1
|
Boitsov S, Frantzen S, Bruvold A, Grøsvik BE. Varying temporal trends in the levels of six groups of legacy persistent organic pollutants (POPs) in liver of three gadoid species from the North Sea. CHEMOSPHERE 2024; 349:140939. [PMID: 38101477 DOI: 10.1016/j.chemosphere.2023.140939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
From 2005 to 2019, three gadoid species, Atlantic cod (Gadus morhua), haddock (Melanogrammus aeglefinus) and saithe (Pollachius virens), were sampled approximately every third year in the northeastern part of the North Sea. Liver samples were analyzed to investigate levels and temporal trends of six groups of persistent organic pollutants (POPs): polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDT) and its degradation products, hexachlorocyclohexanes (HCHs), hexachlorobenzene (HCB), trans-nonachlor (TNC), and polybrominated diphenyl ethers (PBDEs). Some of the highest average concentrations were found in cod, the levels otherwise being similar between the three species and mostly below established threshold values. The levels of all the contaminants except HCB and TNC were higher than previously reported for cod and haddock in the Barents Sea. Significantly decreasing levels were found for Σ7PCBs, ΣDDTs, ΣHCHs and Σ15PBDEs in all three species, and for TNC in haddock and saithe, while there was no significant trend for TNC in cod. HCB levels increased significantly in cod and haddock and showed only a minor decrease in saithe. The observed time trends of legacy POPs demonstrate the persistence of some of the studied pollutants despite efforts to eliminate them from the marine environment.
Collapse
Affiliation(s)
- Stepan Boitsov
- Institute of Marine Research, P.O. Box 1870, Nordnes, N-5817, Bergen, Norway.
| | - Sylvia Frantzen
- Institute of Marine Research, P.O. Box 1870, Nordnes, N-5817, Bergen, Norway.
| | - Are Bruvold
- Institute of Marine Research, P.O. Box 1870, Nordnes, N-5817, Bergen, Norway; Department of Chemistry, University of Bergen, P.O. Box 7803, N-5020 Bergen, Norway.
| | - Bjørn Einar Grøsvik
- Institute of Marine Research, P.O. Box 1870, Nordnes, N-5817, Bergen, Norway.
| |
Collapse
|
2
|
Ahmed F, Kumar G, Soliman FM, Adly MA, Soliman HAM, El-Matbouli M, Saleh M. Proteomics for understanding pathogenesis, immune modulation and host pathogen interactions in aquaculture. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 32:100625. [PMID: 31639560 DOI: 10.1016/j.cbd.2019.100625] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022]
Abstract
Proteomic analyses techniques are considered strong tools for identifying and quantifying the protein contents in different organisms, organs and secretions. In fish biotechnology, the proteomic analyses have been used for wide range of applications such as identification of immune related proteins during infections and stresses. The proteomic approach has a significant role in understanding pathogen surviving strategies, host defence responses and subsequently, the fish pathogen interactions. Proteomic analyses were employed to highlight the virulence related proteins secreted by the pathogens to invade the fish host's defence barriers and to monitor the kinetics of protein contents of different fish organs in response to infections. The immune related proteins of fish and the virulence related proteins of pathogens are up or down regulated according to their functions in defence or pathogenesis. Therefore, the proteomic analyses are useful in understanding the virulence mechanisms of microorganisms and the fish pathogen interactions thereby supporting the development of new effective therapies. In this review, we focus and summarise the recent proteomic profiling studies exploring pathogen virulence activities and fish immune responses to stressors and infections.
Collapse
Affiliation(s)
- Fatma Ahmed
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria; Department of Zoology, Faculty of Science, Sohag University, Sohag, Egypt
| | - Gokhlesh Kumar
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Faiza M Soliman
- Department of Zoology, Faculty of Science, Sohag University, Sohag, Egypt
| | - Mohamed A Adly
- Department of Zoology, Faculty of Science, Sohag University, Sohag, Egypt
| | - Hamdy A M Soliman
- Department of Zoology, Faculty of Science, Sohag University, Sohag, Egypt
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Mona Saleh
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
3
|
Boitsov S, Grøsvik BE, Nesje G, Malde K, Klungsøyr J. Levels and temporal trends of persistent organic pollutants (POPs) in Atlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) from the southern Barents Sea. ENVIRONMENTAL RESEARCH 2019; 172:89-97. [PMID: 30782539 DOI: 10.1016/j.envres.2019.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/08/2019] [Accepted: 02/07/2019] [Indexed: 06/09/2023]
Abstract
Liver samples of two gadoid species, Atlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus), sampled in the southern Barents Sea in the period 1992-2015, were studied for the levels of six types of persistent organic pollutants (POPs): polychlorinated biphenyls (PCBs), chlorinated organic pesticides (DDTs, hexachlorocyclohexanes (HCHs), hexachlorobenzene (HCB), trans-nonachlor (TNC)), and polybrominated diphenyl ethers (PBDEs). Higher average levels were found in cod than in haddock. Sampling approximately every third year allowed studies of temporal trends for all the compound groups except PBDEs. Time series are reported for 1992-2015 for Atlantic cod and for 1998-2015 for haddock. Decreasing temporal trends have been modeled in cod for the analyzed POPs for this time period. The decrease seems to be slowing down in the later years. HCB levels showed least decrease with time among all the contaminants, with the poorest fit to the proposed model. Similar time trends were found in haddock, but the decrease is less apparent due to shorter time series. The observed time trends of legacy POPs document the effectiveness of efforts during the 1990s to reduce the levels of these contaminants in the marine environment but question the possibility to eliminate them altogether from the marine environment in the foreseeable future.
Collapse
Affiliation(s)
- Stepan Boitsov
- Institute of Marine Research, P.O. Box 1870 Nordnes, 5817 Bergen, Norway.
| | | | - Guri Nesje
- Institute of Marine Research, P.O. Box 1870 Nordnes, 5817 Bergen, Norway
| | - Ketil Malde
- Institute of Marine Research, P.O. Box 1870 Nordnes, 5817 Bergen, Norway
| | - Jarle Klungsøyr
- Institute of Marine Research, P.O. Box 1870 Nordnes, 5817 Bergen, Norway
| |
Collapse
|
4
|
What if? Mouse proteomics after gene inactivation. J Proteomics 2019; 199:102-122. [DOI: 10.1016/j.jprot.2019.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/09/2019] [Accepted: 03/10/2019] [Indexed: 12/17/2022]
|
5
|
Yadetie F, Oveland E, Døskeland A, Berven F, Goksøyr A, Karlsen OA. Quantitative proteomics analysis reveals perturbation of lipid metabolic pathways in the liver of Atlantic cod (Gadus morhua) treated with PCB 153. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 185:19-28. [PMID: 28183064 DOI: 10.1016/j.aquatox.2017.01.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/19/2017] [Accepted: 01/25/2017] [Indexed: 06/06/2023]
Abstract
PCB 153 is one of the most abundant PCB congeners detected in biological samples. It is a persistent compound that is still present in the environment despite the ban on production and use of PCBs in the late 1970s. It has strong tendencies to bioaccumulate and biomagnify in biota, and studies have suggested that it is an endocrine and metabolic disruptor. In order to study mechanisms of toxicity, we exposed Atlantic cod (Gadus morhua) to various doses of PCB 153 (0, 0.5, 2 and 8mg/kg body weight) for two weeks and examined the effects on expression of liver proteins using label-free quantitative proteomics. Label-free liquid chromatography-mass spectrometry analysis of the liver proteome resulted in the quantification of 1272 proteins, of which 78 proteins were differentially regulated in the PCB 153-treated dose groups compared to the control group. Functional enrichment analysis showed that pathways significantly affected are related to lipid metabolism, cytoskeletal remodeling, cell cycle and cell adhesion. Importantly, the main effects appear to be on lipid metabolism, with up-regulation of enzymes in the de novo fatty acid synthesis pathway, consistent with previous transcriptomics results. Increased plasma triglyceride levels were also observed in the PCB 153 treated fish, in agreement with the induction of the lipogenic genes and proteins. The results suggest that PCB 153 perturbs lipid metabolism in the Atlantic cod liver. Elevated levels of lipogenic enzymes and plasma triglycerides further suggest increased synthesis of fatty acids and triglycerides.
Collapse
Affiliation(s)
| | - Eystein Oveland
- Department of Biomedicine, Proteomics Unit (PROBE) at the University of Bergen, Norway.
| | - Anne Døskeland
- Department of Biomedicine, Proteomics Unit (PROBE) at the University of Bergen, Norway.
| | - Frode Berven
- Department of Biomedicine, Proteomics Unit (PROBE) at the University of Bergen, Norway.
| | | | | |
Collapse
|
6
|
Baillon L, Pierron F, Oses J, Pannetier P, Normandeau E, Couture P, Labadie P, Budzinski H, Lambert P, Bernatchez L, Baudrimont M. Detecting the exposure to Cd and PCBs by means of a non-invasive transcriptomic approach in laboratory and wild contaminated European eels (Anguilla anguilla). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:5431-5441. [PMID: 26566612 DOI: 10.1007/s11356-015-5754-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/03/2015] [Indexed: 06/05/2023]
Abstract
Detecting and separating specific effects of contaminants in a multi-stress field context remain a major challenge in ecotoxicology. In this context, the aim of this study was to assess the usefulness of a non-invasive transcriptomic method, by means of a complementary DNA (cDNA) microarray comprising 1000 candidate genes, on caudal fin clips. Fin gene transcription patterns of European eels (Anguilla anguilla) exposed in the laboratory to cadmium (Cd) or a polychloro-biphenyl (PCBs) mixture but also of wild eels from three sampling sites with differing contamination levels were compared to test whether fin clips may be used to detect and discriminate the exposure to these contaminants. Also, transcriptomic profiles from the liver and caudal fin of eels experimentally exposed to Cd were compared to assess the detection sensitivity of the fin transcriptomic response. A similar number of genes were differentially transcribed in the fin and liver in response to Cd exposure, highlighting the detection sensitivity of fin clips. Moreover, distinct fin transcription profiles were observed in response to Cd or PCB exposure. Finally, the transcription profiles of eels from the most contaminated site clustered with those from laboratory-exposed fish. This study thus highlights the applicability and usefulness of performing gene transcription assays on non-invasive tissue sampling in order to detect the in situ exposure to Cd and PCBs in fish.
Collapse
Affiliation(s)
- Lucie Baillon
- Univ. Bordeaux, UMR EPOC CNRS 5805, F-33400, Talence, France
- CNRS, EPOC, UMR 5805, F-33400, Talence, France
| | - Fabien Pierron
- Univ. Bordeaux, UMR EPOC CNRS 5805, F-33400, Talence, France.
- CNRS, EPOC, UMR 5805, F-33400, Talence, France.
| | - Jennifer Oses
- Univ. Bordeaux, UMR EPOC CNRS 5805, F-33400, Talence, France
- CNRS, EPOC, UMR 5805, F-33400, Talence, France
| | - Pauline Pannetier
- Institut National de la Recherche Scientifique, Centre Eau Terre Environnement, 490 de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Eric Normandeau
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Patrice Couture
- Institut National de la Recherche Scientifique, Centre Eau Terre Environnement, 490 de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Pierre Labadie
- Univ. Bordeaux, UMR EPOC CNRS 5805, F-33400, Talence, France
- CNRS, EPOC, UMR 5805, F-33400, Talence, France
| | - Hélène Budzinski
- Univ. Bordeaux, UMR EPOC CNRS 5805, F-33400, Talence, France
- CNRS, EPOC, UMR 5805, F-33400, Talence, France
| | - Patrick Lambert
- Irtsea, UR EABX, 50 avenue de Verdun-Gazinet, 33612, Cestas, France
| | - Louis Bernatchez
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Magalie Baudrimont
- Univ. Bordeaux, UMR EPOC CNRS 5805, F-33400, Talence, France
- CNRS, EPOC, UMR 5805, F-33400, Talence, France
| |
Collapse
|
7
|
Cheng XY, He S, Liang XF, Song Y, Yuan XC, Li L, Wen ZY, Cai WJ, Tao YX. Molecular cloning, expression and single nucleotide polymorphisms of protein phosphatase 1 (PP1) in mandarin fish ( Siniperca chuatsi ). Comp Biochem Physiol B Biochem Mol Biol 2015; 189:69-79. [DOI: 10.1016/j.cbpb.2015.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 07/28/2015] [Accepted: 08/04/2015] [Indexed: 01/27/2023]
|
8
|
Galland C, Dupuy C, Loizeau V, Danion M, Auffret M, Quiniou L, Laroche J, Pichereau V. Proteomic analysis of the European flounder Platichthys flesus response to experimental PAH-PCB contamination. MARINE POLLUTION BULLETIN 2015; 95:646-657. [PMID: 25912264 DOI: 10.1016/j.marpolbul.2015.04.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 03/28/2015] [Accepted: 04/15/2015] [Indexed: 06/04/2023]
Abstract
Platichthys flesus is often used as a sentinel species to monitor the estuarine water quality. In this study, we carried out an experimental contamination of fish using a PAHs/PCBs mixture, which was designed to mimic the concentrations found in the Seine estuary (C1) and 10 times these concentrations (C2). We used a proteomic approach to understand the molecular mechanisms implied in the response of P. flesus to these xenobiotics. We showed that 54 proteins were differentially accumulated in one or several conditions, which 34 displayed accumulation factors higher than two. 18 of these proteins were identified by MALDI TOF-TOF mass spectrometry. The results indicated the deregulation of oxidative stress- and glutathione metabolism-(GST, GPx) proteins as well as of several proteins belonging to the betaine demethylation pathway and the methionine cycle (BHMT, SHMT, SAHH), suggesting a role for these different pathways in the P. flesus response to chemical contamination.
Collapse
Affiliation(s)
- Claire Galland
- Université de Brest, Laboratoire des Sciences de l'Environnement Marin, LEMAR, UMR 6539 UBO/CNRS/IRD/Ifremer, Institut Universitaire Européen de la Mer (IUEM), 29280 Plouzané, France
| | - Célie Dupuy
- Université de Brest, Laboratoire des Sciences de l'Environnement Marin, LEMAR, UMR 6539 UBO/CNRS/IRD/Ifremer, Institut Universitaire Européen de la Mer (IUEM), 29280 Plouzané, France
| | - Véronique Loizeau
- Unité de Biogéochimie et Ecotoxicologie, IFREMER, Centre de Brest, BP70, 29280 Plouzané, France
| | - Morgane Danion
- ANSES, Agence nationale de sécurité sanitaire de l'alimentation et de l'environnement et du travail, site de Ploufragan-Plouzané-Technopole Brest Iroise, 29280 Plouzané, France
| | - Michel Auffret
- Université de Brest, Laboratoire des Sciences de l'Environnement Marin, LEMAR, UMR 6539 UBO/CNRS/IRD/Ifremer, Institut Universitaire Européen de la Mer (IUEM), 29280 Plouzané, France
| | - Louis Quiniou
- Université de Brest, Laboratoire des Sciences de l'Environnement Marin, LEMAR, UMR 6539 UBO/CNRS/IRD/Ifremer, Institut Universitaire Européen de la Mer (IUEM), 29280 Plouzané, France
| | - Jean Laroche
- Université de Brest, Laboratoire des Sciences de l'Environnement Marin, LEMAR, UMR 6539 UBO/CNRS/IRD/Ifremer, Institut Universitaire Européen de la Mer (IUEM), 29280 Plouzané, France
| | - Vianney Pichereau
- Université de Brest, Laboratoire des Sciences de l'Environnement Marin, LEMAR, UMR 6539 UBO/CNRS/IRD/Ifremer, Institut Universitaire Européen de la Mer (IUEM), 29280 Plouzané, France.
| |
Collapse
|
9
|
Abstract
Polychlorinated biphenyls (PCBs) are widespread persistent anthropogenic contaminants that can accumulate in tissues of fish. The toxicity of PCBs and their transformation products has been investigated for nearly 50 years, but there is a lack of consensus regarding the effects of these environmental contaminants on wild fish populations. The objective of this review is to critically examine these investigations and evaluate publicly available databases for evidence of effects of PCBs in wild fish. Biological activity of PCBs is limited to a small proportion of PCB congeners [e.g., dioxin-like PCBs (DL-PCBs)] and occurs at concentrations that are typically orders of magnitude higher than PCB levels detected in wild fish. Induction of biomarkers consistent with PCB exposure (e.g., induction of cytochrome P450 monooxygenase system) has been evaluated frequently and shown to be induced in fish from some environments, but there does not appear to be consistent reports of damage (i.e., biomarkers of effect) to biomolecules (i.e., oxidative injury) in these fish. Numerous investigations of endocrine system dysfunction or effects on other organ systems have been conducted in wild fish, but collectively there is no consistent evidence of PCB effects on these systems in wild fish. Early life stage toxicity of DL-PCBs does not appear to occur at concentrations reported in wild fish embryos, and results do not support an association between PCBs and decreased survival of early life stages of wild fish. Overall, there appears to be little evidence that PCBs have had any widespread effect on the health or survival of wild fish.
Collapse
Affiliation(s)
- T B Henry
- a School of Life Sciences, John Muir Building, Heriot-Watt University , Edinburgh, EH14 4AS , UK.,b The University of Tennessee Center for Environmental Biotechnology , 676 Dabney Hall, Knoxville , Tennessee 37996, USA.,c Department of Forestry , Wildlife and Fisheries, The University of Tennessee , 274 Ellington Plant Sciences Building, Knoxville , Tennessee , 37996, USA
| |
Collapse
|
10
|
Pampanin DM, Larssen E, Øysæd KB, Sundt RC, Sydnes MO. Study of the bile proteome of Atlantic cod (Gadus morhua): Multi-biological markers of exposure to polycyclic aromatic hydrocarbons. MARINE ENVIRONMENTAL RESEARCH 2014; 101:161-168. [PMID: 25440786 DOI: 10.1016/j.marenvres.2014.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/14/2014] [Accepted: 10/15/2014] [Indexed: 06/04/2023]
Abstract
PAH metabolites present in bile are well-known biological markers of exposure in fish, and their investigation is recommended by the ICES (International Council for the Exploration of the Sea) and the OSPAR convention (Convention for the Protection of the Marine Environment of the North-East Atlantic) for monitoring purposes. Development of analytical strategies for fish bile is encouraged by the need for more sensitive and informative markers (e.g., capable of tracking the PAH composition of contamination sources) and strengthened by recent results in both fish genomics and proteomics. Herein, the study of the Atlantic cod bile proteome is presented. Preliminary testing for discovering new sensitive markers in the form of expressed proteins affected by PAH exposure (i.e., PAH-protein adducts) is reported. Protein markers were identified using LC-MS/MS analysis, as single biological indicators. Through multivariate analyses, the overall proteome was revealed to be a sensitive multi-biological marker of exposure to PAHs.
Collapse
Affiliation(s)
- Daniela M Pampanin
- IRIS-Environment, International Research Institute of Stavanger, Mekjarvik 12, NO-4070 Randaberg, Norway.
| | - Eivind Larssen
- IRIS-Environment, International Research Institute of Stavanger, Mekjarvik 12, NO-4070 Randaberg, Norway
| | - Kjell Birger Øysæd
- IRIS-Environment, International Research Institute of Stavanger, Mekjarvik 12, NO-4070 Randaberg, Norway
| | - Rolf C Sundt
- IRIS-Environment, International Research Institute of Stavanger, Mekjarvik 12, NO-4070 Randaberg, Norway
| | - Magne O Sydnes
- IRIS-Environment, International Research Institute of Stavanger, Mekjarvik 12, NO-4070 Randaberg, Norway; Faculty of Science and Technology, Department of Mathematics and Natural Science, University of Stavanger, NO-4036 Stavanger, Norway
| |
Collapse
|
11
|
Yadetie F, Karlsen OA, Eide M, Hogstrand C, Goksøyr A. Liver transcriptome analysis of Atlantic cod (Gadus morhua) exposed to PCB 153 indicates effects on cell cycle regulation and lipid metabolism. BMC Genomics 2014; 15:481. [PMID: 24939016 PMCID: PMC4078240 DOI: 10.1186/1471-2164-15-481] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/11/2014] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Polychlorinated biphenyls (PCBs) are persistent organic pollutants (POPs) with harmful effects in animals and humans. Although PCB 153 is one of the most abundant among PCBs detected in animal tissues, its mechanism of toxicity is not well understood. Only few studies have been conducted to explore genes and pathways affected by PCB 153 by using high throughput transcriptomics approaches. To obtain better insights into toxicity mechanisms, we treated juvenile Atlantic cod (Gadus morhua) with PCB 153 (0.5, 2 and 8 mg/kg body weight) for 2 weeks and performed gene expression analysis in the liver using oligonucleotide arrays. RESULTS Whole-genome gene expression analysis detected about 160 differentially regulated genes. Functional enrichment, interactome, network and gene set enrichment analysis of the differentially regulated genes suggested that pathways associated with cell cycle, lipid metabolism, immune response, apoptosis and stress response were among the top significantly enriched. Particularly, genes coding for proteins in DNA replication/cell cycle pathways and enzymes of lipid biosynthesis were up-regulated suggesting increased cell proliferation and lipogenesis, respectively. CONCLUSIONS PCB 153 appears to activate cell proliferation and lipogenic genes in cod liver. Transcriptional up-regulation of marker genes for lipid biosynthesis resembles lipogenic effects previously reported for persistent organic pollutants (POPs) and other environmental chemicals. Our results provide new insights into mechanisms of PCB 153 induced toxicity.
Collapse
Affiliation(s)
- Fekadu Yadetie
- Department of Molecular Biology, University of Bergen, Bergen, Norway.
| | | | | | | | | |
Collapse
|
12
|
Tremoen NH, Fowler PA, Ropstad E, Verhaegen S, Krogenæs A. Exposure to the three structurally different PCB congeners (PCB 118, 153, and 126) results in decreased protein expression and altered steroidogenesis in the human adrenocortical carcinoma cell line H295R. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2014; 77:516-534. [PMID: 24754389 DOI: 10.1080/15287394.2014.886985] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Polychlorinated biphenyls (PCB), synthetic, persistent organic pollutants (POP), are detected ubiquitously, in water, soil, air, and sediments, as well as in animals and humans. PCB are associated with range of adverse health effects, such as interference with the immune system and nervous system, reproductive abnormalities, fetotoxicity, carcinogenicity, and endocrine disruption. Our objective was to determine the effects of three structurally different PCB congeners, PCB118, PCB 126, and PCB 153, each at two concentrations, on the steroidogenic capacity and proteome of human adrenocortical carcinoma cell line cultures (H295R) . After 48 h of exposure, cell viability was monitored and estradiol, testosterone, cortisol and progesterone secretion measured to quantify steroidogenic capacity of the cells. Two-dimensional (2D) gel-based proteomics was used to screen for proteome alterations in H295R cells in response to the PCB. Exposure to PCB 118 increased estradiol and cortisol secretion, while exposure to PCB 153 elevated estradiol secretion. PCB 126 was the most potent congener, increasing estradiol, cortisol, and progesterone secretion in exposed H295R cells. Seventy-three of the 711 spots analyzed showed a significant difference in normalized spot volumes between controls (vehicle only) and at least one exposure group. Fourteen of these protein spots were identified by liquid chromatography with mass spectroscopy (LC-MS/MS). Exposure to three PCB congeners with different chemical structure perturbed steroidogenesis and protein expression in the H295R in vitro model. This study represents an initial analysis of the effects on proteins and hormones in the H295R cell model, and additional studies are required in order to obtain a more complete understanding of the pathways disturbed by PCB congeners in H295R cells. Overall, alterations in protein regulation and steroid hormone synthesis suggest that exposure to PCB disturbs several cellular processes, including protein synthesis, stress response, and apoptosis.
Collapse
Affiliation(s)
- Nina Hårdnes Tremoen
- a Department of Production Animal Sciences , Norwegian School Veterinary Science , Oslo
| | | | | | | | | |
Collapse
|
13
|
Miller I, Serchi T, Murk AJ, Gutleb AC. The added value of proteomics for toxicological studies. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2014; 17:225-246. [PMID: 24828453 DOI: 10.1080/10937404.2014.904730] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Proteomics has the potential to elucidate complex patterns of toxic action attributed to its unique holistic a posteriori approach. In the case of toxic compounds for which the mechanism of action is not completely understood, a proteomic approach may provide valuable mechanistic insight. This review provides an overview of currently available proteomic techniques, including examples of their application in toxicological in vivo and in vitro studies. Future perspectives for a wider application of state-of-the-art proteomic techniques in the field of toxicology are discussed. The examples concern experiments with dioxins, polychlorinated biphenyls, and polybrominated diphenyl ethers as model compounds, as they exhibit a plethora of sublethal effects, of which some mechanisms were revealed via successful proteomic studies. Generally, this review shows the added value of including proteomics in a modern tool box for toxicological studies.
Collapse
Affiliation(s)
- I Miller
- a Institute for Medical Biochemistry, Department for Biomedical Sciences , University of Veterinary Medicine Vienna , Vienna , Austria
| | | | | | | |
Collapse
|
14
|
Binelli A, Marisa I, Fedorova M, Hoffmann R, Riva C. First evidence of protein profile alteration due to the main cocaine metabolite (benzoylecgonine) in a freshwater biological model. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 140-141:268-278. [PMID: 23838174 DOI: 10.1016/j.aquatox.2013.06.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/12/2013] [Accepted: 06/15/2013] [Indexed: 06/02/2023]
Abstract
Illicit drugs represent not only a great social problem but are also considered an environmental problem because their use and, often, abuse release large amounts of parent compounds, and especially their metabolites, into freshwaters. One of the most commonly used drugs is cocaine, which is the second most prevalent drug in Europe (accounting for almost 30% of all cocaine users worldwide). Cocaine is rapidly metabolised in humans to benzoylecgonine (35-54%), ecgonine methyl ester (32-49%) and norcocaine (5%), which are eliminated in the urine and are only partially removed by wastewater treatment plants (WWTPs). Because no studies have previously been carried out to evaluate the possible risks due to cocaine and its metabolites in non-target organisms, we applied a multi-disciplinary approach to investigate the possible environmental risk related to benzoylecgonine (BE), the main metabolite of cocaine. Previous studies carried out by means of a biomarker suite and the redox-proteomic approach showed an imbalance of anti-oxidant enzyme activities and several genotoxic effects to be caused by environmental BE concentrations in the freshwater bivalve Zebra mussel (Dreissena polymorpha). This report presents the results obtained in the last step of this study, based on a proteomics analysis. We analysed the protein expression profile in the gills of Zebra mussels exposed to two different concentrations (0.5 and 1 μg/L) of BE for 14 days through 2-DE and mass spectrometry analysis (RP-UPLC ESI-LTQ-Orbitrap). Our results highlight significant changes in some proteins in gill cells whose functions are crucial for overall metabolism. In particular, we detected a probable effect of BE on calcium homeostasis and a consequent imbalance of oxidative stress, as verified for vertebrates.
Collapse
Affiliation(s)
- A Binelli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy.
| | | | | | | | | |
Collapse
|
15
|
Ji C, Wu H, Wei L, Zhao J, Yu J. Proteomic and metabolomic analysis reveal gender-specific responses of mussel Mytilus galloprovincialis to 2,2',4,4'-tetrabromodiphenyl ether (BDE 47). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 140-141:449-457. [PMID: 23938206 DOI: 10.1016/j.aquatox.2013.07.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 07/15/2013] [Accepted: 07/15/2013] [Indexed: 06/02/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are a class of brominated flame-retardants (BFRs) that are widely used in industrial products and have posed potential risk on the coastal environment of the Laizhou Bay in China. They are of great concern due to their toxicities, such as hepatotoxicity, carcinogenecity, neurotoxicity, immunotoxicity and endocrine disrupting effects in animals. In this work, we focused on the gender-specific responses of BDE 47 in mussel Mytilus galloprovincialis using a combined proteomic and metabolomic approach. Metabolic responses indicated that BDE 47 mainly caused disturbance in energy metabolism in male mussel gills. For female mussel samples, disruption in both osmotic regulation and energy metabolism was found in terms of differential metabolic profiles. Proteomic responses revealed that BDE 47 induced cell apoptosis and reduced reactive oxygen species (ROS) production in both male and female mussels, disturbance in protein homeostasis in male mussels as well as disturbance in female mussel proteolysis based on the differential proteomic biomarkers. Overall, these results confirmed the gender-specific responses in mussels to BDE 47 exposures. This work demonstrated that an integrated metabolomic and proteomic approach could provide an important insight into the toxicological effects of environmental pollutant to organisms.
Collapse
Affiliation(s)
- Chenglong Ji
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai 264003, PR China
| | | | | | | | | |
Collapse
|
16
|
Slattery M, Ankisetty S, Corrales J, Marsh-Hunkin KE, Gochfeld DJ, Willett KL, Rimoldi JM. Marine proteomics: a critical assessment of an emerging technology. JOURNAL OF NATURAL PRODUCTS 2012; 75:1833-1877. [PMID: 23009278 DOI: 10.1021/np300366a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The application of proteomics to marine sciences has increased in recent years because the proteome represents the interface between genotypic and phenotypic variability and, thus, corresponds to the broadest possible biomarker for eco-physiological responses and adaptations. Likewise, proteomics can provide important functional information regarding biosynthetic pathways, as well as insights into mechanism of action, of novel marine natural products. The goal of this review is to (1) explore the application of proteomics methodologies to marine systems, (2) assess the technical approaches that have been used, and (3) evaluate the pros and cons of this proteomic research, with the intent of providing a critical analysis of its future roles in marine sciences. To date, proteomics techniques have been utilized to investigate marine microbe, plant, invertebrate, and vertebrate physiology, developmental biology, seafood safety, susceptibility to disease, and responses to environmental change. However, marine proteomics studies often suffer from poor experimental design, sample processing/optimization difficulties, and data analysis/interpretation issues. Moreover, a major limitation is the lack of available annotated genomes and proteomes for most marine organisms, including several "model species". Even with these challenges in mind, there is no doubt that marine proteomics is a rapidly expanding and powerful integrative molecular research tool from which our knowledge of the marine environment, and the natural products from this resource, will be significantly expanded.
Collapse
Affiliation(s)
- Marc Slattery
- Department of Pharmacognosy, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Riva C, Cristoni S, Binelli A. Effects of triclosan in the freshwater mussel Dreissena polymorpha: a proteomic investigation. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 118-119:62-71. [PMID: 22522169 DOI: 10.1016/j.aquatox.2012.03.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 03/16/2012] [Accepted: 03/17/2012] [Indexed: 05/31/2023]
Abstract
Triclosan (TCS, 5-chloro-2-(2,4-dichlorophenoxy)phenol) is commonly used in several personal care products, textiles, and children's toys. Because the removal of TCS by wastewater treatment plants is incomplete, its environmental fate is to be discharged into freshwater ecosystems, where its ecotoxicological impact is still largely unexplored. Previously, we began a structured multi-tiered approach in order to evaluate TCS toxicity in the freshwater mussel Dreissena polymorpha. The results of our previous studies, based on in vitro and in vivo experiments, highlighted a pronounced cytogenotoxic effect exerted by TCS, and showed that an increase in oxidative stress was likely to be one of its main toxic mechanisms. In this work, in order to investigate TCS toxicity mechanisms in aquatic non-target species in greater depth, we decided to use a proteomic approach, analysing changes in protein expression profiles in gills of D. polymorpha exposed for seven days to TCS. Moreover, thiobarbituric acid reactive substances (TBARS) were measured to investigate further the role played by TCS in inducing oxidative stress. Finally, TCS bioaccumulation in mussel tissues was also assessed, to ensure an effective accumulation of the toxicant. Our results not only confirmed the role played by TCS in inducing oxidative stress, but furthered knowledge about the mechanism exerted by TCS in inducing toxicity in an aquatic non-target organisms. TCS induced significant alterations in protein expression profiles in gills of D. polymorpha. The wide range of proteins affected suggested that this chemical has marked effects on various biological processes, especially those involved in calcium binding or stress response. We also confirmed that the proteomic analysis, using 2-DE and de novo sequencing, is a reliable and powerful approach to investigate cellular responses to pollutants in a non-model organism with few genomic sequences available in databases.
Collapse
Affiliation(s)
| | - Simone Cristoni
- I.S.B., Ion Source & Biotechnologies S.r.l., Gerenzano, Varese, Italy
| | | |
Collapse
|