1
|
Wang S, Wang S, Zhang L, Wang P, Liu H. Constructing and characterization of cyclodextrin metal organic framework and soybean hull polysaccharide polymer composite carriers: Enhancing curcumin delivery. Food Chem 2025; 468:142315. [PMID: 39667228 DOI: 10.1016/j.foodchem.2024.142315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/25/2024] [Accepted: 11/30/2024] [Indexed: 12/14/2024]
Abstract
This study aims to create composite carriers by combining cyclodextrin metal organic frameworks (CD-MOFs) with soybean hull polysaccharide (SHP) polymers for enhanced performance. A cubic structured composite carrier was successfully synthesized, exhibiting potential for delivering functional factors. Interaction between cyclodextrin (CD) and SHP was predominantly driven by hydrogen bonding forces, as evidenced by Fourier transform infrared spectroscope (FTIR), Raman spectroscopy. Characterization methods such as Powder X-ray diffraction (XRD), Differential scanning calorimetry (DSC), and FTIR confirmed successful encapsulation of Curcumin (Cur) within γ-CD-MOF@SHP. At 35 °C, with a Cur to carrier mass ratio of 1:3, loading efficiency improved after 24 h of immersion. SHP demonstrated a protective effect on Cur, reducing release in the stomach while maximizing release in the intestine, thus enhancing Cur utilization. Additionally, γ-CD-MOF composites were shown to stabilize functional factors and regulate their release. Overall, the combination of MOFs and polymers holds promise for functional factor delivery.
Collapse
Affiliation(s)
- Shumin Wang
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China
| | - Shengnan Wang
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou, 121013, China.
| | - Lanxin Zhang
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China
| | - Peng Wang
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou, 121013, China
| | - He Liu
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou, 121013, China
| |
Collapse
|
2
|
Ren X, Wang S, Teng Y, Zheng S, Li F, Wang C, Wu L, Zhang J. Engineered extracellular vesicles loaded in boronated cyclodextrin framework for pulmonary delivery. Carbohydr Polym 2025; 352:123160. [PMID: 39843065 DOI: 10.1016/j.carbpol.2024.123160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/06/2024] [Accepted: 12/15/2024] [Indexed: 01/24/2025]
Abstract
Extracellular vesicles (EVs) are promising therapeutic carriers for their ideal nano-size and intrinsic biocompatibility, while rapid clearance and limited targeting ability are the major setbacks of EVs. With minimal absorption into the systemic circulation, inhalation for pulmonary disease therapy minimizes off-target toxicity to other organs and offers a safe and effective treatment for respiratory disorders. Herein, a nano-grid carrier made of boronated cyclodextrin framework (BCF) was prepared for pH/H2O2 responsive release of EVs. A novel design of cyclo (Arg-Gly-Asp-D-Tyr-Lys) peptide (RGD)-modified milk-derived EVs (mEVs) loaded in the BCF particles (RGD-mEVs@BCF) was developed for pulmonary delivery. The results indicated that RGD-mEVs showed superior anti-inflammatory activity in contrast with mEVs in vitro. BCF was able to capture and protect RGD-mEVs, which showed extended-release profiles and responsiveness. Pulmonary administration of RGD-mEVs@BCF showed favorable biocompatibility in rats. Taken together, RGD-mEVs@BCF features biocompatibility and pH-responsive mEVs release as a therapeutic platform for pulmonary delivery of drugs to treat lung diseases, especially for inflammatory diseases.
Collapse
Affiliation(s)
- Xiaohong Ren
- School of Pharmacy, Faculty of Medicine & State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | - Siwen Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yupu Teng
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shiyu Zheng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | - Feng Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Caifen Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Li Wu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | - Jiwen Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; Shenyang Pharmaceutical University, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Wang M, Lv Y, Xu H, Zhao X, Zhang G, Wang S, Wang C, Wu W, Wu L, Zhu W, Zhang J. Supramolecular cyclodextrin-based reservoir as nasal delivery vehicle for rivastigmine to brain. Carbohydr Polym 2025; 348:122881. [PMID: 39567123 DOI: 10.1016/j.carbpol.2024.122881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/03/2024] [Accepted: 10/14/2024] [Indexed: 11/22/2024]
Abstract
The purpose of this study involved the synthesis of supramolecular reservoir (i.e. cyclodextrin metal-organic framework, MOF) using cyclodextrins as building blocks, followed by cross-linking to obtain crosslinked CD framework (CDF) using CD-MOF as template and functionalized with borneol (BO) to enhance rivastigmine (RIV) permeation and facilitate brain targeting via intranasal administration. Utilizing BO modified CDF (BO-CDF) with cubic shape as a carrier for the encapsulation of RIV, a nasal RIV delivery system (RIV@BO-CDF) was fabricated. The particle size of RIV@BO-CDF was approximately 250 nm, and the drug loading capacity reached 15 ± 2 %. BO-CDF improved the mucoadhesion and enhanced RIV permeability with the plasma concentration-time curve (AUC), the brain AUC and the peak drug concentration within brain in rats 1.7, 2.3 and 8 times than that of oral RIV solution, respectively. The relative drug targeting efficiency percentage (DTE, 139.4 %) and direct drug transfer percentage (DTP, 28.3 %) of RIV@BO-COF indicated good targeting efficiency and direct nose-to-brain drug delivery. Overall, this study provides a potential application of supramolecular cyclodextrin-based reservoir to enhance the brain targeting and efficacy of the RIV via nasal delivery.
Collapse
Affiliation(s)
- Manli Wang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; Jiangsu Yungou Pharmaceutical Technology Co. Ltd., Nantong 226133, China
| | - Yuting Lv
- Anhui University of Chinese Medicine, Anhui 230000, China; Jiangsu Yungou Pharmaceutical Technology Co. Ltd., Nantong 226133, China
| | - Huipeng Xu
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | - Xiangyu Zhao
- Anhui University of Chinese Medicine, Anhui 230000, China; Jiangsu Yungou Pharmaceutical Technology Co. Ltd., Nantong 226133, China
| | - Guoqing Zhang
- Jiangsu Yungou Pharmaceutical Technology Co. Ltd., Nantong 226133, China
| | - Siwen Wang
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | - Caifen Wang
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wenting Wu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Li Wu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China.
| | - Weifeng Zhu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| | - Jiwen Zhang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
4
|
Niu D, Zhou D, Zhan M, Lei L, Zhu J, Liu X. γ-Cyclodextrin-metal organic framework as a carrier for trans-N-p-coumaroyltyramine: A study of drug solubability, stability, and inhibitory activity against α-glucosidase. J Biomater Appl 2025; 39:510-523. [PMID: 39255374 DOI: 10.1177/08853282241284106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
γ-Cyclodextrin-based metal-organic frameworks (γ-CD-MOF) were successfully synthesized using the solvent diffusion method and applied as carriers for trans-N-p-coumaroyltyramine (N-p-t-CT, NCT) to study the solubability, stability, sustained release and inhibitory activity against α-glucosidase. The solubilization effect of γ-CD-MOF on N-p-t-CT was performed using impregnation (NCT@CD-MOF-1) and co-crystallization (NCT@CD-MOF-2) methods. X-ray diffraction, scanning electron microscope (SEM), fourier transform infrared spectrometer (FTIR), and N2 adsorption/desorption were used to characterize the MOFs before and after loading NCT. The results showed that NCT@CD-MOF-2 had a better solubability for N-p-t-CT, 145.03 μg/mg of drug loading capacity could be achieved, and the solubility of NCT@CD-MOF-2 in water was 366 times higher than free N-p-t-CT. In addition, the stabilities of N-p-t-CT under temperature, UV light and pH conditions were greatly improved after encapsulation in γ-CD-MOF. Furthermore, NCT@CD-MOFs had a sustained release of N-p-t-CT over an extended period in vitro due to the primary encapsulation in pore structures. Notably, γ-CD-MOF loaded with N-p-t-CT showed superior inhibitory activity against α-glucosidase compared to free N-p-t-CT. Cytotoxicity studies demonstrated that NCT@CD-MOF-2 had low toxicity in vitro and perfect biocompatibility with HL-7702 cells, and γ-CD-MOF could reduce the toxicity of free N-p-t-CT at higher concentrations.
Collapse
Affiliation(s)
- Dandan Niu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, China
- Luoyang Lansley Science and Technology Co., Ltd., Luoyang, China
| | - Danyang Zhou
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, China
| | - Mengke Zhan
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, China
| | - Lijing Lei
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, China
| | - Jinhua Zhu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, China
| | - Xiuhua Liu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, China
| |
Collapse
|
5
|
Liu S, Xiong Y, Dong F. Cyclodextrin metal-organic framework@SiO 2 nanocomposites for poorly soluble drug loading and release. RSC Adv 2024; 14:31868-31876. [PMID: 39380653 PMCID: PMC11460221 DOI: 10.1039/d4ra04935g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024] Open
Abstract
The development of non-toxic drug carrier materials with high loading capacity, sustained release properties, stability, and biocompatibility holds significant medical value and potential for loading and releasing poorly soluble drugs. In this study, we synthesized a biocompatible, non-toxic, environmentally friendly CD-MOF porous material with high specific surface area and tunable structure. By incorporating SiO2 to enhance the stability of MOF materials, the synthesized CD-MOF@SiO2 material shows promising applications in drug delivery. The obtained CD-MOF@SiO2 nanocomposite was utilized as a carrier for the poorly soluble drug, folic acid. Characterization of the drug-loaded composite before and after drug loading was performed using scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, N2 adsorption-desorption, and X-ray diffraction analyses, showing improved stability as indicated by thermogravimetric analysis and derivative thermogravimetry data. UV spectrophotometry was used to investigate the loading and sustained release of folic acid under different conditions in PBS buffer, demonstrating that the well-structured CD-MOF@SiO2 material exhibits high drug loading and controllable release properties. The CD-MOF@SiO2 achieved a high drug loading efficiency (166.78%) and encapsulation rate (83.39%) for folic acid, leading to a significant increase in apparent solubility from 1.6 μg mL-1 in its free form to 21.74 mg mL-1, a 13 588-fold expansion. This work presents a novel, efficient, and highly valuable approach for the development of carrier materials for loading and releasing poorly soluble drugs.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Polymer Materials and Engineering, Guizhou University China
| | - Yuzhu Xiong
- College of Materials and Metallurgy, Guizhou University China
| | - Fuping Dong
- Department of Polymer Materials and Engineering, Guizhou University China
| |
Collapse
|
6
|
Wang A, Walden M, Ettlinger R, Kiessling F, Gassensmith JJ, Lammers T, Wuttke S, Peña Q. Biomedical Metal-Organic Framework Materials: Perspectives and Challenges. ADVANCED FUNCTIONAL MATERIALS 2024; 34:adfm.202308589. [PMID: 39726715 PMCID: PMC7617264 DOI: 10.1002/adfm.202308589] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Indexed: 12/28/2024]
Abstract
Metal-organic framework (MOF) materials are gaining significant interest in biomedical research, owing to their high porosity, crystallinity, and structural and compositional diversity. Their versatile hybrid organic/inorganic chemistry endows MOFs with the capacity to retain organic (drug) molecules, metals, and gases, to effectively channel electrons and photons, to survive harsh physiological conditions such as low pH, and even to protect sensitive biomolecules. Extensive preclinical research has been carried out with MOFs to treat several pathologies and, recently, their integration with other biomedical materials such as stents and implants has demonstrated promising performance in regenerative medicine. However, there remains a significant gap between MOF preclinical research and translation into clinically and societally relevant medicinal products. Here, we outline the intrinsic features of MOFs and discuss how these are suited to specific biomedical applications like detoxification, drug and gas delivery, or as (combination) therapy platforms. We furthermore describe relevant examples of how MOFs have been engineered and evaluated in different medical indications, including cancer, microbial, and inflammatory diseases. Finally, we critically examine the challenges facing their translation into the clinic, with the goal of establishing promising research directions and more realistic approaches that can bridge the translational gap of MOFs and MOF-containing (nano)materials.
Collapse
Affiliation(s)
- Alec Wang
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Forckenbeckstrasse 55, 52074Aachen, Germany
| | - Madeline Walden
- BCMaterials (Basque Centre for Materials, Applications & Nanostructures), Bld. Martina Casiano, 3rd. Floor UPV/EHU Science Park Barrio Sarriena s/n, 48940Leioa, Spain
| | - Romy Ettlinger
- EastChem School of Chemistry, University of St Andrews, North Haugh, St AndrewsKY16 9ST, UK
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Forckenbeckstrasse 55, 52074Aachen, Germany
| | - Jeremiah J. Gassensmith
- Department of Chemistry and Biochemistry & Biomedical Engineering, University of Texas at Dallas, Richardson, TX75080-3021
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Forckenbeckstrasse 55, 52074Aachen, Germany
| | - Stefan Wuttke
- BCMaterials (Basque Centre for Materials, Applications & Nanostructures), Bld. Martina Casiano, 3rd. Floor UPV/EHU Science Park Barrio Sarriena s/n, 48940Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48013Bilbao, Spain
| | - Quim Peña
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Forckenbeckstrasse 55, 52074Aachen, Germany
| |
Collapse
|
7
|
Khafaga DSR, El-Morsy MT, Faried H, Diab AH, Shehab S, Saleh AM, Ali GAM. Metal-organic frameworks in drug delivery: engineering versatile platforms for therapeutic applications. RSC Adv 2024; 14:30201-30229. [PMID: 39315019 PMCID: PMC11418013 DOI: 10.1039/d4ra04441j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024] Open
Abstract
Recently, metal-organic frameworks (MOFs) have attracted much attention as versatile materials for drug delivery and personalized medicine. MOFs are porous structures made up of metal ions coupled with organic ligands. This review highlights the synthesis techniques used to design MOFs with specific features such as surface area and pore size, and the drug encapsulation within MOFs not only improves their stability and solubility but also allows for controlled release kinetics, which improves therapeutic efficacy and minimizes adverse effects. Furthermore, it discusses the challenges and potential advantages of MOF-based drug delivery, such as MOF stability, biocompatibility, and scale-up production. With further advancements in MOF synthesis, functionalization techniques, and understanding of their interactions using biological systems, MOFs can have significant promise for expanding the area of personalized medicine and improving patient outcomes.
Collapse
Affiliation(s)
- Doaa S R Khafaga
- Health Sector, Faculty of Science, Galala University New Galala City 43511 Suez Egypt
| | - Manar T El-Morsy
- Bionanotechnology Department, Faculty of Nanotechnology, Cairo University Giza 12613 Egypt
| | - Habiba Faried
- Biotechnology Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Ayah H Diab
- Biotechnology Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Shaimaa Shehab
- Biotechnology Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Ahmed M Saleh
- Bionanotechnology Department, Faculty of Nanotechnology, Cairo University Giza 12613 Egypt
| | - Gomaa A M Ali
- College of Marine Science and Aquatic Biology, University of Khorfakkan 18119 Sharjah United Arab Emirates
- Faculty of Science, Galala University 43511 Suez Egypt
- Chemistry Department, Faculty of Science, Al-Azhar University Assiut 71524 Egypt
| |
Collapse
|
8
|
Ruan H, Long M, Li J, Zhang D, Feng N, Zhang Y. Sustained-Release Hydrogen-Powered Bilateral Microneedles Integrating CD-MOFs for In Situ Treating Allergic Rhinitis. Adv Healthc Mater 2024; 13:e2400637. [PMID: 38749484 DOI: 10.1002/adhm.202400637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/06/2024] [Indexed: 05/23/2024]
Abstract
Glucocorticoids are widely used for treating allergic rhinitis, but conventional intranasal administration encounters unfavorable nasal cilia clearance and nasal mucosal barrier. Herein, a bilateral microneedle patch is fabricated for delivering cyclodextrin-based metal-organic frameworks (CD-MOF) encapsulating dexamethasone (DXMS) and paeonol (Pae), while NaH particles are mounted on the basal part of each microneedle. By intranasal administration, the microneedles are propelled into the nasal mucosa by NaH-generated hydrogen and then swell to form a hydrogel for sustainedly releasing drugs. The DXMS/Pae combination is demonstrated to be superior to more than the twofold dose of DXMS alone for improving allergic rhinitis in rats. It involves reducing mast cell degranulation and modulating Treg/Th17 cell homeostasis, whereas inhibiting Th1 to Th2 differentiation is associated with regulating the GATA3/T-bet pathway, as well as repairing epithelial barrier function by increasing MUC1 and downregulating periostin. In addition, this delivery system modulates the lipid metabolism of the nasal mucosa. Notably, the newly designed device significantly enhances the drug's therapeutic effect, and NaH-generated hydrogen may have the potential adjunctive therapeutic effect. Collectively, such an emerging microneedle-mediated nasal drug delivery creates a new form for alleviating immune inflammation and contributes a promising solution to reduce clinical glucocorticoid abuse.
Collapse
Affiliation(s)
- Hang Ruan
- School of pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Pudong New Area, Shanghai, 201203, China
| | - Meng Long
- School of pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Pudong New Area, Shanghai, 201203, China
| | - Jiaqi Li
- School of pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Pudong New Area, Shanghai, 201203, China
| | - Di Zhang
- School of pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Pudong New Area, Shanghai, 201203, China
| | - Nianping Feng
- School of pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Pudong New Area, Shanghai, 201203, China
| | - Yongtai Zhang
- School of pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Pudong New Area, Shanghai, 201203, China
| |
Collapse
|
9
|
Yang N, Wei L, Teng Y, Yu P, Xiang C, Liu J. Cyclodextrin-based metal-organic frameworks transforming drug delivery. Eur J Med Chem 2024; 274:116546. [PMID: 38823266 DOI: 10.1016/j.ejmech.2024.116546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/03/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
Cyclodextrin-based metal-organic frameworks (CD-MOFs) are gaining traction in the realm of drug delivery due to their inherent versatility and potential to amplify drug efficacy, specificity, and safety. This article explores the predominant preparation techniques for CD-MOFs, encompassing methods like vapor diffusion, microwave-assisted, and ultrasound hydrothermal approaches. Native CD-MOFs present compelling advantages in drug delivery applications. They can enhance drug loading capacity, stability, solubility, and bioavailability by engaging in diverse interactions with drugs, including host-guest, hydrogen bonding, and electrostatic interactions. Beyond their inherent properties, CD-MOFs can be customized as drug carriers through two primary strategies: co-crystallization with functional components and surface post-modifications. These tailored modifications pave the way for controlled release manners. They allow for slow and sustained drug release, as well as responsive releases triggered by various factors such as pH levels, glutathione concentrations, or specific cations. Furthermore, CD-MOFs facilitate targeted delivery strategies, like pulmonary or laryngeal delivery, enhancing drug delivery precision. Overall, the adaptability and modifiability of CD-MOFs underscore their potential as a versatile platform for drug delivery, presenting tailored solutions that cater to diverse biomedical and industrial needs.
Collapse
Affiliation(s)
- Na Yang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Lingling Wei
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Yuou Teng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Peng Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Cen Xiang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China.
| | - Jiang Liu
- Rosalind Franklin Institute, Harwell campus, OX11 0QS, Oxford, UK; Pharmacology Department, University of Oxford, Mansfield Road, OX1 3QT, Oxford, UK.
| |
Collapse
|
10
|
He Y, Guo J, Ding H, Lin M, Wu Y, He Z, Wang Z, Xia Q, Zhu C, Zhang Y, Feng N. Glutathione-responsive CD-MOFs co-loading honokiol and indocyanine green biomimetic active targeting to enhance photochemotherapy for breast cancer. Int J Pharm 2024; 660:124310. [PMID: 38848796 DOI: 10.1016/j.ijpharm.2024.124310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/18/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Breast cancer has now replaced lung cancer as the most prevalent malignant tumor worldwide, posing a serious health risk to women. We have recently designed a promising option strategy for the treatment of breast cancer. In this work, cyclodextrin metal-organic frameworks with high drug-carrying properties were endo-crosslinked by 3,3'dithiodipropionyl chloride to form cubic phase gel nanoparticles, which were drug-loaded and then coated by MCF-7 cell membranes. After intravenous injection, this multifunctional nanomedicine achieved dramatically homologous targeting co-delivery of honokiol and indocyanine green to the breast tumor. Further, the disulfide bonds in the nanostructures achieved glutathione-responsive drug release, induced tumor cells to produce reactive oxygen species and promoted apoptosis, resulting in tumor necrosis, and at the same time, inhibited Ki67 protein expression, which enhanced photochemotherapy, and resulted in a 94.08 % in vivo tumor suppression rate in transplanted tumor-bearing mice. Thereby, this nanomimetic co-delivery system may have a place in breast cancer therapy due to its simple fabrication process, excellent biocompatibility, efficient targeted delivery of insoluble drugs, and enhanced photochemotherapy.
Collapse
Affiliation(s)
- Yuanzhi He
- School of Parmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jingwen Guo
- School of Parmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Huining Ding
- School of Parmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Min Lin
- School of Parmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yihan Wu
- School of Parmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zehui He
- School of Parmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhi Wang
- School of Parmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qing Xia
- School of Parmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chunyun Zhu
- School of Parmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yongtai Zhang
- School of Parmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Nianping Feng
- School of Parmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
11
|
Xing X, Cheng W, Zhou S, Liu H, Wu Z. Recent advances in small-angle scattering techniques for MOF colloidal materials. Adv Colloid Interface Sci 2024; 329:103162. [PMID: 38761601 DOI: 10.1016/j.cis.2024.103162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/21/2024] [Accepted: 04/20/2024] [Indexed: 05/20/2024]
Abstract
This paper reviews the recent progress of small angle scattering (SAS) techniques, mainly including X-ray small angle scattering technique (SAXS) and neutron small angle scattering (SANS) technique, in the study of metal-organic framework (MOF) colloidal materials (CMOFs). First, we introduce the application research of SAXS technique in pristine MOFs materials, and review the studies on synthesis mechanism of MOF materials, the pore structures and fractal characteristics, as well as the spatial distribution and morphological evolution of foreign molecules in MOF composites and MOF-derived materials. Then, the applications of SANS technique in MOFs are summarized, with emphasis on SANS data processing method, structure modeling and quantitative structural information extraction. Finally, the characteristics and developments of SAS techniques are commented and prospected. It can be found that most studies on MOF materials with SAS techniques focus mainly on nanoporous structure characterization and the evolution of pore structures, or the spatial distribution of other foreign molecules loaded in MOFs. Indeed, SAS techniques take an irreplaceable role in revealing the structure and evolution of nanopores in CMOFs. We expect that this paper will help to understand the research status of SAS techniques on MOF materials and better to apply SAS techniques to conduct further research on MOF and related materials.
Collapse
Affiliation(s)
- Xueqing Xing
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Weidong Cheng
- College of Materials Science and Engineering, New Energy Storage Devices Research Laboratory, Qiqihar University, Qiqihar 161006, China
| | - Shuming Zhou
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huanyan Liu
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; College of Materials Science and Engineering, New Energy Storage Devices Research Laboratory, Qiqihar University, Qiqihar 161006, China
| | - Zhonghua Wu
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Ye X, Li F, Li M, Zhang G, Wang W, Wang Z, Zhang H, Dong L, Lin X, Wu L, Peng C, Wang L, Chen W, Zhang J. Controlled release of vitamin A palmitate from crosslinked cyclodextrin organic framework for dry eye disease therapy. Int J Pharm 2024; 659:124279. [PMID: 38806096 DOI: 10.1016/j.ijpharm.2024.124279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/30/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
Controlled release drug delivery systems of eye drops are a promising ophthalmic therapy with advantages of good patient compliance and low irritation. However, the lack of a suitable drug carrier for ophthalmic use limits the development of the aforementioned system. Herein, the crosslinked cyclodextrin organic framework (COF) with a cubic porous structure and a uniform particle size was synthesized and applied to solidify vitamin A palmitate (VAP) by using the solvent-free method. The VAP@COF suspension eye drops were formulated by screening co-solvents, suspending agents, and stabilizing agents to achieve a homogeneous state and improve stability. According to the in vitro release study, the VAP@COF suspension exhibited a controlled release of VAP within 12 h. Both the ex vivo corneal contact angle and in vivo fluorescence tracking indicated that the VAP@COF suspension prolonged the VAP residence time on the ocular surface. This suspension accelerated the recovery of the dry eye disease (DED) model in New Zealand rabbits. Furthermore, the suspension was non-cytotoxic to human corneal epithelial cells and non-irritation to rabbit eyes. In summary, the particulate COF is an eye-acceptable novel carrier that sustains release and prolongs the VAP residence time on the ocular surface for DED treatment.
Collapse
Affiliation(s)
- Xinyue Ye
- Anhui University of Chinese Medicine, Hefei 230012, China; Yangtze Delta Drug Advanced Research Institute, Nantong 226133, China; Jiangsu Yunshi Pharmaceutical Technology Co., Nantong 226133, China
| | - Falan Li
- Anhui University of Chinese Medicine, Hefei 230012, China; Yangtze Delta Drug Advanced Research Institute, Nantong 226133, China; Jiangsu Yunshi Pharmaceutical Technology Co., Nantong 226133, China
| | - Mingwei Li
- Anhui University of Chinese Medicine, Hefei 230012, China; Yangtze Delta Drug Advanced Research Institute, Nantong 226133, China; Jiangsu Yunshi Pharmaceutical Technology Co., Nantong 226133, China
| | - Guoqing Zhang
- Jiangsu Yunshi Pharmaceutical Technology Co., Nantong 226133, China
| | - Weixing Wang
- Nantong Haimen People's Hospital, Nantong 226199, China
| | - Zhigang Wang
- Nantong Haimen People's Hospital, Nantong 226199, China
| | - Hui Zhang
- Anhui University of Chinese Medicine, Hefei 230012, China; Yangtze Delta Drug Advanced Research Institute, Nantong 226133, China; Jiangsu Yunshi Pharmaceutical Technology Co., Nantong 226133, China
| | - Liyun Dong
- Anhui University of Chinese Medicine, Hefei 230012, China; Yangtze Delta Drug Advanced Research Institute, Nantong 226133, China; Jiangsu Yunshi Pharmaceutical Technology Co., Nantong 226133, China
| | - Xueyuan Lin
- Yangtze Delta Drug Advanced Research Institute, Nantong 226133, China
| | - Li Wu
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; Yangtze Delta Drug Advanced Research Institute, Nantong 226133, China
| | - Can Peng
- Anhui University of Chinese Medicine, Hefei 230012, China; Yangtze Delta Drug Advanced Research Institute, Nantong 226133, China.
| | - Lifeng Wang
- Yangtze Delta Drug Advanced Research Institute, Nantong 226133, China.
| | - Weidong Chen
- Anhui University of Chinese Medicine, Hefei 230012, China; Yangtze Delta Drug Advanced Research Institute, Nantong 226133, China.
| | - Jiwen Zhang
- Anhui University of Chinese Medicine, Hefei 230012, China; Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; Yangtze Delta Drug Advanced Research Institute, Nantong 226133, China; Jiangsu Yunshi Pharmaceutical Technology Co., Nantong 226133, China; Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
13
|
Yuan C, Ye Y, Hu E, Xie R, Lu B, Yu K, Ding W, Wang W, Lan G, Lu F. Thrombotic microenvironment responsive crosslinking cyclodextrin metal-organic framework nanocarriers for precise targeting and thrombolysis. Carbohydr Polym 2024; 334:122058. [PMID: 38553243 DOI: 10.1016/j.carbpol.2024.122058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 04/02/2024]
Abstract
Global public health is seriously threatened by thrombotic disorders because of their high rates of mortality and disability. Most thrombolytic agents, especially protein-based pharmaceuticals, have a short half-life in circulation, reducing their effectiveness in thrombolysis. The creation of an intelligent drug delivery system that delivers medication precisely and releases it under regulated conditions at nearby thrombus sites is essential for effective thrombolysis. In this article, we present a unique medication delivery system (MCRUA) that selectively targets platelets and releases drugs by stimulation from the thrombus' microenvironment. The thrombolytic enzyme urokinase-type plasminogen-activator (uPA) and the anti-inflammatory medication Aspirin (acetylsalicylic acid, ASA) are both loaded onto pH-sensitive CaCO3/cyclodextrin crosslinking metal-organic frameworks (MC) that make up the MCRUA system. c(RGD) is functionalized on the surface of MC, which is functionalized by RGD to an esterification reaction. Additionally, the thrombus site's acidic microenvironment causes MCRUA to disintegrate to release uPA for thrombolysis and aiding in vessel recanalization. Moreover, cyclodextrin-encapsulated ASA enables the treatment of the inflammatory environment within the thrombus, enhancing the antiplatelet aggregation effects and promoting cooperative thrombolysis therapy. When used for thrombotic disorders, our drug delivery system (MCRUA) promotes thrombolysis, suppresses rethrombosis, and enhances biosafety with fewer hemorrhagic side effects.
Collapse
Affiliation(s)
- Caijie Yuan
- State Key Laboratory of Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Yaxin Ye
- State Key Laboratory of Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Enling Hu
- State Key Laboratory of Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Ruiqi Xie
- State Key Laboratory of Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Bitao Lu
- State Key Laboratory of Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Kun Yu
- State Key Laboratory of Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Weiwei Ding
- Division of Trauma and Surgical Intensive Care Unit, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Wenyi Wang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong.
| | - Guangqian Lan
- State Key Laboratory of Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China.
| | - Fei Lu
- State Key Laboratory of Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China.
| |
Collapse
|
14
|
Zhang H, Dong L, Guo T, Zhang G, Ye X, He X, Gao Q, Bello MG, Peng C, Wu L, Zhang J. Lutein Loaded in β-Cyclodextrin Metal-Organic Frameworks for Stability and Solubility Enhancements. AAPS PharmSciTech 2024; 25:135. [PMID: 38862657 DOI: 10.1208/s12249-024-02853-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024] Open
Abstract
Lutein (Lut) is a recognized nutritional supplement known for its antioxidative and anti-inflammatory properties, crucial in mitigating ocular disease. However, enhancements to Lut stability and solubility remain challenges to be addressed in the healthcare industry. Herein, we fabricated and evaluated a food-grade highly porous β-cyclodextrin metal-organic framework (β-CD-MOF) for its ability to encapsulate Lut. Lut stability considerably improved when loaded into β-CD-MOF to form a Lut@β-CD-MOF complex, which exhibited better stability than Lut loaded into the γ-cyclodextrin metal-organic framework (Lut@γ-CD-MOF), Lut@β-CD, and commercial product (Blackmores™) at 40°C, 60°C, and 70°C, respectively. The solubility of Lut@β-CD-MOF in water increased by 26.8-fold compared to raw Lut at 37°C. Lut@β-CD-MOF exhibited greater hydrophilicity, as determined by measuring the water contact angle. Molecular docking and other characterizations of Fourier transform infrared spectroscopy and powder X-ray diffraction confirmed that Lut was successfully encapsulated in the chamber formed by the three cyclodextrins in β-CD-MOF. Thermogravimetric analysis and Raman spectroscopy demonstrated that Lut distributed in the β-CD-MOF cavity deeply improved Lut stability and solubility. In conclusion, our findings underscored the function of β-CD-MOF in enhancing Lut stability and solubility for formulation applications.
Collapse
Affiliation(s)
- Hui Zhang
- Anhui University of Chinese Medicine, Hefei, 230012, China
- Yangtze Delta Drug Advanced Research Institute, Nantong, 226000, China
- Jiangsu Yunshi Pharmaceutical Technology Co., Ltd, Nantong, 226000, China
| | - Liyun Dong
- Anhui University of Chinese Medicine, Hefei, 230012, China
- Yangtze Delta Drug Advanced Research Institute, Nantong, 226000, China
- Jiangsu Yunshi Pharmaceutical Technology Co., Ltd, Nantong, 226000, China
| | - Tao Guo
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Guoqing Zhang
- Jiangsu Yunshi Pharmaceutical Technology Co., Ltd, Nantong, 226000, China
| | - Xinyue Ye
- Anhui University of Chinese Medicine, Hefei, 230012, China
- Yangtze Delta Drug Advanced Research Institute, Nantong, 226000, China
- Jiangsu Yunshi Pharmaceutical Technology Co., Ltd, Nantong, 226000, China
| | - Xiaojian He
- Yangtze Delta Drug Advanced Research Institute, Nantong, 226000, China
| | - Qingfang Gao
- Yangtze Delta Drug Advanced Research Institute, Nantong, 226000, China
| | - Mubarak G Bello
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Can Peng
- Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Li Wu
- Anhui University of Chinese Medicine, Hefei, 230012, China.
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201210, China.
- Yangtze Delta Drug Advanced Research Institute, Nantong, 226000, China.
| | - Jiwen Zhang
- Anhui University of Chinese Medicine, Hefei, 230012, China.
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201210, China.
- Yangtze Delta Drug Advanced Research Institute, Nantong, 226000, China.
- Jiangsu Yunshi Pharmaceutical Technology Co., Ltd, Nantong, 226000, China.
| |
Collapse
|
15
|
Yang D, Zhao M, Huang Y, Chen L, Fang J, Liu J, Wang M, Zhao C. β-Cyclodextrin metal-organic framework as a green carrier to improve the dissolution, bioavailability, and liver protective effect of luteolin. Int J Pharm X 2024; 7:100250. [PMID: 38711828 PMCID: PMC11070924 DOI: 10.1016/j.ijpx.2024.100250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
The incidence of acetaminophen-induced liver injury has increased, but effective prevention methods are limited. Although luteolin has hepatoprotective activity, its low solubility and bioavailability limit its applications. Cyclodextrin metal-organic frameworks (CD-MOFs) possess 3D-network structures and large inner cavities, which make them excellent carriers of poorly soluble drugs. In this study, we used CD-MOFs as carriers to improve the dissolution of luteolin and assessed their antioxidant activity, bioavailability, and hepatoprotective effects. Luteolin was loaded into β-CD-MOF, γ-CD-MOF, β-CD, and γ-CD, and characterized by powder X-ray diffractometry (PXRD) and thermogravimetric analysis (TGA). Our results showed that luteolin-β-CD-MOF was the most stable. The main driving forces were hydrogen bonds and van der Waals forces, as determined by molecular simulation. The loading capacity of luteolin-β-CD-MOF was 14.67 wt%. Compared to raw luteolin, luteolin-β-CD-MOF exhibited a 4.50-fold increase in dissolution and increased antioxidant activity in vitro. Luteolin-β-CD-MOF increased the bioavailability of luteolin by approximately 4.04- and 11.07-fold in healthy rats and liver injured rats induced by acetaminophen in vivo, respectively. As determined by biochemical analysis, luteolin-β-CD-MOF exhibited a better hepatoprotective effect than raw luteolin in rats with acetaminophen-induced liver injury. This study provides a new approach for preventing acetaminophen-mediated liver damage.
Collapse
Affiliation(s)
- Dan Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
- Pharmaceutical Department, Liaoning Provincial People's Hospital, Wenyi Road 33, Shenyang, Liaoning Province, China
| | - Min Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Yihe Huang
- School of Public Health, Shenyang Medical College, Shenyang, Liaoning Province, China
| | - Liwen Chen
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Jiqin Fang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Jiaonan Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Miao Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Chunjie Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| |
Collapse
|
16
|
Zhu H, Lv Y, Xin F, Wang M, Zhao X, Ren X, Zhang J, Yin D, Guo T, Wu L. Enhanced Stability and Solidification of Volatile Eugenol by Cyclodextrin-Metal Organic Framework for Nasal Powder Delivery. AAPS PharmSciTech 2024; 25:117. [PMID: 38806874 DOI: 10.1208/s12249-024-02839-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/13/2024] [Indexed: 05/30/2024] Open
Abstract
Eugenol (Eug) holds potential as a treatment for bacterial rhinosinusitis by nasal powder drug delivery. To stabilization and solidification of volatile Eug, herein, nasal inhalable γ-cyclodextrin metal-organic framework (γ-CD-MOF) was investigated as a carrier by gas-solid adsorption method. The results showed that the particle size of Eug loaded by γ-CD-MOF (Eug@γ-CD-MOF) distributed in the range of 10-150 μm well. In comparison to γ-CD and β-CD-MOF, γ-CD-MOF has higher thermal stability to Eug. And the intermolecular interactions between Eug and the carriers were verified by characterizations and molecular docking. Based on the bionic human nasal cavity model, Eug@γ-CD-MOF had a high deposition distribution (90.07 ± 1.58%). Compared with free Eug, the retention time Eug@γ-CD-MOF in the nasal cavity was prolonged from 5 min to 60 min. In addition, the cell viability showed that Eug@γ-CD-MOF (Eug content range 3.125-200 µg/mL) was non-cytotoxic. And the encapsulation of γ-CD-MOF could not reduce the bacteriostatic effect of Eug. Therefore, the biocompatible γ-CD-MOF could be a potential and valuable carrier for nasal drug delivery to realize solidification and nasal therapeutic effects of volatile oils.
Collapse
Affiliation(s)
- Huajie Zhu
- Anhui University of Chinese Medicine, Anhui, 230000, China
- Yangtze Delta Drug Advanced Research Institute, Jiangsu, 226133, China
| | - Yuting Lv
- Anhui University of Chinese Medicine, Anhui, 230000, China
- Yangtze Delta Drug Advanced Research Institute, Jiangsu, 226133, China
| | - Fangyuan Xin
- Yangtze Delta Drug Advanced Research Institute, Jiangsu, 226133, China
- Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Manli Wang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Xiangyu Zhao
- Anhui University of Chinese Medicine, Anhui, 230000, China
- Yangtze Delta Drug Advanced Research Institute, Jiangsu, 226133, China
| | - Xiaohong Ren
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Jiwen Zhang
- Anhui University of Chinese Medicine, Anhui, 230000, China
- Yangtze Delta Drug Advanced Research Institute, Jiangsu, 226133, China
- Shenyang Pharmaceutical University, Shenyang, 110016, China
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201210, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Dengke Yin
- Anhui University of Chinese Medicine, Anhui, 230000, China.
| | - Tao Guo
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201210, China.
| | - Li Wu
- Anhui University of Chinese Medicine, Anhui, 230000, China.
- Yangtze Delta Drug Advanced Research Institute, Jiangsu, 226133, China.
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201210, China.
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing, 100050, China.
| |
Collapse
|
17
|
Ruan S, Li J, Ruan H, Xia Q, Hou X, Wang Z, Guo T, Zhu C, Feng N, Zhang Y. Microneedle-mediated nose-to-brain drug delivery for improved Alzheimer's disease treatment. J Control Release 2024; 366:712-731. [PMID: 38219911 DOI: 10.1016/j.jconrel.2024.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/18/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Conventional transnasal brain-targeted drug delivery strategies are limited by nasal cilia clearance and the nasal mucosal barrier. To address this challenge, we designed dissolving microneedles combined with nanocarriers for enhanced nose-to-brain drug delivery. To facilitate transnasal administration, a toothbrush-like microneedle patch was fabricated with hyaluronic acid-formed microneedles and tannic acid-crosslinked gelatin as the base, which completely dissolved in the nasal mucosa within seconds leaving only the base, thereby releasing the loaded cyclodextrin-based metal-organic frameworks (CD-MOFs) without affecting the nasal cilia and nasal microbial communities. As nanocarriers for high loading of huperzine A, these potassium-structured CD-MOFs, reinforced with stigmasterol and functionalized with lactoferrin, possessed improved physical stability and excellent biocompatibility, enabling efficient brain-targeted drug delivery. This delivery system substantially attenuated H2O2- and scopolamine-induced neurocyte damage. The efficacy of huperzine A on scopolamine- and D-galactose & AlCl3-induced memory deficits in rats was significantly improved, as evidenced by inhibiting acetylcholinesterase activity, alleviating oxidative stress damage in the brain, and improving learning function, meanwhile activating extracellular regulated protein kinases-cyclic AMP responsive element binding protein-brain derived neurotrophic factor pathway. Moreover, postsynaptic density protein PSD-95, which interacts with two important therapeutic targets Tau and β-amyloid in Alzheimer's disease, was upregulated. This fruitful treatment was further shown to significantly ameliorate Tau hyperphosphorylation and decrease β-amyloid by ways including modulating beta-site amyloid precursor protein cleaving enzyme 1 and a disintegrin and metalloproteinase 10. Collectively, such a newly developed strategy breaks the impasse for efficient drug delivery to the brain, and the potential therapeutic role of huperzine A for Alzheimer's disease is further illustrated.
Collapse
Affiliation(s)
- Shuyao Ruan
- School of pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Jiaqi Li
- School of pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Hang Ruan
- School of pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Qing Xia
- School of pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Xiaolin Hou
- School of pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Zhi Wang
- School of pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Teng Guo
- School of pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Chunyun Zhu
- School of pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Nianping Feng
- School of pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Pudong New Area, Shanghai 201203, China.
| | - Yongtai Zhang
- School of pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Pudong New Area, Shanghai 201203, China.
| |
Collapse
|
18
|
Huang Y, Tang H, Meng X, Liu D, Liu Y, Chen B, Zou Z. γ-Cyclodextrin metal-organic frameworks as the promising carrier for pulmonary delivery of cyclosporine A. Biomed Pharmacother 2024; 171:116174. [PMID: 38237346 DOI: 10.1016/j.biopha.2024.116174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/04/2024] [Accepted: 01/13/2024] [Indexed: 02/08/2024] Open
Abstract
γ-Cyclodextrin metal-organic frameworks (CD-MOFs) are considered as a green and biocompatible material with great potential in drug delivery systems. Original CD-MOFs show the poor aerosol properties, which limit the application in pulmonary drug delivery. To improve the in vitro deposition properties, herein, we synthesized CD-MOFs by the vapor diffusion method using a series of modulators to achieve better pulmonary delivery of cyclosporine A (CsA). The results showed that blank CD-MOFs and drug loaded CD-MOFs prepared with different modulators all preserved the cubical shape, and exhibited the similar crystal form, structural characteristics, thermal behaviors and release properties. In addition, drug loaded CD-MOFs prepared with polyethylene glycol 10000 (PEG 10000) as a modulator exhibited better in vitro aerosol performance than those of synthesized using other modulators, and the in vivo pharmacokinetics data demonstrated that the bioavailability of CsA could be significantly enhanced by inhalation administration of drug loaded CD-MOFs compared with oral administration of Neoral®. The repeated dose inhalation toxicity also confirmed the fine biocompatibility of CD-MOFs as the carrier for pulmonary drug delivery. Therefore, the results demonstrated CD-MOFs as the promising carrier could be used for pulmonary drug delivery.
Collapse
Affiliation(s)
- Yongpeng Huang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Hui Tang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Xiangyan Meng
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Dongxin Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Yanli Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Bo Chen
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Zhiyun Zou
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| |
Collapse
|
19
|
Su J, Liu Y, Sun H, Naeem A, Xu H, Qu Y, Wang C, Li Z, Lu J, Wang L, Wang X, Wu J, Sun L, Zhang J, Wang Z, Yang R, Wu L. Visualization of nasal powder distribution using biomimetic human nasal cavity model. Acta Pharm Sin B 2024; 14:392-404. [PMID: 38261815 PMCID: PMC10792963 DOI: 10.1016/j.apsb.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/09/2023] [Accepted: 05/19/2023] [Indexed: 01/25/2024] Open
Abstract
Nasal drug delivery efficiency is highly dependent on the position in which the drug is deposited in the nasal cavity. However, no reliable method is currently available to assess its impact on delivery performance. In this study, a biomimetic nasal model based on three-dimensional (3D) reconstruction and three-dimensional printing (3DP) technology was developed for visualizing the deposition of drug powders in the nasal cavity. The results showed significant differences in cavity area and volume and powder distribution in the anterior part of the biomimetic nasal model of Chinese males and females. The nasal cavity model was modified with dimethicone and validated to be suitable for the deposition test. The experimental device produced the most satisfactory results with five spray times. Furthermore, particle sizes and spray angles were found to significantly affect the experimental device's performance and alter drug distribution, respectively. Additionally, mometasone furoate (MF) nasal spray (NS) distribution patterns were investigated in a goat nasal cavity model and three male goat noses, confirming the in vitro and in vivo correlation. In conclusion, the developed human nasal structure biomimetic device has the potential to be a valuable tool for assessing nasal drug delivery system deposition and distribution.
Collapse
Affiliation(s)
- Jiawen Su
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Yangtze Delta Drug Advanced Research Institute, Nantong 226126, China
| | - Yan Liu
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hongyu Sun
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | - Abid Naeem
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Huipeng Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yue Qu
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Caifen Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zeru Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jianhua Lu
- Nantong Haimen People's Hospital, Nantong 226199, China
| | - Lulu Wang
- National Institutes for Food and Drug Control, Beijing 100000, China
| | - Xiaofeng Wang
- National Institutes for Food and Drug Control, Beijing 100000, China
| | - Jie Wu
- Nantong Haimen People's Hospital, Nantong 226199, China
- Yangtze Delta Drug Advanced Research Institute, Nantong 226126, China
| | - Lixin Sun
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiwen Zhang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Ministry of Education, Yantai University, Yantai 264005, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
- Yangtze Delta Drug Advanced Research Institute, Nantong 226126, China
| | - Zhigang Wang
- Nantong Haimen People's Hospital, Nantong 226199, China
| | - Rui Yang
- Shenyang Pharmaceutical University, Shenyang 110016, China
- National Institutes for Food and Drug Control, Beijing 100000, China
| | - Li Wu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Ministry of Education, Yantai University, Yantai 264005, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
- Yangtze Delta Drug Advanced Research Institute, Nantong 226126, China
| |
Collapse
|
20
|
Si Y, Luo H, Zhang P, Zhang C, Li J, Jiang P, Yuan W, Cha R. CD-MOFs: From preparation to drug delivery and therapeutic application. Carbohydr Polym 2024; 323:121424. [PMID: 37940296 DOI: 10.1016/j.carbpol.2023.121424] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/03/2023] [Accepted: 09/19/2023] [Indexed: 11/10/2023]
Abstract
Cyclodextrin metal-organic frameworks (CD-MOFs) show considerable advantages of edibility, degradability, low toxicity, and high drug loading, which have attracted enormous interest, especially in drug delivery. This review summarizes the typical synthesis approaches of CD-MOFs, the drug loading methods, and the mechanism of encapsulation and release. The influence of the structure of CD-MOFs on their drug encapsulation and release is highlighted. Finally, the challenges CD-MOFs face are discussed regarding biosafety assessment systems, stability in aqueous solution, and metal ion effect.
Collapse
Affiliation(s)
- Yanxue Si
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Huize Luo
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China.
| | - Pai Zhang
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Chunliang Zhang
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Juanjuan Li
- School of Life Sciences, Hainan University, Haikou 570228, Hainan, PR China.
| | - Peng Jiang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, P. R. China; College of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Wenbing Yuan
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China.
| | - Ruitao Cha
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, 2 Tiantan Xi Li, Beijing 100050, PR China.
| |
Collapse
|
21
|
Chen T, Chen L, Luo F, Xu Y, Wu D, Li Y, Zhao R, Hua Z, Hu J. Efficient oral delivery of resveratrol-loaded cyclodextrin-metal organic framework for alleviation of ulcerative colitis. Int J Pharm 2023; 646:123496. [PMID: 37806504 DOI: 10.1016/j.ijpharm.2023.123496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/14/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Developing innovative strategies for the oral administration of phytochemicals presents a promising approach to addressing intestinal diseases. However, numerous challenges persist, including limited therapeutic efficacy, poor bioavailability, and inadequate biocompatibility. In this study, we employed a cross-linked cyclodextrin-metal organic framework (CDF) to encapsulate resveratrol (Res), generating Res-CDF, which was subsequently incorporated into natural polysaccharide hydrogel microspheres (Res-CDF in MPs) for targeted oral delivery to alleviate ulcerative colitis (UC). The underlying adsorption mechanism of Res by γ-CD elucidated by molecular dynamics simulations. Importantly, the Res-CDF in MPs formulation protected against gastric acid degradation while preserving the bioactivity of Res. Moreover, the design enabled specific release of Res-CDF in response to the mildly alkaline environment of the intestinal tract, followed by sustained Res release. In UC mice model, Res-CDF in MPs demonstrated potent anti-inflammatory effects by attenuating pro-inflammatory cytokine production and exhibited antioxidant properties. Additionally, Res-CDF in MPs enhanced the expression of tight junction proteins ZO-1, Occludin, and mucin-2 (Muc-2), thereby maintaining normal intestinal barrier function. This innovative oral delivery strategy capitalizes on the advantageous properties of polysaccharide hydrogel and CDF to augment bioavailability of phytochemicals, laying the groundwork for developing novel oral interventions employing natural phytochemicals to address intestinal-related diseases.
Collapse
Affiliation(s)
- Tao Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Lihang Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Fengxian Luo
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yu Xu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Di Wu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yanfei Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Runan Zhao
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ziqi Hua
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jiangning Hu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
22
|
Haji Ali B, Shirvaliloo M, Fathi-Karkan S, Mirinejad S, Ulucan-Karnak F, Sargazi S, Sargazi S, Sheervalilou R, Rahman MM. Nanotechnology-Based Strategies for Extended-Release Delivery of Angiotensin Receptor Blockers (ARBs): A Comprehensive Review. Chem Biodivers 2023; 20:e202301157. [PMID: 37796134 DOI: 10.1002/cbdv.202301157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 10/06/2023]
Abstract
There has been a significant shift in the perception of hypertension as an important contributor to the global disease burden. Approximately 6 % and 8 % of pregnancies are affected by hypertension, which can adversely affect the mother and the fetus. Furthermore, a hypertensive individual is at increased risk of developing kidney disease, arterial hardening, eye damage, and strokes. Using angiotensin receptor blockers (ARBs) is widespread in treating hypertension, heart failure, coronary artery disease, and diabetic nephropathy. Despite this, some ARBs have limited use due to their poor oral bioavailability and water solubility. To tackle this, a variety of nanoparticle (NP)-based systems, such as polymeric NPs (i. e., dendrimers), polymeric micelles, polymer-drug conjugates, lipid NPs, nanoemulsions, self-emulsifying drug delivery systems (SEDDS), solid lipid NPs (SLNs), nanostructured lipid carriers (NLCs), carbon-based nanocarriers, inorganic NPs, and nanocrystals, have been recently developed for efficient delivery of losartan, Valsartan (Val), Olmesartan (OLM), Telmisartan (TEL), Candesartan, Eprosartan, Irbesartan, and Azilsartan to target cells. This review article provides a literature-based comparison of the various classes of ARBs, their mechanisms of action, and an overview of the nanoformulations developed for ARB delivery and successfully applied to managing hypertension, diabetic complications, and other conditions.
Collapse
Affiliation(s)
- Bahareh Haji Ali
- Department of Medical Physics, Iran University of Medical Sciences, Tehran, Iran
| | - Milad Shirvaliloo
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 9453155166, Iran
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, 9414974877, Iran
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Fulden Ulucan-Karnak
- Department of Medical Biochemistry, Institute of Health Sciences, Ege University, İzmir, 35100, Turkey
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran, Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Sara Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Roghayeh Sheervalilou
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, 9816743463, Iran
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
23
|
Zhao RN, Zhu BW, Xu Y, Yu SF, Wang WJ, Liu DH, Hu JN. Cyclodextrin-based metal-organic framework materials: Classifications, synthesis strategies and applications in variegated delivery systems. Carbohydr Polym 2023; 319:121198. [PMID: 37567724 DOI: 10.1016/j.carbpol.2023.121198] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/22/2023] [Accepted: 07/10/2023] [Indexed: 08/13/2023]
Abstract
Metal-organic frameworks (MOFs) are coordination compounds that possess an adjustable structure and controllable function. Despite their wide applications in various industries, the use of MOFs in the fields of food and biomedicine is limited mainly due to their potential biological toxicity. Researchers have thus focused on developing biocompatible MOFs to address this issue. Among them, cyclodextrin-based metal-organic frameworks (CD-MOFs) have emerged as a promising alternative. CD-MOFs are novel MOFs synthesized using naturally carbohydrate cyclodextrin and alkali metal cations, and possess renewable, non-toxic, and edible characteristics. Due to their high specific surface area, controllable porosity, great biocompatibility, CD-MOFs have been widely used in various delivery systems, such as encapsulation of nutraceuticals, flavors, and antibacterial agents. Although the field of CD-MOF materials is still in its early stages, they provide a promising direction for the development of MOF materials in the delivery field. This review describes classification and structural characteristics, followed by an introduction to formation mechanism and commonly used synthetic methods for CD-MOFs. Additionally, we discuss the status of the application of various delivery systems based on CD-MOFs. Finally, we address the challenges and prospects of CD-MOF materials, with the aim of providing new insights and ideas for their future development.
Collapse
Affiliation(s)
- Ru-Nan Zhao
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, Zhejiang, China
| | - Bei-Wei Zhu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yu Xu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Song-Feng Yu
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, Zhejiang, China
| | - Wen-Jun Wang
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, Zhejiang, China
| | - Dong-Hong Liu
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, Zhejiang, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, Zhejiang, China
| | - Jiang-Ning Hu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
24
|
Kadota K, Tse JY, Fujita S, Suzuki N, Uchiyama H, Tozuka Y, Tanaka S. Drug-Facilitated Crystallization of Spray-Dried CD-MOFs with Tunable Morphology, Porosity, And Dissolution Profile. ACS APPLIED BIO MATERIALS 2023; 6:3451-3462. [PMID: 37184656 DOI: 10.1021/acsabm.3c00162] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Metal-organic frameworks (MOFs) with versatile functionalities have applications in environmental science, sensor separation, catalysis, and drug delivery. In particular, MOFs used in drug delivery should be biodegradable and easy to control. In this study, spray-dried cyclodextrin-based MOFs (CD-MOFs) with tunable crystallinity, porosity, and dissolution properties were fabricated. The spray-drying precursor properties, such as ethanol volume ratio, incubation time, and precursor concentration, were optimized for controlled crystallization. On the basis of the morphology, X-ray diffraction peak intensity, and specific surface areas of the spray-dried CD-MOF products, they were categorized as amorphous, partially crystalline, and highly crystalline. An active pharmaceutical ingredient ketoconazole (KCZ) was introduced into the precursor to prepare KCZ-containing CD-MOFs. The surface areas of these products were greater by 3-fold (292 m2/g) than that of the plain CD-MOF (94.1 m2/g) prepared using the same parameters. The presence of KCZ in the hydrophobic cavity between the two γ-CD molecules was correlated to the CD-MOF crystal growth. Additionally, CD-MOF particles exhibited different dissolution behaviors on the basis of the position of KCZ in the MOF. These spray-dried CD-MOFs with tunable morphology, specific surface area, and dissolution could have potential applications in various fields.
Collapse
Affiliation(s)
- Kazunori Kadota
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Jun Yee Tse
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Shuhei Fujita
- Department of Chemical, Energy, and Environmental Engineering, Faculty of Environmental and Urban Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Nao Suzuki
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Hiromasa Uchiyama
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Yuichi Tozuka
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Shunsuke Tanaka
- Department of Chemical, Energy, and Environmental Engineering, Faculty of Environmental and Urban Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
- Collaborate Research Center of Engineering, Medicine and Pharmacology (CEMP), Organization for Research and Development of Innovative Science and Technology (ORDIST), Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka 564-8680, Japan
| |
Collapse
|
25
|
Zhang T, He H, Xu Q, Lv J, Wu C, Zhou Y, Wang Z. γ-Cyclodextrin-based metal-organic frameworks for lactonic sophorolipid application in enhanced oil recovery. Carbohydr Polym 2023; 314:120931. [PMID: 37173029 DOI: 10.1016/j.carbpol.2023.120931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/30/2023] [Accepted: 04/16/2023] [Indexed: 05/15/2023]
Abstract
Lactonic sophorolipid (LSL) exhibits numerous surfactant activities, such as emulsification, wetting action, dispersion effect, and oil-washing activities. Nevertheless, LSLs have poor water solubility, which restrains their application in the petroleum industry. In this research, a new compound, lactonic sophorolipid cyclodextrin metal-organic framework (LSL-CD-MOFs), was obtained by loading LSL into γ-cyclodextrin metal-organic frameworks (γ-CD-MOFs). The LSL-CD-MOFs were characterized by N2 adsorption analysis, X-ray powder diffraction analysis, Fourier transform infrared spectroscopy, and thermogravimetric analysis. Loading LSL into γ-CD-MOFs significantly increased the apparent water solubility of LSL. However, the critical micelle concentration of LSL-CD-MOFs was similar to that of LSL. Furthermore, LSL-CD-MOFs effectively reduced the viscosities and improved the emulsification indices of oil-water mixtures. Oil-washing tests, which were conducted using oil sands, revealed that the LSL-CD-MOFs yielded an oil-washing efficiency of 85.82 % ± 2.04 %. Overall, γ-CD-MOFs are promising carriers for LSL, and LSL-CD-MOFs are a potential, low-cost, new, green surfactant for enhanced oil recovery.
Collapse
Affiliation(s)
- Tingting Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China; School of College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Hao He
- Petrochemical Research Institute of Petrochina Co. Ltd., Beijing 102206, China
| | - Qing Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China.
| | - Jiasheng Lv
- College of Food Science & Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Chaoyi Wu
- College of Food Science & Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yefei Zhou
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Zhenjiong Wang
- College of Food Science & Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
26
|
He Y, Wang X, Zhang C, Sun J, Xu J, Li D. Near-Infrared Light-Mediated Cyclodextrin Metal-Organic Frameworks for Synergistic Antibacterial and Anti-Biofilm Therapies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300199. [PMID: 37154227 DOI: 10.1002/smll.202300199] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/26/2023] [Indexed: 05/10/2023]
Abstract
Bacterial infections pose a significant threat to global public health; therefore, the development of novel therapeutics is urgently needed. Herein, a controllable antibacterial nanoplatform utilizing cyclodextrin metal-organic frameworks (CD-MOFs) as a template to synthesize ultrafine silver nanoparticles (Ag NPs) in their porous structure is constructed. Subsequently, polydopamine (PDA) is encapsulated on the CD-MOFs' surface via dopamine polymerization to enhance the water stability and enable hyperthermia capacity. The resulting Ag@MOF@PDA generates localized hyperthermia and gradually releases Ag+ to achieve long-term photothermal-chemical bactericidal capability. The release rate of Ag+ can be accelerated by NIR-mediated heating in a controllable manner, quickly reaching the effective concentration and reducing the frequency of medication to avoid potential toxicity. In vitro experiments demonstrate that the combined antibacterial strategy can not only effectively kill both gram-negative and gram-positive bacteria, but also directly eradicate mature biofilms. In vivo results confirm that both bacterial- and biofilm-infected wounds treated with a combination of Ag@MOF@PDA and laser exhibit satisfactory recovery with minimal toxicity, displaying a superior therapeutic effect compared to other groups. Together, the results warrant that the Ag@MOF@PDA realizes synergistic antibacterial capacity and controllable release of Ag+ to combat bacterial and biofilm infections, providing a potential antibiotic-free alternative in the "post-antibiotic era."
Collapse
Affiliation(s)
- Yaping He
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xuanzong Wang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Chi Zhang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Junkui Sun
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Jianzhong Xu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Daifeng Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| |
Collapse
|
27
|
GAN YAPING, LIU TING, FENG WEIFENG, WANG LIANG, LI LI, NING YINGXIA. Drug repositioning of disulfiram induces endometrioid epithelial ovarian cancer cell death via the both apoptosis and cuproptosis pathways. Oncol Res 2023; 31:333-343. [PMID: 37305383 PMCID: PMC10229305 DOI: 10.32604/or.2023.028694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/22/2023] [Indexed: 06/13/2023] Open
Abstract
Various therapeutic strategies have been developed to overcome ovarian cancer. However, the prognoses resulting from these strategies are still unclear. In the present work, we screened 54 small molecule compounds approved by the FDA to identify novel agents that could inhibit the viability of human epithelial ovarian cancer cells. Among these, we identified disulfiram (DSF), an old alcohol-abuse drug, as a potential inducer of cell death in ovarian cancer. Mechanistically, DSF treatment significantly reduced the expression of the anti-apoptosis marker B-cell lymphoma/leukemia-2 (Bcl-2) and increase the expression of the apoptotic molecules Bcl2 associated X (Bax) and cleaved caspase-3 to promote human epithelial ovarian cancer cell apoptosis. Furthermore, DSF is a newly identified effective copper ionophore, thus the combination of DSF and copper was used to reduce ovarian cancer viability than DSF single treatment. Combination treatment with DSF and copper also led to the reduced expression of ferredoxin 1 and loss of Fe-S cluster proteins (biomarkers of cuproptosis). In vivo, DSF and copper gluconate significantly decreased the tumor volume and increased the survival rate in a murine ovarian cancer xenograft model. Thus, the role of DSF revealed its potential for used as a viable therapeutic agent for the ovarian cancer.
Collapse
Affiliation(s)
- YAPING GAN
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - TING LIU
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - WEIFENG FENG
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - LIANG WANG
- Guangdong Guojian Pharmaceutical Consulting Co., Ltd., Guangzhou, China
| | - LI LI
- Department of Galactophore Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - YINGXIA NING
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
28
|
Kumari L, Choudhari Y, Patel P, Gupta GD, Singh D, Rosenholm JM, Bansal KK, Kurmi BD. Advancement in Solubilization Approaches: A Step towards Bioavailability Enhancement of Poorly Soluble Drugs. Life (Basel) 2023; 13:life13051099. [PMID: 37240744 DOI: 10.3390/life13051099] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
A drug's aqueous solubility is defined as the ability to dissolve in a particular solvent, and it is currently a major hurdle in bringing new drug molecules to the market. According to some estimates, up to 40% of commercialized products and 70-90% of drug candidates in the development stage are poorly soluble, which results in low bioavailability, diminished therapeutic effects, and dosage escalation. Because of this, solubility must be taken into consideration when developing and fabricating pharmaceutical products. To date, a number of approaches have been investigated to address the problem of poor solubility. This review article attempts to summarize several conventional methods utilized to increase the solubility of poorly soluble drugs. These methods include the principles of physical and chemical approaches such as particle size reduction, solid dispersion, supercritical fluid technology, cryogenic technology, inclusion complex formation techniques, and floating granules. It includes structural modification (i.e., prodrug, salt formation, co-crystallization, use of co-solvents, hydrotrophy, polymorphs, amorphous solid dispersions, and pH variation). Various nanotechnological approaches such as liposomes, nanoparticles, dendrimers, micelles, metal organic frameworks, nanogels, nanoemulsions, nanosuspension, carbon nanotubes, and so forth have also been widely investigated for solubility enhancement. All these approaches have brought forward the enhancement of the bioavailability of orally administered drugs by improving the solubility of poorly water-soluble drugs. However, the solubility issues have not been completely resolved, owing to several challenges associated with current approaches, such as reproducibility in large scale production. Considering that there is no universal approach for solving solubility issues, more research is needed to simplify the existing technologies, which could increase the number of commercially available products employing these techniques.
Collapse
Affiliation(s)
- Lakshmi Kumari
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| | - Yash Choudhari
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| | - Dilpreet Singh
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - Kuldeep Kumar Bansal
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| |
Collapse
|
29
|
Kang L, Liang Q, Abdul Q, Rashid A, Ren X, Ma H. Preparation technology and preservation mechanism of γ-CD-MOFs biaological packaging film loaded with curcumin. Food Chem 2023; 420:136142. [PMID: 37075570 DOI: 10.1016/j.foodchem.2023.136142] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/31/2023] [Accepted: 04/09/2023] [Indexed: 04/21/2023]
Abstract
To prevent food spoilage caused by microbial infection, the development of an environmentally friendly antimicrobial preservation material is crucial. Here, the microporous γ-CD-MOFs was utilized to encapsulate the hydrophobic active substance curcumin, resulting in the preparation of a non-toxic antimicrobial material (Cur-CD-MOFs). The results revealed that curcumin encapsulation in Cur-CD-MOFs occurred primarily in the carbonyl group, benzene ring, and enolic side ring of curcumin. The Cur-CD-MOFs had a 100% bactericidal effect on Escherichia coli and Staphylococcus aureus at 4 h and 8 h, and a strong inhibitory effect on aerial mycelium of Penicillium expansum and Botrytis cinerea. Furthermore, the incorporation of Cur-CD-MOFs improved the Pul/Tre film barrier and mechanical properties. The effectiveness of Cur-CD-MOFs-Pul/Tre in retaining fruit freshness was validated using Centennial Seedless grapes. This study confirmed that Cur-CD-MOFs is a promising antibacterial material, and Cur-CD-MOFs-Pul/Tre will be a potent candidate for food preservation.
Collapse
Affiliation(s)
- Lixin Kang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Qiufang Liang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Qayum Abdul
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Arif Rashid
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
30
|
Alotaibi H, Chung E, Chung SH, Ren G, Singh V, Huang J. Sustainable γ-cyclodextrin frameworks containing ultra-fine silver nanoparticles with enhanced antimicrobial efficacy. Carbohydr Polym 2023; 304:120516. [PMID: 36641162 DOI: 10.1016/j.carbpol.2022.120516] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/15/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Cyclodextrin metal-organic frameworks (CD-MOF) are a class of biocompatible MOF with a great potential in drug delivery applications. Original CD-MOF crystals are fragile and large (0.2-1 mm), which are less useful in pharmaceutical applications. Cetyltrimethylammonium bromide and long chain poly(ethylene) glycol, used in size modulation to produce nanosized CD-MOF can compromise the biocompatibility, and physiochemical properties of CD-MOF as their complete removal from frameworks is difficult. To avoid the use of above-mentioned modulators, herein, we demonstrate the synthesis of nanosized CD-MOF using triethylamine (TEA) as a modulator to reduce their size to ~254 nm. The MOF characteristics such as crystal and chemical structure remain unaffected and the surface area of CD-MOF synthesised with TEA is measured 1075.5 m2/g, almost 50 % higher than those of synthesised using bulky modulators. The improved CD-MOF architecture utilized for the in-situ synthesis of silver nanoparticles resulted in enhanced antimicrobial efficacy tested against Staphylococcus aureus and Escherichia coli bacteria and Candida albicans fungus. And minimum inhibitory concentration (MIC) is recorded in the range of 31-15 μg/mL. Overall, the structural improvement in CD-MOF supported with thorough comparative investigations and enhanced antimicrobial efficacy could be very helpful in further establishing them in biomedicine field.
Collapse
Affiliation(s)
- Hessah Alotaibi
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK; Department of Biomedical Engineering, King Faisal University, Hofuf 31982, Saudi Arabia
| | - Etelka Chung
- School of Engineering & Computer Science, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Se Hun Chung
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Guogang Ren
- School of Engineering & Computer Science, University of Hertfordshire, Hatfield AL10 9AB, UK.
| | - Vikramjeet Singh
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK; Nanoengineered Systems Laboratory, UCL Mechanical Engineering, University College London, London WC1E 7JE, UK.
| | - Jie Huang
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK.
| |
Collapse
|
31
|
Nie Q, Wang C, Xu H, Mittal P, Naeem A, Zhou P, Li H, Zhang Y, Guo T, Sun L, Zhang J. Highly efficient pulmonary delivery of levo-tetrahydropalmatine using γ-cyclodextrin metal-organic framework as a drug delivery platform. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
32
|
Lactone Stabilized by Crosslinked Cyclodextrin Metal-Organic Frameworks to Improve Local Bioavailability of Topotecan in Lung Cancer. Pharmaceutics 2022; 15:pharmaceutics15010142. [PMID: 36678769 PMCID: PMC9865350 DOI: 10.3390/pharmaceutics15010142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/08/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
The protection of unstable anticancer molecules and their delivery to lesions are challenging issues in cancer treatment. Topotecan (TPT), a classic cytotoxic drug, is widely used for treating refractory lung cancer. However, the therapeutic effects of TPT are jeopardized by its active lactone form that is intrinsically hydrolyzed in physiological fluids, resulting in low bioavailability. Herein, the TPT-loaded crosslinked cyclodextrin metal-organic framework (TPT@CL-MOF) was engineered to improve the local bioavailability of TPT for the treatment of lung cancer. CL-MOF exhibited the efficient loading (12.3 wt%) of TPT with sustained release characteristics. In particular the formulation offered excellent protection in vitro against hydrolysis and increased the half-life of TPT from approximately 0.93 h to 22.05 h, which can be attributed to the host-guest interaction between cyclodextrin and TPT, as confirmed by molecular docking. The TPT@CL-MOF could effectively kill the cancer cells and inhibit the migration and invasion of B16F10 cells in vitro. Moreover, TPT@CL-MOF was efficiently distributed in the lungs after intravenous administration. In an in vivo study using a B16F10 pulmonary metastatic tumor model, TPT@CL-MOF significantly reduced the number and size of metastatic lung nodules at a reduced low dose by five times, and no noticeable side effects were observed. Therefore, this study provides a possible alternative therapy for the treatment of lung cancer with the camptothecin family drugs or other unstable therapeutically significant molecules.
Collapse
|
33
|
Sun N, Zhang M, Zhu W, Song P, Dai T, Huang P, Han Z, Wang D. Allyl isothiocyanate dry powder inhaler based on cyclodextrin-metal organic frameworks for pulmonary delivery. iScience 2022; 26:105910. [PMID: 36686390 PMCID: PMC9852347 DOI: 10.1016/j.isci.2022.105910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/27/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
In this study, allyl isothiocyanate (AITC) was prepared as the dry powder inhalation by loading cyclodextrin metal-organic framework (CD-MOF) to enhance pulmonary delivery. β-CD-MOF and γ-CD-MOF both could be used to carry AITC with the optimal loading conditions (50˚C, n CD: n AITC = 1:7, 7 h). Compared with β-CD-MOF, γ-CD-MOF had more advantages in AITC loading due to its high drug loading and stable crystal morphology. The particle size and the mass median aerodynamic diameter of γ-CD-MOF-AITC were accorded with the aerodynamic characteristics of lung inhalation. γ-CD-MOF-AITC might be deposited effectively in the deep lung, and the release rate of AITC reached over 90% within 5 min. Meanwhile, it had good pulmonary local tolerance, permeability, and no significant toxicity. Such results indicated that γ-CD-MOF could be used as a dry powder inhaler carrier to deliver safely AITC to lung and increase its pulmonary absorption.
Collapse
Affiliation(s)
- Nianxia Sun
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China,Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Applicaiton, Hefei, Anhui 230012, China,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, Anhui 230012, China
| | - Min Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Wentao Zhu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Pingping Song
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Tingting Dai
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Peng Huang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Zhili Han
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, Anhui 230012, China
| | - Dianlei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China,Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Applicaiton, Hefei, Anhui 230012, China,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, Anhui 230012, China,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui 230012, China,Corresponding author
| |
Collapse
|
34
|
Recent Advances in Metal-Organic-Framework-Based Nanocarriers for Controllable Drug Delivery and Release. Pharmaceutics 2022; 14:pharmaceutics14122790. [PMID: 36559283 PMCID: PMC9783219 DOI: 10.3390/pharmaceutics14122790] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/04/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Metal-organic frameworks (MOFs) have a good designability, a well-defined pore, stimulus responsiveness, a high surface area, and a controllable morphology. Up to now, various MOFs have been widely used as nanocarriers and have attracted lots of attention in the field of drug delivery and release because of their good biocompatibility and high-drug-loading capacity. Herein, we provide a comprehensive summary of MOF-based nanocarriers for drug delivery and release over the last five years. Meanwhile, some representative examples are highlighted in detail according to four categories, including the University of Oslo MOFs, Fe-MOFs, cyclodextrin MOFs, and other MOFs. Moreover, the opportunities and challenges of MOF-based smart delivery vehicles are discussed. We hope that this review will be helpful for researchers to understand the recent developments and challenges of MOF-based drug-delivery systems.
Collapse
|
35
|
Xu Y, Rashwan AK, Osman AI, Abd El-Monaem EM, Elgarahy AM, Eltaweil AS, Omar M, Li Y, Mehanni AHE, Chen W, Rooney DW. Synthesis and potential applications of cyclodextrin-based metal-organic frameworks: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2022; 21:447-477. [PMID: 36161092 PMCID: PMC9484721 DOI: 10.1007/s10311-022-01509-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 08/24/2022] [Indexed: 05/05/2023]
Abstract
Metal-organic frameworks are porous polymeric materials formed by linking metal ions with organic bridging ligands. Metal-organic frameworks are used as sensors, catalysts for organic transformations, biomass conversion, photovoltaics, electrochemical applications, gas storage and separation, and photocatalysis. Nonetheless, many actual metal-organic frameworks present limitations such as toxicity of preparation reagents and components, which make frameworks unusable for food and pharmaceutical applications. Here, we review the structure, synthesis and properties of cyclodextrin-based metal-organic frameworks that could be used in bioapplications. Synthetic methods include vapor diffusion, microwave-assisted, hydro/solvothermal, and ultrasound techniques. The vapor diffusion method can produce cyclodextrin-based metal-organic framework crystals with particle sizes ranging from 200 nm to 400 μm. Applications comprise food packaging, drug delivery, sensors, adsorbents, gas separation, and membranes. Cyclodextrin-based metal-organic frameworks showed loading efficacy of the bioactive compounds ranging from 3.29 to 97.80%.
Collapse
Affiliation(s)
- Yang Xu
- Department of Food Science and Nutrition, Zhejiang-Egypt Joint Laboratory for Comprehensive Utilization of Agricultural Biological Resources and Development of Functional Foods, Zhejiang University, Hangzhou, 310058 China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100 China
| | - Ahmed K. Rashwan
- Department of Food Science and Nutrition, Zhejiang-Egypt Joint Laboratory for Comprehensive Utilization of Agricultural Biological Resources and Development of Functional Foods, Zhejiang University, Hangzhou, 310058 China
- Department of Food and Dairy Sciences, Faculty of Agriculture, South Valley University, Qena, 83523 Egypt
| | - Ahmed I. Osman
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast, BT9 5AG Northern Ireland UK
| | | | - Ahmed M. Elgarahy
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt
| | | | - Mirna Omar
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Yuting Li
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang China
| | - Abul-Hamd E. Mehanni
- Department of Food Science and Nutrition, Faculty of Agriculture, Sohag University, Sohag, 82524 Egypt
| | - Wei Chen
- Department of Food Science and Nutrition, Zhejiang-Egypt Joint Laboratory for Comprehensive Utilization of Agricultural Biological Resources and Development of Functional Foods, Zhejiang University, Hangzhou, 310058 China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100 China
| | - David W. Rooney
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast, BT9 5AG Northern Ireland UK
| |
Collapse
|
36
|
He S, Wu L, Sun H, Wu D, Wang C, Ren X, Shao Q, York P, Tong J, Zhu J, Li Z, Zhang J. Antioxidant Biodegradable Covalent Cyclodextrin Frameworks as Particulate Carriers for Inhalation Therapy against Acute Lung Injury. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38421-38435. [PMID: 35948492 DOI: 10.1021/acsami.2c05220] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Drug therapies for acute lung injury (ALI) are far from satisfactory, primarily because drugs cannot specifically target the lungs. Direct delivery of drugs to the deep alveolar regions by inhalation administration is crucial for the treatment of ALI. However, conventional inhalable carriers such as lactose and mannitol are generally inactive. Therefore, the use of a novel pharmacologically active carrier for pulmonary delivery may produce synergetic effects in treating ALI. Considering the pathophysiological environment of ALI, which typically featured excessive reactive oxygen species (ROS) and acute inflammation, we synthesized a novel kind of biodegradable and ROS-sensitive cross-linked covalent cyclodextrin frameworks (OC-COF) with uniform inhalable particle size to treat ALI. OC-COF was devised to incorporate H2O2-scavenging peroxalate ester linkages, which could hydrolyze and eliminate ROS generated in inflammatory sites. Ligustrazine (LIG), an antioxidant and anti-inflammatory natural compound, was loaded into OC-COF and evaluated as a dry powder inhaler (LIG@OC-COF) in vitro and in vivo, showing favorable aerodynamic properties and prominent antioxidant and anti-inflammatory capacities for the synergistic effects of OC-COF and LIG. In ALI rats, inhalation of LIG@OC-COF with a one-fifth LIG dose significantly alleviated the inflammation, oxidant stress, and lung damage. Western blot analysis demonstrated that LIG@OC-COF protected the lungs by regulating the Nrf2/NF-κB signaling pathway. In summary, this study provides a novel ROS-responsive material as an inhalable particulate carrier for the improved treatment of ALI and other medical conditions.
Collapse
Affiliation(s)
- Siyu He
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Wu
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hongyu Sun
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Di Wu
- Anhui University of Chinese Medicine, Hefei 230012, China
| | - Caifen Wang
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaohong Ren
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qun Shao
- Institute of Pharmaceutical Innovation, University of Bradford, Bradford, West Yorkshire BD7 1DP, United Kingdom
| | - Peter York
- Institute of Pharmaceutical Innovation, University of Bradford, Bradford, West Yorkshire BD7 1DP, United Kingdom
| | - Jiabing Tong
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
| | - Jie Zhu
- Anhui University of Chinese Medicine, Hefei 230012, China
- Institutes of Integrative Medicine, Fudan University, Shanghai 200040, China
| | - Zegeng Li
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
| | - Jiwen Zhang
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, No.2 Tiantan Xili, Beijing 100050, China
| |
Collapse
|
37
|
Crystalline γ-cyclodextrin metal organic framework nano-containers for encapsulation of benzaldehyde and their host–guest interactions. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-022-01158-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
38
|
Wang Z, Ma Y, Jiang Y, Zhou F, Wu Y, Jiang H, Wang R, Xu Q, Hua C. Encapsulating quercetin in cyclodextrin metal-organic frameworks improved its solubility and bioavailability. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3887-3896. [PMID: 34952968 DOI: 10.1002/jsfa.11738] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/30/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Quercetin (Que) has many pharmacological activities, such as anticancer, antioxidant, cardiovascular protection, antihypertensive and lipid-lowering activities. However, its poor water solubility greatly limits its application in medicine and food. γ-Cyclodextrin metal-organic frameworks (γ-CD-MOFs) are novel porous carriers for loading functional products. In this study, Que was successfully loaded into γ-CD-MOFs, and the new compound (Que-CD-MOFs) was characterised by X-ray diffraction, infrared spectroscopy, thermogravimetric analysis and scanning electron microscopy. RESULTS The apparent solubility of Que-CD-MOFs was enhanced by 100-fold compared with that of pure Que. The free radical scavenging ability of the encapsulated Que was significantly improved. The cytotoxicity of Que-CD-MOFs to HK-2 cells was decreased, and their inhibition on HT-29 tumour cells was maintained, as confirmed by CCK-8 assays. Flow cytometry of HT-29 cells showed that Que-CD-MOFs can inhibit G2 phase cells. Based on molecular modelling, Que molecules were preferentially located inside the cavities of γ-CD pairs in γ-CD-MOFs. CONCLUSION γ-CD-MOFs are promising carriers for bioactive agents in food and pharmaceutical applications. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhenjiong Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Yiding Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Ying Jiang
- School of life, Nanjing Normal University, Nanjing, People's Republic of China
| | - Feng Zhou
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, People's Republic of China
- Jiangsu Provincial Key Construction Laboratory of Special Biomass by-product Resource Utilization, Nanjing Xiaozhuang University, Nanjing, People's Republic of China
| | - Yulong Wu
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, People's Republic of China
- Jiangsu Provincial Key Construction Laboratory of Special Biomass by-product Resource Utilization, Nanjing Xiaozhuang University, Nanjing, People's Republic of China
| | - Haitao Jiang
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, People's Republic of China
- Jiangsu Provincial Key Construction Laboratory of Special Biomass by-product Resource Utilization, Nanjing Xiaozhuang University, Nanjing, People's Republic of China
| | - Renlei Wang
- Biology Department, Jiangsu Second Normal University, Nanjing, People's Republic of China
| | - Qing Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Chun Hua
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, People's Republic of China
- Jiangsu Provincial Key Construction Laboratory of Special Biomass by-product Resource Utilization, Nanjing Xiaozhuang University, Nanjing, People's Republic of China
| |
Collapse
|
39
|
Jiang L, Wang F, Du M, Xie C, Xie X, Zhang H, Meng X, Li A, Deng T. Encapsulation of catechin into nano-cyclodextrin-metal-organic frameworks: Preparation, characterization, and evaluation of storage stability and bioavailability. Food Chem 2022; 394:133553. [PMID: 35753258 DOI: 10.1016/j.foodchem.2022.133553] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/22/2022] [Accepted: 06/19/2022] [Indexed: 11/04/2022]
Abstract
This study, nanoscale α-, β-, γ-cyclodextrin (CD)-metal-organic frameworks (MOFs) were successfully prepared using solvothermal assisted ultrasound method. CD-MOFs were used as nanocarriers to encapsulate catechin (CA), and their encapsulation capacities were evaluated. Encapsulation capacities of CD-MOFs to incorporate CA followed the order: β-CD-MOFs > γ-CD-MOFs > α-CD-MOFs. CA/CD-MOFs were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and differential scanning calorimetry (DSC). DSC and SEM results provided evidence for the formation of CA/CD-MOFs. XRD results indicated the new solid crystalline phases formed in CA/CD-MOFs complex. Results of FT-IR showed that CA was combined with CD-MOFs through hydrogen bonding and van der Waals forces. Current research demonstrated that encapsulation of CA within CD-MOFs provided it against light, oxygen and temperature. Moreover, encapsulation by CD-MOFs improved storage stability and bioavailability of CA. Thus, these CA/CD-MOFs have potential to be used as nutritional supplements and functional foods.
Collapse
Affiliation(s)
- Longwei Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China
| | - Fenghui Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Mengyu Du
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Cancan Xie
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyan Xie
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Huajiang Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Xiangyi Meng
- College of Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Anqi Li
- College of Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Tianyi Deng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
40
|
Dummert SV, Saini H, Hussain MZ, Yadava K, Jayaramulu K, Casini A, Fischer RA. Cyclodextrin metal-organic frameworks and derivatives: recent developments and applications. Chem Soc Rev 2022; 51:5175-5213. [PMID: 35670434 DOI: 10.1039/d1cs00550b] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
While there is a tremendous amount of scientific research on metal organic frameworks (MOFs) for gas storage/separation, catalysis and energy storage, the development and application of biocompatible MOFs still poses major challenges. In general, they can be synthesised from various biocompatible linkers and metal ions but particularly cyclodextrins (CDs) as cyclic oligosaccharides are an astute choice for the former. Although the field of CD-MOF materials is still in the early stages and their design and fabrication comes with many hurdles, the benefits coming from CDs built in a porous framework are exciting. Versatile host-guest complexation abilities, high encapsulation capacity and hydrophilicity are among the valuable properties inherent to CDs and offer extended and novel applications to MOFs. In this review, we provide an overview of the state-of-the-art synthesis, design, properties and applications of these materials. Initially, a rationale for the preparation of CD-based MOFs is provided, based on the chemical and structural properties of CDs and including their advantages and disadvantages. Further on, the review exhaustively surveys CD-MOF based materials by categorising them into three sub-classes, namely (i) CD-MOFs, (ii) CD-MOF hybrids, obtained via combination with external materials, and (iii) CD-MOF-derived materials prepared under pyrolytic conditions. Subsequently, CD-based MOFs in practical applications, such as drug delivery and cancer therapy, sensors, gas storage, (enantiomer) separations, electrical devices, food industry, and agriculture, are discussed. We conclude by summarizing the state of the art in the field and highlighting some promising future developments of CD-MOFs.
Collapse
Affiliation(s)
- Sarah V Dummert
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, D-85748 Garching, Germany.
| | - Haneesh Saini
- Department of Chemistry, Indian Institute of Technology Jammu, Jammu & Kashmir, 181221, India.
| | - Mian Zahid Hussain
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, D-85748 Garching, Germany.
| | - Khushboo Yadava
- Department of Chemistry, Indian Institute of Technology Jammu, Jammu & Kashmir, 181221, India. .,Indian Institute of Science Education and Research Kolkata, Nadia 741246, India
| | - Kolleboyina Jayaramulu
- Department of Chemistry, Indian Institute of Technology Jammu, Jammu & Kashmir, 181221, India.
| | - Angela Casini
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, D-85748 Garching, Germany.
| | - Roland A Fischer
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, D-85748 Garching, Germany.
| |
Collapse
|
41
|
Xiao Y, Jin T, Geng X, Zhu X. Azilsartan-nicotinamide cocrystal: Preparation, characterization and in vitro / vivo evaluation. Eur J Pharm Sci 2022; 176:106241. [PMID: 35716990 DOI: 10.1016/j.ejps.2022.106241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/07/2022] [Accepted: 06/14/2022] [Indexed: 11/03/2022]
Abstract
Azilsartan (AZL) is an angiotensin II receptor antagonist, which is mainly used for the treatment of hypertension. AZL has the advantages of high selectivity, hypotensive effect, protection of cardiovascular and cerebrovascular diseases. In order to improve the water solubility of AZL and its bioavailability, AZL -nicotinamide (NA) cocrystal was prepared by mechanical ball milling, and the effect of ball milling conditions on cocrystal preparation were studied. AZL-NA cocrystal was identified and characterized by powder X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, scanning electron microscopy and Fourier transform infrared spectrometry. The results showed that AZL-NA cocrystal with the molar ratio of 1:2 was successfully prepared. And the optimum ball milling condition was milling speed of 300 rpm, milling time of 50 min, the solvent was ethanol/acetonitrile (1:1, v/v), and the solvent dosage (η) was 0.8 μL/mg. The results of solubility tests showed that the solubility of AZL in the cocrystal was 3.39 times higher than the pure drug at 24 h. And the results of vitro dissolution tests showed that the cumulative dissolution of AZL in 2 h was about 10%. While distilled water, pH 1.2 and pH 4.5 acid or buffered solutions and pH 6.8 buffer phosphate salt solution was used as the dissolution medium, the cumulative dissolution of AZL in cocrystal reached 50%, 35%, 55% and 90%, respectively, showing obvious improvement of dissolution. In addition, the accelerated stability tests showed that the AZL-NA cocrystal had good chemical stability. And the pharmacokinetic results showed that AZL-NA cocrystal could significantly improve the bioavailability of AZL.
Collapse
Affiliation(s)
- Yin Xiao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tingyu Jin
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xuerong Geng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xingyi Zhu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; College of Pharmaceutical Sciences, Zhejiang University of Technology, Chaowang Road NO. 18, Hangzhou 310014, China.
| |
Collapse
|
42
|
Hydrogen peroxide responsive covalent cyclodextrin framework for targeted therapy of inflammatory bowel disease. Carbohydr Polym 2022; 285:119252. [DOI: 10.1016/j.carbpol.2022.119252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/14/2022] [Accepted: 02/09/2022] [Indexed: 11/20/2022]
|
43
|
Ba T, Shen C, Zhang X, Liu CJ. Preparation and characterization of an edible metal-organic framework/rice wine residue composite. RSC Adv 2022; 12:14639-14643. [PMID: 35702247 PMCID: PMC9104762 DOI: 10.1039/d2ra02202h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/06/2022] [Indexed: 11/21/2022] Open
Abstract
In this communication, using rice wine residue (RWR) as the support, an edible γ-cyclodextrin-metal-organic framework/RWR (γ-CD-MOF/RWR) composite with a macroscopic morphology was synthesized. The obtained edible composite is promising for applications in drug delivery, adsorption, food processing, and others.
Collapse
Affiliation(s)
- Teer Ba
- Collaborative Innovation Center of Chemical Science & Engineering, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
| | - Chenyang Shen
- Collaborative Innovation Center of Chemical Science & Engineering, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
| | - Xiaoshan Zhang
- Collaborative Innovation Center of Chemical Science & Engineering, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
| | - Chang-Jun Liu
- Collaborative Innovation Center of Chemical Science & Engineering, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
| |
Collapse
|
44
|
Ohshima K, Ohsaki S, Nakamura H, Watano S. Mechanism of Solubility Enhancement of Poorly Water-Soluble Drugs Triggered by Zeolitic Imidazolate Frameworks. Chem Pharm Bull (Tokyo) 2022; 70:383-390. [DOI: 10.1248/cpb.c22-00020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kazuki Ohshima
- Department of Chemical Engineering, Osaka Prefecture University (Currently known as Osaka Metropolitan University)
| | - Shuji Ohsaki
- Department of Chemical Engineering, Osaka Prefecture University (Currently known as Osaka Metropolitan University)
| | - Hideya Nakamura
- Department of Chemical Engineering, Osaka Prefecture University (Currently known as Osaka Metropolitan University)
| | - Satoru Watano
- Department of Chemical Engineering, Osaka Prefecture University (Currently known as Osaka Metropolitan University)
| |
Collapse
|
45
|
Shen M, Zhou J, Elhadidy M, Xianyu Y, Feng J, Liu D, Ding T. Cyclodextrin metal-organic framework by ultrasound-assisted rapid synthesis for caffeic acid loading and antibacterial application. ULTRASONICS SONOCHEMISTRY 2022; 86:106003. [PMID: 35429899 PMCID: PMC9035430 DOI: 10.1016/j.ultsonch.2022.106003] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/15/2022] [Accepted: 04/05/2022] [Indexed: 05/08/2023]
Abstract
Cyclodextrin metal-organic framework by ultrasound-assisted rapid synthesis for caffeic acid (CA) loading and antibacterial application (U-CD-MOF) was successfully studied and this method shortened the preparation time to a few minutes. It was found that the ultrasonic power, reaction time and temperature would affect the morphology and size of the obtained crystal. Under the optimal conditions, U-CD-MOF had a cubic structure with uniform size of 8.60 ± 1.95 μm. U-CD-MOF was used to load the antibacterial natural product CA to form the composite (CA@U-CD-MOF) and the loading rate of CA@U-CD-MOF to CA could reach 19.63 ± 2.53%, which was more than twice that of γ-CD. Various techniques were applied to characterize the synthesized crystal, including Powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and N2 adsorption. In addition, antibacterial tests were performed on the obtained crystal. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of CA@U-CD-MOF for Escherichia coli O157: H7 (E. coli O157: H7) were both 25 mg·mL-1, and the MIC for Staphylococcus aureus (S. aureus). was 25 mg·mL-1. The sustained release behavior of CA@U-CD-MOF to CA in ethanol fitted well to Higuchi model and the loading of CA was supported by molecular docking results. In general, U-CD-MOF was successfully achieved by ultrasound-assisted rapid synthesis and the obtained crystal was further evaluated for potential antibacterial application.
Collapse
Affiliation(s)
- Mofei Shen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jianwei Zhou
- School of Mechanical and Energy Engineering, NingboTech University, Ningbo 315100, China
| | - Mohamed Elhadidy
- Biomedical Sciences Program, Zewail City of Science and Technology, University of Science and Technology, Giza, Egypt; Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, 35516 Mansoura, Egypt
| | - Yunlei Xianyu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jinsong Feng
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Donghong Liu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Tian Ding
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
46
|
Wang K, Cai M, Yin D, Hu X, Peng H, Zhu R, Liu M, Xu Y, Qu C, Ni J, Yin X. IRMOF‐8‐encapsulated curcumin as a biocompatible, sustained‐release nano preparation. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kai‐Xin Wang
- School of Chinese Material Medica Beijing University of Chinese Medicine Beijing China
| | - Meng‐Ru Cai
- School of Chinese Material Medica Beijing University of Chinese Medicine Beijing China
| | - Dong‐Ge Yin
- School of Chinese Material Medica Beijing University of Chinese Medicine Beijing China
| | - Xue‐Ling Hu
- School of Chinese Material Medica Beijing University of Chinese Medicine Beijing China
| | - Hulin‐Yue Peng
- School of Chinese Material Medica Beijing University of Chinese Medicine Beijing China
| | - Rong‐Yue Zhu
- School of Chinese Material Medica Beijing University of Chinese Medicine Beijing China
| | - Man‐Ting Liu
- School of Chinese Material Medica Beijing University of Chinese Medicine Beijing China
| | - Yu‐Chen Xu
- School of Chinese Material Medica Beijing University of Chinese Medicine Beijing China
| | - Chang‐Hai Qu
- School of Chinese Material Medica Beijing University of Chinese Medicine Beijing China
| | - Jian Ni
- School of Chinese Material Medica Beijing University of Chinese Medicine Beijing China
| | - Xing‐Bin Yin
- School of Chinese Material Medica Beijing University of Chinese Medicine Beijing China
| |
Collapse
|
47
|
Liu Y, Zhou P, Cao Z, Liang W, Yan J, Xu H, Wu L, Sun L, Gong L, Peng C, Guo T, Wang C, Zhang J. Simultaneous solubilization and extended release of insoluble drug as payload in highly soluble particles of γ-cyclodextrin metal-organic frameworks. Int J Pharm 2022; 619:121685. [PMID: 35318073 DOI: 10.1016/j.ijpharm.2022.121685] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/22/2022] [Accepted: 03/15/2022] [Indexed: 01/22/2023]
Abstract
The inclusion and nanocluster formed in cyclodextrin-metal organic framework (CD-MOF) make it a remarkable vehicle in improving the solubility and bioavailability of insoluble drugs, but rarely in elongation of drug release kinetics. In this research, an insoluble compound, 18β-glycyrrhetinic acid (GA), encapsulated in CD-MOF (GA@nano-CD-MOF) had prominent effects in the treatment of bleomycin-induced idiopathic pulmonary fibrosis in rats with an enhanced bioavailability by 6.8 times. The solubility of GA@nano-CD-MOF was 7780 times higher than that of GA, which was explained by the solubility parameter of amorphous cells constructed in silico simulation. CD-MOF imparted GA unique biphasic release kinetics, namely, GA released instantly to 52% and slowly released to 100% for a period of 5 days, which made the drug loaded particles much more flexible in pharmaceutical applications. The distribution of GA molecules in CD-MOF and drug loading priority obtained by molecular docking illustrated the formation of biphasic release mode at the molecular level combined with other characterizations of SEM, PXRD, TGA and DSC. In conclusion, CD-MOF has a unique effect to simultaneously solubilize an insoluble drug and extend its release for days as payload in highly soluble particles of γ-cyclodextrin metal-organic frameworks, which broaden the applications of drugs in specific treatment and then enhance the therapeutic effects.
Collapse
Affiliation(s)
- Yujie Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Panpan Zhou
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Zeying Cao
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanhui Liang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jiazhi Yan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Huipeng Xu
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Wu
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, China
| | - Lixin Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Likun Gong
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| | - Can Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, China.
| | - Tao Guo
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.
| | - Caifen Wang
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.
| | - Jiwen Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.
| |
Collapse
|
48
|
Bajaj T, Singh C, Gupta GD. Novel metal organic frameworks improves solubility and oral absorption of mebendazole: Physicochemical characterization and in vitro-in vivo evaluation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
De D, Sahoo P. The Impact of MOF in pH-dependent Drug Delivery System: Progress in Last Decade. Dalton Trans 2022; 51:9950-9965. [DOI: 10.1039/d2dt00994c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-organic frameworks (MOFs) are porous crystalline materials of one-, two-, or three-dimensional networks manufactured from metal ions/clusters and multidentate organic linkers through coordination bonding. MOFs are one of the most...
Collapse
|
50
|
Wu T, Hou X, Li J, Ruan H, Pei L, Guo T, Wang Z, Ci T, Ruan S, He Y, He Z, Feng N, Zhang Y. Microneedle-Mediated Biomimetic Cyclodextrin Metal Organic Frameworks for Active Targeting and Treatment of Hypertrophic Scars. ACS NANO 2021; 15:20087-20104. [PMID: 34792332 DOI: 10.1021/acsnano.1c07829] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Due to the lack of a delivery system that actively targets hypertrophic scar fibroblasts (HSFs), it is difficult to concentrate the effects of drugs on hypertrophic scars (HSs). We recently discovered that the HSF membrane has a homologous targeting effect and developed an active targeted drug delivery system for the local treatment of HSs. A diphenyl carbonate cross-linked cyclodextrin metal organic framework (CDF) containing more than 26% (w/w) quercetin (QUE) was coated with a HSF membrane (QUE@HSF/CDF) and then dispersed in Bletilla striata polysaccharide (BSP)-fabricated dissolvable microneedles (BSP-MNs-QUE@HSF/CDF) for local administration. This biomimetic nanodrug delivery system improved efficacy on HSs by regulating Wnt/β-catenin and JAK2/STAT3 pathways and reducing the expression of collagens I and III in HS, and this performance was superior to those of systems without HSF functionalization or the assistance of microneedles. Additionally, we found that BSP has synergistic effects and the microneedles have higher mechanical strength and better physical stability than microneedles made of hyaluronic acid. This currently designed drug delivery strategy integrating biomimetic nanoparticles and dissolvable microneedles is promising for applications in the fields of skin disease treatment and cosmetics.
Collapse
Affiliation(s)
- Tong Wu
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaolin Hou
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiaqi Li
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hang Ruan
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lixia Pei
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Teng Guo
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhi Wang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tianyuan Ci
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shuyao Ruan
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuanzhi He
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zehui He
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Nianping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yongtai Zhang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|