1
|
Yang X, Yan Y, Wang F, Tian J, Cao Q, Liu M, Ma B, Su C, Duan X. Aspirin prevents colorectal cancer by regulating the abundance of Enterococcus cecorum and TIGIT +Treg cells. Sci Rep 2024; 14:13592. [PMID: 38867002 PMCID: PMC11169407 DOI: 10.1038/s41598-024-64447-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/10/2024] [Indexed: 06/14/2024] Open
Abstract
Although aspirin can reduce the incidence of colorectal cancer (CRC), there is still uncertainty about its significance as a treatment for CRC, and the mechanism of aspirin in CRC is not well understood. In this study, we used aspirin to prevent AOM/DSS-induced CRC in mice, and the anti-CRC efficacy of aspirin was assessed using haematoxylin and eosin (H&E) staining and by determining the mouse survival rate and tumour size. 16S rDNA sequencing, flow cytometry (FCM), and Western blotting were also conducted to investigate the changes in the gut microbiota, tumour immune microenvironment, and apoptotic proteins, respectively. The results demonstrated that aspirin significantly exerted anti-CRC effects in mice. According to 16S rDNA sequencing, aspirin regulated the composition of the gut microbiota and dramatically reduced the abundance of Enterococcus cecorum. FCM demonstrated that there were more CD155 tumour cells and CD4 + CD25 + Treg cells showed increased TIGIT levels. Moreover, increased TIGIT expression on Treg cells is associated with reduced Treg cell functionality. Importantly, the inhibition of Treg cells is accompanied by the promotion of CD19 + GL-7 + B cells, CD8 + T cells, CD4 + CCR4 + Th2 cells, and CD4 + CCR6 + Th17 cells. Overall, aspirin prevents colorectal cancer by regulating the abundance of Enterococcus cecorum and TIGIT + Treg cells.
Collapse
Affiliation(s)
- Xiaojuan Yang
- School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China
- School of Inspection, Ningxia Medical University, Yinchuan, 750004, China
| | - Yajuan Yan
- School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Fengkui Wang
- General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Jinhua Tian
- The First School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Qian Cao
- The First School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Miao Liu
- The First School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Bin Ma
- Department of Oncology Surgery, The First People's Hospital of Yinchuan, Yinchuan, 750004, China.
| | - Chunxia Su
- School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China.
- Department of Pathogen Biology and Immunology, School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China.
| | - Xiangguo Duan
- School of Inspection, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
2
|
Deng S, Zhang Y, Wang H, Liang W, Xie L, Li N, Fang Y, Wang Y, Liu J, Chi H, Sun Y, Ye R, Shan L, Shi J, Shen Z, Wang Y, Wang S, Brosseau JP, Wang F, Liu G, Quan Y, Xu J. ITPRIPL1 binds CD3ε to impede T cell activation and enable tumor immune evasion. Cell 2024; 187:2305-2323.e33. [PMID: 38614099 DOI: 10.1016/j.cell.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/13/2023] [Accepted: 03/13/2024] [Indexed: 04/15/2024]
Abstract
Cancer immunotherapy has transformed treatment possibilities, but its effectiveness differs significantly among patients, indicating the presence of alternative pathways for immune evasion. Here, we show that ITPRIPL1 functions as an inhibitory ligand of CD3ε, and its expression inhibits T cells in the tumor microenvironment. The binding of ITPRIPL1 extracellular domain to CD3ε on T cells significantly decreased calcium influx and ZAP70 phosphorylation, impeding initial T cell activation. Treatment with a neutralizing antibody against ITPRIPL1 restrained tumor growth and promoted T cell infiltration in mouse models across various solid tumor types. The antibody targeting canine ITPRIPL1 exhibited notable therapeutic efficacy against naturally occurring tumors in pet clinics. These findings highlight the role of ITPRIPL1 (or CD3L1, CD3ε ligand 1) in impeding T cell activation during the critical "signal one" phase. This discovery positions ITPRIPL1 as a promising therapeutic target against multiple tumor types.
Collapse
Affiliation(s)
- Shouyan Deng
- Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200032, China
| | - Yibo Zhang
- Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200032, China
| | | | - Wenhua Liang
- Shanghai Institute of Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200031, China
| | - Lu Xie
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing 100044, China
| | - Ning Li
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100020, China
| | - Yuan Fang
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100020, China
| | - Yiting Wang
- Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200032, China
| | - Jiayang Liu
- Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200032, China
| | - Hao Chi
- Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200032, China
| | - Yufan Sun
- BioTroy Therapeutics, Shanghai 201400, China
| | - Rui Ye
- BioTroy Therapeutics, Shanghai 201400, China
| | - Lishen Shan
- BioTroy Therapeutics, Shanghai 201400, China
| | - Jiawei Shi
- Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200032, China
| | - Zan Shen
- Department of Oncology, Shanghai Sixth People's Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 600, Yishan Road, Shanghai 200233, China
| | - Yonggang Wang
- Department of Oncology, Shanghai Sixth People's Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 600, Yishan Road, Shanghai 200233, China
| | - Shuhang Wang
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100020, China
| | - Jean-Philippe Brosseau
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Feng Wang
- Shanghai Institute of Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200031, China
| | - Grace Liu
- Arctic Animal Hospital, Fuzhou, Fujian 350007, China
| | | | - Jie Xu
- Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
3
|
Qin X, An Y, Li X, Huang F, Zhou Y, Pei D, Bi H, Shi X, Fan W, Ding Y, Li S, Li S, Wang J. Generation and utilization of endostatin-sensitive cell lines for assessing the biological activity of endostatin. MedComm (Beijing) 2024; 5:e506. [PMID: 38525110 PMCID: PMC10960727 DOI: 10.1002/mco2.506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 03/26/2024] Open
Abstract
Recombinant proteins are gaining increasing popularity for treating human diseases. The clinical effectiveness of recombinant proteins is directly related to their biological activity, which is an important indicator in drug development and quality control. However, certain recombinant proteins have unclear or complex signal pathways, making detecting their activity in vitro difficult. For instance, recombinant human endostatin (endostatin), a new antitumor drug developed in China, lacks a sensitive and stable assay for its biological activity since being market approval. To address this issue, we performed a genome-wide screening of immortalized human umbilical vein endothelial cells (HUVECs) using a CRISPR/Cas9 knockout library containing 20,000 targeted genes. We identified two potential endostatin-resistant genes, NEPSPP and UTS2, and successfully constructed a highly sensitive cell line, HUVEC-UTS2-3#, by knocking down the UTS2 gene. Based on the optimized parameters of HUVEC-UTS2-3# cells, we established a new method for detecting the biological activity of endostatin. The method was validated, and it produced results consistent with primary HUVEC cells but with higher sensitivity and more stable data. The use of gene-editing technology provides a novel solution for detecting the biological activity of recombinant proteins that other methods cannot detect.
Collapse
Affiliation(s)
- Xi Qin
- National Institutes for Food and Drug ControlBeijingChina
- WHO Collaboration Centre for Biologicals Standardization and EvaluationBeijingChina
| | - Yifang An
- National Institutes for Food and Drug ControlBeijingChina
- WHO Collaboration Centre for Biologicals Standardization and EvaluationBeijingChina
| | - Xiang Li
- National Institutes for Food and Drug ControlBeijingChina
- WHO Collaboration Centre for Biologicals Standardization and EvaluationBeijingChina
| | - Fang Huang
- Department of Cell EngineeringBeijing Institute of BiotechnologyBeijingChina
| | - Yong Zhou
- National Institutes for Food and Drug ControlBeijingChina
- WHO Collaboration Centre for Biologicals Standardization and EvaluationBeijingChina
| | - Dening Pei
- National Institutes for Food and Drug ControlBeijingChina
- WHO Collaboration Centre for Biologicals Standardization and EvaluationBeijingChina
| | - Hua Bi
- National Institutes for Food and Drug ControlBeijingChina
- WHO Collaboration Centre for Biologicals Standardization and EvaluationBeijingChina
| | - Xinchang Shi
- National Institutes for Food and Drug ControlBeijingChina
- WHO Collaboration Centre for Biologicals Standardization and EvaluationBeijingChina
| | - Wenhong Fan
- National Institutes for Food and Drug ControlBeijingChina
- WHO Collaboration Centre for Biologicals Standardization and EvaluationBeijingChina
| | - Youxue Ding
- National Institutes for Food and Drug ControlBeijingChina
- WHO Collaboration Centre for Biologicals Standardization and EvaluationBeijingChina
| | - Shuang Li
- Sinovac Research & Development Co., Ltd.BeijingChina
| | - Shanhu Li
- Department of Cell EngineeringBeijing Institute of BiotechnologyBeijingChina
| | - Junzhi Wang
- National Institutes for Food and Drug ControlBeijingChina
- WHO Collaboration Centre for Biologicals Standardization and EvaluationBeijingChina
| |
Collapse
|
4
|
Poulsen M, Overgaard M, Folsted Andersen CB, Lodberg A. Highly Responsive Bioassay for Quantification of Glucocorticoids. Anal Chem 2024; 96:2000-2007. [PMID: 38277256 PMCID: PMC10851934 DOI: 10.1021/acs.analchem.3c04435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
Measurement of total cortisol levels in serum samples is currently based on immunoassays or liquid chromatography-mass spectrometry (LC-MS/MS). However, measurement of bioavailable cortisol is laborious, unreliable, and inconvenient for the patient. Therefore, a new versatile assay with the ability to measure both total and bioavailable cortisol from serum represents an important supplement to the current methods. We have generated a cell-based glucocorticoid reporter assay (HEK293F-GRE). The assay was validated for cell line stability, accuracy by dilution, precision, repeatability, reproducibility, and specificity. Additionally, the assay was tested for measuring both total and bioavailable cortisol in serum. The assay showed linearity at five dilution levels with R2 = 0.98 and an accuracy between 0.8 and 1.2. Precision (CV < 20%) was validated down to 3-6 nM dexamethasone, and estimation of the total cortisol concentration was comparable to cortisol immunoassay and LC-MS/MS in most serum samples. Moreover, the assay estimated the bioavailable cortisol fraction in serum samples to a level that agreed with the literature. The HEK293F-GRE assay holds the potential to be a complementary method for estimating cortisol in clinical practice. The ability to quantify bioavailable cortisol directly from serum samples is alluring and provides an opportunity for monitored and personal dose regimens of exogenous glucocorticoids.
Collapse
Affiliation(s)
| | - Martin Overgaard
- Department
of Clinical Research, University of Southern
Denmark, 5000 Odense C, Denmark
- Department
of Clinical Biochemistry, Odense University
Hospital, 5000 Odense C, Denmark
| | | | - Andreas Lodberg
- Department
of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, 8000 Aarhus C, Denmark
| |
Collapse
|
5
|
Álvarez Freile J, Qi Y, Jacob L, Lobo MF, Lourens HJ, Huls G, Bremer E. A luminescence-based method to assess antigen presentation and antigen-specific T cell responses for in vitro screening of immunomodulatory checkpoints and therapeutics. Front Immunol 2023; 14:1233113. [PMID: 37559730 PMCID: PMC10407562 DOI: 10.3389/fimmu.2023.1233113] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023] Open
Abstract
Investigations into the strength of antigen-specific responses in vitro is becoming increasingly relevant for decision making in early-phase research of novel immunotherapeutic approaches, including adoptive cell but also immune checkpoint inhibitor (ICI)-based therapies. In the latter, antigen-specific rapid and high throughput tools to investigate MHC/antigen-specific T cell receptor (TCR) activation haven't been implemented yet. Here, we present a simple and rapid luminescence-based approach using the human papillomavirus 16 (HPV16) E711-20 peptide as model antigen and E7-TCR transgenic Jurkat.NFAT-luciferase reporter cells. Upon E7 peptide pulsing of HLA-A2+ cell lines and macrophages, an effector to target ratio dependent increase in luminescence compared to non-pulsed cells was observed after co-incubation with E7-TCR expressing Jurkat, but not with parental cells. Analogous experiments with cells expressing full-length HPV16 identified that E7-specific activation of Jurkat cells enabled detection of endogenous antigen processing and MHC-I presentation. As proof of concept, overexpression of established checkpoints/inhibitory molecules (e.g., PD-L1 or HLA-G) significantly reduced the E7-specific TCR-induced luminescence, an effect that could be restored after treatment with corresponding targeting antagonistic antibodies. Altogether, the luminescence-based method described here represents an alternative approach for the rapid evaluation of MHC-dependent antigen-specific T cell responses in vitro. It can be used as a rapid tool to evaluate the impact of the immunosuppressive tumor microenvironment or novel ICI in triggering effective T cell responses, as well as speeding up the development of novel therapeutics within the immune-oncology field.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Edwin Bremer
- Department of Hematology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
6
|
Zhao J, Li L, Yin H, Feng X, Lu Q. TIGIT: An emerging immune checkpoint target for immunotherapy in autoimmune disease and cancer. Int Immunopharmacol 2023; 120:110358. [PMID: 37262959 DOI: 10.1016/j.intimp.2023.110358] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 06/03/2023]
Abstract
Immune checkpoints (ICs), also referred to as co-inhibitory receptors (IRs), are essential for regulating immune cell function to maintain tolerance and prevent autoimmunity. IRs, such as programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), have been shown to possess immunoregulatory properties that are relevant to various autoimmune diseases and cancers. Tumors are characterized by suppressive microenvironments with elevated levels of IRs on tumor-infiltrating lymphocytes (TILs). Therefore, IR blockade has shown great potential in cancer therapy and has even been approved for clinical use. However, other IRs, including cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif (ITIM) domain (TIGIT), may also represent promising targets for anti-tumor therapy. The increasing importance of IRs in autoimmune diseases has become apparent. In mouse models, TIGIT pathway blockade or TIGIT deficiency has been linked to T cell overactivation and proliferation, exacerbation of inflammation, and increased susceptibility to autoimmune disorders. On the other hand, TIGIT activation has been shown to alleviate autoimmune disorders in murine models. Given these findings, we examine the effects of TIGIT and its potential as a therapeutic target for both autoimmune diseases and cancers. It is clear that TIGIT represents an emerging and exciting target for immunotherapy in these contexts.
Collapse
Affiliation(s)
- Junpeng Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Peking Union Medical College, Chinese Academy of Medical Sciencs, Beijing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Liming Li
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Peking Union Medical College, Chinese Academy of Medical Sciencs, Beijing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Huiqi Yin
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Peking Union Medical College, Chinese Academy of Medical Sciencs, Beijing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Xiwei Feng
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Peking Union Medical College, Chinese Academy of Medical Sciencs, Beijing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Peking Union Medical College, Chinese Academy of Medical Sciencs, Beijing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
| |
Collapse
|
7
|
Wang W, Yu C, Cui Y, Liu C, Yang Y, Xu G, Wu G, Du J, Fu Z, Guo L, Long C, Xia X, Li Y, Wang L, Wang Y. Development of a reporter gene assay for antibody dependent cellular cytotoxicity activity determination of anti-rabies virus glycoprotein antibodies. Microbiol Immunol 2023; 67:69-78. [PMID: 36346082 DOI: 10.1111/1348-0421.13036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/09/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022]
Abstract
Rabies is a viral disease that is nearly 100% fatal once clinical signs and symptoms develop. Post-exposure prophylaxis can efficiently prevent rabies, and antibody (Ab) induction by vaccination or passive immunization of human rabies immunoglobulin (HRIG) or monoclonal antibodies (mAbs) play an integral role in prevention against rabies. In addition to their capacity to neutralize viruses, antibodies exert their antiviral effects by antibody-dependent cellular cytotoxicity (ADCC), which plays an important role in antiviral immunity and clearance of viral infections. For antibodies against rabies virus (RABV), evaluation of ADCC activity was neglected. Here, we developed a robust cell-based reporter gene assay (RGA) for the determination of the ADCC activity of anti-RABV antibodies using CVS-N2c-293 cells, which stably express the glycoprotein (G) of RABV strain CVS-N2c as target cells, and Jurkat cells, which stably express FcγRⅢa and nuclear factor of activated T cells (NFAT) reporter gene as effector cells (Jurkat/NFAT-luc/FcγRⅢa cells). The experimental parameters were carefully optimized, and the established ADCC assay was systematically validated according to the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) Q2 guideline. We also evaluated the ADCC activity of anti-RABV antibodies, including mAbs, HRIG, and vaccine induced antisera, and found that all test antibodies exhibited ADCC activity with varied strengths. The established RGA provides a novel method for evaluating the ADCC of anti-RABV antibodies.
Collapse
Affiliation(s)
- Wenbo Wang
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Chuanfei Yu
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Yongfei Cui
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Chunyu Liu
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Yalan Yang
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Gangling Xu
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Gang Wu
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Jialiang Du
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Zhihao Fu
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Luyong Guo
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Caifeng Long
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Xijie Xia
- China Pharmaceutical University, Nanjing, China
| | - Yuhua Li
- Division of Arboviral Vaccine, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Lan Wang
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| |
Collapse
|
8
|
Immune Checkpoint Inhibitors for Vaccine Improvements: Current Status and New Approaches. Pharmaceutics 2022; 14:pharmaceutics14081721. [PMID: 36015348 PMCID: PMC9415890 DOI: 10.3390/pharmaceutics14081721] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 12/11/2022] Open
Abstract
In recent years, the use of immune checkpoint inhibitors (ICIs) in combination with approved or experimental vaccines has proven to be a promising approach to improve vaccine immunogenicity and efficacy. This strategy seeks to overcome the immunosuppressive mechanisms associated with the vaccine response, thereby achieving increased immunogenicity and efficacy. Most of the information on the use of ICIs combined with vaccines derives from studies on certain anti-tumor vaccines combined with monoclonal antibodies (mAbs) against either cytotoxic T lymphocyte-associated protein 4 (CTLA-4), programmed cell death protein 1 (PD-1), or programmed death-ligand 1 (PD-L1). However, over the past few years, emerging strategies to use new-generation ICIs as molecular adjuvants are paving the way for future advances in vaccine research. Here, we review the current state and future directions of the use of ICIs in experimental and clinical settings, including mAbs and alternative new approaches using antisense oligonucleotides (ASOs), small non-coding RNAs, aptamers, peptides, and other small molecules for improving vaccine efficacy. The scope of this review mainly includes the use of ICIs in therapeutic antitumor vaccines, although recent research on anti-infective vaccines will also be addressed.
Collapse
|