1
|
Sheng Y, Zheng X, Li L, He H, Wu W, Lu Y. Ionic co-aggregates based intravenous drug delivery: Evaluation on kinetics and distribution of the drug payloads and nanocarriers. Int J Pharm 2024; 665:124657. [PMID: 39226987 DOI: 10.1016/j.ijpharm.2024.124657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/12/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
Surfactants are crucial in formulating poorly soluble drugs but lead to serious side effects due to PEG chains. Novel supra-amphiphiles consisting of fatty acids and choline are developed, which spontaneously form ionic co-aggregates (ICAs) in water and exhibit strong solubilizing capacity. Paclitaxel (PTX) is adopted as a model drug here to evaluate the feasibility of choline oleate-based ICAs in the intravenous delivery of poorly soluble drugs by comparing the kinetics and distribution of payloads and nanocarriers. Choline oleate presents a maximum 10-fold enhancement in solubilizing capacity to PTX than Cremophor EL (CreEL), enabling a one-tenth use level in the formulation. Aggregation-caused quenching probes are utilized to evaluate the kinetics and biodistribution of ICAs or CreEL-based micelles (MCs). A huge gap is found between the pharmacokinetic and particokinetic curves of either nanocarrier, indicating fast leakage. ICAs lead to faster PTX leakage in blood circulation but higher PTX distribution to organs than MCs. MCs present a longer circulation in blood but a slower distribution to organs than ICAs. ICAs do not arise adverse reactions in rats following repeated injections, while MCs cause pathological changes in varying degrees. In conclusion, choline oleate-based ICAs provide an alternative to surfactants in formulating poorly soluble drugs.
Collapse
Affiliation(s)
- Yuze Sheng
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xianzi Zheng
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Lu Li
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Haisheng He
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China; Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200433, China; Fudan Zhangjiang Institute, Shanghai 201203, China.
| | - Yi Lu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China; Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200433, China; Fudan Zhangjiang Institute, Shanghai 201203, China.
| |
Collapse
|
2
|
Lou Z, Mu C, Corpstein CD, Li T. In vivo deposition of poorly soluble drugs. Adv Drug Deliv Rev 2024; 211:115358. [PMID: 38851590 DOI: 10.1016/j.addr.2024.115358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/12/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Administered drug molecules, whether dissolved or solubilized, have the potential to precipitate and accumulate as solid forms in tissues and cells within the body. This phase transition can significantly impact the pharmacokinetics of treatment. It is thus crucial to gain an understanding of how drug solubility/permeability, drug formulations and routes of administration affect in vivo behaviors of drug deposition. This review examines literature reports on the drug deposition in tissues and cells of poorly water-soluble drugs, as well as underlying physical mechanisms that lead to precipitation. Our work particularly highlights drug deposition in macrophages and the subcellular fate of precipitated drugs. We also propose a tissue permeability-based classification framework to evaluate precipitation potentials of poorly soluble drugs in major organs and tissues. The impact on pharmacokinetics is further discussed and needs to be considered in developing drug delivery systems. Finally, bioimaging techniques that are used to examine aggregated states and the intracellular trafficking of absorbed drugs are summarized.
Collapse
Affiliation(s)
- Zhaohuan Lou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou 310053, China; Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47906, USA
| | - Chaofeng Mu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou 310053, China
| | - Clairissa D Corpstein
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47906, USA
| | - Tonglei Li
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47906, USA.
| |
Collapse
|
3
|
Liu C, Cai Y, Zhang Z, Lu Y, Zhu Q, He H, Chen Z, Zhao W, Wu W. Julolidinyl aza-BODIPYs as NIR-II fluorophores for the bioimaging of nanocarriers. Acta Pharm Sin B 2024; 14:3155-3168. [PMID: 39027233 PMCID: PMC11252509 DOI: 10.1016/j.apsb.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/05/2024] [Accepted: 03/28/2024] [Indexed: 07/20/2024] Open
Abstract
The aggregation-caused quenching (ACQ) rationale has been employed to improve the fluorescence imaging accuracy of nanocarriers by precluding free probe-derived interferences. However, its usefulness is undermined by limited penetration and low spatiotemporal resolution of NIR-I (700-900 nm) bioimaging owing to absorption and diffraction by biological tissues and tissue-derived autofluorescence. This study aimed to develop ACQ-based NIR-II (1000-1700 nm) probes to further improve the imaging resolution and accuracy. The strategy employed is to install highly planar and electron-rich julolidine into the 3,5-position of aza-BODIPY based on the larger substituent effects. The newly developed probes displayed remarkable photophysical properties, with intense absorption centered at approximately 850 nm and bright emission in the 950-1300 nm region. Compared with the NIR-I counterpart P2, the NIR-II probes demonstrated superior water sensitivity and quenching stability. ACQ1 and ACQ6 exhibited more promising ACQ effects with absolute fluorescence quenching at water fractions above 40% and higher quenching stability with less than 2.0% fluorescence reillumination in plasma after 24 h of incubation. Theoretical calculations verified that molecular planarity is more important than hydrophobicity for ACQ properties. Additionally, in vivo and ex vivo reillumination studies revealed less than 2.5% signal interference from prequenched ACQ1, in contrast to 15% for P2.
Collapse
Affiliation(s)
- Chang Liu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yifan Cai
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zichen Zhang
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yi Lu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Haisheng He
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Weili Zhao
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Department of MediChinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wei Wu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
4
|
Pardhi E, Vasave R, Srivastava V, Yadav R, Mehra NK. Nanocrystal technologies in biomedical science: From the bench to the clinic. Drug Discov Today 2024; 29:103913. [PMID: 38340952 DOI: 10.1016/j.drudis.2024.103913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
The pharmaceutical industry is grappling with a pressing crisis in drug development characterized by soaring R&D costs, setbacks in blockbuster drug development due to poor aqueous solubility, and patent-related limitations on newly approved molecules. To combat these challenges, diverse strategies have emerged to enhance the solubility and dissolution rates of Biopharmaceutics Classification System (BCS) II and IV drug molecules. Enter drug nanocrystals, a revolutionary nanotechnology-driven, carrier-free colloidal drug delivery system. This review provides a comprehensive insight into nanocrystal strategies, stabilizer selection criteria, preparation methods, advanced characterization techniques, the evolving nanocrystal technological landscape, current market options, and exciting clinical prospects for reshaping the future of pharmaceuticals.
Collapse
Affiliation(s)
- Ekta Pardhi
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Ravindra Vasave
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Vaibhavi Srivastava
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Rati Yadav
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
5
|
Kataoka M, Itaka Y, Masada T, Minami K, Higashino H, Yamashita S. Near-infrared imaging of in vivo performance of orally administered solid forms to rats: Feasibility study with indocyanine green. Int J Pharm 2024; 649:123677. [PMID: 38061499 DOI: 10.1016/j.ijpharm.2023.123677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/16/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023]
Abstract
This study demonstrates the applicability of near-infrared (NIR) imaging to evaluating in vivo oral formulation performance. As a NIR probe and model drug, indocyanine green (ICG) and acetaminophen (ACE) were selected, respectively. The fluorescence intensity of ICG greatly increased upon dissolution, with the dissolved ICG passing through the gastrointestinal tract over time. Both compounds (0.05 mg of ICG and 0.5 mg of ACE) were encapsulated in gelatin and hydroxypropyl methylcellulose (HPMC) capsules in the solid form. In vitro, the HPMC capsules showed a disintegration lag time, a feature that was not observed for the gelatin capsules. After oral administration of each capsule to rats, blood samples were collected, followed by fluorescent imaging of the abdominal region. At 0.25 h after HPMC capsule administration, the fluorescence area and intensity were significantly small and relatively weak compared to that of the gelatin capsule. These tendencies resulted from the difference in capsule disintegration times, leading to a change in gastric emptying, which corresponded well with the initial time profile of the plasma concentration of ACE. These results indicate that possibility of NIR imaging with ICG to evaluate in vivo performance of orally administered formulations.
Collapse
Affiliation(s)
- Makoto Kataoka
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan.
| | - Yoshiya Itaka
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Takato Masada
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Keiko Minami
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Haruki Higashino
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Shinji Yamashita
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| |
Collapse
|
6
|
Liu Q, Zou J, Chen Z, He W, Wu W. Current research trends of nanomedicines. Acta Pharm Sin B 2023; 13:4391-4416. [PMID: 37969727 PMCID: PMC10638504 DOI: 10.1016/j.apsb.2023.05.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 11/17/2023] Open
Abstract
Owing to the inherent shortcomings of traditional therapeutic drugs in terms of inadequate therapeutic efficacy and toxicity in clinical treatment, nanomedicine designs have received widespread attention with significantly improved efficacy and reduced non-target side effects. Nanomedicines hold tremendous theranostic potential for treating, monitoring, diagnosing, and controlling various diseases and are attracting an unfathomable amount of input of research resources. Against the backdrop of an exponentially growing number of publications, it is imperative to help the audience get a panorama image of the research activities in the field of nanomedicines. Herein, this review elaborates on the development trends of nanomedicines, emerging nanocarriers, in vivo fate and safety of nanomedicines, and their extensive applications. Moreover, the potential challenges and the obstacles hindering the clinical translation of nanomedicines are also discussed. The elaboration on various aspects of the research trends of nanomedicines may help enlighten the readers and set the route for future endeavors.
Collapse
Affiliation(s)
- Qiuyue Liu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jiahui Zou
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wei Wu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
- Fudan Zhangjiang Institute, Shanghai 201203, China
| |
Collapse
|
7
|
Ji X, Cai Y, Dong X, Wu W, Zhao W. Selection of an aggregation-caused quenching-based fluorescent tracer for imaging studies in nano drug delivery systems. NANOSCALE 2023. [PMID: 37158114 DOI: 10.1039/d3nr01018j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In order to develop and optimize nano drug delivery systems (NDDSs), it is crucial to understand their in vivo fate. We previously found that P2 (Aza-BODIPY) and P4 (BODIPY) as aggregation-caused quenching (ACQ) probes could be used to unravel the biofate of various nanoparticles owing to their water-sensitive emission. However, previous studies also found that quenched ACQ probe aggregates showed repartition into hydrophobic physiologically relevant constituents, resulting in fluorescence re-illumination. In this paper, we screened various types of fluorophores for ACQ and their re-illumination performance and focused on Aza-BODIPY dyes. BODIPY and Aza-BODIPY dyes were identified to be advantageous over other fluorophores. Some BODIPY and Aza-BODIPY dyes were selected as potential probes with improved performance against re-illumination. The best performing probes were Aza-C7 and Aza-C8. Aza-C7-loaded PMs were found to have decreased fluorescence re-illumination properties over P2 and DiR.
Collapse
Affiliation(s)
- Xin Ji
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, and School of Materials Science and Engineering, Henan University, Kaifeng, 475004, P. R. China.
| | - Yifan Cai
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Xiaochun Dong
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Weili Zhao
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, and School of Materials Science and Engineering, Henan University, Kaifeng, 475004, P. R. China.
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| |
Collapse
|
8
|
Wu LL, Zhao Q, Wang Q, Zhang Q, Yang F, Zheng B, Hu HY, Xing N. Membrane dual-targeting probes: A promising strategy for fluorescence-guided prostate cancer surgery and lymph node metastases detection. Acta Pharm Sin B 2022; 13:1204-1215. [PMID: 36970202 PMCID: PMC10031145 DOI: 10.1016/j.apsb.2022.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/02/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Fluorescence-guided surgery (FGS) with tumor-targeted imaging agents, particularly those using the near-infrared wavelength, has emerged as a real-time technique to highlight the tumor location and margins during a surgical procedure. For accurate visualization of prostate cancer (PCa) boundary and lymphatic metastasis, we developed a new approach involving an efficient self-quenched near-infrared fluorescence probe, Cy-KUE-OA, with dual PCa-membrane affinity. Cy-KUE-OA specifically targeted the prostate-specific membrane antigen (PSMA), anchored into the phospholipids of the cell membrane of PCa cells and consequently showed a strong Cy7-de-quenching effect. This dual-membrane-targeting probe allowed us to detect PSMA-expressing PCa cells both in vitro and in vivo and enabled clear visualization of the tumor boundary during fluorescence-guided laparoscopic surgery in PCa mouse models. Furthermore, the high PCa preference of Cy-KUE-OA was confirmed on surgically resected patient specimens of healthy tissues, PCa, and lymph node metastases. Taken together, our results serve as a bridge between preclinical and clinical research in FGS of PCa and lay a solid foundation for further clinical research.
Collapse
Affiliation(s)
- Ling-Ling Wu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qinxin Zhao
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qinghua Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Qingyang Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Feiya Yang
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Bo Zheng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Hai-Yu Hu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
- Corresponding authors.
| | - Nianzeng Xing
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Department of Urology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, China
- Corresponding authors.
| |
Collapse
|
9
|
Lv Y, Wu W, Corpstein CD, Li T, Lu Y. Biological and Intracellular Fates of Drug Nanocrystals through Different Delivery Routes: Recent Development Enabled by Bioimaging and PK Modeling. Adv Drug Deliv Rev 2022; 188:114466. [PMID: 35905948 DOI: 10.1016/j.addr.2022.114466] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/07/2022] [Accepted: 07/22/2022] [Indexed: 12/25/2022]
Abstract
Nanocrystals have contributed to exciting improvements in the delivery of poorly water-soluble drugs. The biological and intracellular fates of nanocrystals are currently under debate. Due to the remarkable commercial success in enhancing oral bioavailability, nanocrystals have originally been regarded as a simple formulation approach to enhance dissolution. However, the latest findings from novel bioimaging tools lead to an expanded view. Intact nanocrystals may offer long-term durability in the body and offer drug delivery capabilities like those of other nano-carriers. This review renews the understanding of the biological fates of nanocrystals administered via oral, intravenous, and parenteral (e.g., dermal, ocular, and pulmonary) routes. The intracellular pathways and dissolution kinetics of nanocrystals are explored. Additionally, the future trends for in vitro and in vivo quantification of nanocrystals, as well as factors impacting the biological and intracellular fates of nanocrystals are discussed. In conclusion, nanocrystals present a promising and underexplored therapeutic opportunity with immense potential.
Collapse
Affiliation(s)
- Yongjiu Lv
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China; Fudan Zhangjiang Institute, Shanghai 201203, China
| | - Clairissa D Corpstein
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| | - Tonglei Li
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| | - Yi Lu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China; Fudan Zhangjiang Institute, Shanghai 201203, China.
| |
Collapse
|
10
|
Zaman B, Hassan W, Khan A, Mushtaq A, Ali N, Bilal M, Ahmed DA. Forced Degradation Studies and Development and Validation of HPLC-UV Method for the Analysis of Velpatasvir Copovidone Solid Dispersion. Antibiotics (Basel) 2022; 11:897. [PMID: 35884151 PMCID: PMC9311562 DOI: 10.3390/antibiotics11070897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 12/10/2022] Open
Abstract
Analytical methods for the drug substance and degradation products (DPs) are validated by performing forced degradation studies. Forced degradation studies of Velpatasvir (VEL) drug substance and Velpatasvir copovidone solid dispersion (VEL-CSD) were performed under the stressed alkaline, acidic, oxidative and thermal conditions according to ICH guidelines ICH Q1A (R2). VEL is labile to degrade in stressed alkaline, acidic, and oxidative conditions. It is also photolabile and degraded during photostability studies as described by ICH Q1B, and showed no degradation on exposure to extreme temperature when protected from light. A sensitive stability indicating HPLC-UV method was developed and validated for the separation of VEL and eight DPs. The DPs of VEL are separated using gradient elution of mobile phase containing 0.05% Trifluoroacetic acid (TFA) and methanol over symmetry analytical column C18 (250 mm × 4.6 mm, 5 µm) with a flow rate of 0.8 mL min-1. Simultaneous detection of all DPs and VEL was performed on UV detector at 305 nm. The performance parameters like precision, specificity and linearity of the method were validated using reference standards as prescribed by ICHQ2 (R1). Limits of quantification and limits of detection were determined from calibration curve using the expression 10δ/slope and 3δ/slope respectively. The proposed method is stability-indicating and effectively applied to the analysis of process impurities and DPs in VEL drug substance and VEL-CSD.
Collapse
Affiliation(s)
- Bakht Zaman
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan; (B.Z.); (W.H.)
| | - Waseem Hassan
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan; (B.Z.); (W.H.)
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan; (B.Z.); (W.H.)
| | - Ayesha Mushtaq
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Nisar Ali
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, China;
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China;
| | - Dina A. Ahmed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt, New Cairo 1835, Egypt;
| |
Collapse
|
11
|
Fan W, Peng H, Yu Z, Wang L, He H, Ma Y, Qi J, Lu Y, Wu W. The long-circulating effect of pegylated nanoparticles revisited via simultaneous monitoring of both the drug payloads and nanocarriers. Acta Pharm Sin B 2022; 12:2479-2493. [PMID: 35646531 PMCID: PMC9136618 DOI: 10.1016/j.apsb.2021.11.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 12/18/2022] Open
Abstract
The long-circulating effect is revisited by simultaneous monitoring of the drug payloads and nanocarriers following intravenous administration of doxorubicin (DOX)-loaded methoxy polyethylene glycol-polycaprolactone (mPEG-PCL) nanoparticles. Comparison of the kinetic profiles of both DOX and nanocarriers verifies the long-circulating effect, though of limited degree, as a result of pegylation. The nanocarrier profiles display fast clearance from the blood despite dense PEG decoration; DOX is cleared faster than the nanocarriers. The nanocarriers circulate longer than DOX in the blood, suggesting possible leakage of DOX from the nanocarriers. Hepatic accumulation is the highest among all organs and tissues investigated, which however is reversely proportionate to blood circulation time. Pegylation and reduction in particle size prove to extend circulation of drug nanocarriers in the blood with simultaneous decrease in uptake by various organs of the mononuclear phagocytic system. It is concluded that the long-circulating effect of mPEG-PCL nanoparticles is reconfirmed by monitoring of either DOX or the nanocarriers, but the faster clearance of DOX suggests possible leakage of a fraction of the payloads. The findings of this study are of potential translational significance in design of nanocarriers towards optimization of both therapeutic and toxic effects.
Collapse
|
12
|
Zheng X, Fang Z, Huang W, Qi J, Dong X, Zhao W, Wu W, Lu Y. Ionic co-aggregates (ICAs) based oral drug delivery: Solubilization and permeability improvement. Acta Pharm Sin B 2022; 12:3972-3985. [PMID: 36213530 PMCID: PMC9532535 DOI: 10.1016/j.apsb.2022.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/26/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022] Open
Abstract
Due to the overwhelming percentage of poorly water-soluble drugs, pharmaceutical industry is in urgent need of efficient approaches for solubilization and permeability improvement. Salts consisting of lipophilic fatty acid anions and hydrophilic choline cations are found to be surface active and able to form ionic co-aggregates (ICAs) in water. Choline oleate-based ICAs significantly enhance oral absorption of paclitaxel (PTX) as compared with cremophor EL-based micelles (MCs). Aggregation-caused quenching probes enable tracking of intact ICAs in in vivo transport and cellular interaction. Prolonged intestinal retention of ICAs than MCs implies stronger solubilizing capability in vivo. Ex vivo imaging of major organs and intestinal tracts suggests transepithelial transport of intact ICAs. Cellular studies support the enhanced absorption of PTX and transmembrane transport of intact ICAs. In conclusion, ICAs, consisting of lipophilic ions and hydrophilic counter-ions, are of great potential in delivery of poorly water-soluble drugs by enhancing solubility and permeability.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wei Wu
- Corresponding author. Tel.: +86 21 51980084.
| | - Yi Lu
- Corresponding author. Tel.: +86 21 51980084.
| |
Collapse
|
13
|
Insight into the in vivo fate of intravenous herpetrione amorphous nanosuspensions by aggregation-caused quenching probes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
14
|
Metal phenolic network-stabilized nanocrystals of andrographolide to alleviate macrophage-mediated inflammation in-vitro. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Zhang G, Zhang L, Tan Y, Wang L, Cheng Z. Quantitative Assessment of the in vivo Dissolution Rate to Establish a Modified IVIVC for Isosorbide Mononitrate Tablets. J Pharm Sci 2021; 112:1705-1714. [PMID: 34728173 DOI: 10.1016/j.xphs.2021.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 10/19/2022]
Abstract
A modified in vitro-in vivo correlation (IVIVC) of the oral solid dosage forms has been proposed as a linear correlation between in vitro and in vivo dissolution. Nevertheless, the analysis of in vivo dissolution is limited by the lack of available methods. In this proof-of-concept study, a novel pharmacokinetic (PK) model containing the in vivo dissolution process and its quantification was presented to directly estimate the in vivo dissolution rate constant (kd). The new model was validated with a hypothetical oral solution (kd → +∞). The accuracy of the new method was clarified by comparing with the relatively true value of kd from the literature. Isosorbide mononitrate (ISMN) was used as a model drug to explore the practicability of the novel method. The dissolution capacities of ISMN reference and test tablets were discriminated by an improved in vitro dissolution method. Following the human PK studies, the kd values and corresponding in vivo dissolution profiles of two formulations were obtained using the novel method. Finally, a modified level A IVIVC between in vitro and in vivo dissolution of ISMN tablets was established, which is expected to guide the optimization of the tablet formulation containing ISMN.
Collapse
Affiliation(s)
- Guoqing Zhang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Li Zhang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Yuexiang Tan
- Hunan Huize Bio-pharmaceutical Co., Ltd, Changsha, Hunan 410000, China
| | - Lei Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China.
| | - Zeneng Cheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
16
|
Wan J, Long Y, Liu S, Zhang Y, Xiang Y, Li D, Shi A, Shuang Y, Li Y, He Y, Li N, Guan Y. Geniposide-Loaded Liposomes for Brain Targeting: Development, Evaluation, and In Vivo Studies. AAPS PharmSciTech 2021; 22:222. [PMID: 34409515 DOI: 10.1208/s12249-021-02093-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
Geniposide (GE) possesses excellent neuroprotective effects but with poor brain targeting and short half-life. Liposome was considered to have great potential for brain diseases. Therefore, this research aimed to develop a geniposide liposome (GE-LP) as a brain delivery system for cerebral ischemia reperfusion injury (CIRI) therapy and evaluate its characterization, pharmacokinetics, brain targeting, and neuroprotective effects in vivo. Then, a reverse-phase evaporation method was applied to develop the GE-LP and optimize the formulation. Notably, the GE-LP had suitable size, which was 223.8 nm. Subsequently, the pharmacokinetic behavior of GE solution and GE-LP in mice plasma was investigated, and the brain targeting was also researched. The results showed that GE in plasma of GE-LP displayed three folds longer distribution half-life and a higher bioavailability and brain targeting compared to GE solution. In vivo neuroprotective effects was evaluated through the middle cerebral artery occlusion (MCAO) rat model, and GE-LP exhibited a stronger tendency in preventing the injury of CIRI, which can significantly improve neurological deficits. Overall, this study demonstrates GE-LP as a new formulation with ease of preparation, sustained release, and high brain targeting, which has significant development prospects on CIRI; this is expected to improve the efficacy of GE and reduce the frequency of administration.
Collapse
|
17
|
Singh A, Gupta V. SARS-CoV-2 therapeutics: how far do we stand from a remedy? Pharmacol Rep 2021; 73:750-768. [PMID: 33389724 PMCID: PMC7778692 DOI: 10.1007/s43440-020-00204-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/20/2020] [Accepted: 11/29/2020] [Indexed: 02/07/2023]
Abstract
The SARS-CoV-2 has affected millions worldwide and has posed an immediate need for effective pharmacological interventions. Ever since the outbreak was declared, the medical fraternity across the world is facing a unique situation of offering assistance and simultaneously generating reliable data with high-quality evidence to extend the scope of finding a treatment. With no proven vaccine or other interventions available hitherto, there is a frenzied urgency of sharing preliminary data from laboratories and trials to shape a global response against the virus. Several clinical trials with investigational and approved repurposed therapeutics have shown promising results. This review aims to compile the information of the reported molecules approved for emergency use and those under clinical trials and still others with good results in the studies conducted so far. Being an RNA virus, SARS-CoV-2 is prone to mutation; thus, the possibility of gaining resistance to available drugs is high. Consequently, a cocktail therapy based on drug interaction with different stages of its replicative cycle is desirable to reduce the chances of evolving drug resistance. Since this virus encodes several proteins, including 16 nonstructural and 4 structural proteins, this review also offers an insight into potential drug targets within SARS-CoV-2.
Collapse
Affiliation(s)
- Anurag Singh
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi, 110021, India
| | - Vandana Gupta
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
18
|
Affiliation(s)
- Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| |
Collapse
|