1
|
Li J, Liu H, Hu X, Zhang S, Yu Q, Kuang G, Liu L, Yu D, Huang J, Xia Y, Wang T, Xiong N. NR1H4 ameliorates Parkinson's disease via inhibiting astrocyte activation and neuroinflammation in a CEBPβ/NF-κB dependent manner. Int Immunopharmacol 2024; 142:113087. [PMID: 39241522 DOI: 10.1016/j.intimp.2024.113087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Parkinson's Disease (PD) is a degenerative disease driven by neuroinflammation. Nuclear receptor subfamily 1 group H member 4 (NR1H4), a nuclear receptor involved in metabolic and inflammatory regulation, is found to be widely expressed in central nervous system. Previous studies suggested the protective role of NR1H4 in various diseases related to inflammation, whether NR1H4 participates in PD progression remains unknown. To investigate the role of NR1H4 in neuroinflammation regulation, especially astrocyte activation during PD, siRNA and adenovirus were used to manipulate Nr1h4 expression. RNA-sequencing (RNA-seq), quantitative real-time PCR, enzyme-linked immunosorbent assay, Chromatin immunoprecipitation and western blotting were performed to further study the underlying mechanisms. We identified that NR1H4 was down-regulated during PD progression. In vitro experiments suggested that Nr1h4 knockdown led to inflammatory response, reactive oxygen species generation and astrocytes activation whereasNr1h4 overexpressionhad the opposite effects. The results of RNA-seq on astrocytes revealed that NR1H4 manipulated neuroinflammation in a CEBPβ/NF-κB dependent manner. Additionally, pharmacological activation of NR1H4 via Obeticholic acid ameliorated neuroinflammation and promoted neuronal survival. Our study first proved the neuroprotective effects of NR1H4against PD via inhibiting astrocyte activation and neuroinflammation in a CEBPβ/NF-κB dependent manner.
Collapse
Affiliation(s)
- Jingwen Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Hanshu Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Xinyu Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Shurui Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Qinwei Yu
- Wuhan Red Cross Hospital, Wuhan, Hubei, China
| | | | - Long Liu
- Wuhan Red Cross Hospital, Wuhan, Hubei, China
| | - Danfang Yu
- Wuhan Red Cross Hospital, Wuhan, Hubei, China
| | - Jinsha Huang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Yun Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China.
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China.
| |
Collapse
|
2
|
Chen H, Li J, Huang Z, Fan X, Wang X, Chen X, Guo H, Liu H, Li S, Yu S, Li H, Huang X, Ma X, Deng X, Wang C, Liu Y. Dopaminergic system and neurons: Role in multiple neurological diseases. Neuropharmacology 2024; 260:110133. [PMID: 39197818 DOI: 10.1016/j.neuropharm.2024.110133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/24/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
The dopaminergic system is a complex and powerful neurotransmitter system in the brain. It plays an important regulatory role in motivation, reward, cognition, and motor control. In recent decades, research in the field of the dopaminergic system and neurons has increased exponentially and is gradually becoming a point of intervention in the study and understanding of a wide range of neurological diseases related to human health. Studies have shown that the dopaminergic system and neurons are involved in the development of many neurological diseases (including, but not limited to Parkinson's disease, schizophrenia, depression, attention deficit hyperactivity disorder, etc.) and that dopaminergic neurons either have too much stress or too weak function in the dopaminergic system can lead to disease. Therefore, targeting dopaminergic neurons is considered key to treating these diseases. This article provides a comprehensive review of the dopaminergic system and neurons in terms of brain region distribution, physiological function and subtypes of dopaminergic neurons, as well as the role of the dopaminergic system and neurons in a variety of diseases.
Collapse
Affiliation(s)
- Heng Chen
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jieshu Li
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhixing Huang
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xiaoxiao Fan
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xiaofei Wang
- Beijing Normal University, Beijing, 100875, China
| | - Xing Chen
- University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Haitao Guo
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Hao Liu
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shuqi Li
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shaojun Yu
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Honghong Li
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xinyu Huang
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xuehua Ma
- Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Xinqi Deng
- Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Chunguo Wang
- Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Yonggang Liu
- Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
3
|
Zhu RX, Chen YH, Xia X, Liu T, Wang C, Cao L, Liu Y, Lu M. Formation of CSE-YAP complex drives FOXD3-mediated transition of neurotoxic astrocytes in Parkinson's disease. Pharmacol Res 2024; 210:107507. [PMID: 39547464 DOI: 10.1016/j.phrs.2024.107507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Astrocytes, constituting the predominant glial cells in the brain, undergo significant morphological and functional transformations amidst the progression of Parkinson's disease (PD). A majority of these reactive astrocytes display a neurotoxic phenotype, intensifying inflammatory responses. Nonetheless, the molecular underpinnings steering neurotoxic astrocyte reactivity during PD progression remain mostly uncharted. Here, we uncover the unique role of cystathionine γ-lyase (CSE) in shaping astrocyte reactivity, primarily channeling astrocytes towards a neurotoxic phenotype, thereby escalating neuroinflammation in PD. Single-cell sequencing data drawn from PD patients coupled with RNA sequencing data from MPP+-treated astrocytes, highlighted a marked positive association between increased expression of Cth, the gene that encodes CSE, and neurotoxic astrocyte reactivity. Employing genetic manipulation of Cth in astrocytes, we evidenced that CSE instigates a transition to a neurotoxic state in PD-afflicted astrocytes under in vitro and in vivo settings. Moreover, we identified a CSE-Yes-associated protein (YAP) complex within astrocytes via label-free mass spectrometry. An increased formation of the CSE-YAP complex was found to facilitate the expression of gene patterns tied to neurotoxic astrocytes, driven by the transcription factor, forkhead box protein D3 (FOXD3). Consequently, our work unveils valuable insights into the cell type-specific function of CSE in the brain, and presents FOXD3 as a novel transcription factor influencing astrocyte phenotypes in PD. These findings lay the groundwork for the development of potential strategies intended to manage conditions associated with neuroinflammation.
Collapse
Affiliation(s)
- Rong-Xin Zhu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 211116, China
| | - Yue-Han Chen
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 211116, China
| | - Xian Xia
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Ting Liu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 211116, China
| | - Cong Wang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 211116, China
| | - Lei Cao
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 211116, China; Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China.
| | - Yang Liu
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 211116, China; Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China.
| |
Collapse
|
4
|
Sun J, Zeng Q, Wu Z, Huang L, Sun T, Ling C, Zhang B, Chen C, Wang H. Berberine inhibits NLRP3 inflammasome activation and proinflammatory macrophage M1 polarization to accelerate peripheral nerve regeneration. Neurotherapeutics 2024; 21:e00347. [PMID: 38570276 PMCID: PMC11067341 DOI: 10.1016/j.neurot.2024.e00347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
Berberine (BBR) has demonstrated potent anti-inflammatory effects by modulating macrophage polarization. Nevertheless, the precise mechanisms through which berberine regulates post-injury inflammation within the peripheral nerve system remain elusive. This study seeks to elucidate the role of BBR and its underlying mechanisms in inflammation following peripheral nerve injury (PNI). Adult male C57BL/6J mice subjected to PNI were administered daily doses of berberine (0, 60, 120, 180, 240 mg/kg) via gavage from day 1 through day 28. Evaluation of the sciatic function index (SFI) and paw withdrawal threshold revealed that BBR dose-dependently enhanced both motor and sensory functions. Immunofluorescent staining for anti-myelin basic protein (anti-MBP) and anti-neurofilament-200 (anti-NF-200), along with histological staining comprising hematoxylin-eosin (HE), luxol fast blue (LFB), and Masson staining, demonstrated that BBR dose-dependently promoted structural regeneration. Molecular analyses including qRT-PCR, Western blotting, enzyme-linked immunosorbent assay (ELISA), and immunofluorescence confirmed that inactivation of the NLRP3 inflammasome by MCC950 shifted macrophages from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype, while also impeding macrophage infiltration. Furthermore, BBR significantly downregulated the expression of the NLRP3 inflammasome and its associated molecules in macrophages, thereby mitigating NLRP3 inflammasome activation-induced macrophage M1 polarization and inflammation. In summary, BBR's neuroprotective effects were concomitant with the suppression of inflammation after PNI, achieved through the inhibition of NLRP3 inflammasome activation-induced macrophage M1 polarization.
Collapse
Affiliation(s)
- Jun Sun
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, PR China.
| | - Qiuhua Zeng
- Department of Radiology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, PR China
| | - Zhimin Wu
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, PR China
| | - Lixin Huang
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, PR China
| | - Tao Sun
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, PR China
| | - Cong Ling
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, PR China
| | - Baoyu Zhang
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, PR China
| | - Chuan Chen
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, PR China.
| | - Hui Wang
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, PR China.
| |
Collapse
|
5
|
Cheng X, Wang Y, Gong G, Shen P, Li Z, Bian J. Design strategies and recent development of bioactive modulators for glutamine transporters. Drug Discov Today 2024; 29:103880. [PMID: 38216118 DOI: 10.1016/j.drudis.2024.103880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/25/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
Glutamine transporters are integral to the metabolism of glutamine in both healthy tissues and cancerous cells, playing a pivotal role in maintaining amino acid balance, synthesizing biomolecules, and regulating redox equilibrium. Their critical functions in cellular metabolism make them promising targets for oncological therapies. Recent years have witnessed substantial progress in the field of glutamine transporters, marked by breakthroughs in understanding of their protein structures and the discovery of novel inhibitors, prodrugs, and radiotracers. This review provides a comprehensive update on the latest advancements in modulators targeting the glutamine transporter, with special attention given to LAT1 and ASCT2. It also discusses innovative approaches in drug design aimed at these transporters.
Collapse
Affiliation(s)
- Xinying Cheng
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yezhi Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Guangyue Gong
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Pei Shen
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhiyu Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Jinlei Bian
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
6
|
Zhang D, Hua Z, Li Z. The role of glutamate and glutamine metabolism and related transporters in nerve cells. CNS Neurosci Ther 2024; 30:e14617. [PMID: 38358002 PMCID: PMC10867874 DOI: 10.1111/cns.14617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/15/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Glutamate and glutamine are the most abundant amino acids in the blood and play a crucial role in cell survival in the nervous system. Various transporters found in cell and mitochondrial membranes, such as the solute carriers (SLCs) superfamily, are responsible for maintaining the balance of glutamate and glutamine in the synaptic cleft and within cells. This balance affects the metabolism of glutamate and glutamine as non-essential amino acids. AIMS This review aims to provide an overview of the transporters and enzymes associated with glutamate and glutamine in neuronal cells. DISCUSSION We delve into the function of glutamate and glutamine in the nervous system by discussing the transporters involved in the glutamate-glutamine cycle and the key enzymes responsible for their mutual conversion. Additionally, we highlight the role of glutamate and glutamine as carbon and nitrogen donors, as well as their significance as precursors for the synthesis of reduced glutathione (GSH). CONCLUSION Glutamate and glutamine play a crucial role in the brain due to their special effects. It is essential to focus on understanding glutamate and glutamine metabolism to comprehend the physiological behavior of nerve cells and to treat nervous system disorders and cancer.
Collapse
Affiliation(s)
- Dongyang Zhang
- Department of PediatricsShengjing Hospital of China Medical UniversityShenyangLiaoningChina
- Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic DiseasesShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Zhongyan Hua
- Department of PediatricsShengjing Hospital of China Medical UniversityShenyangLiaoningChina
- Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic DiseasesShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Zhijie Li
- Department of PediatricsShengjing Hospital of China Medical UniversityShenyangLiaoningChina
- Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic DiseasesShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
7
|
Ravichandran KA, Heneka MT. Inflammasomes in neurological disorders - mechanisms and therapeutic potential. Nat Rev Neurol 2024; 20:67-83. [PMID: 38195712 DOI: 10.1038/s41582-023-00915-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 01/11/2024]
Abstract
Inflammasomes are molecular scaffolds that are activated by damage-associated and pathogen-associated molecular patterns and form a key element of innate immune responses. Consequently, the involvement of inflammasomes in several diseases that are characterized by inflammatory processes, such as multiple sclerosis, is widely appreciated. However, many other neurological conditions, including Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, stroke, epilepsy, traumatic brain injury, sepsis-associated encephalopathy and neurological sequelae of COVID-19, all involve persistent inflammation in the brain, and increasing evidence suggests that inflammasome activation contributes to disease progression in these conditions. Understanding the biology and mechanisms of inflammasome activation is, therefore, crucial for the development of inflammasome-targeted therapies for neurological conditions. In this Review, we present the current evidence for and understanding of inflammasome activation in neurological diseases and discuss current and potential interventional strategies that target inflammasome activation to mitigate its pathological consequences.
Collapse
Affiliation(s)
- Kishore Aravind Ravichandran
- Department of Neuroinflammation, Institute of innate immunity, University of Bonn Medical Center Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Esch-sur-Alzette, Luxembourg.
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, North Worcester, MA, USA.
| |
Collapse
|
8
|
Shang S, Yang C, Chen F, Xiang RS, Zhang H, Dai SY, Liu J, Lv XX, Zhang C, Liu XT, Zhang Q, Lu SB, Song JW, Yu JJ, Zhou JC, Zhang XW, Cui B, Li PP, Zhu ST, Zhang HZ, Hua F. ID1 expressing macrophages support cancer cell stemness and limit CD8 + T cell infiltration in colorectal cancer. Nat Commun 2023; 14:7661. [PMID: 37996458 PMCID: PMC10667515 DOI: 10.1038/s41467-023-43548-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
Elimination of cancer stem cells (CSCs) and reinvigoration of antitumor immunity remain unmet challenges for cancer therapy. Tumor-associated macrophages (TAMs) constitute the prominant population of immune cells in tumor tissues, contributing to the formation of CSC niches and a suppressive immune microenvironment. Here, we report that high expression of inhibitor of differentiation 1 (ID1) in TAMs correlates with poor outcome in patients with colorectal cancer (CRC). ID1 expressing macrophages maintain cancer stemness and impede CD8+ T cell infiltration. Mechanistically, ID1 interacts with STAT1 to induce its cytoplasmic distribution and inhibits STAT1-mediated SerpinB2 and CCL4 transcription, two secretory factors responsible for cancer stemness inhibition and CD8+ T cell recruitment. Reducing ID1 expression ameliorates CRC progression and enhances tumor sensitivity to immunotherapy and chemotherapy. Collectively, our study highlights the pivotal role of ID1 in controlling the protumor phenotype of TAMs and paves the way for therapeutic targeting of ID1 in CRC.
Collapse
Affiliation(s)
- Shuang Shang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study (BZ0150), Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
| | - Chen Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study (BZ0150), Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
| | - Fei Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study (BZ0150), Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
| | - Ren-Shen Xiang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, P. R. China
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, P. R. China
| | - Huan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study (BZ0150), Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
| | - Shu-Yuan Dai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study (BZ0150), Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
| | - Jing Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study (BZ0150), Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
| | - Xiao-Xi Lv
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study (BZ0150), Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
| | - Cheng Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study (BZ0150), Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- Department of Pharmacy, China-Japan Friendship Hospital, 100029, Beijing, P. R. China
| | - Xiao-Tong Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study (BZ0150), Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
| | - Qi Zhang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, P. R. China
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, P. R. China
| | - Shuai-Bing Lu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, P. R. China
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, P. R. China
| | - Jia-Wei Song
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study (BZ0150), Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
| | - Jiao-Jiao Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study (BZ0150), Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
| | - Ji-Chao Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
| | - Xiao-Wei Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study (BZ0150), Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
| | - Bing Cui
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
| | - Ping-Ping Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
| | - Sheng-Tao Zhu
- Beijing Digestive Diseases Center, Beijing Friendship Hospital, 100050, Beijing, P. R. China
- Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing Friendship Hospital, 100050, Beijing, P. R. China
| | - Hai-Zeng Zhang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, P. R. China.
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, P. R. China.
| | - Fang Hua
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China.
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study (BZ0150), Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China.
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China.
| |
Collapse
|
9
|
Zhang F, Liu M, Tuo J, Zhang L, Zhang J, Yu C, Xu Z. Levodopa-induced dyskinesia: interplay between the N-methyl-D-aspartic acid receptor and neuroinflammation. Front Immunol 2023; 14:1253273. [PMID: 37860013 PMCID: PMC10582719 DOI: 10.3389/fimmu.2023.1253273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder of middle-aged and elderly people, clinically characterized by resting tremor, myotonia, reduced movement, and impaired postural balance. Clinically, patients with PD are often administered levodopa (L-DOPA) to improve their symptoms. However, after years of L-DOPA treatment, most patients experience complications of varying severity, including the "on-off phenomenon", decreased efficacy, and levodopa-induced dyskinesia (LID). The development of LID can seriously affect the quality of life of patients, but its pathogenesis is unclear and effective treatments are lacking. Glutamic acid (Glu)-mediated changes in synaptic plasticity play a major role in LID. The N-methyl-D-aspartic acid receptor (NMDAR), an ionotropic glutamate receptor, is closely associated with synaptic plasticity, and neuroinflammation can modulate NMDAR activation or expression; in addition, neuroinflammation may be involved in the development of LID. However, it is not clear whether NMDA receptors are co-regulated with neuroinflammation during LID formation. Here we review how neuroinflammation mediates the development of LID through the regulation of NMDA receptors, and assess whether common anti-inflammatory drugs and NMDA receptor antagonists may be able to mitigate the development of LID through the regulation of central neuroinflammation, thereby providing a new theoretical basis for finding new therapeutic targets for LID.
Collapse
Affiliation(s)
- Fanshi Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Mei Liu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jinmei Tuo
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Li Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jun Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Changyin Yu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zucai Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| |
Collapse
|
10
|
Wang J, Ni R, Jiang T, Peng D, Ming Y, Cui H, Liu Y. The applications of functional materials-based nano-formulations in the prevention, diagnosis and treatment of chronic inflammation-related diseases. Front Pharmacol 2023; 14:1222642. [PMID: 37593176 PMCID: PMC10427346 DOI: 10.3389/fphar.2023.1222642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/17/2023] [Indexed: 08/19/2023] Open
Abstract
Chronic inflammation, in general, refers to systemic immune abnormalities most often caused by the environment or lifestyle, which is the basis for various skin diseases, autoimmune diseases, cardiovascular diseases, liver diseases, digestive diseases, cancer, and so on. Therapeutic strategies have focused on immunosuppression and anti-inflammation, but conventional approaches have been poor in enhancing the substantive therapeutic effect of drugs. Nanomaterials continue to attract attention for their high flexibility, durability and simplicity of preparation, as well as high profitability. Nanotechnology is used in various areas of clinical medicine, such as medical diagnosis, monitoring and treatment. However, some related problems cannot be ignored, including various cytotoxic and worsening inflammation caused by the nanomaterials themselves. This paper provides an overview of functional nanomaterial formulations for the prevention, diagnosis and treatment of chronic inflammation-related diseases, with the intention of providing some reference for the enhancement and optimization of existing therapeutic approaches.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
- Medical Research Institute, Southwest University, Chongqing, China
| | - Rui Ni
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Tingting Jiang
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Dan Peng
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Yue Ming
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Hongjuan Cui
- Medical Research Institute, Southwest University, Chongqing, China
| | - Yao Liu
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
- Medical Research Institute, Southwest University, Chongqing, China
| |
Collapse
|
11
|
Meheronnisha SK, Thekkekkara D, Babu A, Tausif YM, Manjula SN. Novel therapeutic targets to halt the progression of Parkinson's disease: an in-depth review on molecular signalling cascades. 3 Biotech 2023; 13:218. [PMID: 37265542 PMCID: PMC10229523 DOI: 10.1007/s13205-023-03637-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023] Open
Abstract
Recent research has focused mostly on understanding and combating the neurodegenerative mechanisms and symptoms of Parkinson's disease (PD). Moreover, developing novel therapeutic targets to halt the progression of PD remains a key focus for researchers. As yet, no agents have been found to have unambiguous evidence of disease-modifying actions in PD. The primary objective of this review is to summarize the promising targets that have recently been uncovered which include histamine 4 receptors, beta2 adrenergic receptor, phosphodiesterase 4, sphingosine-1-phosphate receptor subtype 1, angiotensin receptors, high-mobility group box 1, rabphilin-3A, purinergic 2Y type 12 receptor, colony-stimulating factor-1 receptor, transient receptor potential vanilloid 4, alanine-serine-cysteine transporter 2, G protein-coupled oestrogen receptor, a mitochondrial antiviral signalling protein, glucocerebrosidase, indolamine-2,3-dioxygenase-1, soluble epoxy hydroxylase and dual specificity phosphatase 6. We have also reviewed the molecular signalling cascades of those novel targets which cause the initiation and progression of PD and gathered some emerging disease-modifying agents that could slow the progression of PD. These approaches will assist in the discovery of novel target molecules, for curing disease symptoms and may provide a glimmer of hope for the treatment of PD. As of now, there is no drug available that will completely prevent the progression of PD by inhibiting the pathogenesis involved in PD, and thus, the newer targets and their inhibitors or activators are the major focus for researchers to suppress PD symptomatology. And the major limitations of these targets are the lack of clinical data and less number pre-clinical data, as we have majorly discussed the different targets which all have well reported for other disease pathogenesis. Thus, finding the disease-drug interactions, the molecular mechanisms, and the major side effects will be major challenges for the researchers.
Collapse
Affiliation(s)
- S. K. Meheronnisha
- Department of Pharmacology, JSS College of Pharmacy, JSSAHER, SS Nagar, Mysore, Karnataka 570015 India
| | - Dithu Thekkekkara
- Department of Pharmacology, JSS College of Pharmacy, JSSAHER, SS Nagar, Mysore, Karnataka 570015 India
| | - Amrita Babu
- Department of Pharmacology, JSS College of Pharmacy, JSSAHER, SS Nagar, Mysore, Karnataka 570015 India
| | - Y. Mohammed Tausif
- Department of Pharmacology, JSS College of Pharmacy, JSSAHER, SS Nagar, Mysore, Karnataka 570015 India
| | - S. N. Manjula
- Department of Pharmacology, JSS College of Pharmacy, JSSAHER, SS Nagar, Mysore, Karnataka 570015 India
| |
Collapse
|
12
|
Chen Y, Ye X, Escames G, Lei W, Zhang X, Li M, Jing T, Yao Y, Qiu Z, Wang Z, Acuña-Castroviejo D, Yang Y. The NLRP3 inflammasome: contributions to inflammation-related diseases. Cell Mol Biol Lett 2023; 28:51. [PMID: 37370025 DOI: 10.1186/s11658-023-00462-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
The NOD-like receptor protein 3 (NLRP3) inflammasome is a protein complex that regulates innate immune responses by activating caspase-1 and the inflammatory cytokines interleukin (IL)-1β and IL-18. Multiple studies have demonstrated the importance of the NLRP3 inflammasome in the development of immune and inflammation-related diseases, including arthritis, Alzheimer's disease, inflammatory bowel disease, and other autoimmune and autoinflammatory diseases. This review first explains the activation and regulatory mechanism of the NLRP3 inflammasome. Secondly, we focus on the role of the NLRP3 inflammasome in various inflammation-related diseases. Finally, we look forward to new methods for targeting the NLRP3 inflammasome to treat inflammation-related diseases, and provide new ideas for clinical treatment.
Collapse
Affiliation(s)
- Ying Chen
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xingyan Ye
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Department of Neurology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Germaine Escames
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, Avda. del Conocimiento s/n, Granada, Spain
- Ibs. Granada and CIBERfes, Granada, Spain
- UGC of Clinical Laboratories, University San Cecilio's Hospital, Granada, Spain
| | - Wangrui Lei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Department of Neurology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Xin Zhang
- Department of Cardiology, Affiliated Hospital, Yan'an University, Yan'an, China
| | - Meng Li
- Department of Cardiology, Affiliated Hospital, Yan'an University, Yan'an, China
| | - Tong Jing
- Department of Cardiology, Affiliated Hospital, Yan'an University, Yan'an, China
| | - Yu Yao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Department of Neurology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Zhenye Qiu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Department of Neurology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Zheng Wang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, Wuhan, China
| | - Darío Acuña-Castroviejo
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, Avda. del Conocimiento s/n, Granada, Spain.
- Ibs. Granada and CIBERfes, Granada, Spain.
- UGC of Clinical Laboratories, University San Cecilio's Hospital, Granada, Spain.
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.
- Department of Neurology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, China.
| |
Collapse
|
13
|
Wang B, Ma Y, Li S, Yao H, Gu M, Liu Y, Xue Y, Ding J, Ma C, Yang S, Hu G. GSDMD in peripheral myeloid cells regulates microglial immune training and neuroinflammation in Parkinson's disease. Acta Pharm Sin B 2023; 13:2663-2679. [PMID: 37425058 PMCID: PMC10326292 DOI: 10.1016/j.apsb.2023.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/16/2023] [Accepted: 03/02/2023] [Indexed: 07/11/2023] Open
Abstract
Peripheral bacterial infections without impaired blood-brain barrier integrity have been attributed to the pathogenesis of Parkinson's disease (PD). Peripheral infection promotes innate immune training in microglia and exacerbates neuroinflammation. However, how changes in the peripheral environment mediate microglial training and exacerbation of infection-related PD is unknown. In this study, we demonstrate that GSDMD activation was enhanced in the spleen but not in the CNS of mice primed with low-dose LPS. GSDMD in peripheral myeloid cells promoted microglial immune training, thus exacerbating neuroinflammation and neurodegeneration during PD in an IL-1R-dependent manner. Furthermore, pharmacological inhibition of GSDMD alleviated the symptoms of PD in experimental PD models. Collectively, these findings demonstrate that GSDMD-induced pyroptosis in myeloid cells initiates neuroinflammation by regulating microglial training during infection-related PD. Based on these findings, GSDMD may serve as a therapeutic target for patients with PD.
Collapse
Affiliation(s)
- Bingwei Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yan Ma
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Sheng Li
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Hang Yao
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Mingna Gu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ying Liu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - You Xue
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jianhua Ding
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Chunmei Ma
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Shuo Yang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Gang Hu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|