs. Recently, non-ADC delivery strategies for toxins have been extensively investigated. To further understand the application of toxins in anti-tumor, this paper provided an overview of prodrugs, nanodrug delivery systems, and biomimetic drug delivery systems. In addition, toxins and their combination strategies with other therapies were discussed. Finally, the prospect and challenge of toxins in cancer treatment were also summarized.
Collapse
Affiliation(s)
- Xiaolan Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiaming Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tao Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jing Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yukang Rong
- School of Education, University of Nottingham, Nottingham NG7 2RD, UK
| | - Yanfang Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chenxia Bai
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qing Yan
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaohua Ran
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yingli Wang
- Department of Pharmacy, Linyi People's Hospital, Shandong University, Linyi 276000, China
| | - Tianhong Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qikun Jiang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| |
Collapse
|
38
|
Dehghankhold M, Sadat Abolmaali S, Nezafat N, Mohammad Tamaddon A. Peptide nanovaccine in melanoma immunotherapy. Int Immunopharmacol 2024; 129:111543. [PMID: 38301413 DOI: 10.1016/j.intimp.2024.111543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 02/03/2024]
Abstract
Melanoma is an especially fatal neoplasm resistant to traditional treatment. The advancement of novel therapeutical approaches has gained attention in recent years by shedding light on the molecular mechanisms of melanoma tumorigenesis and their powerful interplay with the immune system. The presence of many mutations in melanoma cells results in the production of a varied array of antigens. These antigens can be recognized by the immune system, thereby enabling it to distinguish between tumors and healthy cells. In the context of peptide cancer vaccines, generally, they are designed based on tumor antigens that stimulate immunity through antigen-presenting cells (APCs). As naked peptides often have low potential in eliciting a desirable immune reaction, immunization with such compounds usually necessitates adjuvants and nanocarriers. Actually, nanoparticles (NPs) can provide a robust immune response to peptide-based melanoma vaccines. They improve the directing of peptide vaccines to APCs and induce the secretion of cytokines to get maximum immune response. This review provides an overview of the current knowledge of the utilization of nanotechnology in peptide vaccines emphasizing melanoma, as well as highlights the significance of physicochemical properties in determining the fate of these nanovaccines in vivo, including their drainage to lymph nodes, cellular uptake, and influence on immune responses.
Collapse
Affiliation(s)
- Mahvash Dehghankhold
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Computational vaccine and Drug Design Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Mohammad Tamaddon
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
39
|
Chen W, Liu H, Chen Y, Gao M. Enhancement of Therapeutic Potential of Oncolytic Virus with Homologous Tumor Cell Membranes for Pancreatic Cancer. IET Nanobiotechnol 2024; 2024:9970665. [PMID: 38863971 PMCID: PMC11095071 DOI: 10.1049/2024/9970665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/21/2024] [Accepted: 02/05/2024] [Indexed: 06/13/2024] Open
Abstract
Pancreatic cancer is a leading cause of cancer-related deaths worldwide. Conventional therapies often provide limited success, necessitating the need for novel therapeutic strategies. Oncolytic viruses (OVs) are a class of viruses that specifically target and kill cancer cells while leaving normal cells unharmed. These viruses have shown promise in the treatment of various cancers, including pancreatic cancer. However, their use in clinical settings has been limited by several factors. Their inability to efficiently infect and kill tumor cells. To overcome this limitation, a cell membrane-coated oncolytic virus was developed. However, the necessity of homologous and nonhomologous tumor cell membranes for their function has not yet been proven. This novel virus displayed increased infectivity and killing activity against tumor cells compared to nonhomologous tumor cell membranes and noncoated viruses. We believe that the homologous tumor cell membranes-coated OVs can enhance the therapeutic potential for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Wei Chen
- Department of Gastroenterology, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, China
| | - Hui Liu
- Department of Gastroenterology, The Second People's Hospital of Hefei Affiliated to Bengbu Medical College, Hefei 230011, China
- Department of Gastroenterology, The Second People's Hospital of Hefei, Hefei 230011, China
| | - Yue Chen
- School of Clinical Medicine, Anhui Medical University, Hefei 230011, China
| | - Meng Gao
- Department of Gastroenterology, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, China
| |
Collapse
|
40
|
Arcos Rosero WA, Bueno Barbezan A, Daruich de Souza C, Chuery Martins Rostelato ME. Review of Advances in Coating and Functionalization of Gold Nanoparticles: From Theory to Biomedical Application. Pharmaceutics 2024; 16:255. [PMID: 38399309 PMCID: PMC10892584 DOI: 10.3390/pharmaceutics16020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/27/2023] [Accepted: 01/02/2024] [Indexed: 02/25/2024] Open
Abstract
Nanoparticles, especially gold nanoparticles (Au NPs) have gained increasing interest in biomedical applications. Used for disease prevention, diagnosis and therapies, its significant advantages in therapeutic efficacy and safety have been the main target of interest. Its application in immune system prevention, stability in physiological environments and cell membranes, low toxicity and optimal bioperformances are critical to the success of engineered nanomaterials. Its unique optical properties are great attractors. Recently, several physical and chemical methods for coating these NPs have been widely used. Biomolecules such as DNA, RNA, peptides, antibodies, proteins, carbohydrates and biopolymers, among others, have been widely used in coatings of Au NPs for various biomedical applications, thus increasing their biocompatibility while maintaining their biological functions. This review mainly presents a general and representative view of the different types of coatings and Au NP functionalization using various biomolecules, strategies and functionalization mechanisms.
Collapse
|
41
|
Nag S, Mitra O, Tripathi G, Adur I, Mohanto S, Nama M, Samanta S, Gowda BHJ, Subramaniyan V, Sundararajan V, Kumarasamy V. Nanomaterials-assisted photothermal therapy for breast cancer: State-of-the-art advances and future perspectives. Photodiagnosis Photodyn Ther 2024; 45:103959. [PMID: 38228257 DOI: 10.1016/j.pdpdt.2023.103959] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/16/2023] [Accepted: 12/29/2023] [Indexed: 01/18/2024]
Abstract
Breast cancer (BC) remains an enigmatic fatal modality ubiquitously prevalent in different parts of the world. Contemporary medicines face severe challenges in remediating and healing breast cancer. Due to its spatial specificity and nominal invasive therapeutic regime, photothermal therapy (PTT) has attracted much scientific attention down the lane. PTT utilizes a near-infrared (NIR) light source to irradiate the tumor target intravenously or non-invasively, which is converted into heat energy over an optical fibre. Dynamic progress in nanomaterial synthesis was achieved with specialized visual, physicochemical, biological, and pharmacological features to make up for the inadequacies and expand the horizon of PTT. Numerous nanomaterials have substantial NIR absorption and can function as efficient photothermal transducers. It is achievable to limit the wavelength range of an absorbance peak for specific nanomaterials by manipulating their synthesis, enhancing the precision and quality of PTT. Along the same lines, various nanomaterials are conjugated with a wide range of surface-modifying chemicals, including polymers and antibodies, which may modify the persistence of the nanomaterial and diminish toxicity concerns. In this article, we tend to put forth specific insights and fundamental conceptualizations on pre-existing PTT and its advances upon conjugation with different biocompatible nanomaterials working in synergy to combat breast cancer, encompassing several strategies like immunotherapy, chemotherapy, photodynamic therapy, and radiotherapy coupled with PTT. Additionally, the role or mechanisms of nanoparticles, as well as possible alternatives to PTT, are summarized as a distinctive integral aspect in this article.
Collapse
Affiliation(s)
- Sagnik Nag
- Department of Bio-Sciences, School of Bio-Sciences & Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India; Integrative Multiomics Lab, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India; Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences (JCSMHS), Monash University Malaysia, Bandar Sunway 47500 Selangor Darul Ehsan, Malaysia.
| | - Oishi Mitra
- Department of Bio-Sciences, School of Bio-Sciences & Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India; Integrative Multiomics Lab, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Garima Tripathi
- Department of Bio-Sciences, School of Bio-Sciences & Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Israrahmed Adur
- Department of Bio-Sciences, School of Bio-Sciences & Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Muskan Nama
- Department of Bio-Sciences, School of Bio-Sciences & Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Souvik Samanta
- Department of Bio-Sciences, School of Bio-Sciences & Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - B H Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India; School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences (JCSMHS), Monash University Malaysia, Bandar Sunway 47500 Selangor Darul Ehsan, Malaysia.
| | - Vino Sundararajan
- Integrative Multiomics Lab, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
42
|
Essola JM, Zhang M, Yang H, Li F, Xia B, Mavoungou JF, Hussain A, Huang Y. Exosome regulation of immune response mechanism: Pros and cons in immunotherapy. Bioact Mater 2024; 32:124-146. [PMID: 37927901 PMCID: PMC10622742 DOI: 10.1016/j.bioactmat.2023.09.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/06/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
Due to its multiple features, including the ability to orchestrate remote communication between different tissues, the exosomes are the extracellular vesicles arousing the highest interest in the scientific community. Their size, established as an average of 30-150 nm, allows them to be easily uptaken by most cells. According to the type of cells-derived exosomes, they may carry specific biomolecular cargoes used to reprogram the cells they are interacting with. In certain circumstances, exosomes stimulate the immune response by facilitating or amplifying the release of foreign antigens-killing cells, inflammatory factors, or antibodies (immune activation). Meanwhile, in other cases, they are efficiently used by malignant elements such as cancer cells to mislead the immune recognition mechanism, carrying and transferring their cancerous cargoes to distant healthy cells, thus contributing to antigenic invasion (immune suppression). Exosome dichotomic patterns upon immune system regulation present broad advantages in immunotherapy. Its perfect comprehension, from its early biogenesis to its specific interaction with recipient cells, will promote a significant enhancement of immunotherapy employing molecular biology, nanomedicine, and nanotechnology.
Collapse
Affiliation(s)
- Julien Milon Essola
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, PR China
- University of Chinese Academy of Sciences. Beijing 100049, PR China
| | - Mengjie Zhang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Haiyin Yang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Fangzhou Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, PR China
| | - Bozhang Xia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, PR China
- University of Chinese Academy of Sciences. Beijing 100049, PR China
| | - Jacques François Mavoungou
- Université Internationale de Libreville, Libreville, 20411, Gabon
- Central and West African Virus Epidemiology, Libreville, 2263, Gabon
- Département de phytotechnologies, Institut National Supérieur d’Agronomie et de Biotechnologie, Université des Sciences et Techniques de Masuku, Franceville, 901, Gabon
- Institut de Recherches Agronomiques et Forestiers, Centre National de la Recherche Scientifique et du développement Technologique, Libreville, 16182, Gabon
| | - Abid Hussain
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Rigerna Therapeutics Co. Ltd., China
| |
Collapse
|
43
|
Li S, Meng X, Peng B, Huang J, Liu J, Xiao H, Ma L, Liu Y, Tang J. Cell membrane-based biomimetic technology for cancer phototherapy: Mechanisms, recent advances and perspectives. Acta Biomater 2024; 174:26-48. [PMID: 38008198 DOI: 10.1016/j.actbio.2023.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/04/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
Despite significant advances in medical technology and antitumour treatments, the diagnosis and treatment of tumours have undergone remarkable transformations. Noninvasive phototherapy methods, such as photodynamic therapy (PDT) and photothermal therapy (PTT), have gained significant interest in antitumour medicine. However, traditional photosensitisers or photothermal agents face challenges like immune system recognition, rapid clearance from the bloodstream, limited tumour accumulation, and phototoxicity concerns. Researchers combine photosensitisers or photothermal agents with natural cell membranes to overcome these obstacles to create a nano biomimetic therapeutic platform. When used to coat nanoparticles, red blood cells, platelets, cancer cells, macrophages, lymphocytes, and bacterial outer membranes could provide prolonged circulation, tumour targeting, immune stimulation, or antigenicity. This article covers the principles of cellular membrane biomimetic nanotechnology and phototherapy, along with recent advancements in applying nano biomimetic technology to PDT, PTT, PCT, and combined diagnosis and treatment. Furthermore, the challenges and issues of using nano biomimetic nanoparticles in phototherapy are discussed. STATEMENT OF SIGNIFICANCE: Currently, there has been significant progress in the field of cell membrane biomimetic technology. Researchers are exploring its potential application in tumor diagnosis and treatment through phototherapy. Scholars have conducted extensive research on combining cell membrane technology and phototherapy in anticancer diagnosis and treatment. This review aims to highlight the mechanisms of phototherapy and the latest advancements in single phototherapy (PTT, PDT) and combination phototherapy (PCT, PRT, and PIT), as well as diagnostic approaches. The review provides an overview of various cell membrane technologies, including RBC membranes, platelet membranes, macrophage cell membranes, tumour cell membranes, bacterial membranes, hybrid membranes, and their potential for anticancer applications under phototherapy. Lastly, the review discusses the challenges and future directions in this field.
Collapse
Affiliation(s)
- Songtao Li
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China; Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Xiangrui Meng
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China; Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| | - Bo Peng
- Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Ju Huang
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China; Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Jingwen Liu
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Hang Xiao
- College of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China
| | - Li Ma
- College of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China
| | - Yiyao Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, PR China.
| | - Jianyuan Tang
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China; Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| |
Collapse
|
44
|
Zhang Y, Wang Y, Zhu A, Yu N, Xia J, Li J. Dual-Targeting Biomimetic Semiconducting Polymer Nanocomposites for Amplified Theranostics of Bone Metastasis. Angew Chem Int Ed Engl 2024; 63:e202310252. [PMID: 38010197 DOI: 10.1002/anie.202310252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/03/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Bone metastasis is a type of metastatic tumors that involves the spreads of malignant tumor cells into skeleton, and its diagnosis and treatment remain a big challenge due to the unique tumor microenvironment. We herein develop osteoclast and tumor cell dual-targeting biomimetic semiconducting polymer nanocomposites (SPFeNOC ) for amplified theranostics of bone metastasis. SPFeNOC contain semiconducting polymer and iron oxide (Fe3 O4 ) nanoparticles inside core and surface camouflaged hybrid membrane of cancer cells and osteoclasts. The hybrid membrane camouflage enables their targeting to both metastatic tumor cells and osteoclasts in bone metastasis through homologous targeting mechanism, thus achieving an enhanced nanoparticle accumulation in tumors. The semiconducting polymer mediates near-infrared (NIR) fluorescence imaging and sonodynamic therapy (SDT), and Fe3 O4 nanoparticles are used for magnetic resonance (MR) imaging and chemodynamic therapy (CDT). Because both cancer cells and osteoclasts are killed synchronously via the combinational action of SDT and CDT, the vicious cycle in bone metastasis is broken to realize high antitumor efficacy. Therefore, 4T1 breast cancer-based bone metastasis can be effectively detected and cured by using SPFeNOC as dual-targeting theranostic nanoagents. This study provides an unusual biomimetic nanoplatform that simultaneously targets osteoclasts and cancer cells for amplified theranostics of bone metastasis.
Collapse
Affiliation(s)
- Yijing Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Yue Wang
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai, 201600, China
| | - Anni Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Ningyue Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Jindong Xia
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai, 201600, China
| | - Jingchao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
45
|
Li Y, Zhou S, Wu Q, Gong C. CRISPR/Cas gene editing and delivery systems for cancer therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1938. [PMID: 38456346 DOI: 10.1002/wnan.1938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 03/09/2024]
Abstract
CRISPR/Cas systems stand out because of simplicity, efficiency, and other superiorities, thus becoming attractive and brilliant gene-editing tools in biomedical field including cancer therapy. CRISPR/Cas systems bring promises for cancer therapy through manipulating and engineering on tumor cells or immune cells. However, there have been concerns about how to overcome the numerous physiological barriers and deliver CRISPR components to target cells efficiently and accurately. In this review, we introduced the mechanisms of CRISPR/Cas systems, summarized the current delivery strategies of CRISPR/Cas systems by physical methods, viral vectors, and nonviral vectors, and presented the current application of CRISPR/Cas systems in cancer clinical treatment. Furthermore, we discussed prospects related to delivery approaches of CRISPR/Cas systems. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Yingjie Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shiyao Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qinjie Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Changyang Gong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
46
|
Wang J, Li L, Xu ZP. Enhancing Cancer Chemo-Immunotherapy: Innovative Approaches for Overcoming Immunosuppression by Functional Nanomaterials. SMALL METHODS 2024; 8:e2301005. [PMID: 37743260 DOI: 10.1002/smtd.202301005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/05/2023] [Indexed: 09/26/2023]
Abstract
Chemotherapy is a critical modality in cancer therapy to combat malignant cell proliferation by directly attacking cancer cells and inducing immunogenic cell death, serving as a vital component of multi-modal treatment strategies for enhanced therapeutic outcomes. However, chemotherapy may inadvertently contribute to the immunosuppression of the tumor microenvironment (TME), inducing the suppression of antitumor immune responses, which can ultimately affect therapeutic efficacy. Chemo-immunotherapy, combining chemotherapy and immunotherapy in cancer treatment, has emerged as a ground-breaking approach to target and eliminate malignant tumors and revolutionize the treatment landscape, offering promising, durable responses for various malignancies. Notably, functional nanomaterials have substantially contributed to chemo-immunotherapy by co-delivering chemo-immunotherapeutic agents and modulating TME. In this review, recent advancements in chemo-immunotherapy are thus summarized to enhance treatment effectiveness, achieved by reversing the immunosuppressive TME (ITME) through the exploitation of immunotherapeutic drugs, or immunoregulatory nanomaterials. The effects of two-way immunomodulation and the causes of immunoaugmentation and suppression during chemotherapy are illustrated. The current strategies of chemo-immunotherapy to surmount the ITME and the functional materials to target and regulate the ITME are discussed and compared. The perspective on tumor immunosuppression reversal strategy is finally proposed.
Collapse
Affiliation(s)
- Jingjing Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
47
|
Lin Y, Guan X, Su J, Chen S, Fu X, Xu X, Deng X, Chang J, Qin A, Shen A, Zhang L. Cell Membrane-Camouflaged Nanoparticles Mediated Nucleic Acids Delivery. Int J Nanomedicine 2023; 18:8001-8021. [PMID: 38164266 PMCID: PMC10758188 DOI: 10.2147/ijn.s433737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024] Open
Abstract
Nucleic acids have emerged as promising therapeutic agents for many diseases because of their potential in modulating gene expression. However, the delivery of nucleic acids remains a significant challenge in gene therapy. Although viral vectors have shown high transfection efficiency, concerns regarding teratogenicity or carcinogenicity have been raised. Non-viral vehicles, including cationic polymers, liposomes, and inorganic materials possess advantages in terms of safety, ease of preparation, and low cost. Nevertheless, they also face limitations related to immunogenicity, quick clearance in vivo, and lack of targeting specificity. On the other hand, bioinspired strategies have shown increasing potential in the field of drug delivery, yet there is a lack of comprehensive reviews summarizing the rapid development of bioinspired nanoparticles based on the cell membrane camouflage to construct the nucleic acids vehicles. Herein, we enumerated the current difficulties in nucleic acid delivery with various non-viral vehicles and provided an overview of bioinspired strategies for nucleic acid delivery.
Collapse
Affiliation(s)
- Yinshan Lin
- Pharmacy Department & Panyu Institute of Infectious Diseases, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong, 511400, People’s Republic of China
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| | - Xiaoling Guan
- Pharmacy Department & Panyu Institute of Infectious Diseases, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong, 511400, People’s Republic of China
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| | - Jianfen Su
- Pharmacy Department & Panyu Institute of Infectious Diseases, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong, 511400, People’s Republic of China
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| | - Sheng Chen
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| | - Xihua Fu
- Pharmacy Department & Panyu Institute of Infectious Diseases, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong, 511400, People’s Republic of China
| | - Xiaowei Xu
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| | - Xiaohua Deng
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| | - Jishuo Chang
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| | - Aiping Qin
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| | - Ao Shen
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| | - Lingmin Zhang
- Pharmacy Department & Panyu Institute of Infectious Diseases, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong, 511400, People’s Republic of China
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| |
Collapse
|
48
|
Zhang S, Chen W, Zhou Y, Zheng X, Fu Y, Liu H, Wan Z, Zhao Y. Intelligent Nanoplatform Integrating Macrophage and Cancer Cell Membrane for Synergistic Chemodynamic/Immunotherapy/Photothermal Therapy of Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59117-59133. [PMID: 38091266 DOI: 10.1021/acsami.3c12560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Cell membrane-coated nanoplatforms for drug delivery have garnered significant attention due to their inherent cellular properties, such as immune evasion and homing abilities, making them a subject of widespread interest. The coating of mixed membranes from different cell types onto the surface of nanoparticles offers a way to harness natural cell functions, enhancing biocompatibility and improving therapeutic efficacy. In this study, we merged membranes from murine-derived 4T1 breast cancer cells with RAW264.7 (RAW) membranes, creating a hybrid biomimetic coating referred to as TRM. Subsequently, we fabricated hybrid TRM-coated Fe3O4 nanoparticles loaded with indocyanine green (ICG) and imiquimod (R837) for combination therapy in breast cancer. Comprehensive characterization of the RIFe@TRM nanoplatform revealed the inherent properties of both cell types. Compared to bare Fe3O4 nanoparticles, RIFe@TRM nanoparticles exhibited remarkable cell-specific self-recognition for 4T1 cells in vitro, leading to significantly prolonged circulation life span and enhanced in vivo targeting capabilities. Furthermore, the biomimetic RIFe@TRM nanoplatform induced tumor necrosis through the Fenton reaction and photothermal effects, while R837 facilitated enhanced uptake of tumor-associated antigens, further activating CD8+ cytotoxic T cells to strengthen antitumor immunotherapy. Hence, RIFe@TRM nanoplatform demonstrated outstanding synergy in chemodynamic/immunotherapy/photothermal therapies, displaying significant inhibition of breast tumor growth. In summary, this study presents a promising biomimetic nanoplatform for effective treatment of breast cancer.
Collapse
Affiliation(s)
- Shichao Zhang
- Department of Oncology and Vascular Interventional Radiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, P. R. China
| | - Weibin Chen
- Department of Oncology and Vascular Interventional Radiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, P. R. China
| | - Yuanyuan Zhou
- Department of Oncology and Vascular Interventional Radiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, P. R. China
| | - Xiongwei Zheng
- Department of Oncology and Vascular Interventional Radiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, P. R. China
| | - Yu Fu
- Department of Oncology and Vascular Interventional Radiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, P. R. China
| | - HongYi Liu
- Department of Oncology and Vascular Interventional Radiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, P. R. China
| | - Zheng Wan
- Department of Oncology and Vascular Interventional Radiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, P. R. China
| | - Yilin Zhao
- Department of Oncology and Vascular Interventional Radiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, P. R. China
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma (Xiamen University Affiliated Zhongshan Hospital), Xiamen 361004, P. R. China
- Xiamen Key Laboratory of Cellular Intervention and Interventional Medical Materials, Xiamen 361004, P. R. China
| |
Collapse
|
49
|
Li X, Lin Y, Yang Z, Guan L, Wang Z, Liu A, Yang B, Tang L, Lin Q. Cancer cell membrane biomimetic nanosystem for homologous targeted dual-mode imaging and combined therapy. J Colloid Interface Sci 2023; 652:770-779. [PMID: 37619256 DOI: 10.1016/j.jcis.2023.08.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
HYPOTHESIS The use of tumor cell membrane-camouflaged nanoparticles, specifically the multifunctional biomimetic core-shell nanosystem MPCONPs, can enhance the targeting ability and immune escape functionality of traditional chemotherapy, leading to more precise drug delivery and improved treatment outcomes. EXPERIMENTS Preparation of MPCONPs: Autologous tumor cell membrane (CM) fragments are collected and used to create a shell for the nanoparticles. A trypsin-sensitive cationic polylysine framework is synthesized and embedded with oxaliplatin (l-OHP) and Ce6-AuNDs (a singlet oxygen generator). The MPCONPs are formed by assembling these components. FINDINGS MPCONPs, as nanoparticles camouflaged with tumor CM, have enhanced cellular uptake in cancer cells and improved the efficacy of photodynamic therapy (PDT) and chemotherapy (CT). This offers great potential for their use as individualized therapeutic agents for clinical oncology treatment.
Collapse
Affiliation(s)
- Xingchen Li
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China
| | - Yangliu Lin
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zhe Yang
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China
| | - Lin Guan
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China
| | - Ze Wang
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China
| | - Annan Liu
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China
| | - Lu Tang
- Breast Surgery Department, China- Japan Union hospital of Jilin University, China.
| | - Quan Lin
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
50
|
Gao C, Liu Y, Zhang TL, Luo Y, Gao J, Chu JJ, Gong BF, Chen XH, Yin T, Zhang J, Yin Y. Biomembrane-Derived Nanoparticles in Alzheimer's Disease Therapy: A Comprehensive Review of Synthetic Lipid Nanoparticles and Natural Cell-Derived Vesicles. Int J Nanomedicine 2023; 18:7441-7468. [PMID: 38090364 PMCID: PMC10712251 DOI: 10.2147/ijn.s436774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Current therapies for Alzheimer's disease used in the clinic predominantly focus on reducing symptoms with limited capability to control disease progression; thus, novel drugs are urgently needed. While nanoparticles (liposomes, high-density lipoprotein-based nanoparticles) constructed with synthetic biomembranes have shown great potential in AD therapy due to their excellent biocompatibility, multifunctionality and ability to penetrate the BBB, nanoparticles derived from natural biomembranes (extracellular vesicles, cell membrane-based nanoparticles) display inherent biocompatibility, stability, homing ability and ability to penetrate the BBB, which may present a safer and more effective treatment for AD. In this paper, we reviewed the synthetic and natural biomembrane-derived nanoparticles that are used in AD therapy. The challenges associated with the clinical translation of biomembrane-derived nanoparticles and future perspectives are also discussed.
Collapse
Affiliation(s)
- Chao Gao
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, People’s Republic of China
| | - Yan Liu
- Department of Clinical Pharmacy, Shanghai Jiao Tong University of Medicine, Shanghai, People’s Republic of China
| | - Ting-Lin Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital of Naval Medical University, Shanghai, People’s Republic of China
| | - Yi Luo
- Department of Clinical Pharmacy, Shanghai Jiao Tong University of Medicine, Shanghai, People’s Republic of China
- New Drug Discovery and Development, Biotheus Inc., Zhuhai, People’s Republic of China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital of Naval Medical University, Shanghai, People’s Republic of China
| | - Jian-Jian Chu
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, People’s Republic of China
| | - Bao-Feng Gong
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, People’s Republic of China
| | - Xiao-Han Chen
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, People’s Republic of China
| | - Tong Yin
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, People’s Republic of China
| | - Jian Zhang
- Department of Clinical Pharmacy, Shanghai Jiao Tong University of Medicine, Shanghai, People’s Republic of China
| | - You Yin
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, People’s Republic of China
| |
Collapse
|