1
|
AbouSamra MM. Liposomal nano-carriers mediated targeting of liver disorders: mechanisms and applications. J Liposome Res 2024; 34:728-743. [PMID: 38988127 DOI: 10.1080/08982104.2024.2377085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/12/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Liver disorders present a significant global health challenge, necessitating the exploration of innovative treatment modalities. Liposomal nanocarriers have emerged as promising candidates for targeted drug delivery to the liver. This review offers a comprehensive examination of the mechanisms and applications of liposomal nanocarriers in addressing various liver disorders. Firstly discussing the liver disorders and the conventional treatment approaches, the review delves into the liposomal structure and composition. Moreover, it tackles the different mechanisms of liposomal targeting including both passive and active strategies. After that, the review moves on to explore the therapeutic potentials of liposomal nanocarriers in treating liver cirrhosis, fibrosis, viral hepatitis, and hepatocellular carcinoma. Through discussing recent advancements and envisioning future perspectives, this review highlights the role of liposomal nanocarriers in enhancing the effectiveness and the safety of liver disorders and consequently improving patient outcomes and enhances life quality.
Collapse
Affiliation(s)
- Mona M AbouSamra
- Pharmaceutical Technology Department, National Research Centre, Giza, Egypt
| |
Collapse
|
2
|
Wang Y, Mo Y, Sun Y, Li J, An Y, Feng N, Liu Y. Intestinal nanoparticle delivery and cellular response: a review of the bidirectional nanoparticle-cell interplay in mucosa based on physiochemical properties. J Nanobiotechnology 2024; 22:669. [PMID: 39487532 PMCID: PMC11531169 DOI: 10.1186/s12951-024-02930-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/11/2024] [Indexed: 11/04/2024] Open
Abstract
Orally administered nanocarriers play an important role in improving druggability, promoting intestinal absorption, and enhancing therapeutic applications for the treatment of local and systemic diseases. However, the delivering efficiency and cell response in mucosa to orally administered nanocarriers is affected by the physiological environment and barriers in the gastrointestinal tract, the physicochemical properties of the nanocarriers, and their bidirectional interactions. Goblet cells secrete and form extracellular mucus, which hinders the movement of nanoparticles. Meanwhile, intestinal epithelial cells may absorb the NPs, allowing for their transcytosis or degradation. Conversely, nanoparticle-induced toxicity may occur as a biological response to the nanoparticle exposure. Additionally, immune response and cell functions in secretions such as mucin, peptide, and cytokines may also be altered. In this review, we discuss the bidirectional interactions between nanoparticles and cells focusing on enterocytes and goblet cells, M cells, and immune cells in the mucosa according to the essential role of intestinal epithelial cells and their crosstalk with immune cells. Furthermore, we discuss the recent advances of how the physiochemical properties of nanoparticles influence their interplay, delivery, and fate in intestinal mucosa. Understanding the fate of nanoparticles with different physiochemical properties from the perspective of their interaction with cells in mucosa provides essential support for the development, rational design, potency maximation, and application of advanced oral nanocarrier delivery systems.
Collapse
Affiliation(s)
- Yu Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, P R China
| | - Yilei Mo
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, P R China
| | - Yingwei Sun
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, P R China
| | - Jing Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, P R China
| | - Yu An
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, P R China
| | - Nianping Feng
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, P R China.
| | - Ying Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, P R China.
| |
Collapse
|
3
|
Raghunath I, Koland M, Sarathchandran C, Saoji S, Rarokar N. Design and optimization of chitosan-coated solid lipid nanoparticles containing insulin for improved intestinal permeability using piperine. Int J Biol Macromol 2024; 280:135849. [PMID: 39313060 DOI: 10.1016/j.ijbiomac.2024.135849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
The objective of this research was to optimize the composition and performance of chitosan-coated solid lipid nanoparticles carrying insulin (Ch-In-SLNs) and to assess the potential of piperine in enhancing the intestinal permeability of insulin from these SLNs in vitro. The SLNs were formulated from glyceryl behenate (GB), soya lecithin, and poloxamer® 407, and then coated with a combination of chitosan and piperine to facilitate insulin penetration across the gastrointestinal (GI) mucosa. A Box-Behnken Design (BBD) was utilized to optimize the Ch-In-SLNs formulations, with PDI, particle size, zeta potential, and association efficiency (AE) serving as the response variables. The resulting Ch-In-SLNs exhibited excellent monodispersity (PDI = 0.4), optimal particle size (654.43 nm), positive zeta potential (+36.87 mV), and low AE values. The Ch-In-SLNs demonstrated sustained release of insulin for 12 h in simulated gastric fluid (SGF) and intestinal fluid (SIF), with increased release in the latter. After incubation in SGF and SIF for 12 h, the insulin SLNs retained 54 and 41 % of their initial insulin load, respectively, indicating effective protection from gastric enzymes. Permeation studies using goat intestine and Caco-2 cell lines indicated improved insulin permeation in the presence of piperine. Additionally, cell uptake studies confirmed the role of piperine in enhancing insulin permeation.
Collapse
Affiliation(s)
- Indu Raghunath
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore, Karnataka 575018, India
| | - Marina Koland
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore, Karnataka 575018, India.
| | - C Sarathchandran
- College of Pharmaceutical Sciences, Pariyaram Medical College, Kerala 670 503, India
| | - Suprit Saoji
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra 440033, India.
| | - Nilesh Rarokar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra 440033, India; NanoBioSome Research Laboratory, Pardi, Bhandara Road, Nagpur, Maharashtra 440035, India.
| |
Collapse
|
4
|
Zhang LZ, Du RJ, Wang D, Qin J, Yu C, Zhang L, Zhu HD. Enteral Route Nanomedicine for Cancer Therapy. Int J Nanomedicine 2024; 19:9889-9919. [PMID: 39351000 PMCID: PMC11439897 DOI: 10.2147/ijn.s482329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
With the in-depth knowledge of the pathological and physiological characteristics of the intestinal barrier-portal vein/intestinal lymphatic vessels-systemic circulation axis, oral targeted drug delivery is frequently being renewed. With many advantages, such as high safety, convenient administration, and good patient compliance, many researchers have begun to explore targeted drug delivery from intravenous injections to oral administration. Over the past few decades, the fields of materials science and nanomedicine have produced various drug delivery platforms that hold great potential in overcoming the multiple barriers associated with oral drug delivery. However, the oral transport of particles into the systemic circulation is extremely difficult due to immune rejection and biochemical invasion in the intestine, which limits absorption and entry into the bloodstream. The feasibility of the oral delivery of targeted drugs to sites outside the gastrointestinal tract (GIT) is unknown. This article reviews the biological barriers to drug absorption, the in vivo fate and transport mechanisms of drug carriers, the theoretical basis for oral administration, and the impact of carrier structural evolution on oral administration to achieve this goal. Finally, this article reviews the characteristics of different nano-delivery systems that can enhance the bioavailability of oral therapeutics and highlights their applications in the efficient creation of oral anticancer nanomedicines.
Collapse
Affiliation(s)
- Lin-Zhu Zhang
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Rui-Jie Du
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Duo Wang
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Juan Qin
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Chao Yu
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Lei Zhang
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Hai-Dong Zhu
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
5
|
Pangua C, Espuelas S, Martínez-Ohárriz MC, Vizmanos JL, Irache JM. Mucus-penetrating and permeation enhancer albumin-based nanoparticles for oral delivery of macromolecules: Application to bevacizumab. Drug Deliv Transl Res 2024; 14:1189-1205. [PMID: 37880504 PMCID: PMC10984897 DOI: 10.1007/s13346-023-01454-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
The oral administration of therapeutic proteins copes with important challenges (mainly degradation and poor absorption) making their potential therapeutic application extremely difficult. The aim of this study was to design and evaluate the potential of the combination between mucus-permeating nanoparticles and permeation enhancers as a carrier for the oral delivery of the monoclonal antibody bevacizumab, used as a model of therapeutic protein. For this purpose, bevacizumab was encapsulated in PEG-coated albumin nanoparticles as a hydrophobic ion-pairing complex with either sodium deoxycholate (DS) or sodium docusate (DOCU). In both cases, complex formation efficiencies close to 90% were found. The incorporation of either DS or DOCU in PEG-coated nanoparticles significantly increased their mean size, particularly when DOCU was used. Moreover, the diffusion in mucus of DOCU-loaded nanoparticles was significantly reduced, compared with DS ones. In a C. elegans model, DS or DOCU (free or nanoencapsulated) disrupted the intestinal epithelial integrity, but the overall survival of the worms was not affected. In rats, the relative oral bioavailability of bevacizumab incorporated in PEG-coated nanoparticles as a complex with DS (B-DS-NP-P) was 3.7%, a 1000-fold increase compared to free bevacizumab encapsulated in nanoparticles (B-NP-P). This important effect of DS may be explained not only by its capability to transiently disrupt tight junctions but also to their ability to increase the fluidity of membranes and to inhibit cytosolic and brush border enzymes. In summary, the current strategy may be useful to allow the therapeutic use of orally administered proteins, including monoclonal antibodies.
Collapse
Affiliation(s)
- Cristina Pangua
- NANO-VAC Research Group, Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
| | - Socorro Espuelas
- NANO-VAC Research Group, Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
| | | | - José Luis Vizmanos
- Department of Biochemistry & Genetics, School of Sciences, University of Navarra, 31008, Pamplona, Spain
| | - Juan M Irache
- NANO-VAC Research Group, Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain.
- Institute for Health Research (IdiSNA), 31008, Pamplona, Spain.
| |
Collapse
|
6
|
Ding B, Zhu Z, Guo C, Li J, Gan Y, Yu M. Oral peptide therapeutics for diabetes treatment: State-of-the-art and future perspectives. Acta Pharm Sin B 2024; 14:2006-2025. [PMID: 38799624 PMCID: PMC11120284 DOI: 10.1016/j.apsb.2024.02.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/04/2023] [Accepted: 12/26/2023] [Indexed: 05/29/2024] Open
Abstract
Diabetes, characterized by hyperglycemia, is a major cause of death and disability worldwide. Peptides, such as insulin and glucagon-like peptide-1 (GLP-1) analogs, have shown promise as treatments for diabetes due to their ability to mimic or enhance insulin's actions in the body. Compared to subcutaneous injection, oral administration of anti-diabetic peptides is a preferred approach. However, biological barriers significantly reduce the efficacy of oral peptide therapeutics. Recent advancements in drug delivery systems and formulation techniques have greatly improved the oral delivery of peptide therapeutics and their efficacy in treating diabetes. This review will highlight (1) the benefits of oral anti-diabetic peptide therapeutics; (2) the biological barriers for oral peptide delivery, including pH and enzyme degradation, intestinal mucosa barrier, and biodistribution barrier; (3) the delivery platforms to overcome these biological barriers. Additionally, the review will discuss the prospects in this field. The information provided in this review will serve as a valuable guide for future developments in oral anti-diabetic peptide therapeutics.
Collapse
Affiliation(s)
- Bingwen Ding
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhu Zhu
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Cong Guo
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaxin Li
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Gan
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Miaorong Yu
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Hunt NJ, Lockwood GP, Heffernan SJ, Daymond J, Ngu M, Narayanan RK, Westwood LJ, Mohanty B, Esser L, Williams CC, Kuncic Z, McCourt PAG, Le Couteur DG, Cogger VC. Oral nanotherapeutic formulation of insulin with reduced episodes of hypoglycaemia. NATURE NANOTECHNOLOGY 2024; 19:534-544. [PMID: 38168926 PMCID: PMC11026164 DOI: 10.1038/s41565-023-01565-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 11/02/2023] [Indexed: 01/05/2024]
Abstract
Injectable insulin is an extensively used medication with potential life-threatening hypoglycaemic events. Here we report on insulin-conjugated silver sulfide quantum dots coated with a chitosan/glucose polymer to produce a responsive oral insulin nanoformulation. This formulation is pH responsive, is insoluble in acidic environments and shows increased absorption in human duodenum explants and Caenorhabditis elegans at neutral pH. The formulation is sensitive to glucosidase enzymes to trigger insulin release. It is found that the formulation distributes to the liver in mice and rats after oral administration and promotes a dose-dependent reduction in blood glucose without promoting hypoglycaemia or weight gain in diabetic rodents. Non-diabetic baboons also show a dose-dependent reduction in blood glucose. No biochemical or haematological toxicity or adverse events were observed in mice, rats and non-human primates. The formulation demonstrates the potential to orally control blood glucose without hypoglycaemic episodes.
Collapse
Affiliation(s)
- Nicholas J Hunt
- Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia.
- Sydney Nano Institute, The University of Sydney, Camperdown, New South Wales, Australia.
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia.
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney Local Health District (SLHD), Concord, New South Wales, Australia.
| | - Glen P Lockwood
- Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney Local Health District (SLHD), Concord, New South Wales, Australia
| | - Scott J Heffernan
- Royal Prince Alfred Hospital, SLHD, Camperdown, New South Wales, Australia
| | - Jarryd Daymond
- Sydney Nano Institute, The University of Sydney, Camperdown, New South Wales, Australia
- Sydney Business School, The University of Sydney, Camperdown, New South Wales, Australia
| | - Meng Ngu
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney Local Health District (SLHD), Concord, New South Wales, Australia
- Department of Gastroenterology, Concord Repatriation General Hospital, SLHD, Concord, New South Wales, Australia
| | - Ramesh K Narayanan
- Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney Local Health District (SLHD), Concord, New South Wales, Australia
| | - Lara J Westwood
- Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
- Sydney Nano Institute, The University of Sydney, Camperdown, New South Wales, Australia
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney Local Health District (SLHD), Concord, New South Wales, Australia
| | - Biswaranjan Mohanty
- Sydney Analytical Core Research Facility, The University of Sydney, Camperdown, New South Wales, Australia
| | - Lars Esser
- CSIRO Manufacturing, Clayton, Victoria, Australia
| | | | - Zdenka Kuncic
- Sydney Nano Institute, The University of Sydney, Camperdown, New South Wales, Australia
- School of Physics, The University of Sydney, Camperdown, New South Wales, Australia
| | - Peter A G McCourt
- Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney Local Health District (SLHD), Concord, New South Wales, Australia
- Department of Medical Biology, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - David G Le Couteur
- Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney Local Health District (SLHD), Concord, New South Wales, Australia
| | - Victoria C Cogger
- Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia.
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney Local Health District (SLHD), Concord, New South Wales, Australia.
| |
Collapse
|
8
|
Barfar A, Alizadeh H, Masoomzadeh S, Javadzadeh Y. Oral Insulin Delivery: A Review on Recent Advancements and Novel Strategies. Curr Drug Deliv 2024; 21:887-900. [PMID: 37202888 DOI: 10.2174/1567201820666230518161330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/24/2023] [Accepted: 04/10/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Due to the lifestyle of people in the community in recent years, the prevalence of diabetes mellitus has increased, so New drugs and related treatments are also being developed. INTRODUCTION One of the essential treatments for diabetes today is injectable insulin forms, which have their problems and limitations, such as invasive and less admission of patients and high cost of production. According to the mentioned issues, Theoretically, Oral insulin forms can solve many problems of injectable forms. METHODS Many efforts have been made to design and introduce Oral delivery systems of insulin, such as lipid-based, synthetic polymer-based, and polysaccharide-based nano/microparticle formulations. The present study reviewed these novel formulations and strategies in the past five years and checked their properties and results. RESULTS According to peer-reviewed research, insulin-transporting particles may preserve insulin in the acidic and enzymatic medium and decrease peptide degradation; in fact, they could deliver appropriate insulin levels to the intestinal environment and then to blood. Some of the studied systems increase the permeability of insulin to the absorption membrane in cellular models. In most investigations, in vivo results revealed a lower ability of formulations to reduce BGL than subcutaneous form, despite promising results in in vitro and stability testing. CONCLUSION Although taking insulin orally currently seems unfeasible, future systems may be able to overcome mentioned obstacles, making oral insulin delivery feasible and producing acceptable bioavailability and treatment effects in comparison to injection forms.
Collapse
Affiliation(s)
- Ashkan Barfar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Helia Alizadeh
- Pharm.D Student, Pharmacy Faculty, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Salar Masoomzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Javadzadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Wang X, Sun H, Mu T. Materials and structure of polysaccharide-based delivery carriers for oral insulin: A review. Carbohydr Polym 2024; 323:121364. [PMID: 37940264 DOI: 10.1016/j.carbpol.2023.121364] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/24/2023] [Accepted: 09/02/2023] [Indexed: 11/10/2023]
Abstract
Diabetes mellitus is a chronic metabolic disease that affects >500 million patients worldwide. Subcutaneous injection of insulin is the most effective treatment at present. However, regular needle injections will cause pain, inflammation, and other adverse consequences. In recent years, significant progress has been made in non-injectable insulin preparations. Oral administration is the best way of administration due to its simplicity, convenience, and good patient compliance. However, oral insulin delivery is hindered by many physiological barriers in the gastrointestinal tract, resulting in the low relative bioavailability of direct oral insulin delivery. To improve the relative bioavailability, a variety of insulin delivery vectors have been developed. Polysaccharides are used to achieve safe and effective insulin loading due to their excellent biocompatibility and protein affinity. The functional characteristics of polysaccharide-based delivery carriers, such as pH responsiveness, mucosal adhesion, and further functionalization modifications, enhance the gastrointestinal absorption and bioavailability of insulin. This paper reviews the materials and structures of oral insulin polysaccharide-based carriers, providing ideas for further improving the relative bioavailability of oral insulin.
Collapse
Affiliation(s)
- Xinran Wang
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China
| | - Hongnan Sun
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China.
| | - Taihua Mu
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China.
| |
Collapse
|
10
|
Wang Y, Zhao L, Dai Y, Xu M, Zhou R, Zhou B, Gou K, Zeng R, Xu L, Li H. Enantioselective Oral Absorption of Molecular Chiral Mesoporous Silica Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2307900. [PMID: 37839052 DOI: 10.1002/adma.202307900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/10/2023] [Indexed: 10/17/2023]
Abstract
Inspired by the unique pharmacological effects of chiral drugs in the asymmetrical body environments, it is assumed that the chirality of nanocarriers is also a key factor to determine their oral adsorption efficiency, apart from their size, shape, etc. Herein, l/d-tartaric acid modified mesoporous silica nanoparticles (l/d-CMSNs) are fabricated via a one-pot cocondensation method, and focused on whether the oral adsorption of nanocarriers will be benefited from their chirality. It is found that l-CMSN performed better in the sequential oral absorption processes, including mucus permeation, mucosa bio-adhesion, cellular uptake, intestinal transport and gastrointestinal tract (GIT) retention, than those of the d-chiral (d-CMSN), racemic (dl-CMSN), and achiral (MSN) counterparts. The multiple chiral recognition mechanisms are experimentally and theoretically demonstrated following simple differential adsorption on biointerfaces, wherein electrostatic interaction is the dominant energy. During the oral delivery task, l-CMSN, which is proven to be stable, nonirritative, biocompatible, and biodegradable, is efficiently absorbed into the blood (1.72-2.05-fold higher than other nanocarriers), and helps the loaded doxorubicin (DOX) to achieve better intestinal transport (2.32-27.03-times higher than other samples), satisfactory bioavailability (449.73%) and stronger antitumor effect (up to 95.43%). These findings validated the dominant role of chirality in determining the biological fate of nanocarriers.
Collapse
Affiliation(s)
- Yuxin Wang
- School of Pharmacy, China Medical University, Shenyang, 110122, China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Lin Zhao
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Yibo Dai
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Miao Xu
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Ruilin Zhou
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Bingxin Zhou
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Kaijun Gou
- Institute of Tibetan Plateau, Southwest Minzu University, Chengdu, 610225, China
| | - Rui Zeng
- Institute of Tibetan Plateau, Southwest Minzu University, Chengdu, 610225, China
| | - Lu Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Heran Li
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| |
Collapse
|
11
|
Voci S, Pangua C, Martínez-Ohárriz MC, Aranaz P, Collantes M, Irache JM, Cosco D. Gliadin nanoparticles for oral administration of bioactives: Ex vivo and in vivo investigations. Int J Biol Macromol 2023; 249:126111. [PMID: 37541472 DOI: 10.1016/j.ijbiomac.2023.126111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
This study aims to provide a thorough characterization of Brij O2-stabilized gliadin nanoparticles to be used for the potential oral administration of various compounds. Different techniques were used in order to evaluate their physico-chemical features and then in vivo studies in rats were performed for the investigation of their biodistribution and gastrointestinal transit profiles. The results showed that the gliadin nanoparticles accumulated in the mucus layer of the bowel mucosa and evidenced their ability to move along the digestive systems of the animals. The incubation of the nanosystems with Caenorhabditis elegans, used as an additional in vivo model, confirmed the intake of the particles and evidenced their presence along the entire gastrointestinal tract of these nematodes. The gliadin nanoparticles influenced neither the egg-laying activity of the worms nor their metabolism of lipids up to 10 μg/mL of nanoformulation. The systems decreased the content of the age-related lipofuscin pigment in the nematodes in a dose-dependent manner, demonstrating a certain antioxidant activity. Lastly, dihydroethidium staining showed the absence of oxidative stress upon incubation of the worms together with the formulations, confirming their safe profile. This data paves the way for the future application of the proposed nanosystems regarding the oral delivery of various bioactives.
Collapse
Affiliation(s)
- Silvia Voci
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta", 88100 Catanzaro, Italy
| | - Cristina Pangua
- Department of Chemistry and Pharmaceutical Technology, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain
| | | | - Paula Aranaz
- Center for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
| | - Maria Collantes
- Translational Molecular Imaging Unit (UNIMTRA), Department of Nuclear Medicine, Clínica Universidad de Navarra, Pamplona, Spain
| | - Juan M Irache
- Department of Chemistry and Pharmaceutical Technology, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain.
| | - Donato Cosco
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta", 88100 Catanzaro, Italy.
| |
Collapse
|
12
|
Campión R, Gonzalez-Navarro CJ, Luisa Martínez López A, Cristina Martínez-Oharriz M, Matías C, Sáiz-Abajo MJ, Collantes M, Peñuelas I, Irache JM. Zein-based nanospheres and nanocapsules for the encapsulation and oral delivery of quercetin. Int J Pharm 2023; 643:123216. [PMID: 37423375 DOI: 10.1016/j.ijpharm.2023.123216] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/11/2023]
Abstract
In this study, the ability of zein nanospheres (NS) and zein nanocapsules containing wheat germ oil (NC) to enhance the bioavailability and efficacy of quercetin was evaluated. Both types of nanocarriers had similar physico-chemical properties, including size (between 230 and 250 nm), spherical shape, negative zeta potential, and surface hydrophobicity. However, NS displayed a higher ability than NC to interact with the intestinal epithelium, as evidenced by an oral biodistribution study in rats. Moreover, both types of nanocarriers offered similar loading efficiencies and release profiles in simulated fluids. In C. elegans, the encapsulation of quercetin in nanospheres (Q-NS) was found to be two twice more effective than the free form of quercetin in reducing lipid accumulation. For nanocapsules, the presence of wheat germ oil significantly increased the storage of lipids in C. elegans; although the incorporation of quercetin (Q-NC) significantly counteracted the presence of the oil. Finally, nanoparticles improved the oral absorption of quercetin in Wistar rats, offering a relative oral bioavailability of 26% and 57% for Q-NS and Q-NC, respectively, compared to a 5% for the control formulation. Overall, the study suggests that zein nanocarriers, particularly nanospheres, could be useful in improving the bioavailability and efficacy of quercetin.
Collapse
Affiliation(s)
- Raquel Campión
- NANO-VAC Research Group, Department of Chemistry and Pharmaceutical Technology, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
| | - Carlos J Gonzalez-Navarro
- Center for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
| | - Ana Luisa Martínez López
- NANO-VAC Research Group, Department of Chemistry and Pharmaceutical Technology, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
| | | | - Cristina Matías
- National Centre for Food Technology and Safety (CNTA), NA 134, Km. 53. 31570-San Adrián, Navarre, Spain
| | - María-José Sáiz-Abajo
- National Centre for Food Technology and Safety (CNTA), NA 134, Km. 53. 31570-San Adrián, Navarre, Spain
| | - Maria Collantes
- Radiopharmacy Unit, Clinica Universidad de Navarra, 31008 Pamplona, Spain; Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Ivan Peñuelas
- Radiopharmacy Unit, Clinica Universidad de Navarra, 31008 Pamplona, Spain; Translational Molecular Imaging Unit (UNIMTRA), Department of Nuclear Medicine, Clinica Universidad de Navarra, 31008 Pamplona, Spain; Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Juan M Irache
- NANO-VAC Research Group, Department of Chemistry and Pharmaceutical Technology, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; Institute for Health Research (IdiSNA), 31008 Pamplona, Spain.
| |
Collapse
|
13
|
Zein nanoparticles for drug delivery: Preparation methods and biological applications. Int J Pharm 2023; 635:122754. [PMID: 36812950 DOI: 10.1016/j.ijpharm.2023.122754] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
Zein, a vegetable protein extracted from corn (Zea mays L.), forms a gastro-resistant and mucoadhesive polymer that is cheap and easy to obtain and facilitates the encapsulation of bioactives with hydrophilic, hydrophobic, and amphiphilic properties. The methods used for synthesizing these nanoparticles include antisolvent precipitation/nanoprecipitation, pH-driven, electrospraying, and solvent emulsification-evaporation methods. Each method has its advantages in the preparation of nanocarriers, nevertheless, all of them enable the production of zein nanoparticles that are stable and resistant to environmental factors, with different biological activities required in the cosmetic, food, and pharmaceutical industries. Therefore, zein nanoparticles are promising nanocarriers that can encapsulate various bioactives with anti-inflammatory, antioxidant, antimicrobial, anticancer, and antidiabetic properties. This article reviews the principal methods for obtaining zein nanoparticles containing bioactives, the advantages and characteristics of each method, as well as the main biological applications of nanotechnology-based formulations.
Collapse
|
14
|
He Y, Zhang W, Xiao Q, Fan L, Huang D, Chen W, He W. Liposomes and liposome-like nanoparticles: From anti-fungal infection to the COVID-19 pandemic treatment. Asian J Pharm Sci 2022; 17:817-837. [PMID: 36415834 PMCID: PMC9671608 DOI: 10.1016/j.ajps.2022.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/18/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
The liposome is the first nanomedicine transformed into the market and applied to human patients. Since then, such phospholipid bilayer vesicles have undergone technological advancements in delivering small molecular-weight compounds and biological drugs. Numerous investigations about liposome uses were conducted in different treatment fields, including anti-tumor, anti-fungal, anti-bacterial, and clinical analgesia, owing to liposome's ability to reduce drug cytotoxicity and improve the therapeutic efficacy and combinatorial delivery. In particular, two liposomal vaccines were approved in 2021 to combat COVID-19. Herein, the clinically used liposomes are reviewed by introducing various liposomal preparations in detail that are currently proceeding in the clinic or on the market. Finally, we discuss the challenges of developing liposomes and cutting-edge liposomal delivery for biological drugs and combination therapy.
Collapse
Affiliation(s)
- Yonglong He
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wanting Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qingqing Xiao
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Lifang Fan
- Jiangsu Aosaikang Pharmaceutical Co., Ltd., Nanjing 211112, China
| | - Dechun Huang
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Wei Chen
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Wei He
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
15
|
Ren Y, Wu W, Zhang X. The feasibility of oral targeted drug delivery: gut immune to particulates? Acta Pharm Sin B 2022. [DOI: 10.1016/j.apsb.2022.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
16
|
Markowicz J, Wołowiec S, Rode W, Uram Ł. Synthesis and Properties of α-Mangostin and Vadimezan Conjugates with Glucoheptoamidated and Biotinylated 3rd Generation Poly(amidoamine) Dendrimer, and Conjugation Effect on Their Anticancer and Anti-Nematode Activities. Pharmaceutics 2022; 14:606. [PMID: 35335982 PMCID: PMC8951109 DOI: 10.3390/pharmaceutics14030606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/28/2022] Open
Abstract
α-Mangostin and vadimezan are widely studied potential anticancer agents. Their biological activities may be improved by covalent bonding by amide or ester bonds with the third generation poly(amidoamine) (PAMAM) dendrimer, substituted with α-D-glucoheptono-1,4-lactone and biotin. Thus, conjugates of either ester- (G3gh4B5V) or amide-linked (G32B12gh5V) vadimezan, and equivalents of α-mangostin (G3gh2B5M and G32B12gh5M, respectively), were synthesized, characterized and tested in vitro against cancer cells: U-118 MG glioma, SCC-15 squamous carcinoma, and BJ normal human fibroblasts growth, as well as against C. elegans development. α-Mangostin cytotoxicity, stronger than that of Vadimezan, was increased (by 2.5-9-fold) by conjugation with the PAMAM dendrimer (with the amide-linking being slightly more effective), and the strongest effect was observed with SCC-15 cells. Similar enhancement of toxicity resulting from the drug conjugation was observed with C. elegans. Vadimezan (up to 200 µM), as well as both its dendrimer conjugates, was not toxic against both the studied cells and nematodes. It showed an antiproliferative effect against cancer cells at concentrations ≥100 µM. This effect was significantly enhanced after conjugation of the drug with the dendrimer via the amide, but not the ester bond, with G32B12gh5V inhibiting the proliferation of SCC-15 and U-118 MG cells at concentrations ≥4 and ≥12 μM, respectively, without a visible effect in normal BJ cells. Thus, the drug delivery system based on the PAMAM G3 dendrimer containing amide bonds, partially-blocked amino groups on the surface, larger particle diameter and higher zeta potential can be a useful tool to improve the biological properties of transported drug molecules.
Collapse
Affiliation(s)
- Joanna Markowicz
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstancow Warszawy Ave, 35-959 Rzeszów, Poland;
| | - Stanisław Wołowiec
- Medical College, Rzeszów University, 1a Warzywna Street, 35-310 Rzeszów, Poland;
| | - Wojciech Rode
- Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland;
| | - Łukasz Uram
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstancow Warszawy Ave, 35-959 Rzeszów, Poland;
| |
Collapse
|
17
|
Zein-Based Nanoparticles as Oral Carriers for Insulin Delivery. Pharmaceutics 2021; 14:pharmaceutics14010039. [PMID: 35056935 PMCID: PMC8779360 DOI: 10.3390/pharmaceutics14010039] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/25/2022] Open
Abstract
Zein, the major storage protein from corn, has a GRAS (Generally Regarded as Safe) status and may be easily transformed into nanoparticles, offering significant payloads for protein materials without affecting their stability. In this work, the capability of bare zein nanoparticles (mucoadhesive) and nanoparticles coated with poly(ethylene glycol) (mucus-permeating) was evaluated as oral carriers of insulin (I-NP and I-NP-PEG, respectively). Both nanocarriers displayed sizes of around 270 nm, insulin payloads close to 80 µg/mg and did not induce cytotoxic effects in Caco-2 and HT29-MTX cell lines. In Caenorhabditis elegans, where insulin decreases fat storage, I-NP-PEG induced a higher reduction in the fat content than I-NP and slightly lower than the control (Orlistat). In diabetic rats, nanoparticles induced a potent hypoglycemic effect and achieved an oral bioavailability of 4.2% for I-NP and 10.2% for I-NP-PEG. This superior effect observed for I-NP-PEG would be related to their capability to diffuse through the mucus layer and reach the surface of enterocytes (where insulin would be released), whereas the mucoadhesive I-NP would remain trapped in the mucus, far away from the absorptive epithelium. In summary, PEG-coated zein nanoparticles may be an interesting device for the effective delivery of proteins through the oral route.
Collapse
|
18
|
Affiliation(s)
- Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| |
Collapse
|