1
|
Tao J, Gu Y, Zhou W, Wang Y. Dual-payload antibody-drug conjugates: Taking a dual shot. Eur J Med Chem 2024; 281:116995. [PMID: 39481229 DOI: 10.1016/j.ejmech.2024.116995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024]
Abstract
Antibody-drug conjugates (ADCs) enable the precise delivery of cytotoxic agents by conjugating small-molecule drugs with monoclonal antibodies (mAbs). Over recent decades, ADCs have demonstrated substantial clinical efficacy. However, conventional ADCs often encounter various clinical challenges, including suboptimal efficacy, significant adverse effects, and the development of drug resistance, limiting their broader clinical application. Encouragingly, a next-generation approach-dual-payload ADCs-has emerged as a pioneering strategy to address these challenges. Dual-payload ADCs are characterized by the incorporation of two distinct therapeutic payloads on the same antibody, enhancing treatment efficacy by promoting synergistic effects and reducing the risk of drug resistance. However, the synthesis of dual-payload ADCs is complex due to the presence of multiple functional groups on antibodies. In this review, we comprehensively summarize the construction strategies for dual-payload ADCs, ranging from the design of ADC components to orthogonal chemistry. The subsequent sections explore current challenges and propose prospective strategies, highlighting recent advancements in dual-payload ADC research, thereby laying the foundation for the development of next-generation ADCs.
Collapse
Affiliation(s)
- Junjie Tao
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yilin Gu
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wei Zhou
- Mabwell (Shanghai) Bioscience Co., Ltd, Shanghai, 201210, China.
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China.
| |
Collapse
|
2
|
Huang Y, Tan HY, Yuan J, Mu R, Yang J, Ball K, Vijayakrishnan B, Masterson L, Kinneer K, Luheshi N, Liang M, Rosenbaum AI. Extensive Biotransformation Profiling of AZD8205, an Anti-B7-H4 Antibody-Drug Conjugate, Elucidates Pathways Underlying Its Stability In Vivo. Anal Chem 2024; 96:16525-16533. [PMID: 39392424 PMCID: PMC11503519 DOI: 10.1021/acs.analchem.4c02309] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024]
Abstract
What happens to macromolecules in vivo? What drives the structure-activity relationship and in vivo stability for antibody-drug conjugates (ADCs)? These interrelated questions are increasingly relevant due to the re-emerging importance of ADCs as an impactful therapeutic modality and the gaps that exist in our understanding of ADC structural determinants that underlie ADC in vivo stability. Complex macromolecules, such as ADCs, may undergo changes in vivo due to their intricate structure as biotransformations may occur on the linker, the payload, and/or at the modified conjugation site. Furthermore, the dissection of ADC metabolism presents a substantial analytical challenge due to the difficulty in the identification or quantification of minor changes on a large macromolecule. We employed immunocapture-LCMS methods to evaluate in vivo changes in the drug-antibody ratio (DAR) profile in four different lead ADCs. This comprehensive characterization revealed that a critical structural determinant contributing to the ADC design was the linker, and competition of the thio-succinimide hydrolysis reaction over retro-Michael deconjugation can result in superb conjugation stability in vivo. These data, in conjunction with additional factors, informed the selection of AZD8205, puxitatug samrotecan, a B7-H4-directed cysteine-conjugated ADC bearing a novel topoisomerase I inhibitor payload, with durable DAR, currently being studied in the clinic for the potential treatment of solid malignancies (NCT05123482). These results highlight the relevance of studying macromolecule biotransformation and elucidating the ADC structure-in vivo stability relationship. The comprehensive nature of this work increases our confidence in the understanding of these processes. We hope this analytical approach can inform future development of bioconjugate drug candidates.
Collapse
Affiliation(s)
- Yue Huang
- Integrated
Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, California 94080, United States
| | - Hui Yin Tan
- Integrated
Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, California 94080, United States
| | - Jiaqi Yuan
- Integrated
Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, California 94080, United States
| | - Ruipeng Mu
- Integrated
Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, California 94080, United States
| | - Junyan Yang
- Integrated
Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, California 94080, United States
| | - Kathryn Ball
- Clinical
Pharmacology and Quantitative Pharmacology, Clinical Pharmacology
and Safety Sciences, R&D, AstraZeneca, Cambridge CB21 6GH, United Kingdom
| | | | - Luke Masterson
- TTD,
Oncology R&D, AstraZeneca, London E1 2AX, United Kingdom
| | - Krista Kinneer
- Translational
Medicine, Oncology R&D, AstraZeneca, Gaithersburg, Maryland 20878, United States
| | - Nadia Luheshi
- Oncology
R&D, AstraZeneca, Cambridge CB2 8PA, United
Kingdom
| | - Meina Liang
- Integrated
Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, California 94080, United States
| | - Anton I. Rosenbaum
- Integrated
Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, California 94080, United States
| |
Collapse
|
3
|
Tarab-Ravski D, Stotsky-Oterin L, Elisha A, Kundoor GR, Ramishetti S, Hazan-Halevy I, Haas H, Peer D. The future of genetic medicines delivered via targeted lipid nanoparticles to leukocytes. J Control Release 2024; 376:286-302. [PMID: 39401676 DOI: 10.1016/j.jconrel.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Genetic medicines hold vast therapeutic potential, offering the ability to silence or induce gene expression, knock out genes, and even edit DNA fragments. Applying these therapeutic modalities to leukocytes offers a promising path for treating various conditions yet overcoming the obstacles of specific and efficient delivery to leukocytes remains a major bottleneck in their clinical translation. Lipid nanoparticles (LNPs) have emerged as the leading delivery system for nucleic acids due to their remarkable versatility and ability to improve their in vivo stability, pharmacokinetics, and therapeutic benefits. Equipping LNPs with targeting moieties can promote their specific cellular uptake and internalization to leukocytes, making targeted LNPs (tLNPs) an inseparable part of developing leukocyte-targeted gene therapy. However, despite the significant advancements in research, genetic medicines for leukocytes using targeted delivery approaches have not been translated into the clinic yet. Herein, we discuss the important aspects of designing tLNPs and highlight the considerations for choosing an appropriate bioconjugation strategy and targeting moiety. Furthermore, we provide our insights on limiting challenges and identify key areas for further research to advance these exciting therapies for patient care.
Collapse
Affiliation(s)
- Dana Tarab-Ravski
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel; Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Lior Stotsky-Oterin
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel; Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Aviad Elisha
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel; Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Govinda Reddy Kundoor
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel; Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | | | - Inbal Hazan-Halevy
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel; Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Heinrich Haas
- NeoVac Ltd. 127 Olympic Ave., OX14 4SA, Milton Park, Oxfordshire, UK; Department of Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg-University, Mainz, Germany
| | - Dan Peer
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel; Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
4
|
Aboul-Ella H, Gohar A, Ali AA, Ismail LM, Mahmoud AEER, Elkhatib WF, Aboul-Ella H. Monoclonal antibodies: From magic bullet to precision weapon. MOLECULAR BIOMEDICINE 2024; 5:47. [PMID: 39390211 PMCID: PMC11467159 DOI: 10.1186/s43556-024-00210-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Monoclonal antibodies (mAbs) are used to prevent, detect, and treat a broad spectrum of non-communicable and communicable diseases. Over the past few years, the market for mAbs has grown exponentially with an expected compound annual growth rate (CAGR) of 11.07% from 2024 (237.64 billion USD estimated at the end of 2023) to 2033 (679.03 billion USD expected by the end of 2033). Ever since the advent of hybridoma technology introduced in 1975, antibody-based therapeutics were realized using murine antibodies which further progressed into humanized and fully human antibodies, reducing the risk of immunogenicity. Some benefits of using mAbs over conventional drugs include a drastic reduction in the chances of adverse reactions, interactions between drugs, and targeting specific proteins. While antibodies are very efficient, their higher production costs impede the process of commercialization. However, their cost factor has been improved by developing biosimilar antibodies as affordable versions of therapeutic antibodies. Along with the recent advancements and innovations in antibody engineering have helped and will furtherly help to design bio-better antibodies with improved efficacy than the conventional ones. These novel mAb-based therapeutics are set to revolutionize existing drug therapies targeting a wide spectrum of diseases, thereby meeting several unmet medical needs. This review provides comprehensive insights into the current fundamental landscape of mAbs development and applications and the key factors influencing the future projections, advancement, and incorporation of such promising immunotherapeutic candidates as a confrontation approach against a wide list of diseases, with a rationalistic mentioning of any limitations facing this field.
Collapse
Affiliation(s)
- Hassan Aboul-Ella
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Asmaa Gohar
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Suez, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University (ACU), Giza, Egypt
- Egyptian Drug Authority (EDA), Giza, Egypt
| | - Aya Ahmed Ali
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University, Sinai, Egypt
| | - Lina M Ismail
- Department of Biotechnology and Molecular Chemistry, Faculty of Science, Cairo University, Giza, Egypt
- Creative Egyptian Biotechnologists (CEB), Giza, Egypt
| | | | - Walid F Elkhatib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Suez, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Heba Aboul-Ella
- Department of Pharmacognosy, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University (ECU), Cairo, Egypt
- Scientific Research Group in Egypt (SRGE), Cairo, Egypt
| |
Collapse
|
5
|
Medina Pérez VM, Baselga M, Schuhmacher AJ. Single-Domain Antibodies as Antibody-Drug Conjugates: From Promise to Practice-A Systematic Review. Cancers (Basel) 2024; 16:2681. [PMID: 39123409 PMCID: PMC11311928 DOI: 10.3390/cancers16152681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Antibody-drug conjugates (ADCs) represent potent cancer therapies that deliver highly toxic drugs to tumor cells precisely, thus allowing for targeted treatment and significantly reducing off-target effects. Despite their effectiveness, ADCs can face limitations due to acquired resistance and potential side effects. OBJECTIVES This study focuses on advances in various ADC components to improve both the efficacy and safety of these agents, and includes the analysis of several novel ADC formats. This work assesses whether the unique features of VHHs-such as their small size, enhanced tissue penetration, stability, and cost-effectiveness-make them a viable alternative to conventional antibodies for ADCs and reviews their current status in ADC development. METHODS Following PRISMA guidelines, this study focused on VHHs as components of ADCs, examining advancements and prospects from 1 January 2014 to 30 June 2024. Searches were conducted in PubMed, Cochrane Library, ScienceDirect and LILACS using specific terms related to ADCs and single-domain antibodies. Retrieved articles were rigorously evaluated, excluding duplicates and non-qualifying studies. The selected peer-reviewed articles were analyzed for quality and synthesized to highlight advancements, methods, payloads, and future directions in ADC research. RESULTS VHHs offer significant advantages for drug conjugation over conventional antibodies due to their smaller size and structure, which enhance tissue penetration and enable access to previously inaccessible epitopes. Their superior stability, solubility, and manufacturability facilitate cost-effective production and expand the range of targetable antigens. Additionally, some VHHs can naturally cross the blood-brain barrier or be easily modified to favor their penetration, making them promising for targeting brain tumors and metastases. Although no VHH-drug conjugates (nADC or nanoADC) are currently in the clinical arena, preclinical studies have explored various conjugation methods and linkers. CONCLUSIONS While ADCs are transforming cancer treatment, their unique mechanisms and associated toxicities challenge traditional views on bioavailability and vary with different tumor types. Severe toxicities, often linked to compound instability, off-target effects, and nonspecific blood cell interactions, highlight the need for better understanding. Conversely, the rapid distribution, tumor penetration, and clearance of VHHs could be advantageous, potentially reducing toxicity by minimizing prolonged exposure. These attributes make single-domain antibodies strong candidates for the next generation of ADCs, potentially enhancing both efficacy and safety.
Collapse
Affiliation(s)
- Víctor Manuel Medina Pérez
- Molecular Oncology Group, Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain;
| | - Marta Baselga
- Molecular Oncology Group, Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain;
| | - Alberto J. Schuhmacher
- Molecular Oncology Group, Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain;
- Fundación Aragonesa para la Investigación y el Desarrollo (ARAID), 50018 Zaragoza, Spain
| |
Collapse
|
6
|
Zhang B, Wang M, Sun L, Liu J, Yin L, Xia M, Zhang L, Liu X, Cheng Y. Recent Advances in Targeted Cancer Therapy: Are PDCs the Next Generation of ADCs? J Med Chem 2024; 67:11469-11487. [PMID: 38980167 DOI: 10.1021/acs.jmedchem.4c00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Antibody-drug conjugates (ADCs) comprise antibodies, cytotoxic payloads, and linkers, which can integrate the advantages of antibodies and small molecule drugs to achieve targeted cancer treatment. However, ADCs also have some shortcomings, such as non-negligible drug resistance, a low therapeutic index, and payload-related toxicity. Many studies have focused on changing the composition of ADCs, and some have even further extended the concept and types of targeted conjugated drugs by replacing the targeted antibodies in ADCs with peptides, revolutionarily introducing peptide-drug conjugates (PDCs). This Perspective summarizes the current research status of ADCs and PDCs and highlights the structural innovations of ADC components. In particular, PDCs are regarded as the next generation of potential targeted drugs after ADCs, and the current challenges of PDCs are analyzed. Our aim is to offer fresh insights for the efficient design and expedited development of innovative targeted conjugated drugs.
Collapse
Affiliation(s)
- Baochen Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, P.R. China
| | - Mo Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, P.R. China
| | - Li Sun
- School of Chemical Technology, Shijiazhuang University, Shijiazhuang 050035, P.R. China
| | - Jiawei Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, P.R. China
| | - Libinghan Yin
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, P.R. China
| | - Mingjing Xia
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, P.R. China
| | - Ling Zhang
- School of Chemical Technology, Shijiazhuang University, Shijiazhuang 050035, P.R. China
| | - Xifu Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, P.R. China
| | - Yu Cheng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, P.R. China
| |
Collapse
|
7
|
Chis AA, Dobrea CM, Arseniu AM, Frum A, Rus LL, Cormos G, Georgescu C, Morgovan C, Butuca A, Gligor FG, Vonica-Tincu AL. Antibody-Drug Conjugates-Evolution and Perspectives. Int J Mol Sci 2024; 25:6969. [PMID: 39000079 PMCID: PMC11241239 DOI: 10.3390/ijms25136969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Antineoplastic therapy is one of the main research themes of this century. Modern approaches have been implemented to target and heighten the effect of cytostatic drugs on tumors and diminish their general/unspecific toxicity. In this context, antibody-drug conjugates (ADCs) represent a promising and successful strategy. The aim of this review was to assess different aspects regarding ADCs. They were presented from a chemical and a pharmacological perspective and aspects like structure, conjugation and development particularities alongside effects, clinical trials, safety issues and perspectives and challenges for future use of these drugs were discussed. Representative examples include but are not limited to the following main structural components of ADCs: monoclonal antibodies (trastuzumab, brentuximab), linkers (pH-sensitive, reduction-sensitive, peptide-based, phosphate-based, and others), and payloads (doxorubicin, emtansine, ravtansine, calicheamicin). Regarding pharmacotherapy success, the high effectiveness expectation associated with ADC treatment is supported by the large number of ongoing clinical trials. Major aspects such as development strategies are first discussed, advantages and disadvantages, safety and efficacy, offering a retrospective insight on the subject. The second part of the review is prospective, focusing on various plans to overcome the previously identified difficulties.
Collapse
Affiliation(s)
| | | | - Anca Maria Arseniu
- Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550169 Sibiu, Romania
| | - Adina Frum
- Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550169 Sibiu, Romania
| | - Luca-Liviu Rus
- Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550169 Sibiu, Romania
| | - Gabriela Cormos
- Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550169 Sibiu, Romania
| | - Cecilia Georgescu
- Faculty of Agriculture Science, Food Industry and Environmental Protection, "Lucian Blaga" University of Sibiu, 550012 Sibiu, Romania
| | - Claudiu Morgovan
- Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550169 Sibiu, Romania
| | - Anca Butuca
- Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550169 Sibiu, Romania
| | | | | |
Collapse
|
8
|
Koukoutzeli C, Trapani D, Ascione L, Kotteas E, Marra A, Criscitiello C, Curigliano G. Use of Antibody-Drug Conjugates in the Early Setting of Breast Cancer. Clin Med Insights Oncol 2024; 18:11795549241260418. [PMID: 38894701 PMCID: PMC11185006 DOI: 10.1177/11795549241260418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Antibody-drug conjugates (ADCs) are anticancer agents with the capacity to selectively deliver their payloads to cancer cells. Antibody-drug conjugates consist of a monoclonal antibody backbone connected by a linker to cytotoxic payloads. Antibody-drug conjugate effect occurs either by directly targeting cancer cells via membrane antigen or through "bystander effect." Antibody-drug conjugates have demonstrated efficacy against various types of tumors, including breast cancer. Ado-trastuzumab emtansine is presently the only approved ADC for the treatment of breast cancer in the early setting, while several ADCs are now approved for metastatic breast cancer. Due to the transformative impact that several ADCs have reported in the setting of advanced breast cancer, researchers are now testing more of such compounds in the early setting, to portend benefits to patients through highly potent anticancer drugs. Ongoing trials hold the potential to transform treatment protocols for early breast cancer in the near future. These trials are aiming at evaluating different treatment modulation approaches, as informed by breast cancer risk of recurrence, including toward treatment de-escalation. Efforts are provided in ongoing clinical trials to identify the patients who will benefit most, to pursue paradigms of precision medicine with the novel ADCs. This review focuses on the potential role of ADCs in early breast cancer, providing an overview of the latest progress in their development and how they are implemented in ongoing clinical trials.
Collapse
Affiliation(s)
- Chrysanthi Koukoutzeli
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
| | - Dario Trapani
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology (DIPO), University of Milan, Milan, Italy
| | - Liliana Ascione
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology (DIPO), University of Milan, Milan, Italy
| | - Elias Kotteas
- Oncology Unit, 3rd Department of Internal Medicine, Sotiria General Hospital and Athens School of Medicine, Athens, Greece
| | - Antonio Marra
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
| | - Carmen Criscitiello
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology (DIPO), University of Milan, Milan, Italy
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology (DIPO), University of Milan, Milan, Italy
| |
Collapse
|
9
|
Phuna ZX, Kumar PA, Haroun E, Dutta D, Lim SH. Antibody-drug conjugates: Principles and opportunities. Life Sci 2024; 347:122676. [PMID: 38688384 DOI: 10.1016/j.lfs.2024.122676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/15/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Antibody-drug conjugates (ADCs) are immunoconjugates that combine the specificity of monoclonal antibodies with a cytotoxic agent. The most appealing aspects of ADCs include their potential additive or synergistic effects of the innate backbone antibody and cytotoxic effects of the payload on tumors without the severe toxic side effects often associated with traditional chemotherapy. Recent advances in identifying new targets with tumor-specific expression, along with improved bioactive payloads and novel linkers, have significantly expanded the scope and optimism for ADCs in cancer therapeutics. In this paper, we will first provide a brief overview of antibody specificity and the structure of ADCs. Next, we will discuss the mechanisms of action and the development of resistance to ADCs. Finally, we will explore opportunities for enhancing ADC efficacy, overcoming drug resistance, and offer future perspectives on leveraging ADCs to improve the outcome of ADC therapy for cancer treatment.
Collapse
Affiliation(s)
- Zhi Xin Phuna
- Research and Development, Medicovestor, Inc, New York City, NY, United States of America
| | - Prashanth Ashok Kumar
- Division of Hematology and Oncology, Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, United States of America
| | - Elio Haroun
- Division of Hematology and Oncology, Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, United States of America
| | - Dibyendu Dutta
- Division of Hematology and Oncology, Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, United States of America
| | - Seah H Lim
- Research and Development, Medicovestor, Inc, New York City, NY, United States of America; Division of Hematology and Oncology, Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, United States of America.
| |
Collapse
|
10
|
Huang Z, Braunstein Z, Chen J, Wei Y, Rao X, Dong L, Zhong J. Precision Medicine in Rheumatic Diseases: Unlocking the Potential of Antibody-Drug Conjugates. Pharmacol Rev 2024; 76:579-598. [PMID: 38622001 DOI: 10.1124/pharmrev.123.001084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/25/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024] Open
Abstract
In the era of precision medicine, antibody-drug conjugates (ADCs) have emerged as a cutting-edge therapeutic strategy. These innovative compounds combine the precision of monoclonal antibodies with the potent cell-killing or immune-modulating abilities of attached drug payloads. This unique strategy not only reduces off-target toxicity but also enhances the therapeutic effectiveness of drugs. Beyond their well established role in oncology, ADCs are now showing promising potential in addressing the unmet needs in the therapeutics of rheumatic diseases. Rheumatic diseases, a diverse group of chronic autoimmune diseases with varying etiologies, clinical presentations, and prognoses, often demand prolonged pharmacological interventions, creating a pressing need for novel, efficient, and low-risk treatment options. ADCs, with their ability to precisely target the immune components, have emerged as a novel therapeutic strategy in this context. This review will provide an overview of the core components and mechanisms behind ADCs, a summary of the latest clinical trials of ADCs for the treatment of rheumatic diseases, and a discussion of the challenges and future prospects faced by the development of next-generation ADCs. SIGNIFICANCE STATEMENT: There is a lack of efficient and low-risk targeted therapeutics for rheumatic diseases. Antibody-drug conjugates, a class of cutting-edge therapeutic drugs, have emerged as a promising targeted therapeutic strategy for rheumatic disease. Although there is limited literature summarizing the progress of antibody-drug conjugates in the field of rheumatic disease, updating the advancements in this area provides novel insights into the development of novel antirheumatic drugs.
Collapse
Affiliation(s)
- Zhiwen Huang
- Departments of Rheumatology and Immunology (Z.H., Y.W., L.D., J.Z.) and Cardiology (X.R.), Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Wexner Medical Center, The Ohio State University, Columbus, Ohio (Z.B.); Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China (J.C.); Key Laboratory of Vascular Aging (HUST), Ministry of Education, Wuhan, China (J.Z.); and Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z.)
| | - Zachary Braunstein
- Departments of Rheumatology and Immunology (Z.H., Y.W., L.D., J.Z.) and Cardiology (X.R.), Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Wexner Medical Center, The Ohio State University, Columbus, Ohio (Z.B.); Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China (J.C.); Key Laboratory of Vascular Aging (HUST), Ministry of Education, Wuhan, China (J.Z.); and Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z.)
| | - Jun Chen
- Departments of Rheumatology and Immunology (Z.H., Y.W., L.D., J.Z.) and Cardiology (X.R.), Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Wexner Medical Center, The Ohio State University, Columbus, Ohio (Z.B.); Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China (J.C.); Key Laboratory of Vascular Aging (HUST), Ministry of Education, Wuhan, China (J.Z.); and Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z.)
| | - Yingying Wei
- Departments of Rheumatology and Immunology (Z.H., Y.W., L.D., J.Z.) and Cardiology (X.R.), Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Wexner Medical Center, The Ohio State University, Columbus, Ohio (Z.B.); Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China (J.C.); Key Laboratory of Vascular Aging (HUST), Ministry of Education, Wuhan, China (J.Z.); and Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z.)
| | - Xiaoquan Rao
- Departments of Rheumatology and Immunology (Z.H., Y.W., L.D., J.Z.) and Cardiology (X.R.), Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Wexner Medical Center, The Ohio State University, Columbus, Ohio (Z.B.); Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China (J.C.); Key Laboratory of Vascular Aging (HUST), Ministry of Education, Wuhan, China (J.Z.); and Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z.)
| | - Lingli Dong
- Departments of Rheumatology and Immunology (Z.H., Y.W., L.D., J.Z.) and Cardiology (X.R.), Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Wexner Medical Center, The Ohio State University, Columbus, Ohio (Z.B.); Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China (J.C.); Key Laboratory of Vascular Aging (HUST), Ministry of Education, Wuhan, China (J.Z.); and Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z.)
| | - Jixin Zhong
- Departments of Rheumatology and Immunology (Z.H., Y.W., L.D., J.Z.) and Cardiology (X.R.), Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Wexner Medical Center, The Ohio State University, Columbus, Ohio (Z.B.); Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China (J.C.); Key Laboratory of Vascular Aging (HUST), Ministry of Education, Wuhan, China (J.Z.); and Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z.)
| |
Collapse
|
11
|
Kang Z, Jin Y, Yu H, Li S, Qi Y. Relative efficacy of antibody-drug conjugates and other anti-HER2 treatments on survival in HER2-positive advanced breast cancer: a systematic review and meta-analysis. BMC Cancer 2024; 24:708. [PMID: 38851684 PMCID: PMC11162572 DOI: 10.1186/s12885-024-12478-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/04/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Novel antibody-drug conjugates (ADCs) drugs present a promising anti-cancer treatment, although survival benefits for HER2-positive advanced breast cancer (BC) remain controversial. The aim of this meta-analysis was to evaluate the comparative effect of ADCs and other anti-HER2 therapy on progression-free survival (PFS) and overall survival (OS) for treatment of HER2-positive locally advanced or metastatic BC. METHODS Relevant randomized controlled trials (RCTs) were retrieved from five databases. The risk of bias was assessed with the Cochrane Collaboration's tool for RCTs by RevMan5.4 software. The hazard ratio (HR) and 95% confidence intervals (CIs) were extracted to evaluate the benefit of ADCs on PFS and OS in HER2-positive advanced BC by meta-analysis. RESULTS Meta-analysis of six RCTs with 3870 patients revealed that ADCs significantly improved PFS (HR: 0.63, 95% CI: 0.49-0.80, P = 0.0002) and OS (HR: 0.79, 95% CI: 0.72-0.86, P < 0.0001) of patients with HER2-positive locally advanced or metastatic BC. Subgroup analysis showed that PFS and OS were obviously prolonged for patients who previously received HER2-targeted therapy. Sensitivity analysis and publication bias suggested that the results were stable and reliable. CONCLUSION Statistically significant benefits for PFS and OS were observed with ADCs in HER2-positive locally advanced or metastatic BC, especially for those who received prior anti-HER2 treatment.
Collapse
Affiliation(s)
- Zian Kang
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, 110042, China
| | - Yuqing Jin
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Huihui Yu
- Department of Cancer Prevention and Control, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Su Li
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, 110042, China
| | - Yingjie Qi
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, 110042, China.
| |
Collapse
|
12
|
Mak SY, Chen S, Fong WJ, Choo A, Ho YS. A simple and highly sensitive LC-MS workflow for characterization and quantification of ADC cleavable payloads. Sci Rep 2024; 14:11018. [PMID: 38744902 PMCID: PMC11094190 DOI: 10.1038/s41598-024-61522-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
Antibody-drug conjugates (ADC) payloads are cleavable drugs that act as the warhead to exert an ADC's cytotoxic effects on cancer cells intracellularly. A simple and highly sensitive workflow is developed and validated for the simultaneous quantification of six ADC payloads, namely SN-38, MTX, DXd, MMAE, MMAF and Calicheamicin (CM). The workflow consists of a short and simple sample extraction using a methanol-ethanol mixture, followed by a fast liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. The results showed that well-validated linear response ranges of 0.4-100 nM for SN38, MTX and DXd, 0.04-100 nM for MMAE and MMAF, 0.4-1000 nM for CM were achieved in mouse serum. Recoveries for all six payloads at three different concentrations (low, medium and high) were more than 85%. An ultra-low sample volume of only 5 µL of serum is required due to the high sensitivity of the method. This validated method was successfully applied to a pharmacokinetic study to quantify MMAE in mouse serum samples.
Collapse
Affiliation(s)
- Shi Ya Mak
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Centros, Singapore, 138668, Singapore
| | - Shuwen Chen
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Centros, Singapore, 138668, Singapore
| | - Wey Jia Fong
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Centros, Singapore, 138668, Singapore
| | - Andre Choo
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Centros, Singapore, 138668, Singapore
| | - Ying Swan Ho
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Centros, Singapore, 138668, Singapore.
| |
Collapse
|
13
|
Morgovan C, Dobrea CM, Butuca A, Arseniu AM, Frum A, Rus LL, Chis AA, Juncan AM, Gligor FG, Georgescu C, Ghibu S, Vonica-Tincu AL. Safety Profile of the Trastuzumab-Based ADCs: Analysis of Real-World Data Registered in EudraVigilance. Biomedicines 2024; 12:953. [PMID: 38790915 PMCID: PMC11117560 DOI: 10.3390/biomedicines12050953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/09/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Trastuzumab (T) and tyrosine kinase inhibitors (TKIs) are among the first-line treatments recommended for HER2-positive breast cancer. More recently, antibody-drug conjugates (ADCs) such as trastuzumab deruxtecan (T-DXd) and trastuzumab emtansine (T-DM1) have been authorized, and they represent the second-line therapy in this type of cancer. The present study aimed to evaluate adverse drug reactions (ADRs) associated with T-based ADCs that were spontaneously reported in EudraVigilance-the European pharmacovigilance database. Out of 42,272 ADRs reported for currently approved ADCs on the market, 24% of ADRs were related to T-DM1, while 12% of ADRs were related to T-DXd. T-DM1 had a higher probability of reporting eye, ear and labyrinth, and cardiac and hepatobiliary ADRs, while T-DXd had a higher probability of reporting respiratory, thoracic and mediastinal, blood and lymphatic system, metabolism and nutrition, and gastrointestinal ADRs. The present research found that in terms of hematological disorders, T-DM1 and T-DXd had a higher probability of reporting ADRs than TKIs. Moreover, the data showed that T-DM1 seemed to have a higher risk of cardiotoxicity than T-DXd, while T-DXd had a higher probability of reporting metabolism and nutrition disorders than T-DM1.
Collapse
Affiliation(s)
- Claudiu Morgovan
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.); (A.B.); (A.M.A.); (A.F.); (L.L.R.); (A.A.C.); (A.M.J.); (F.G.G.); (A.L.V.-T.)
| | - Carmen Maximiliana Dobrea
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.); (A.B.); (A.M.A.); (A.F.); (L.L.R.); (A.A.C.); (A.M.J.); (F.G.G.); (A.L.V.-T.)
| | - Anca Butuca
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.); (A.B.); (A.M.A.); (A.F.); (L.L.R.); (A.A.C.); (A.M.J.); (F.G.G.); (A.L.V.-T.)
| | - Anca Maria Arseniu
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.); (A.B.); (A.M.A.); (A.F.); (L.L.R.); (A.A.C.); (A.M.J.); (F.G.G.); (A.L.V.-T.)
| | - Adina Frum
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.); (A.B.); (A.M.A.); (A.F.); (L.L.R.); (A.A.C.); (A.M.J.); (F.G.G.); (A.L.V.-T.)
| | - Luca Liviu Rus
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.); (A.B.); (A.M.A.); (A.F.); (L.L.R.); (A.A.C.); (A.M.J.); (F.G.G.); (A.L.V.-T.)
| | - Adriana Aurelia Chis
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.); (A.B.); (A.M.A.); (A.F.); (L.L.R.); (A.A.C.); (A.M.J.); (F.G.G.); (A.L.V.-T.)
| | - Anca Maria Juncan
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.); (A.B.); (A.M.A.); (A.F.); (L.L.R.); (A.A.C.); (A.M.J.); (F.G.G.); (A.L.V.-T.)
| | - Felicia Gabriela Gligor
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.); (A.B.); (A.M.A.); (A.F.); (L.L.R.); (A.A.C.); (A.M.J.); (F.G.G.); (A.L.V.-T.)
| | - Cecilia Georgescu
- Faculty of Agriculture Science, Food Industry and Environmental Protection, “Lucian Blaga” University of Sibiu, 550012 Sibiu, Romania;
| | - Steliana Ghibu
- Department of Pharmacology, Physiology and Pathophysiology, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Andreea Loredana Vonica-Tincu
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.); (A.B.); (A.M.A.); (A.F.); (L.L.R.); (A.A.C.); (A.M.J.); (F.G.G.); (A.L.V.-T.)
| |
Collapse
|
14
|
Huang Q, Ge Y, He Y, Wu J, Tong Y, Shang H, Liu X, Ba X, Xia D, Peng E, Chen Z, Tang K. The Application of Nanoparticles Targeting Cancer-Associated Fibroblasts. Int J Nanomedicine 2024; 19:3333-3365. [PMID: 38617796 PMCID: PMC11012801 DOI: 10.2147/ijn.s447350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/23/2024] [Indexed: 04/16/2024] Open
Abstract
Cancer-associated fibroblasts (CAF) are the most abundant stromal cells in the tumor microenvironment (TME), especially in solid tumors. It has been confirmed that it can not only interact with tumor cells to promote cancer progression and metastasis, but also affect the infiltration and function of immune cells to induce chemotherapy and immunotherapy resistance. So, targeting CAF has been considered an important method in cancer treatment. The rapid development of nanotechnology provides a good perspective to improve the efficiency of targeting CAF. At present, more and more researches have focused on the application of nanoparticles (NPs) in targeting CAF. These studies explored the effects of different types of NPs on CAF and the multifunctional nanomedicines that can eliminate CAF are able to enhance the EPR effect which facilitate the anti-tumor effect of themselves. There also exist amounts of studies focusing on using NPs to inhibit the activation and function of CAF to improve the therapeutic efficacy. The application of NPs targeting CAF needs to be based on an understanding of CAF biology. Therefore, in this review, we first summarized the latest progress of CAF biology, then discussed the types of CAF-targeting NPs and the main strategies in the current. The aim is to elucidate the application of NPs in targeting CAF and provide new insights for engineering nanomedicine to enhance immune response in cancer treatment.
Collapse
Affiliation(s)
- Qiu Huang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Yue Ge
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Yu He
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Jian Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Yonghua Tong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Haojie Shang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Xiao Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Xiaozhuo Ba
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Ding Xia
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Ejun Peng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| |
Collapse
|
15
|
Yadav P, Singh Y, Chauhan D, Yadav PK, Kedar AS, Tiwari AK, Shah AA, Gayen JR, Chourasia MK. Development and approval of novel injectables: enhancing therapeutic innovations. Expert Opin Drug Deliv 2024; 21:639-662. [PMID: 38703363 DOI: 10.1080/17425247.2024.2351987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/02/2024] [Indexed: 05/06/2024]
Abstract
INTRODUCTION Novel injectables possess applications in both local and systemic therapeutics delivery. The advancement in utilized materials for the construction of complex injectables has tremendously upgraded their safety and efficacy. AREAS COVERED This review focuses on various strategies to produce novel injectables, including oily dispersions, in situ forming implants, injectable suspensions, microspheres, liposomes, and antibody-drug conjugates. We herein present a detailed description of complex injectable technologies and their related drug formulations permitted for clinical use by the United States Food and Drug Administration (USFDA). The excipients used, their purpose and the challenges faced during manufacturing such formulations have been critically discussed. EXPERT OPINION Novel injectables can deliver therapeutic agents in a controlled way at the desired site. However, several challenges persist with respect to their genericization. Astronomical costs incurred by innovator companies during product development, complexity of the product itself, supply limitations with respect to raw materials, intricate manufacturing processes, patent evergreening, product life-cycle extensions, relatively few and protracted generic approvals contribute to the exorbitant prices and access crunch. Moreover, regulatory guidance are grossly underdeveloped and significant efforts have to be directed toward development of effective characterization techniques.
Collapse
Affiliation(s)
- Pooja Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Yuvraj Singh
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Divya Chauhan
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pavan K Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ashwini S Kedar
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Amrendra K Tiwari
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Aarti Abhishek Shah
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Jiaur R Gayen
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Manish K Chourasia
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
16
|
McPherson MJ, Hobson AD, Hernandez A, Marvin CC, Waegell W, Goess C, Oh JZ, Shi D, Hayes ME, Wang L, Wang L, Schmidt D, Wang Z, Pitney V, McCarthy K, Jia Y, Wang C, Kang BN, Bryant S, Mathieu S, Ruzek M, Parmentier J, D'Cunha RR, Pang Y, Phillips L, Brown NJ, Xu J, Graff C, Tian Y, Longenecker KL, Qiu W, Zhu H, Liu W, Zheng P, Bi Y, Stoffel R. An anti-TNF-glucocorticoid receptor modulator antibody-drug conjugate is efficacious against immune-mediated inflammatory diseases. Sci Transl Med 2024; 16:eadd8936. [PMID: 38507467 DOI: 10.1126/scitranslmed.add8936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 02/27/2024] [Indexed: 03/22/2024]
Abstract
Glucocorticoids (GCs) are efficacious drugs used for treating many inflammatory diseases, but the dose and duration of administration are limited because of severe side effects. We therefore sought to identify an approach to selectively target GCs to inflamed tissue. Previous work identified that anti-tumor necrosis factor (TNF) antibodies that bind to transmembrane TNF undergo internalization; therefore, an anti-TNF antibody-drug conjugate (ADC) would be mechanistically similar, where lysosomal catabolism could release a GC receptor modulator (GRM) payload to dampen immune cell activity. Consequently, we have generated an anti-TNF-GRM ADC with the aim of inhibiting pro-inflammatory cytokine production from stimulated human immune cells. In an acute mouse model of contact hypersensitivity, a murine surrogate anti-TNF-GRM ADC inhibited inflammatory responses with minimal effect on systemic GC biomarkers. In addition, in a mouse model of collagen-induced arthritis, single-dose administration of the ADC, delivered at disease onset, was able to completely inhibit arthritis for greater than 30 days, whereas an anti-TNF monoclonal antibody only partially inhibited disease. ADC treatment at the peak of disease was also able to attenuate the arthritic phenotype. Clinical data for a human anti-TNF-GRM ADC (ABBV-3373) from a single ascending dose phase 1 study in healthy volunteers demonstrated antibody-like pharmacokinetic profiles and a lack of impact on serum cortisol concentrations at predicted therapeutic doses. These data suggest that an anti-TNF-GRM ADC may provide improved efficacy beyond anti-TNF alone in immune mediated diseases while minimizing systemic side effects associated with standard GC treatment.
Collapse
Affiliation(s)
| | - Adrian D Hobson
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Axel Hernandez
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | | | - Wendy Waegell
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Christian Goess
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Jason Z Oh
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Dan Shi
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Martin E Hayes
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Lu Wang
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Lu Wang
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Diana Schmidt
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, USA
| | - Zhi Wang
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, USA
| | - Victoria Pitney
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | | | - Ying Jia
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Ce Wang
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Bit Na Kang
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Shaughn Bryant
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Suzanne Mathieu
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Melanie Ruzek
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Julie Parmentier
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | | | - Yinuo Pang
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, USA
| | - Lucy Phillips
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Nathan J Brown
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Jianwen Xu
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Candace Graff
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Yu Tian
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | | | - Wei Qiu
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, USA
| | - Haizhong Zhu
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, USA
| | - Wei Liu
- AbbVie Bay Area, 1000 Gateway Boulevard, South San Francisco, CA 94080, USA
| | - Pingping Zheng
- AbbVie Bay Area, 1000 Gateway Boulevard, South San Francisco, CA 94080, USA
| | - Yingtao Bi
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Robert Stoffel
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| |
Collapse
|
17
|
Zhang M, Zuo Y, Chen S, Li Y, Xing Y, Yang L, Wang H, Guo R. Antibody-drug conjugates in urothelial carcinoma: scientometric analysis and clinical trials analysis. Front Oncol 2024; 14:1323366. [PMID: 38665947 PMCID: PMC11044263 DOI: 10.3389/fonc.2024.1323366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/12/2024] [Indexed: 04/28/2024] Open
Abstract
In 2020, bladder cancer, which commonly presents as urothelial carcinoma, became the 10th most common malignancy. For patients with metastatic urothelial carcinoma, the standard first-line treatment remains platinum-based chemotherapy, with immunotherapy serving as an alternative in cases of programmed death ligand 1 expression. However, treatment options become limited upon resistance to platinum and programmed death 1 or programmed death ligand 1 agents. Since the FDA's approval of Enfortumab Vedotin and Sacituzumab Govitecan, the therapeutic landscape has expanded, heralding a shift towards antibody-drug conjugates as potential first-line therapies. Our review employed a robust scientometric approach to assess 475 publications on antibody-drug conjugates in urothelial carcinoma, revealing a surge in related studies since 2018, predominantly led by U.S. institutions. Moreover, 89 clinical trials were examined, with 36 in Phase II and 13 in Phase III, exploring antibody-drug conjugates as both monotherapies and in combination with other agents. Promisingly, novel targets like HER-2 and EpCAM exhibit substantial therapeutic potential. These findings affirm the increasing significance of antibody-drug conjugates in urothelial carcinoma treatment, transitioning them from posterior-line to frontline therapies. Future research is poised to focus on new therapeutic targets, combination therapy optimization, treatment personalization, exploration of double antibody-coupled drugs, and strategies to overcome drug resistance.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Jilin University, Changchun, China
| | - Yuanye Zuo
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Siyi Chen
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Yaonan Li
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Yang Xing
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Lei Yang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Hong Wang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Rui Guo
- Department of Clinical Laboratory, First Affiliated Hospital of Jilin University, Changchun, China
| |
Collapse
|
18
|
Tsuchikama K, Anami Y, Ha SYY, Yamazaki CM. Exploring the next generation of antibody-drug conjugates. Nat Rev Clin Oncol 2024; 21:203-223. [PMID: 38191923 DOI: 10.1038/s41571-023-00850-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/10/2024]
Abstract
Antibody-drug conjugates (ADCs) are a promising cancer treatment modality that enables the selective delivery of highly cytotoxic payloads to tumours. However, realizing the full potential of this platform necessitates innovative molecular designs to tackle several clinical challenges such as drug resistance, tumour heterogeneity and treatment-related adverse effects. Several emerging ADC formats exist, including bispecific ADCs, conditionally active ADCs (also known as probody-drug conjugates), immune-stimulating ADCs, protein-degrader ADCs and dual-drug ADCs, and each offers unique capabilities for tackling these various challenges. For example, probody-drug conjugates can enhance tumour specificity, whereas bispecific ADCs and dual-drug ADCs can address resistance and heterogeneity with enhanced activity. The incorporation of immune-stimulating and protein-degrader ADCs, which have distinct mechanisms of action, into existing treatment strategies could enable multimodal cancer treatment. Despite the promising outlook, the importance of patient stratification and biomarker identification cannot be overstated for these emerging ADCs, as these factors are crucial to identify patients who are most likely to derive benefit. As we continue to deepen our understanding of tumour biology and refine ADC design, we will edge closer to developing truly effective and safe ADCs for patients with treatment-refractory cancers. In this Review, we highlight advances in each ADC component (the monoclonal antibody, payload, linker and conjugation chemistry) and provide more-detailed discussions on selected examples of emerging novel ADCs of each format, enabled by engineering of one or more of these components.
Collapse
Affiliation(s)
- Kyoji Tsuchikama
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Yasuaki Anami
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Summer Y Y Ha
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Chisato M Yamazaki
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
19
|
Li M, Zhao X, Yu C, Wang L. Antibody-Drug Conjugate Overview: a State-of-the-art Manufacturing Process and Control Strategy. Pharm Res 2024; 41:419-440. [PMID: 38366236 DOI: 10.1007/s11095-023-03649-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/16/2023] [Indexed: 02/18/2024]
Abstract
Antibody-drug conjugates (ADCs) comprise an antibody, linker, and drug, which direct their highly potent small molecule drugs to target tumor cells via specific binding between the antibody and surface antigens. The antibody, linker, and drug should be properly designed or selected to achieve the desired efficacy while minimizing off-target toxicity. With a unique and complex structure, there is inherent heterogeneity introduced by product-related variations and the manufacturing process. Here this review primarily covers recent key advances in ADC history, clinical development status, molecule design, manufacturing processes, and quality control. The manufacturing process, especially the conjugation process, should be carefully developed, characterized, validated, and controlled throughout its lifecycle. Quality control is another key element to ensure product quality and patient safety. A patient-centric strategy has been well recognized and adopted by the pharmaceutical industry for therapeutic proteins, and has been successfully implemented for ADCs as well, to ensure that ADC products maintain their quality until the end of their shelf life. Deep product understanding and process knowledge defines attribute testing strategies (ATS). Quality by design (QbD) is a powerful approach for process and product development, and for defining an overall control strategy. Finally, we summarize the current challenges on ADC development and provide some perspectives that may help to give related directions and trigger more cross-functional research to surmount those challenges.
Collapse
Affiliation(s)
- Meng Li
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Xueyu Zhao
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Chuanfei Yu
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Lan Wang
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, Beijing, People's Republic of China.
| |
Collapse
|
20
|
Zhou L, Lu Y, Liu W, Wang S, Wang L, Zheng P, Zi G, Liu H, Liu W, Wei S. Drug conjugates for the treatment of lung cancer: from drug discovery to clinical practice. Exp Hematol Oncol 2024; 13:26. [PMID: 38429828 PMCID: PMC10908151 DOI: 10.1186/s40164-024-00493-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024] Open
Abstract
A drug conjugate consists of a cytotoxic drug bound via a linker to a targeted ligand, allowing the targeted delivery of the drug to one or more tumor sites. This approach simultaneously reduces drug toxicity and increases efficacy, with a powerful combination of efficient killing and precise targeting. Antibody‒drug conjugates (ADCs) are the best-known type of drug conjugate, combining the specificity of antibodies with the cytotoxicity of chemotherapeutic drugs to reduce adverse reactions by preferentially targeting the payload to the tumor. The structure of ADCs has also provided inspiration for the development of additional drug conjugates. In recent years, drug conjugates such as ADCs, peptide‒drug conjugates (PDCs) and radionuclide drug conjugates (RDCs) have been approved by the Food and Drug Administration (FDA). The scope and application of drug conjugates have been expanding, including combination therapy and precise drug delivery, and a variety of new conjugation technology concepts have emerged. Additionally, new conjugation technology-based drugs have been developed in industry. In addition to chemotherapy, targeted therapy and immunotherapy, drug conjugate therapy has undergone continuous development and made significant progress in treating lung cancer in recent years, offering a promising strategy for the treatment of this disease. In this review, we discuss recent advances in the use of drug conjugates for lung cancer treatment, including structure-based drug design, mechanisms of action, clinical trials, and side effects. Furthermore, challenges, potential approaches and future prospects are presented.
Collapse
Affiliation(s)
- Ling Zhou
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunlong Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wei Liu
- Department of Geriatrics, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shanglong Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lingling Wang
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengdou Zheng
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guisha Zi
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030000, China.
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030000, China.
| |
Collapse
|
21
|
Sikora-Kupis B, Domański P, Fortuniak W, Kruczyk B, Staneta S, Piętak M, Mydlak A, Demkow T, Dumnicka P, Kucharz J. First experience in treating advanced urothelial cancer with enfortumab vedotin. Single-centre retrospective study of patients qualified for a rescue access procedure. Contemp Oncol (Pozn) 2024; 27:224-229. [PMID: 38405211 PMCID: PMC10883191 DOI: 10.5114/wo.2023.134751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 12/31/2023] [Indexed: 02/27/2024] Open
Abstract
Introduction Urothelial carcinoma is the most common type of urinary tract malignancy. Current treatment options, including platinum-based chemotherapy or immunotherapy, present significant challenges, ranging from limited efficacy to severe toxicities. Recent developments in antibody-drug conjugates (ADC), such as enfortumab vedotin (EV), promise to significantly improve overall survival. The study aims to evaluate the efficacy and tolerability of EV. In addition, we highlight the observed benefits of next-line treatment after progression. Material and methods This retrospective study involved 16 patients with advanced urothelial cancer treated with EV at the Department of Genitourinary Oncology, Maria Skłodowska- Curie National Research Institute of Oncology between November 2022 and November 2023. The study evaluated patients' medical history, response to EV treatment, and side effects. Notably, the study included patients who had already exhausted standard treatment options and who were treated with EV through a rescue access procedure. Results Partial response was observed in 4 out of 9 (44%) patients with available imaging. Common terminology criteria for adverse events (AE) grade 3 and 4 were observed in 3 out of 16 patients, which subsequently required dose reduction. Conclusions Enfortumab vedotin demonstrates effectiveness in real-world settings in treating advanced urothelial cancer. Proper management of AE in experienced centres may further prolong survival. Personalized treatment and the development of new ADC represent the future for improved patient outcomes.
Collapse
Affiliation(s)
- Bożena Sikora-Kupis
- Department of Uro-Oncology, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Piotr Domański
- Department of Uro-Oncology, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- Department of Experimental Immunotherapy, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Weronika Fortuniak
- Department of Uro-Oncology, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Barbara Kruczyk
- Department of Uro-Oncology, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Szymon Staneta
- Department of Uro-Oncology, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Mateusz Piętak
- Department of Uro-Oncology, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Anna Mydlak
- Department of Head and Neck Oncology, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Tomasz Demkow
- Department of Uro-Oncology, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Paulina Dumnicka
- Chair of Biochemistry, Jagiellonian University Medical College, Kraków, Poland
| | - Jakub Kucharz
- Department of Uro-Oncology, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| |
Collapse
|
22
|
Mező G, Gomena J, Ranđelović I, Dókus EL, Kiss K, Pethő L, Schuster S, Vári B, Vári-Mező D, Lajkó E, Polgár L, Kőhidai L, Tóvári J, Szabó I. Oxime-Linked Peptide-Daunomycin Conjugates as Good Tools for Selection of Suitable Homing Devices in Targeted Tumor Therapy: An Overview. Int J Mol Sci 2024; 25:1864. [PMID: 38339141 PMCID: PMC10855781 DOI: 10.3390/ijms25031864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Chemotherapy is still one of the main therapeutic approaches in cancer therapy. Nevertheless, its poor selectivity causes severe toxic side effects that, together with the development of drug resistance in tumor cells, results in a limitation for its application. Tumor-targeted drug delivery is a possible choice to overcome these drawbacks. As well as monoclonal antibodies, peptides are promising targeting moieties for drug delivery. However, the development of peptide-drug conjugates (PDCs) is still a big challenge. The main reason is that the conjugates have to be stable in circulation, but the drug or its active metabolite should be released efficiently in the tumor cells. For this purpose, suitable linker systems are needed that connect the drug molecule with the homing peptide. The applied linker systems are commonly categorized as cleavable and non-cleavable linkers. Both the groups possess advantages and disadvantages that are summarized briefly in this manuscript. Moreover, in this review paper, we highlight the benefit of oxime-linked anthracycline-peptide conjugates in the development of PDCs. For instance, straightforward synthesis as well as a conjugation reaction proceed in excellent yields, and the autofluorescence of anthracyclines provides a good tool to select the appropriate homing peptides. Furthermore, we demonstrate that these conjugates can be used properly in in vivo studies. The results indicate that the oxime-linked PDCs are potential candidates for targeted tumor therapy.
Collapse
Affiliation(s)
- Gábor Mező
- HUN-REN-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary; (J.G.); (E.L.D.); (L.P.); (S.S.); (D.V.-M.); (I.S.)
- Institute of Chemistry, ELTE, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Jacopo Gomena
- HUN-REN-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary; (J.G.); (E.L.D.); (L.P.); (S.S.); (D.V.-M.); (I.S.)
- Institute of Chemistry, ELTE, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Ivan Ranđelović
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122 Budapest, Hungary; (I.R.); (B.V.); (J.T.)
| | - Endre Levente Dókus
- HUN-REN-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary; (J.G.); (E.L.D.); (L.P.); (S.S.); (D.V.-M.); (I.S.)
| | - Krisztina Kiss
- HUN-REN-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary; (J.G.); (E.L.D.); (L.P.); (S.S.); (D.V.-M.); (I.S.)
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Hungary
| | - Lilla Pethő
- HUN-REN-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary; (J.G.); (E.L.D.); (L.P.); (S.S.); (D.V.-M.); (I.S.)
| | - Sabine Schuster
- HUN-REN-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary; (J.G.); (E.L.D.); (L.P.); (S.S.); (D.V.-M.); (I.S.)
- Institute of Chemistry, ELTE, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Balázs Vári
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122 Budapest, Hungary; (I.R.); (B.V.); (J.T.)
- School of Ph.D. Studies, Doctoral School of Pathological Sciences, Semmelweis University, 1085 Budapest, Hungary
| | - Diána Vári-Mező
- HUN-REN-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary; (J.G.); (E.L.D.); (L.P.); (S.S.); (D.V.-M.); (I.S.)
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122 Budapest, Hungary; (I.R.); (B.V.); (J.T.)
- School of Ph.D. Studies, Doctoral School of Pathological Sciences, Semmelweis University, 1085 Budapest, Hungary
| | - Eszter Lajkó
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1089 Budapest, Hungary; (E.L.); (L.P.); (L.K.)
| | - Lívia Polgár
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1089 Budapest, Hungary; (E.L.); (L.P.); (L.K.)
| | - László Kőhidai
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1089 Budapest, Hungary; (E.L.); (L.P.); (L.K.)
| | - József Tóvári
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122 Budapest, Hungary; (I.R.); (B.V.); (J.T.)
- School of Ph.D. Studies, Doctoral School of Pathological Sciences, Semmelweis University, 1085 Budapest, Hungary
| | - Ildikó Szabó
- HUN-REN-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary; (J.G.); (E.L.D.); (L.P.); (S.S.); (D.V.-M.); (I.S.)
| |
Collapse
|
23
|
Zhao Q, Zong H, Zhu P, Su C, Tang W, Chen Z, Jin S. Crosstalk between colorectal CSCs and immune cells in tumorigenesis, and strategies for targeting colorectal CSCs. Exp Hematol Oncol 2024; 13:6. [PMID: 38254219 PMCID: PMC10802076 DOI: 10.1186/s40164-024-00474-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Cancer immunotherapy has emerged as a promising strategy in the treatment of colorectal cancer, and relapse after tumor immunotherapy has attracted increasing attention. Cancer stem cells (CSCs), a small subset of tumor cells with self-renewal and differentiation capacities, are resistant to traditional therapies such as radiotherapy and chemotherapy. Recently, CSCs have been proven to be the cells driving tumor relapse after immunotherapy. However, the mutual interactions between CSCs and cancer niche immune cells are largely uncharacterized. In this review, we focus on colorectal CSCs, CSC-immune cell interactions and CSC-based immunotherapy. Colorectal CSCs are characterized by robust expression of surface markers such as CD44, CD133 and Lgr5; hyperactivation of stemness-related signaling pathways, such as the Wnt/β-catenin, Hippo/Yap1, Jak/Stat and Notch pathways; and disordered epigenetic modifications, including DNA methylation, histone modification, chromatin remodeling, and noncoding RNA action. Moreover, colorectal CSCs express abnormal levels of immune-related genes such as MHC and immune checkpoint molecules and mutually interact with cancer niche cells in multiple tumorigenesis-related processes, including tumor initiation, maintenance, metastasis and drug resistance. To date, many therapies targeting CSCs have been evaluated, including monoclonal antibodies, antibody‒drug conjugates, bispecific antibodies, tumor vaccines adoptive cell therapy, and small molecule inhibitors. With the development of CSC-/niche-targeting technology, as well as the integration of multidisciplinary studies, novel therapies that eliminate CSCs and reverse their immunosuppressive microenvironment are expected to be developed for the treatment of solid tumors, including colorectal cancer.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hong Zong
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Pingping Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chang Su
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Wenxue Tang
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jing‑ba Road, Zhengzhou, 450014, China.
| | - Zhenzhen Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Shuiling Jin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
24
|
Rao M, Murali S, Amores D, Yu F, Tsourkas A. Exploring the Sensitivity of Antibody-Drug Conjugate Efficacy to the Selection of Payload, Antibody, and Cell line. Bioconjug Chem 2024; 35:115-124. [PMID: 38173338 PMCID: PMC10872414 DOI: 10.1021/acs.bioconjchem.3c00537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Antibody-drug conjugates (ADCs) make up a growing class of targeted therapeutics with important applications in cancer treatment. ADCs are highly modular in nature and thus can be engineered to target any cancer type, but their efficacy is strongly influenced by the specific choice of payload, antibody, and target cell. Considering the number of possible antibody-payload combinations, ADC development would benefit from an efficient method to narrow the number of ADC compositions to those with the highest and most universal potency prior to assessing pharmacokinetics and pharmacodynamics in animal models. To facilitate the identification of optimal ADC compositions, we describe the use of photoreactive antibody-binding domain-drug conjugates (known commercially as oYo-Link) to enable the site-specific labeling of off-the-shelf antibodies. This approach allows for the rapid generation of ADCs with a drug-to-antibody ratio of ∼2 with no subsequent purification required. As a demonstration of this approach, ADCs were generated with different combinations of tubulin-inhibitor drugs (DM1, DM4, VcMMAE, and VcMMAF) and anti-EGFR antibodies (cetuximab, panitumumab, anti-EGFR clone 425, and anti-EGFR clone 528) and were delivered to three EGFR-expressing cell lines (A431, A549, and MDA-MB-231). Real-time cytolysis assays indicated that the most effective antibody varied based on the choice of cell line: cetuximab was most potent against A431 cells, while 425 and 528 led to the greatest cytotoxicity against A549 and MDA-MB-231 cells. These results did not correlate with differences in measured anti-EGFR binding affinity as cetuximab had the highest affinity across all three cell lines, while 425 and 528 had the lowest affinities for all three cell lines. Panitumumab, which had the second-highest anti-EGFR affinity, exhibited the least effective cytolysis across A431, A549, and MDA-MB-231 cells. By demonstrating that ADC potency toward a given target is dependent on both the antibody and drug chosen, these findings can guide the selection of ADCs for further in vivo analysis.
Collapse
Affiliation(s)
- Mara Rao
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104 USA
| | - Shruthi Murali
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104 USA
| | | | - Feifan Yu
- AlphaThera, Inc, Philadelphia, Pennsylvania, 19146 USA
| | - Andrew Tsourkas
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104 USA
| |
Collapse
|
25
|
Kumari S, Raj S, Babu MA, Bhatti GK, Bhatti JS. Antibody-drug conjugates in cancer therapy: innovations, challenges, and future directions. Arch Pharm Res 2024; 47:40-65. [PMID: 38153656 DOI: 10.1007/s12272-023-01479-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
The emergence of antibody-drug conjugates (ADCs) as a potential therapeutic avenue in cancer treatment has garnered significant attention. By combining the selective specificity of monoclonal antibodies with the cytotoxicity of drug molecules, ADCs aim to increase the therapeutic index, selectively targeting cancer cells while minimizing systemic toxicity. Various ADCs have been licensed for clinical usage, with ongoing research paving the way for additional options. However, the manufacture of ADCs faces several challenges. These include identifying suitable target antigens, enhancing antibodies, linkers, and payloads, and managing resistance mechanisms and side effects. This review focuses on the strategies to overcome these hurdles, such as site-specific conjugation techniques, novel antibody formats, and combination therapy. Our focus lies on current advancements in antibody engineering, linker technology, and cytotoxic payloads while addressing the challenges associated with ADC development. Furthermore, we explore the future potential of personalized medicine, leveraging individual patients' molecular profiles, to propel ADC treatments forward. As our understanding of the molecular mechanisms driving cancer progression continues to expand, we anticipate the development of new ADCs that offer more effective and personalized therapeutic options for cancer patients.
Collapse
Affiliation(s)
- Shivangi Kumari
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Sonam Raj
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P., India
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| |
Collapse
|
26
|
Wu H, Ding X, Chen Y, Cai Y, Yang Z, Jin J. EGFR-targeted humanized single chain antibody fragment functionalized silica nanoparticles for precision therapy of cancer. Int J Biol Macromol 2023; 253:127538. [PMID: 37866562 DOI: 10.1016/j.ijbiomac.2023.127538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
The combination of highly specific targeting ability and potent killing effect has made antibody-drug conjugates (ADCs) a popular area of focus in the development of anti-cancer drugs. However, the large molecular weight of IgG antibodies (∼ 150 kDa) often faces challenges in penetrating capillaries and stroma in tumor tissue. Moreover, when the drug-antibody ratio (DAR) is too low (DAR < 2) or too high (DAR > 6) it decreases the effectiveness of the ADC and further increases the potential for aggregation, overall clearance of the early system payload, and release rate. In this study, an EGFR-based single-chain antibody fragment (husA)-human serum albumin (HSA)-coupled FITC-labeled mesoporous silica nanoparticle (FMSN-DOX-H-husA) was developed. Chinese hamster ovarian cells express the husA, which is a single chain antibody fragment of the EGFR that has been humanized. The small molecular weight of the single chain antibody allows for shorter penetration into solid tumors and the absence of adverse effects of the Fc fragment. The modification of HSA improves the safety of the antibody nanoparticle couples by both improving the biocompatibility of the nanoparticles, prolonging the circulation time of the nanoparticles, and avoiding early release of the payload. Also, the humanization substantially reduces the immunogenicity. More importantly, the ratio of drug antibodies on nanoparticles was experimentally and computationally derived to be 11.8, providing a more accurate guide for clinical trials. The results of both in vivo and in vitro experiments indicated promising antitumor activity and safety of FMSN-DOX-H-husA. Thus, this antibody-drug conjugate provided a hopeful option for cancer treatment.
Collapse
Affiliation(s)
- Hao Wu
- School of Life Sciences and Health Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi 214000, People's Republic of China; School of Chemical & Material Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi 214000, People's Republic of China
| | - Xuefeng Ding
- School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214000, People's Republic of China
| | - Yun Chen
- School of Life Sciences and Health Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi 214000, People's Republic of China
| | - Yanfei Cai
- School of Life Sciences and Health Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi 214000, People's Republic of China
| | - Zhaoqi Yang
- School of Life Sciences and Health Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi 214000, People's Republic of China.
| | - Jian Jin
- School of Life Sciences and Health Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi 214000, People's Republic of China.
| |
Collapse
|
27
|
Song CH, Jeong M, In H, Kim JH, Lin CW, Han KH. Trends in the Development of Antibody-Drug Conjugates for Cancer Therapy. Antibodies (Basel) 2023; 12:72. [PMID: 37987250 PMCID: PMC10660735 DOI: 10.3390/antib12040072] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023] Open
Abstract
In cancer treatment, the first-generation, cytotoxic drugs, though effective against cancer cells, also harmed healthy ones. The second-generation targeted cancer cells precisely to inhibit their growth. Enter the third-generation, consisting of immuno-oncology drugs, designed to combat drug resistance and bolster the immune system's defenses. These advanced therapies operate by obstructing the uncontrolled growth and spread of cancer cells through the body, ultimately eliminating them effectively. Within the arsenal of cancer treatment, monoclonal antibodies offer several advantages, including inducing cancer cell apoptosis, precise targeting, prolonged presence in the body, and minimal side effects. A recent development in cancer therapy is Antibody-Drug Conjugates (ADCs), initially developed in the mid-20th century. The second generation of ADCs addressed this issue through innovative antibody modification techniques, such as DAR regulation, amino acid substitutions, incorporation of non-natural amino acids, and enzymatic drug attachment. Currently, a third generation of ADCs is in development. This study presents an overview of 12 available ADCs, reviews 71 recent research papers, and analyzes 128 clinical trial reports. The overarching objective is to gain insights into the prevailing trends in ADC research and development, with a particular focus on emerging frontiers like potential targets, linkers, and drug payloads within the realm of cancer treatment.
Collapse
Affiliation(s)
- Chi Hun Song
- Department of Biological Sciences and Biotechnology, Hannam University, Daejeon 34054, Republic of Korea; (C.H.S.); (M.J.); (H.I.); (J.H.K.)
| | - Minchan Jeong
- Department of Biological Sciences and Biotechnology, Hannam University, Daejeon 34054, Republic of Korea; (C.H.S.); (M.J.); (H.I.); (J.H.K.)
| | - Hyukmin In
- Department of Biological Sciences and Biotechnology, Hannam University, Daejeon 34054, Republic of Korea; (C.H.S.); (M.J.); (H.I.); (J.H.K.)
| | - Ji Hoe Kim
- Department of Biological Sciences and Biotechnology, Hannam University, Daejeon 34054, Republic of Korea; (C.H.S.); (M.J.); (H.I.); (J.H.K.)
| | - Chih-Wei Lin
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung 406, Taiwan;
| | - Kyung Ho Han
- Department of Biological Sciences and Biotechnology, Hannam University, Daejeon 34054, Republic of Korea; (C.H.S.); (M.J.); (H.I.); (J.H.K.)
| |
Collapse
|
28
|
Lovato G, Ciriolo L, Perrucci M, Federici L, Ippoliti R, Iacobelli S, Capone E, Locatelli M, Sala G. HPLC-DAD validated method for DM4 and its metabolite S-Me-DM4 quantification in biological matrix for clinical and pharmaceutical applications. J Pharm Biomed Anal 2023; 235:115642. [PMID: 37586307 DOI: 10.1016/j.jpba.2023.115642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023]
Abstract
The present study focuses on the development and validation of an HPLC-DAD methodology for the detection of a potent chemotherapeutic agent, Maytansinoid Ravtansine (DM4), and its metabolite, S-methyl-DM4 (S-Me-DM4), in plasma samples. Methodologically, after a simple protein precipitation with acetonitrile and after drying 1 mL of supernatant, the sample (suspended with N,N-Dimethylacetamide, DMA) was directly analyzed by HPLC under isocratic elution using a mobile phase comprising milliQ water and methanol (25:75, v:v), both acidified with 0.1 % v:v formic acid. Employing a flow rate of 1.0 mL/min and a reversed-phase GraceSmart RP18 column thermostated at 40 °C, we achieved complete resolution and separation of DM4 and S-Me-DM4 within 13 min. The optimized injection volume of 20 μL and the wavelength set at 254 nm were utilized for quantitative analyses. Rigorous validation has not only ensured its reliability and reproducibility but has also addressed potential limitations associated with methodological inconsistency. The limit of detection and quantification of the method were 0.025 and 0.06 μg/mL for both the analytes, respectively. The calibration curve showed a good linearity in the range 0.06-20 μg/mL. For both analytes, the intraday precision and trueness were 2.3-8.2 % and -1.1 to 3.1 %, respectively, while the interday values were 0.7-10.1 % and -10.4 to 7.5 %, respectively. The developed methodology enables the concurrent determination and quantification of free DM4 and its metabolite, free S-Me-DM4, making it a valuable tool for assessing the pharmacokinetics and pharmacodynamics of DM4-based therapies. In addition, the procedure was successfully applied to analyse the presence of free DM4 or its metabolite, free S-Me-DM4, in human plasma samples spiked with the 1959-sss/DM4 antibody-drug conjugate (ADC). The utilization of the herein validated methodology allowed to confirm the presence of these analytes, thereby providing insights into their potential release from the ADC structure.
Collapse
Affiliation(s)
- Giulio Lovato
- Department of Innovative Technologies in Medicine and Dentistry, Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, Chieti 66100, Italy; Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, Chieti 66100, Italy
| | - Luigi Ciriolo
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, Chieti 66100, Italy
| | - Miryam Perrucci
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, Chieti 66100, Italy
| | - Luca Federici
- Department of Innovative Technologies in Medicine and Dentistry, Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, Chieti 66100, Italy; Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, Chieti 66100, Italy
| | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 Coppito, Italy
| | | | - Emily Capone
- Department of Innovative Technologies in Medicine and Dentistry, Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, Chieti 66100, Italy; Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, Chieti 66100, Italy
| | - Marcello Locatelli
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, Chieti 66100, Italy.
| | - Gianluca Sala
- Department of Innovative Technologies in Medicine and Dentistry, Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, Chieti 66100, Italy; Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, Chieti 66100, Italy
| |
Collapse
|
29
|
Kannampuzha S, Murali R, Gopalakrishnan AV, Mukherjee AG, Wanjari UR, Namachivayam A, George A, Dey A, Vellingiri B. Novel biomolecules in targeted cancer therapy: a new approach towards precision medicine. Med Oncol 2023; 40:323. [PMID: 37804361 DOI: 10.1007/s12032-023-02168-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/18/2023] [Indexed: 10/09/2023]
Abstract
Cancer is a major threat to human life around the globe, and the discovery of novel biomolecules continue to be an urgent therapeutic need that is still unmet. Precision medicine relies on targeted therapeutic strategies. Researchers are better equipped to develop therapies that target proteins as they understand more about the genetic alterations and molecules that cause progression of cancer. There has been a recent diversification of the sorts of targets exploited in treatment. Therapeutic antibody and biotechnology advancements enabled curative treatments to reach previously inaccessible sites. New treatment strategies have been initiated for several undruggable targets. The application of tailored therapy has been proven to have efficient results in controlling cancer progression. Novel biomolecules like SMDCs, ADCs, mABs, and PROTACS has gained vast attention in the recent years. Several studies have shown that using these novel technology helps in reducing the drug dosage as well as to overcome drug resistance in different cancer types. Therefore, it is crucial to fully untangle the mechanism and collect evidence to understand the significance of these novel drug targets and strategies. This review article will be discussing the importance and role of these novel biomolecules in targeted cancer therapies.
Collapse
Affiliation(s)
- Sandra Kannampuzha
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Reshma Murali
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| | - Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Arunraj Namachivayam
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, India
| | - Abhijit Dey
- Department of Medical Services, MGM Cancer Institute, Chennai, Tamil Nadu, 600029, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| |
Collapse
|
30
|
Zhang H, Sun J, Zhang Y, Zhang Z, Wang X, Liu Z, Zhang X, Tang Z, Chen X. Preparation of an Ultrahigh-DAR PDL1 monoclonal antibody-polymeric-SN38 conjugate for precise colon cancer therapy. Biomaterials 2023; 301:122285. [PMID: 37619265 DOI: 10.1016/j.biomaterials.2023.122285] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Antibody-drug conjugates (ADCs) are the most potent active tumor-targeting agents used clinically. However, the preparation of ADCs with high drug-to-antibody ratios (DARs) remains a major challenge. Herein, a Fab-nondestructive SN38-loaded antibody-polymeric-drug conjugate (APDC), aPDL1-NPLG-SN38, was prepared that had a DAR as high as 72 for the first time, by increased numbers of payload binding sites via the carboxyl groups of poly (l-glutamic acid) (PLG). The bonding of Fc-III-4C peptide with PLG-graft-mPEG/SN38 (Fc-NPLG-SN38) was achieved using a click reaction between azide and DBCO groups. The aPDL1-NPLG-SN38 conjugate was then synthesized by the high-affinity interaction between the Fc-III-4C peptide in Fc-NPLG-SN38 and the crystallizable fragment (Fc) of PDL1 monoclonal antibody (aPDL1). This approach avoided the potential deleterious effects on the Fab structure of the monoclonal antibody. The aqueous environment used in its preparation helped maintain monoclonal antibody recognition capability. Through the specific recognition by aPDL1 of PDL1 that is highly expressed on MC38 tumors, the accumulation of aPDL1-NPLG-SN38 in the tumors was 2.8-fold greater than achieved with IgG-NPLG-SN38 that had no active tumor-targeting capability. aPDL1-NPLG-SN38 exhibited excellent therapeutic properties in both medium-sized and large MC38 tumor animal models. The present study provides the details of a novel preparation strategy for SN38-loaded ADCs having a high DAR.
Collapse
Affiliation(s)
- Honglei Zhang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education and Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Xiangtan University, Xiangtan, 411105, PR China; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jiali Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yu Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Zhenqian Zhang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education and Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Xiangtan University, Xiangtan, 411105, PR China; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xiaoshuang Wang
- No. 1 Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Zhilin Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Xuefei Zhang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education and Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Xiangtan University, Xiangtan, 411105, PR China.
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
31
|
Riccardi F, Dal Bo M, Macor P, Toffoli G. A comprehensive overview on antibody-drug conjugates: from the conceptualization to cancer therapy. Front Pharmacol 2023; 14:1274088. [PMID: 37790810 PMCID: PMC10544916 DOI: 10.3389/fphar.2023.1274088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023] Open
Abstract
Antibody-Drug Conjugates (ADCs) represent an innovative class of potent anti-cancer compounds that are widely used in the treatment of hematologic malignancies and solid tumors. Unlike conventional chemotherapeutic drug-based therapies, that are mainly associated with modest specificity and therapeutic benefit, the three key components that form an ADC (a monoclonal antibody bound to a cytotoxic drug via a chemical linker moiety) achieve remarkable improvement in terms of targeted killing of cancer cells and, while sparing healthy tissues, a reduction in systemic side effects caused by off-tumor toxicity. Based on their beneficial mechanism of action, 15 ADCs have been approved to date by the market approval by the Food and Drug Administration (FDA), the European Medicines Agency (EMA) and/or other international governmental agencies for use in clinical oncology, and hundreds are undergoing evaluation in the preclinical and clinical phases. Here, our aim is to provide a comprehensive overview of the key features revolving around ADC therapeutic strategy including their structural and targeting properties, mechanism of action, the role of the tumor microenvironment and review the approved ADCs in clinical oncology, providing discussion regarding their toxicity profile, clinical manifestations and use in novel combination therapies. Finally, we briefly review ADCs in other pathological contexts and provide key information regarding ADC manufacturing and analytical characterization.
Collapse
Affiliation(s)
- Federico Riccardi
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| |
Collapse
|
32
|
França RKA, Studart IC, Bezerra MRL, Pontes LQ, Barbosa AMA, Brigido MM, Furtado GP, Maranhão AQ. Progress on Phage Display Technology: Tailoring Antibodies for Cancer Immunotherapy. Viruses 2023; 15:1903. [PMID: 37766309 PMCID: PMC10536222 DOI: 10.3390/v15091903] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The search for innovative anti-cancer drugs remains a challenge. Over the past three decades, antibodies have emerged as an essential asset in successful cancer therapy. The major obstacle in developing anti-cancer antibodies is the need for non-immunogenic antibodies against human antigens. This unique requirement highlights a disadvantage to using traditional hybridoma technology and thus demands alternative approaches, such as humanizing murine monoclonal antibodies. To overcome these hurdles, human monoclonal antibodies can be obtained directly from Phage Display libraries, a groundbreaking tool for antibody selection. These libraries consist of genetically engineered viruses, or phages, which can exhibit antibody fragments, such as scFv or Fab on their capsid. This innovation allows the in vitro selection of novel molecules directed towards cancer antigens. As foreseen when Phage Display was first described, nowadays, several Phage Display-derived antibodies have entered clinical settings or are undergoing clinical evaluation. This comprehensive review unveils the remarkable progress in this field and the possibilities of using clever strategies for phage selection and tailoring the refinement of antibodies aimed at increasingly specific targets. Moreover, the use of selected antibodies in cutting-edge formats is discussed, such as CAR (chimeric antigen receptor) in CAR T-cell therapy or ADC (antibody drug conjugate), amplifying the spectrum of potential therapeutic avenues.
Collapse
Affiliation(s)
- Renato Kaylan Alves França
- Molecular Immunology Laboratory, Department of Cellular Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (R.K.A.F.); (M.M.B.)
- Graduate Program in Molecular Pathology, University of Brasilia, Brasilia 70910-900, Brazil
| | - Igor Cabral Studart
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Biotechnology of Natural Resources, Federal University of Ceará, Fortaleza 60440-970, Brazil
| | - Marcus Rafael Lobo Bezerra
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Biotechnology of Natural Resources, Federal University of Ceará, Fortaleza 60440-970, Brazil
| | - Larissa Queiroz Pontes
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Biotechnology of Natural Resources, Federal University of Ceará, Fortaleza 60440-970, Brazil
| | - Antonio Marcos Aires Barbosa
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Applied Informatics, University of Fortaleza, Fortaleza 60811-905, Brazil
| | - Marcelo Macedo Brigido
- Molecular Immunology Laboratory, Department of Cellular Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (R.K.A.F.); (M.M.B.)
| | - Gilvan Pessoa Furtado
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Biotechnology of Natural Resources, Federal University of Ceará, Fortaleza 60440-970, Brazil
| | - Andréa Queiroz Maranhão
- Molecular Immunology Laboratory, Department of Cellular Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (R.K.A.F.); (M.M.B.)
| |
Collapse
|
33
|
Sun Y, Yu X, Wang X, Yuan K, Wang G, Hu L, Zhang G, Pei W, Wang L, Sun C, Yang P. Bispecific antibodies in cancer therapy: Target selection and regulatory requirements. Acta Pharm Sin B 2023; 13:3583-3597. [PMID: 37719370 PMCID: PMC10501874 DOI: 10.1016/j.apsb.2023.05.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/25/2023] [Accepted: 05/06/2023] [Indexed: 09/19/2023] Open
Abstract
In recent years, the development of bispecific antibodies (bsAbs) has been rapid, with many new structures and target combinations being created. The boom in bsAbs has led to the successive issuance of industry guidance for their development in the US and China. However, there is a high degree of similarity in target selection, which could affect the development of diversity in bsAbs. This review presents a classification of various bsAbs for cancer therapy based on structure and target selection and examines the advantages of bsAbs over monoclonal antibodies (mAbs). Through database research, we have identified the preferences of available bsAbs combinations, suggesting rational target selection options and warning of potential wastage of medical resources. We have also compared the US and Chinese guidelines for bsAbs in order to provide a reference for their development.
Collapse
Affiliation(s)
- Yanze Sun
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Xinmiao Yu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Xiao Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Kai Yuan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Gefei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Lingrong Hu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Guoyu Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Wenli Pei
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Liping Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Chengliang Sun
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Peng Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
34
|
Zafar S, Armaghan M, Khan K, Hassan N, Sharifi-Rad J, Habtemariam S, Kieliszek M, Butnariu M, Bagiu IC, Bagiu RV, Cho WC. New insights into the anticancer therapeutic potential of maytansine and its derivatives. Biomed Pharmacother 2023; 165:115039. [PMID: 37364476 DOI: 10.1016/j.biopha.2023.115039] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023] Open
Abstract
Maytansine is a pharmacologically active 19-membered ansamacrolide derived from various medicinal plants and microorganisms. Among the most studied pharmacological activities of maytansine over the past few decades are anticancer and anti-bacterial effects. The anticancer mechanism of action is primarily mediated through interaction with the tubulin thereby inhibiting the assembly of microtubules. This ultimately leads to decreased stability of microtubule dynamics and cause cell cycle arrest, resulting in apoptosis. Despite its potent pharmacological effects, the therapeutic applications of maytansine in clinical medicine are quite limited due to its non-selective cytotoxicity. To overcome these limitations, several derivatives have been designed and developed mostly by modifying the parent structural skeleton of maytansine. These structural derivatives exhibit improved pharmacological activities as compared to maytansine. The present review provides a valuable insight into maytansine and its synthetic derivatives as anticancer agents.
Collapse
Affiliation(s)
- Sameen Zafar
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab, Pakistan
| | - Muhammad Armaghan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab, Pakistan
| | - Khushbukhat Khan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab, Pakistan.
| | - Nazia Hassan
- Department of Biochemistry, University of Agriculture Faisalabad, Pakistan
| | | | - Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UK, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK.
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland.
| | - Monica Butnariu
- University of Life Sciences "King Mihai I" from Timisoara, 300645, Calea Aradului 119, Timis, Romania.
| | - Iulia-Cristina Bagiu
- Victor Babes University of Medicine and Pharmacy of Timisoara, Department of Microbiology, Timisoara, Romania; Multidisciplinary Research Center on Antimicrobial Resistance, Timisoara, Romania
| | - Radu Vasile Bagiu
- Victor Babes University of Medicine and Pharmacy of Timisoara, Department of Microbiology, Timisoara, Romania; Preventive Medicine Study Center, Timisoara, Romania
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong Special Administrative Region.
| |
Collapse
|
35
|
Aggarwal D, Yang J, Salam MA, Sengupta S, Al-Amin MY, Mustafa S, Khan MA, Huang X, Pawar JS. Antibody-drug conjugates: the paradigm shifts in the targeted cancer therapy. Front Immunol 2023; 14:1203073. [PMID: 37671162 PMCID: PMC10475555 DOI: 10.3389/fimmu.2023.1203073] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/27/2023] [Indexed: 09/07/2023] Open
Abstract
Cancer is one of the deadliest diseases, causing million of deaths each year globally. Conventional anti-cancer therapies are non-targeted and have systemic toxicities limiting their versatile applications in many cancers. So, there is an unmet need for more specific therapeutic options that will be effective as well as free from toxicities. Antibody-drug conjugates (ADCs) are suitable alternatives with the right potential and improved therapeutic index for cancer therapy. The ADCs are highly precise new class of biopharmaceutical products that covalently linked a monoclonal antibody (mAb) (binds explicitly to a tumor-associated surface antigen) with a customized cytotoxic drug (kills cancer cells) and tied via a chemical linker (releases the drug). Due to its precise design, it brings about the target cell killing sparing the normal counterpart and free from the toxicities of conventional chemotherapy. It has never been so easy to develop potential ADCs for successful therapeutic usage. With relentless efforts, it took almost a century for scientists to advance the formula and design ADCs for its current clinical applications. Until now, several ADCs have passed successfully through preclinical and clinical trials and because of proven efficacy, a few are approved by the FDA to treat various cancer types. Even though ADCs posed some shortcomings like adverse effects and resistance at various stages of development, with continuous efforts most of these limitations are addressed and overcome to improve their efficacy. In this review, the basics of ADCs, physical and chemical properties, the evolution of design, limitations, and future potentials are discussed.
Collapse
Affiliation(s)
- Devesh Aggarwal
- Department of Chemistry, Purdue University, West Lafayette, IN, United States
| | - Jie Yang
- Department of Orthopedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Md. Abdus Salam
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan, Malaysia
| | - Sagnik Sengupta
- Department of Chemistry, Purdue University, West Lafayette, IN, United States
| | - Md. Yusuf Al-Amin
- Department of Chemistry, Purdue University, West Lafayette, IN, United States
- Purdue University Interdisciplinary Life Sciences Graduate Program, Purdue University, West Lafayette, IN, United States
| | - Saad Mustafa
- Deen Dayal Upadhyaya (DDU) Kaushal Kendra, Jamia Millia Islamia University, New Delhi, India
| | - Mohammad Aasif Khan
- Division of Hematology and Medical Oncology, Department of Medicine, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX, United States
| | - Xun Huang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi, Shandong, China
| | - Jogendra Singh Pawar
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
- The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, United States
| |
Collapse
|
36
|
Gogia P, Ashraf H, Bhasin S, Xu Y. Antibody-Drug Conjugates: A Review of Approved Drugs and Their Clinical Level of Evidence. Cancers (Basel) 2023; 15:3886. [PMID: 37568702 PMCID: PMC10417123 DOI: 10.3390/cancers15153886] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/17/2023] [Accepted: 07/13/2023] [Indexed: 08/13/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are an innovative family of agents assembled through linking cytotoxic drugs (payloads) covalently to monoclonal antibodies (mAbs) to be delivered to tumor tissue that express their particular antigen, with the theoretical advantage of an augmented therapeutic ratio. As of June 2023, eleven ADCs have been approved by the Food and Drug Administration (FDA) and are on the market. These drugs have been added to the therapeutic armamentarium of acute myeloblastic and lymphoblastic leukemias, various types of lymphoma, breast, gastric or gastroesophageal junction, lung, urothelial, cervical, and ovarian cancers. They have proven to deliver more potent and effective anti-tumor activities than standard practice in a wide variety of indications. In addition to targeting antigen-expressing tumor cells, bystander effects have been engineered to extend cytotoxic killing to low-antigen-expressing or negative tumor cells in the heterogenous tumor milieu. Inevitably, myelosuppression is a common side effect with most of the ADCs due to the effects of the cytotoxic payload. Also, other unique side effects are specific to the tissue antigen that is targeted for, such as the cardiac toxicity with Her-2 targeting ADCs, and the hemorrhagic side effects with the tissue factor (TF) targeting Tisotumab vedotin. Further exciting developments are centered in the strategies to improve the tolerability and efficacy of the ADCs to improve the therapeutic window; as well as the development of novel payloads including (1) peptide-drug conjugates (PDCs), with the peptide replacing the monoclonal antibody, rendering greater tumor penetration; (2) immune-stimulating antibody conjugates (ISACs), which upon conjugation of the antigen, cause an influx of pro-inflammatory cytokines to activate dendritic cells and harness an anti-tumor T-cell response; and (3) the use of radioactive isotopes as a payload to enhance cytotoxic activity.
Collapse
Affiliation(s)
- Pooja Gogia
- Department of Hematology/Oncology, Maimonides Medical Center, Brooklyn, NY 11219, USA;
| | - Hamza Ashraf
- Department of Internal Medicine, Overlook Medical Center, Summit, NJ 07901, USA;
| | - Sidharth Bhasin
- Department of Pulmonary Medicine, Saint Peter’s University Hospital, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA;
| | - Yiqing Xu
- Department of Hematology/Oncology, Maimonides Medical Center, Brooklyn, NY 11219, USA;
| |
Collapse
|
37
|
Mckertish CM, Kayser V. A Novel Dual-Payload ADC for the Treatment of HER2+ Breast and Colon Cancer. Pharmaceutics 2023; 15:2020. [PMID: 37631234 PMCID: PMC10459570 DOI: 10.3390/pharmaceutics15082020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Antibody-drug conjugates (ADCs) have demonstrated a great therapeutic potential against cancer due to their target specificity and cytotoxicity. To exert a maximum therapeutic effect on cancerous cells, we have conjugated two different payloads to different amino acids, cysteines (cys) and lysines (lys), on trastuzumab, which is a humanised anti-HER2 monoclonal antibody. First, trastuzumab was conjugated with monomethyl auristatin E (MMAE), an antimitotic agent, through a cleavable linker (Val-Cit) to prepare ADC (Tmab-VcMMAE). Then, the ADC (Tmab-VcMMAE) was conjugated with a second antimitotic agent, Mertansine (DM1), via a non-cleavable linker Succinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate (SMCC) to form a dual conjugate (Tmab-VcMMAE-SMCC-DM1). Our results indicated that the dual-payload conjugate, Tmab-VcMMAE-SMCC-DM1, had a synergistic and superior cytotoxic effect compared to trastuzumab alone. Ultimately employing a dual conjugation approach has the potential to overcome treatment-resistance and tumour recurrences and could pave the way to employ other payloads to construct dual (or multiple) payload complexes.
Collapse
Affiliation(s)
| | - Veysel Kayser
- Sydney School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
38
|
Hurwitz J, Haggstrom LR, Lim E. Antibody-Drug Conjugates: Ushering in a New Era of Cancer Therapy. Pharmaceutics 2023; 15:2017. [PMID: 37631232 PMCID: PMC10458257 DOI: 10.3390/pharmaceutics15082017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/15/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Antibody-drug conjugates (ADCs) have provided new therapeutic options and significant promise for patients with cancer, particularly where existing treatments are limited. Substantial effort in ADC development is underway globally, with 13 ADCs currently approved and many more in development. The therapeutic benefits of ADCs leverage the ability to selectively target cancer cells through antibody binding, resultant relative sparing of non-malignant tissues, and the targeted delivery of a cytotoxic payload. Consequently, this drug class has demonstrated activity in multiple malignancies refractory to standard therapeutic options. Despite this, limitations exist, including narrow therapeutic windows, unique toxicity profiles, development of therapeutic resistance, and appropriate biomarker selection. This review will describe the development of ADCs, their mechanisms of action, pivotal trials, and approved indications and identify common themes. Current challenges and opportunities will be discussed for this drug class in cancer therapeutics at a time when significant developments in antibody therapies, immunotherapy, and targeted agents are occurring.
Collapse
Affiliation(s)
- Joshua Hurwitz
- St. Vincent’s Clinical School, Faculty of Medicine and Health, University of New South Wales, Kensington, NSW 2053, Australia
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | | | - Elgene Lim
- St. Vincent’s Clinical School, Faculty of Medicine and Health, University of New South Wales, Kensington, NSW 2053, Australia
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
39
|
Yang T, Li W, Huang T, Zhou J. Antibody-Drug Conjugates for Breast Cancer Treatment: Emerging Agents, Targets and Future Directions. Int J Mol Sci 2023; 24:11903. [PMID: 37569276 PMCID: PMC10418918 DOI: 10.3390/ijms241511903] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
To achieve the scheme of "magic bullets" in antitumor therapy, antibody-drug conjugates (ADCs) were developed. ADCs consist of antibodies targeting tumor-specific antigens, chemical linkers, and cytotoxic payloads that powerfully kill cancer cells. With the approval of ado-trastuzumab emtansine (T-DM1) and fam-trastuzumab deruxtecan (T-DXd), the therapeutic potentials of ADCs in breast cancer have come into the spotlight. Nearly 30 ADCs for breast cancer are under exploration to move targeted therapy forward. In this review, we summarize the presenting and emerging agents and targets of ADCs. The ADC structure and development history are also concluded. Moreover, the challenges faced and prospected future directions in this field are reviewed, which give insights into novel treatments with ADCs for breast cancer.
Collapse
Affiliation(s)
| | | | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jun Zhou
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
40
|
Umarje SC, Banerjee SK. Non-traditional approaches for control of antibiotic resistance. Expert Opin Biol Ther 2023; 23:1113-1135. [PMID: 38007617 DOI: 10.1080/14712598.2023.2279644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/01/2023] [Indexed: 11/27/2023]
Abstract
INTRODUCTION The drying up of antibiotic pipeline has necessitated the development of alternative therapeutic strategies to control the problem of antimicrobial resistance (AMR) that is expected to kill 10-million people annually by 2050. Newer therapeutic approaches address the shortcomings of traditional small-molecule antibiotics - the lack of specificity, evolvability, and susceptibility to mutation-based resistance. These 'non-traditional' molecules are biologicals having a complex structure and mode(s) of action that makes them resilient to resistance. AREAS COVERED This review aims to provide information about the non-traditional drug development approaches to tackle the problem of antimicrobial resistance, from the pre-antibiotic era to the latest developments. We have covered the molecules under development in the clinic with literature sourced from reviewed scholarly articles, official company websites involved in innovation of concerned therapeutics, press releases from the regulatory bodies, and clinical trial databases. EXPERT OPINION Formal introduction of non-traditional therapies in general practice can be quick and feasible only if supported with companion diagnostics and used in conjunction with established therapies. Owing to relatively higher development costs, non-traditional therapeutics require more funding as well as well as clarity in regulatory and clinical path. We are hopeful these issues are adequately addressed before AMR develops into a pandemic.
Collapse
Affiliation(s)
- Siddharth C Umarje
- Department of Proteomics, AbGenics Life Sciences Pvt. Ltd., Pune, India
- AbGenics Life Sciences Pvt. Ltd., Pune, India
| | | |
Collapse
|
41
|
Maiti R, Patel B, Patel N, Patel M, Patel A, Dhanesha N. Antibody drug conjugates as targeted cancer therapy: past development, present challenges and future opportunities. Arch Pharm Res 2023; 46:361-388. [PMID: 37071273 PMCID: PMC11345756 DOI: 10.1007/s12272-023-01447-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/26/2023] [Indexed: 04/19/2023]
Abstract
Antibody drug conjugates (ADCs) are promising cancer therapeutics with minimal toxicity as compared to small cytotoxic molecules alone and have shown the evidence to overcome resistance against tumor and prevent relapse of cancer. The ADC has a potential to change the paradigm of cancer chemotherapeutic treatment. At present, 13 ADCs have been approved by USFDA for the treatment of various types of solid tumor and haematological malignancies. This review covers the three structural components of an ADC-antibody, linker, and cytotoxic payload-along with their respective structure, chemistry, mechanism of action, and influence on the activity of ADCs. It covers comprehensive insight on structural role of linker towards efficacy, stability & toxicity of ADCs, different types of linkers & various conjugation techniques. A brief overview of various analytical techniques used for the qualitative and quantitative analysis of ADC is summarized. The current challenges of ADCs, such as heterogeneity, bystander effect, protein aggregation, inefficient internalization or poor penetration into tumor cells, narrow therapeutic index, emergence of resistance, etc., are outlined along with recent advances and future opportunities for the development of more promising next-generation ADCs.
Collapse
Affiliation(s)
- Ritwik Maiti
- Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India
| | - Bhumika Patel
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India.
| | - Nrupesh Patel
- Department of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India
| | - Mehul Patel
- Department of Pharmaceutical Chemistry and Analysis, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, 388421, Gujarat, India
| | - Alkesh Patel
- Department of Pharmacology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, 388421, Gujarat, India
| | - Nirav Dhanesha
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA.
| |
Collapse
|
42
|
Rosner S, Valdivia A, Hoe HJ, Murray JC, Levy B, Felip E, Solomon BJ. Antibody-Drug Conjugates for Lung Cancer: Payloads and Progress. Am Soc Clin Oncol Educ Book 2023; 43:e389968. [PMID: 37163707 DOI: 10.1200/edbk_389968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Antibody Drug Conjugates (ADCs) are a novel class of therapeutic that structurally comprise an antibody directed at a tumor epitope connected via a linker to a cytotoxic payload that have shown significant antitumor activity across a range of malignancies including lung cancer. In this article we review the pharmacology of ADCs, describe results of trials with ADCs directed at targets in lung cancer including Trophoblast cell-surface antigen 2(TROP2), HER3, MET, Carcinoembryonic antigen-related cell adhesion molecular 5(CECAM-5) and HER2. Trastuzumab Deruxtecan (also known as DS-8201a or T-DXd) an ADC directed at HER2 recently became the first ADC to receive FDA approval in lung cancer, on the basis of its activity in tumors with HER2 mutations, demonstrated in the Destiny-Lung01 and Lung02 trials.
Collapse
Affiliation(s)
- Samuel Rosner
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Augusto Valdivia
- Oncology Department, Vall d'Hebron University Hospital and Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Hui Jing Hoe
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | | | - Benjamin Levy
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Enriqueta Felip
- Oncology Department, Vall d'Hebron University Hospital and Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Benjamin J Solomon
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| |
Collapse
|
43
|
Subhan MA, Torchilin VP. Advances in Targeted Therapy of Breast Cancer with Antibody-Drug Conjugate. Pharmaceutics 2023; 15:1242. [PMID: 37111727 PMCID: PMC10144345 DOI: 10.3390/pharmaceutics15041242] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are a potential and promising therapy for a wide variety of cancers, including breast cancer. ADC-based drugs represent a rapidly growing field of breast cancer therapy. Various ADC drug therapies have progressed over the past decade and have generated diverse opportunities for designing of state-of-the-art ADCs. Clinical progress with ADCs for the targeted therapy of breast cancer have shown promise. Off-target toxicities and drug resistance to ADC-based therapy have hampered effective therapy development due to the intracellular mechanism of action and limited antigen expression on breast tumors. However, innovative non-internalizing ADCs targeting the tumor microenvironment (TME) component and extracellular payload delivery mechanisms have led to reduced drug resistance and enhanced ADC effectiveness. Novel ADC drugs may deliver potent cytotoxic agents to breast tumor cells with reduced off-target effects, which may overcome difficulties related to delivery efficiency and enhance the therapeutic efficacy of cytotoxic cancer drugs for breast cancer therapy. This review discusses the development of ADC-based targeted breast cancer therapy and the clinical translation of ADC drugs for breast cancer treatment.
Collapse
Affiliation(s)
- Md Abdus Subhan
- Department of Chemistry, ShahJalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Vladimir P. Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine (CPBN), Department of Pharmaceutical Sciences, North Eastern University, Boston, MA 02115, USA
- Department of Chemical Engineering, North Eastern University, Boston, MA 02115, USA
| |
Collapse
|
44
|
Agrawal P, Wilkstein K, Guinn E, Mason M, Serrano Martinez CI, Saylae J. A Review of Tangential Flow Filtration: Process Development and Applications in the Pharmaceutical Industry. Org Process Res Dev 2023. [DOI: 10.1021/acs.oprd.2c00291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
45
|
Liu L, Ding W, He L, Yang Y, Guan F, Sun X, Peng Y, Chen X, Zhao W, Xiao Y, Luo P. RGD and Scutellarin Conjugate (WK001) Targeting Platelet Glycoprotein IIb/IIIa Receptor Protects from Myocardial Ischemia/Reperfusion Injury: Synthesis, Characterization, and Bioactivity Evaluation. Bioconjug Chem 2023; 34:477-488. [PMID: 36740781 DOI: 10.1021/acs.bioconjchem.2c00439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Myocardial ischemia/reperfusion (MI/R) injury is an unresolved clinical challenge. The blockade of binding fibrinogen by glycoprotein IIb/IIIa (GPIIb-IIIa) inhibitors has become a new therapeutic approach against MI/R injury. In this study, we modified the RGD structure to combine with scutellarin and synthesized a novel peptide, scutellarin-HomoArg-Gly-Asp-Trp-NH2 (WK001). Herein, reported experimental and docking evidence indicates that WK001 provides immediate and potent platelet inhibition, with stronger inhibition of platelet aggregation than eptifibatide and scutellarin. In particular, it is administered intravenously to prevent thrombus formation and attenuate myocardial fibrosis progression in vivo. Therefore, WK001 could be developed as an antiplatelet drug to treat thrombosis-associated diseases, such as stroke and myocardial infarction.
Collapse
Affiliation(s)
- Lancong Liu
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau999078, China
| | - Wenfeng Ding
- Shenzhen Winkey Technology Co., Ltd., Shenzhen518000, China
| | - Lili He
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau999078, China
| | - Yi Yang
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau999078, China
| | - Fuyi Guan
- Shenzhen Winkey Technology Co., Ltd., Shenzhen518000, China
| | - Xinlin Sun
- Shenzhen Winkey Technology Co., Ltd., Shenzhen518000, China
| | - Yan Peng
- Shenzhen Winkey Technology Co., Ltd., Shenzhen518000, China
| | - Xue Chen
- Shenzhen Winkey Technology Co., Ltd., Shenzhen518000, China
| | - Wenhao Zhao
- Shenzhen Winkey Technology Co., Ltd., Shenzhen518000, China
| | - Yu Xiao
- Shenzhen Winkey Technology Co., Ltd., Shenzhen518000, China
| | - Pei Luo
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau999078, China
| |
Collapse
|
46
|
Sanjanwala D, Patravale V. Aptamers and nanobodies as alternatives to antibodies for ligand-targeted drug delivery in cancer. Drug Discov Today 2023; 28:103550. [PMID: 36906220 DOI: 10.1016/j.drudis.2023.103550] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 02/18/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Targeted drug delivery (TDD) is the selective delivery of a therapeutic agent specifically to the site of action to avoid adverse effects and systemic toxicity and to reduce the dose required. Ligand TDD or active TDD involves using a ligand-drug conjugate comprising a targeting ligand linked to an active drug moiety that can either be free or encapsulated within a nanocarrier (NC). Aptamers are single-stranded oligonucleotides that bind to specific biomacromolecules because of their 3D conformation. Nanobodies are the variable domains of unique heavy chain-only antibodies (HcAbs) produced by animals of the Camelidae family. Both these types of ligand are smaller than antibodies and have been used to efficiently target drugs to particular tissues or cells. In this review, we describe the applications of aptamers and nanobodies as ligands for TDD, their advantages and disadvantages compared with antibodies, and the various modalities for targeting cancers using these ligands. Teaser: Aptamers and nanobodies are macromolecular ligands that can actively chaperone drug molecules to particular cancerous cells or tissues in the body to target their pharmacological effects and improve their therapeutic index and safety.
Collapse
Affiliation(s)
- Dhruv Sanjanwala
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai 400 019, Maharashtra, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai 400 019, Maharashtra, India.
| |
Collapse
|
47
|
Samantasinghar A, Sunildutt NP, Ahmed F, Soomro AM, Salih ARC, Parihar P, Memon FH, Kim KH, Kang IS, Choi KH. A comprehensive review of key factors affecting the efficacy of antibody drug conjugate. Biomed Pharmacother 2023; 161:114408. [PMID: 36841027 DOI: 10.1016/j.biopha.2023.114408] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/27/2023] Open
Abstract
Antibody Drug Conjugate (ADC) is an emerging technology to overcome the limitations of chemotherapy by selectively targeting the cancer cells. ADC binds with an antigen, specifically over expressed on the surface of cancer cells, results decrease in bystander effect and increase in therapeutic index. The potency of an ideal ADC is entirely depending on several physicochemical factors such as site of conjugation, molecular weight, linker length, Steric hinderance, half-life, conjugation method, binding energy and so on. Inspite of the fact that there is more than 100 of ADCs are in clinical trial only 14 ADCs are approved by FDA for clinical use. However, to design an ideal ADC is still challenging and there is much more to be done. Here in this review, we have discussed the key components along with their significant role or contribution towards the efficacy of an ADC. Moreover, we also explained about the recent advancement in the conjugation method. Additionally, we spotlit the mode of action of an ADC, recent challenges, and future perspective regarding ADC. The profound knowledge regarding key components and their properties will help in the synthesis or production of different engineered ADCs. Therefore, contributes to develop an ADC with low safety concern and high therapeutic index. We hope this review will improve the understanding and encourage the practicing of research in anticancer ADCs development.
Collapse
Affiliation(s)
| | | | - Faheem Ahmed
- Department of Mechatronics Engineering, Jeju National University, the Republic of Korea
| | | | | | - Pratibha Parihar
- Department of Mechatronics Engineering, Jeju National University, the Republic of Korea
| | - Fida Hussain Memon
- Department of Mechatronics Engineering, Jeju National University, the Republic of Korea
| | | | - In Suk Kang
- Department of Mechatronics Engineering, Jeju National University, the Republic of Korea
| | - Kyung Hyun Choi
- Department of Mechatronics Engineering, Jeju National University, the Republic of Korea.
| |
Collapse
|
48
|
Postulating the possible cellular signalling mechanisms of antibody drug conjugates in Alzheimer's disease. Cell Signal 2023; 102:110539. [PMID: 36455831 DOI: 10.1016/j.cellsig.2022.110539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders in the world. Although the basic pathology of the disease is elucidated, it is difficult to restore or prevent the worsening of neurodegeneration and its symptoms. Antibody and small molecule-based approaches have been studied and are in study individually, but a combined approach like conjugation has not been performed to date. The conjugation between antibodies and drugs which are already used for Alzheimer's treatment or developed specifically for this purpose may have better efficacy and dual action in mitigating Alzheimer's disease. A probable mechanism for antibody-drug conjugates in Alzheimer's disease is discussed in the present review.
Collapse
|
49
|
Antibody-drug conjugates in lung cancer: dawn of a new era? NPJ Precis Oncol 2023; 7:5. [PMID: 36631624 PMCID: PMC9834242 DOI: 10.1038/s41698-022-00338-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 12/08/2022] [Indexed: 01/13/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are one of fastest growing classes of oncology drugs in modern drug development. By harnessing the powers of both cytotoxic chemotherapy and targeted therapy, ADCs are unique in offering the potential to deliver highly potent cytotoxic agents to cancer cells which express a pre-defined cell surface target. In lung cancer, the treatment paradigm has shifted dramatically in recent years, and now ADCs are now joining the list as potential options for lung cancer patients. Since 2020, the first ADC for NSCLC patients has been FDA-approved (trastuzumab deruxtecan) and two ADCs have been granted FDA Breakthrough Therapy Designation, currently under evaluation (patritumab deruxtecan, telisotuzumab vedotin). Furthermore, several early-phase trials are assessing various novel ADCs, either as monotherapy or in combinations with advanced lung cancer, and more selective and potent ADCs are expected to become therapeutic options in clinic soon. In this review, we discuss the structure and mechanism of action of ADCs, including insights from pre-clinical work; we summarize the ADCs' recent progress in lung cancer, describe toxicity profiles of ADCs, and explore strategies designed to enhance ADC potency and overcome resistance. In addition, we discuss novel ADC strategies of interest in lung cancer, including non-cytotoxic payloads, such as immunomodulatory and anti-apoptotic agents.
Collapse
|
50
|
van den Berg EBA, Hendriks JCW, Elsinga EW, Eggink M, Dirksen EHC. Switching positions: Assessing the dynamics of conjugational heterogeneity in antibody-drug conjugates using CE-SDS. Electrophoresis 2023; 44:62-71. [PMID: 35907250 PMCID: PMC10086850 DOI: 10.1002/elps.202200140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023]
Abstract
Antibody-drug conjugates (ADCs) are a prospective class of new oncology therapeutics with the ability to deliver a cytotoxic drug to a targeted location. The concept appears simple, but ADCs are highly complex due to their intrinsic heterogeneity. Randomly conjugated ADCs, for instance, are composed of conjugated species carrying between 0 and 8 linker-drug molecules, with several positional isomers that vary in drug distribution across the antibody. The drug load, expressed as drug-to-antibody ratio (DAR), is a critical quality attribute and should be well controlled, together with the distribution of drug molecules. Here, the impact of the duration of disulfide bond reduction on the DAR was investigated by quantitating the (isomeric) DAR species in ADCs produced with varying reduction times. Although hydrophobic interaction chromatography showed a constant DAR value as a function of reduction time, data obtained by non-reducing CE-SDS revealed an unexpected dynamic in the positional conjugated isomers. The insights obtained have improved our understanding of the correlation between the disulfide bond reduction, an important step in the manufacturing of a cysteine-conjugated ADC, and the conjugational heterogeneity.
Collapse
Affiliation(s)
| | - Jaap C. W. Hendriks
- Analytical Development and Quality Control (ADQC), Byondis B.V.NijmegenThe Netherlands
| | | | - Mark Eggink
- Analytical Development and Quality Control (ADQC), Byondis B.V.NijmegenThe Netherlands
| | - Eef H. C. Dirksen
- Analytical Development and Quality Control (ADQC), Byondis B.V.NijmegenThe Netherlands
| |
Collapse
|