1
|
Panigrahi AK, Pal PK, Sarkar Paria D. Melatonin as an Ameliorative Agent Against Cadmium- and Lead-Induced Toxicity in Fish: an Overview. Appl Biochem Biotechnol 2024; 196:5790-5820. [PMID: 38224395 DOI: 10.1007/s12010-023-04723-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 01/16/2024]
Abstract
Diverse anthropogenic activities and lack of knowledge on its consequences have promoted serious heavy metal contaminations in different aquatic systems throughout the globe. The non-biodegradable nature of most of these toxic heavy metals has increased the concern on their possible bioaccumulation in aquatic organisms as well as in other vertebrates. Among these aquatic species, fish are most sensitive to such contaminated water that not only decreases their chance of survivability in the nature but also increases the probability of biomagnifications of these heavy metals in higher order food chain. After entering the fish body, heavy metals induce detrimental changes in different vital organs by impairing multiple physiological and biochemical pathways that are essential for the species. Such alterations may include tissue damage, induction of oxidative stress, immune-suppression, endocrine disorders, uncontrolled cell proliferation, DNA damage, and even apoptosis. Although uncountable reports have explored the toxic effects of different heavy metals in diverse fish species, but surprisingly, only a few attempts have been made to ameliorate such toxic effects. Since, oxidative stress seems to be the underlying common factor in such heavy metal-induced toxicity, therefore, a potent and endogenous antioxidant with no side effect may be an appropriate therapeutic solution. Apart from summarizing the toxic effects of two important toxicants, i.e., cadmium and lead in fish, the novelty of the present treatise lies in its arguments in favor of using melatonin, an endogenous free radical scavenger and indirect antioxidant, in ameliorating the toxic effects of heavy metals in any fish species.
Collapse
Affiliation(s)
- Ashis Kumar Panigrahi
- The University of Burdwan, Burdwan, West Bengal, 713104, India
- Eco-toxicology, Fisheries & Aquaculture Extension Laboratory, Department of Zoology, University of Kalyani, Kalyani, West Beng, al-741235, India
| | - Palash Kumar Pal
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, India
| | - Dipanwita Sarkar Paria
- Department of Zoology, Chandernagore College, The University of Burdwan, Chandernagore, West Beng, al-712136, India.
| |
Collapse
|
2
|
Li ZM, Wang XL, Jin XM, Huang JQ, Wang LS. The effect of selenium on antioxidant system in aquaculture animals. Front Physiol 2023; 14:1153511. [PMID: 37179840 PMCID: PMC10169727 DOI: 10.3389/fphys.2023.1153511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 02/13/2023] [Indexed: 05/15/2023] Open
Abstract
There will be generated some adverse conditions in the process of acquculture farming with the continuous improvement of the intensive degree of modern aquaculture, such as crowding stress, hypoxia, and malnutrition, which will easily lead to oxidative stress. Se is an effective antioxidant, participating and playing an important role in the antioxidant defense system of fish. This paper reviews the physiological functions of selenoproteins in resisting oxidative stress in aquatic animals, the mechanisms of different forms of Se in anti-oxidative stress in aquatic animals and the harmful effects of lower and higher levels of Se in aquaculture. To summarize the application and research progress of Se in oxidative stress in aquatic animals and provide scientific references for its application in anti-oxidative stress in aquaculture.
Collapse
Affiliation(s)
- Zi-Meng Li
- The Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, Dalian, China
- College of Fisheries an Life, Dalian Ocean University, Dalian, Liaoning, China
- Hebei Key Laboratory of Ocean Dynamics Resources and Environments, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Xiu-Li Wang
- The Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, Dalian, China
- College of Fisheries an Life, Dalian Ocean University, Dalian, Liaoning, China
| | - Xiao-Min Jin
- Hebei Key Laboratory of Ocean Dynamics Resources and Environments, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Jia-Qiang Huang
- The Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, Dalian, China
- Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Lian-Shun Wang
- The Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, Dalian, China
- College of Fisheries an Life, Dalian Ocean University, Dalian, Liaoning, China
| |
Collapse
|
3
|
Gomes JMM, Charlie-Silva I, Santos AK, Resende RR, Gomes JAS, de Carvalho AT, Corrêa Junior JD. Flow cytometry in the analysis of hematological parameters of tilapias: applications in environmental aquatic toxicology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:6242-6248. [PMID: 33394449 DOI: 10.1007/s11356-020-12119-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Blood tissue has been used to assess animal health and the environment in which they live. This tissue is easily acquired and has the ability to respond to various adverse conditions. Several techniques have been employed in the detection of xenobiotic-induced cell damage in blood cells. In general, traditionally used technologies, such as cellular analysis in blood smears, are time-consuming and require great analytical capacity. The present study proposes flow cytometry as a method to detect changes in blood cell populations. Tilapia (Oreochromis niloticus) was selected as a model for plotting the profile of fish blood cell populations after exposure to xenobiotics without euthanizing animals or using cell markers. Populations of erythrocytes and lymphocytes were detected only by combining the techniques of FACSAria cell sorting and light microscopy. Systemic deleterious effects were found through blood analysis, such as an increased lymphocyte-rich population at 48 h of exposure followed by a subsequent decrease. Moreover, the time-dependent expression of Nrf2 suggests its participation in increased membrane disruption, indicating it has a central role in erythrocyte lifespan. The present results shed light on the viability of using flow cytometry for blood analysis of living fish.
Collapse
|
4
|
Giuliani ME, Filippini G, Nardi A. Season specific influence of projected ocean changes on the response to cadmium of stress-related genes in Mytilus galloprovincialis. MARINE ENVIRONMENTAL RESEARCH 2020; 162:105091. [PMID: 32798697 DOI: 10.1016/j.marenvres.2020.105091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
Anthropogenic inputs of carbon dioxide in the atmosphere are driving ocean warming and acidification. The potential threat represented by these changes for marine species could be amplified in coastal areas, characterized by higher levels of pollutants. In addition, temperate organisms may exhibit a different seasonal tolerance to stressors influenced by fluctuations of environmental and physiological factors. In this study, Mediterranean mussels Mytilus galloprovincialis collected both in summer and winter were exposed to combinations of two temperatures (SST, seasonal surface temperature and SST+5 °C) and two levels of pH (8.20 and 7.40) in clean or cadmium contaminated seawater (20 μg/L Cd). mRNA levels of genes related to metal-induced stress response were investigated, including metallothionein mt-20, heat-shock protein hsp70, superoxide dismutase Cu/Zn-sod, catalase cat, glutathione peroxidase gpx1 and glutathione S-transferase gst-pi. To further elucidate if tissues with different physiological roles could exhibit different responsiveness, such analyses were carried out in digestive gland and in gills of exposed mussels. mt-20 mRNA increase after Cd-exposure was higher in the digestive gland than in the gills, with few modulations by temperature or pH only in the latter. Acidification, alone or in combination with other stressors, increased hsp70 mRNA, with seasonal- and tissue-specificities (higher in summer and in digestive gland). Among antioxidants, gpx1 mRNA was affected by Cd in both tissues and seasons, with further modulations due to pH and temperature variation tissue- and season-specific; in winter the combination of Cd, warming and acidification affected Cu/Zn-sod both in digestive gland and gills and cat only in gills, while weak seasonal variations were observed for gst-pi transcripts only in digestive gland. The overall results highlighted the importance of considering seasonality and responsiveness of different tissues to predict the effects of sudden changes in environmental parameters on responsiveness to and toxicity of chemicals in marine coastal organisms.
Collapse
Affiliation(s)
- Maria Elisa Giuliani
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy
| | - Giulia Filippini
- Department of Environmental Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Alessandro Nardi
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy.
| |
Collapse
|
5
|
Huo J, Dong A, Yan J, Dong A. Effects of cadmium on the gene transcription of the liver in the freshwater turtle (Chinemys reevesii). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:8431-8438. [PMID: 31902076 DOI: 10.1007/s11356-019-07432-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
This study investigated the related gene transcription of liver in freshwater turtle Chinemys reevesii exposed to cadmium (Cd). After acclimation, healthy turtles were selected for experiments. They were randomly divided into four experimental groups and each group had 5 animals. The turtles were treated with 0 mg/kg, 7.5 mg/kg, 15 mg/kg, and 30 mg/kg Cd chloride separately by intraperitoneal injection. Liver samples were collected for examination of the transcription of related genes at 2 weeks after Cd exposure. The transcription of mRNA of MT, SOD, CAT, PNKP, and GPX4 genes in turtle liver cells were analyzed. Results showed that Cd promoted MT mRNA transcription in turtle's liver at low dose (7.5 mg/kg) and inhibited MT mRNA transcription in turtle's liver at middle dose (15 mg/kg) and high dose (30 mg/kg). Cd inhibited the transcription of SOD, CAT, and PNKP mRNA in turtle's liver, and the inhibition was obvious at high dose (30 mg/kg). Cd promoted GPX4 mRNA transcription in turtle's liver, especially at low dose (7.5 mg/kg). In conclusion, Cd had different effects on the mRNA transcription of liver cells in the freshwater turtle Chinemys reevesii exposed to Cd.
Collapse
Affiliation(s)
- Junfeng Huo
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Aiguo Dong
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China.
| | - Juanjuan Yan
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Ailing Dong
- Qianan Agriculture Animal Husbandry and Fishery Bureau, Tangshan, Hebei Province, China
| |
Collapse
|
6
|
Sun YC, Han SC, Yao MZ, Liu HB, Wang YM. Exploring the metabolic biomarkers and pathway changes in crucian under carbonate alkalinity exposure using high-throughput metabolomics analysis based on UPLC-ESI-QTOF-MS. RSC Adv 2020; 10:1552-1571. [PMID: 35494719 PMCID: PMC9047290 DOI: 10.1039/c9ra08090b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 12/06/2019] [Indexed: 12/20/2022] Open
Abstract
The aims of this study is to explore the metabolomic biomarker and pathway changes in crucian under carbonate alkalinity exposures using high-throughput metabolomics analysis based on ultra-performance liquid chromatography-electrospray ionization-quadrupole time of flight-tandem mass spectrometry (UPLC-ESI-QTOF-MS) for carrying out adaptive evolution of fish in environmental exposures and understanding molecular physiological mechanisms of saline–alkali tolerance in fishes. Under 60 day exposure management, the UPLC-ESI-QTOF-MS technology, coupled with a pattern recognition approach and metabolic pathway analysis, was utilized to give insight into the metabolic biomarker and pathway changes. In addition, biochemical parameters in response to carbonate alkalinity in fish were detected for chronic impairment evaluation. A total of twenty-seven endogenous metabolites were identified to distinguish the biochemical changes in fish in clean water under exposure to different concentrations of carbonate alkalinity (CA); these mainly involved amino acid synthesis and metabolism, arachidonic acid metabolism, glyoxylate and dicarboxylate metabolism, pyruvate metabolism and the citrate cycle (TCA cycle). Compared with the control group, CA exposure increased the level of blood ammonia; TP; ALB; Gln in the liver and gills; GS; urea in blood, the liver and gills; CREA; CPS; Glu and LDH; and decreased the level of weight gain rate, oxygen consumption, discharge rate of ammonia, SOD, CAT, ALT, AST and Na+/K+-ATPase. At low concentrations, CA can change the normal metabolism of fish in terms of changing the osmotic pressure regulation capacity, antioxidant capacity, ammonia metabolism and liver and kidney function to adapt to the CA exposure environment. As the concentration of CA increases, various metabolic processes in crucian are inhibited, causing chronic damage to the body. The results show that the metabolomic strategy is a potentially powerful tool for identifying the mechanisms in response to different environmental exposomes and offers precious information about the chronic response of fish to CA. We explore the metabolic biomarker and pathway changes accompanying the adaptive evolution of crucian subjected to carbonate alkalinity exposure, using UPLC-ESI-QTOF-MS, in order to understand the molecular physiological mechanisms of saline–alkali tolerance.![]()
Collapse
Affiliation(s)
- Yan-chun Sun
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products
- Ministry of Agriculture and Rural Areas
- Harbin 150070
- P. R. China
| | - Shi-cheng Han
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products
- Ministry of Agriculture and Rural Areas
- Harbin 150070
- P. R. China
| | - Ming-zhu Yao
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products
- Ministry of Agriculture and Rural Areas
- Harbin 150070
- P. R. China
| | - Hong-bai Liu
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products
- Ministry of Agriculture and Rural Areas
- Harbin 150070
- P. R. China
| | - Yu-mei Wang
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products
- Ministry of Agriculture and Rural Areas
- Harbin 150070
- P. R. China
| |
Collapse
|
7
|
Wang C, Bourland WA, Mu W, Pan X. Transcriptome analysis on chlorpyrifos detoxification in Uronema marinum (Ciliophora, Oligohymenophorea). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:33402-33414. [PMID: 30264342 DOI: 10.1007/s11356-018-3195-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
Chlorpyrifos (CPF) pollution has drawn widespread concerns in aquatic environments due to its risks to ecologic system, however, the response mechanisms of ciliates to CPF pollution were poorly studied. In our current work, the degradation of CPF by ciliates and the morphological changes of ciliates after CPF exposure were investigated. In addition, the transcriptomic profiles of the ciliate Uronema marinum, with and without exposure with CPF, were detected using digital gene expression technologies. De novo transcriptome assembly 166,829,634 reads produced from three groups (untreated, CPF treatment at 12 h and 24 h) by whole transcriptome sequencing (RNA-Seq). Gene ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathways were analyzed in all unigenes and different expression genes to identify their biological functions and processes. Furthermore, the results indicated that genes related to the stress response, cytoskeleton and cell structure proteins, and antioxidant systems might play an important role in the resistance mechanism of ciliates. The enzyme activities of SOD and GST after CPF stress were also analyzed, and the result showed the good antioxidant capacity of SOD and GST in ciliates inferred from the increase of the activities of the two enzymes. The ciliate Uronema marinum showed a resistance response to chlorpyrifos stress at the transcriptomic level in the present work, which indicates that ciliates can be considered as a potential bioremediation agent.
Collapse
Affiliation(s)
- Chongnv Wang
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - William A Bourland
- Department of Biological Sciences, Boise State University, Boise, ID, 83725-1515, USA
| | - Weijie Mu
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China.
| | - Xuming Pan
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China.
| |
Collapse
|
8
|
Xie X, Chen M, Zhu A. Molecular characterization and functional analysis of two phospholipid hydroperoxide isoforms from Larimichthys crocea under Vibrio parahaemolyticus challenge. FISH & SHELLFISH IMMUNOLOGY 2018; 78:259-269. [PMID: 29702237 DOI: 10.1016/j.fsi.2018.04.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/21/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Glutathione peroxidases family is a key role in the antioxidant system in oxybiotic organisms for cell redox homeostasis. One of their members, phospholipid hydroperoxide glutathione peroxidase (GPx4) have unique monomeric structure and can directly react with complex lipid and membrane-bound peroxides under the presence of glutathione(GSH). In this paper, two complete GPx4 cDNAs (designated as LcGPx4a and LcGPx4b) from Larimichthys crocea are identified by rapid amplification of cDNA ends. The cDNA of LcGPx4a was consisted of a 5'-untranslated region (UTR) of 258 bp, a 3'-UTR of 330 bp, and an open reading frame (ORF) of 561 bp encoding 186 amino acid (aa) polypeptides. And the full-length sequence of LcGPx4b was 1164 bp with a 5'-UTR of 34 bp, a 3'-UTR of 551 bp and an ORF of 576 bp encoding a polypeptide of 191 aa residues with a predicted signal peptide of 15 aa. The characteristic selenocysteine insertion (SECIS) sequence was detected in the 3'UTR of the two sequences with 78 bp in length. The conserved active site of selenocysteine (Sec) encoded by TGA was also identified and formed a tetrad functional structure with glutamine, tryptophan, and asparagine in LcGPx4a and LcGPx4b. Two signature site motifs ("LRILAFPSNQFGNQEPG" and "LRILGFPCNQFGGQEPG") were both conserved in the deduced amino acid of LcGPx4a and LcGPx4b. The genomic structure analysis revealed that the two sequences both had 7 exons and 6 introns, and the Sec opal codon and SECIS element were located at the third and seventh exons, respectively. LcGPx4a and LcGPx4b both have a wide distribution in 9 tissues with various relative expression levels and a highest expression pattern in the liver. Under Vibrio parahaemolyticus challenge, their relative expression levels were altered in the liver, spleen, kidney, and head kidney but with different magnitudes and response time. LcGPx4a and LcGPx4b showed a significantly up-regulated trend in the spleen during experimental period. Above results suggested that LcGPx4a and LcGPx4b were two conserved immune molecules and might play a role in the immune response of fish with a tissue-depemdent manners.
Collapse
Affiliation(s)
- Xiaoze Xie
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Mengnan Chen
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Aiyi Zhu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China.
| |
Collapse
|
9
|
Dietary resveratrol impairs body weight gain due to reduction of feed intake without affecting fatty acid composition in Atlantic salmon. Animal 2018; 13:25-32. [PMID: 29681254 DOI: 10.1017/s1751731118000812] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Recent studies suggest that the use of vegetable oils at expense of fish oil in aquaculture feeds might have potential negative effects on fish redox homeostasis and adiposity. Resveratrol (RESV) is a lipid-soluble phytoalexin present in fruits and vegetables with proven in vivo antioxidant function in animals. The present study aims to assess the potential use of RESV in Atlantic salmon feeds. To this end, post-smolt salmons with an initial BW of 148±3 g were fed four experimental diets for 15 weeks. A diet low in fish oil served as a control and was supplemented with 0, 0.5, 1.5 and 2.5 g/kg of RESV, respectively. The effect of the experimental diets on animal performance, tissue fatty acid composition, and the expression of genes encoding proteins involved in antioxidant signalling, lipid peroxidation, and metabolism were studied. Resveratrol significantly reduced feed intake and final BW of the salmon. Feeding RESV did not affect the sum of saturated and monounsaturated fatty acids or total lipids in the fillet. While the content of total polyunsaturated fatty acids was not affected, the percentages of some fatty acids in the liver and fillet were changed by RESV. Furthermore, in liver, the relative expression of glutathione peroxidase 4b, nuclear factor-like 2, and arachidonate 5-lipoxygenase remained unchanged across treatment groups. In conclusion, the negative impact of dietary RESV on FI and hence reduction of the BW discourages its inclusion in low fish oil diets for Atlantic salmon.
Collapse
|
10
|
Abreu MS, Giacomini AC, Rodriguez R, Kalueff AV, Barcellos LJ. Effects of ZnSO 4 -induced peripheral anosmia on zebrafish behavior and physiology. Behav Brain Res 2017; 320:275-281. [DOI: 10.1016/j.bbr.2016.12.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/07/2016] [Accepted: 12/12/2016] [Indexed: 12/14/2022]
|
11
|
Rosenfeld CS, Denslow ND, Orlando EF, Gutierrez-Villagomez JM, Trudeau VL. Neuroendocrine disruption of organizational and activational hormone programming in poikilothermic vertebrates. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2017; 20:276-304. [PMID: 28895797 PMCID: PMC6174081 DOI: 10.1080/10937404.2017.1370083] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In vertebrates, sexual differentiation of the reproductive system and brain is tightly orchestrated by organizational and activational effects of endogenous hormones. In mammals and birds, the organizational period is typified by a surge of sex hormones during differentiation of specific neural circuits; whereas activational effects are dependent upon later increases in these same hormones at sexual maturation. Depending on the reproductive organ or brain region, initial programming events may be modulated by androgens or require conversion of androgens to estrogens. The prevailing notion based upon findings in mammalian models is that male brain is sculpted to undergo masculinization and defeminization. In absence of these responses, the female brain develops. While timing of organizational and activational events vary across taxa, there are shared features. Further, exposure of different animal models to environmental chemicals such as xenoestrogens such as bisphenol A-BPA and ethinylestradiol-EE2, gestagens, and thyroid hormone disruptors, broadly classified as neuroendocrine disrupting chemicals (NED), during these critical periods may result in similar alterations in brain structure, function, and consequently, behaviors. Organizational effects of neuroendocrine systems in mammals and birds appear to be permanent, whereas teleost fish neuroendocrine systems exhibit plasticity. While there are fewer NED studies in amphibians and reptiles, data suggest that NED disrupt normal organizational-activational effects of endogenous hormones, although it remains to be determined if these disturbances are reversible. The aim of this review is to examine how various environmental chemicals may interrupt normal organizational and activational events in poikilothermic vertebrates. By altering such processes, these chemicals may affect reproductive health of an animal and result in compromised populations and ecosystem-level effects.
Collapse
Affiliation(s)
- Cheryl S. Rosenfeld
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Thompson Center for Autism and Neurobehavioral Disorders, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Nancy D. Denslow
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, USA
| | - Edward F. Orlando
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA
| | | | - Vance L. Trudeau
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
12
|
Zheng JL, Yuan SS, Wu CW, Lv ZM. Acute exposure to waterborne cadmium induced oxidative stress and immunotoxicity in the brain, ovary and liver of zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 180:36-44. [PMID: 27642707 DOI: 10.1016/j.aquatox.2016.09.012] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 05/24/2023]
Abstract
Cadmium (Cd) is an environmental contaminant that poses serious risks to aquatic organisms and their associated ecosystem. The mechanisms underlying Cd-induced oxidative stress and immunotoxicity in fish remain largely unknown. In this study, adult female zebrafish were exposed to 0 (control), 1mgL-1 Cd for 24h and 96h, and the oxidative stress and inflammatory responses induced by Cd were evaluated in the brain, liver and ovary. Reactive oxygen species (ROS), nitric oxide (NO), and malondialdehyde (MDA) increased in a time-dependent manner after treatment with Cd in the brain and liver. The increase may result from the disturbance of genes including copper and zinc superoxide dismutase (Cu/Zn-SOD), catalase (CAT), inducible nitric oxide synthase (iNOS), and ciclooxigenase-2 (COX-2) at mRNA, protein and activity levels. Although ROS, NO and MDA were not significantly affected by Cd in the ovary, the up-regulation of Cu/Zn-SOD, CAT, iNOS, and COX-2 was observed. Exposure to Cd induced a sharp increase in the protein levels of tumor necrosis factor alpha (TNF-α) in the brain, liver and ovary, possibly contributing to activate inflammatory responses. Furthermore, we also found a dramatic increase in mRNA levels of NF-E2-related factor 2 (Nrf2) and nuclear transcription factor κB (NF-κB) at 24h in the liver and ovary. The corresponding changes in the mRNA levels of Kelch-like-ECH-associated protein 1 (Keap1a and Keap1b) and the inhibitor of κBα (IκBαa and IκBαb) may contribute to regulate the transcriptional activity of Nrf2 and NF-κB, respectively. Contrarily, mRNA levels of Nrf2, NF-κB, Keap1, Keap1b, IκBαa and IκBαb remained stable at 24 and 96h in the brain. Taken together, we demonstrated Cd-induced oxidative stress and immunotoxicity in fish, possibly through transcriptional regulation of Nrf2 and NF-κB and gene modifications at transcriptional, translational, post-translational levels, which would greatly extend our understanding on the Cd toxicity.
Collapse
Affiliation(s)
- Jia-Lang Zheng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Shuang-Shuang Yuan
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Chang-Wen Wu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Zhen-Ming Lv
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| |
Collapse
|
13
|
Xu HJ, Jiang WD, Feng L, Liu Y, Wu P, Jiang J, Kuang SY, Tang L, Tang WN, Zhang YA, Zhou XQ. Dietary vitamin C deficiency depresses the growth, head kidney and spleen immunity and structural integrity by regulating NF-κB, TOR, Nrf2, apoptosis and MLCK signaling in young grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2016; 52:111-138. [PMID: 26944716 DOI: 10.1016/j.fsi.2016.02.033] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/22/2016] [Accepted: 02/29/2016] [Indexed: 06/05/2023]
Abstract
This study investigated the effects of dietary vitamin C on the growth, and head kidney, spleen and skin immunity, structural integrity and related signaling molecules mRNA expression levels of young grass carp (Ctenopharyngodon idella). A total of 540 grass carp (264.37 ± 0.66 g) were fed six diets with graded levels of vitamin C (2.9, 44.2, 89.1, 133.8, 179.4 and 224.5 mg/kg diet) for 10 weeks. Subsequently, a challenge test was conducted by injection of Aeromonas hydrophila and the survival rate recorded for 14 days. The results indicated that compared with optimal vitamin C supplementation, vitamin C deficiency (2.9 mg/kg diet) decreased lysozyme (LA) and acid phosphatase (ACP) activities, and complement 3 and complement 4 (C4) contents (P < 0.05), down-regulated the mRNA levels of antimicrobial peptides [liver expressed antimicrobial peptide (LEAP) 2A, LEAP-2B, hepcidin, β-defensin] and anti-inflammatory cytokines-related factors, interleukin (IL) 4/13A, IL-4/13B (only in head kidney), IL-10, IL-11, transforming growth factor (TGF) β1, TGF-β2, inhibitor of κBα and eIF4E-binding protein 1 (P < 0.05), and up-regulated pro-inflammatory cytokines-related factors, tumor necrosis factor α, interferon γ2, IL-1β, IL-6, IL-8, IL-12 P35 (only in spleen), IL-12 P40, IL-15, IL-17D, nuclear factor κB p65, IκB kinases (IKKα, IKKβ, IKKγ), target of rapamycin and ribosomal protein S6 kinase 1 mRNA levels (P < 0.05) in the head kidney and spleen under injection fish of A. hydrophila, suggesting that vitamin C deficiency could decrease fish head kidney and spleen immunity and cause inflammation. Meanwhile, compared with optimal vitamin C supplementation, vitamin C deficiency decreased the activities and mRNA levels of copper/zinc superoxide dismutase, manganese superoxide dismutase (MnSOD), catalase, glutathione peroxidase, glutathione S-transferases and glutathione reductase (P < 0.05), and down-regulated zonula occludens (ZO) 1, ZO-2, Claudin-b, -c, -3c, -7a, -7b, B-cell lymphoma-2, inhibitor of apoptosis protein, NF-E2-related factor 2 mRNA levels (P < 0.05), increased reactive oxygen species (ROS), malondialdehyde (MDA) and protein carbonyl contents (P < 0.05), and up-regulated Claudin-12, 15a, -15b, Fas ligand, mitogen-activated protein kinase kinase 6, p38 mitogen-activated protein kinase, B-cell lymphoma protein 2 associated X protein, apoptotic protease activating factor-1, caspase-3, -7, -8, -9, Kelch-like ECH-associating protein (Keap) 1a and Keap 1b mRNA levels (P < 0.05) in the head kidney and spleen under injection fish of A. hydrophila, suggesting that vitamin C deficiency could decrease fish head kidney and spleen structural integrity through depression of antioxidative ability, induction of apoptosis and disruption of tight junctional complexes. In addition, except the activities of ACP and MnSOD, and mRNA expression levels of TGF-β1, Occludin and MnSOD, the effect of vitamin C on fish head kidney, spleen and skin immunity and structural integrity other indicators model are similar under infection of A. hydrophila. Finally, the vitamin C requirement for the growth performance (PWG) of young grass carp was estimated to be 92.8 mg/kg diet. Meanwhile, the vitamin C requirement for against skin lesion morbidity of young grass carp was estimated to be 122.9 mg/kg diet. In addition, based on the biochemical indices [immune indices (LA activity in the head kidney and C4 content in the spleen) and antioxidant indices (MDA content in the head kidney and ROS content in the spleen)] the vitamin C requirements for young grass carp were estimated to be 131.2, 137.5, 135.8 and 129.8 mg/kg diet, respectively.
Collapse
Affiliation(s)
- Hui-Jun Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
14
|
Effect of 4-week feeding of deoxynivalenol- or T-2-toxin-contaminated diet on lipid peroxidation and glutathione redox system in the hepatopancreas of common carp (Cyprinus carpio L.). Mycotoxin Res 2016; 32:77-83. [PMID: 26920403 DOI: 10.1007/s12550-016-0242-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 02/15/2016] [Accepted: 02/18/2016] [Indexed: 01/29/2023]
Abstract
The purpose of study was to investigate the effects of T-2 toxin (4.11 mg T-2 toxin and 0.45 mg HT-2 toxin kg(-1) feed) and deoxynivalenol (5.96 and 0.33 mg 15-acetyl deoxynivalenol (DON) kg(-1) feed) in 1-year-old common carp juveniles in a 4-week feeding trial. The exposure of mycotoxins resulted in increased mortality in both groups consuming mycotoxin-contaminated diet. Parameters of lipid peroxidation were not affected during the trial, and antioxidant defence also did not show response to oxidative stress; however, glutatione peroxidase activity slightly, but significantly, decreased in the T-2 toxin group. Glutathione S-transferase activity showed moderate decrease as effect of T-2 toxin, which suggests its effect on xenobiotic transformation. Reduced glutathione concentration showed moderate changes as effect of DON exposure, but T-2 toxin has no effect. Expression of phospholipid hydroperoxide glutathione peroxidase (GPx4) genes showed different response to mycotoxin exposure. T-2 toxin caused dual response in the expression of gpx4a (early and late downregulation and mid-term upregulation), but continuous upregulation was found as effect of deoxynivalenol. Expression of the other gene, gpx4b, was upregulated by both trichothecenes during the whole period. The results suggested that trichothecenes have some effect on free radical formation and antioxidant defence, but the changes depend on the duration of exposure and the dose applied, and in case of glutathione peroxidase, there was no correlation between expression of genes and enzyme activity.
Collapse
|
15
|
Gomes JM, Donnici CL, Corrêa Júnior JD, da Silva JBB. Validation of Methods Employing Fast Alkaline Solubilization to Determine Cadmium in Fish Liver, Spleen, Gills and Muscle by Graphite Furnace Atomic Absorption Spectrometry. Microchem J 2016. [DOI: 10.1016/j.microc.2015.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
What the Erythrocytic Nuclear Alteration Frequencies Could Tell Us about Genotoxicity and Macrophage Iron Storage? PLoS One 2015; 10:e0143029. [PMID: 26619141 PMCID: PMC4664483 DOI: 10.1371/journal.pone.0143029] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/29/2015] [Indexed: 11/19/2022] Open
Abstract
Erythrocytic nuclear alterations have been considered as an indicative of organism’s exposure to genotoxic agents. Due to their close relationship among their frequencies and DNA damages, they are considered excellent markers of exposure in eukaryotes. However, poor data has been found in literature concerning their genesis, differential occurrence and their life span. In this study, we use markers of cell viability; genotoxicity and cellular turn over in order to shed light to these events. Tilapia and their blood were exposed to cadmium in acute exposure and in vitro assays. They were analyzed using flow cytometry for oxidative stress and membrane disruption, optical microscopy for erythrocytic nuclear alteration, graphite furnace atomic absorption spectrometry for cadmium content in aquaria water, blood and cytochemical and analytical electron microscopy techniques for the hemocateretic aspects. The results showed a close relationship among the total nuclear alterations and cadmium content in the total blood and melanomacrophage centres area, mismatching reactive oxygen species and membrane damages. Moreover, nuclear alterations frequencies (vacuolated, condensed and blebbed) showed to be associated to cadmium exposure whereas others (lobed and bud) were associated to depuration period. Decrease on nuclear alterations frequencies was also associated with hemosiderin increase inside spleen and head kidney macrophages mainly during depurative processes. These data disclosure in temporal fashion the main processes that drive the nuclear alterations frequencies and their relationship with some cellular and systemic biomarkers.
Collapse
|
17
|
Atlantic salmon (Salmo salar L.) as a marine functional source of gamma-tocopherol. Mar Drugs 2014; 12:5944-59. [PMID: 25501796 PMCID: PMC4278211 DOI: 10.3390/md12125944] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/21/2014] [Accepted: 11/26/2014] [Indexed: 01/21/2023] Open
Abstract
Gamma tocopherol (gT) exhibits beneficial cardiovascular effects partly due to its anti-inflammatory activity. Important sources of gT are vegetable oils. However, little is known to what extent gT can be transferred into marine animal species such as Atlantic salmon by feeding. Therefore, in this study we have investigated the transfer of dietary gT into salmon. To this end, fish were fed a diet supplemented with 170 ppm gT for 16 weeks whereby alpha tocopherol levels were adjusted to 190 ppm in this and the control diet. Feeding gT-rich diets resulted in a three-fold increase in gT concentrations in the liver and fillet compared to non-gT-supplemented controls. Tissue alpha tocopherol levels were not decreased indicating no antagonistic interaction between gamma- and alpha tocopherol in salmon. The concentration of total omega 3 fatty acids slightly increased in response to dietary gT. Furthermore, dietary gT significantly decreased malondialdehyde in the fillet, determined as a biomarker of lipid peroxidation. In the liver of gT fed salmon we observed an overall down-regulation of genes involved in lipid homeostasis. Additionally, gT improved the antioxidant capacity by up-regulating Gpx4a gene expression in the pyloric caeca. We suggest that Atlantic salmon may provide a marine functional source capable of enriching gT for human consumption.
Collapse
|
18
|
Gauthier PT, Norwood WP, Prepas EE, Pyle GG. Metal-PAH mixtures in the aquatic environment: a review of co-toxic mechanisms leading to more-than-additive outcomes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 154:253-69. [PMID: 24929353 DOI: 10.1016/j.aquatox.2014.05.026] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 05/21/2014] [Accepted: 05/22/2014] [Indexed: 05/10/2023]
Abstract
Mixtures of metals and polycyclic aromatic hydrocarbons (PAHs) occur ubiquitously in aquatic environments, yet relatively little is known regarding their combined toxicities. Emerging reports investigating the additive mortality in metal-PAH mixtures have indicated that more-than-additive effects are equally as common as strictly-additive effects, raising concern for ecological risk assessment typically based on the summation of individual toxicities. Moreover, the current separation of focus between in vivo and in vitro studies, and fine- and coarse-scale endpoints, creates uncertainty regarding the mechanisms of co-toxicity involved in more-than-additive effects on whole organisms. Drawing from literature on metal and PAH toxicity in bacteria, protozoa, invertebrates, fish, and mammalian models, this review outlines several key mechanistic interactions likely to promote more-than-additive toxicity in metal-PAH mixtures. Namely, the deleterious effects of PAHs on membrane integrity and permeability to metals, the potential for metal-PAH complexation, the inhibitory nature of metals to the detoxification of PAHs via the cytochrome P450 pathway, the inhibitory nature of PAHs towards the detoxification of metals via metallothionein, and the potentiated production of reactive oxygenated species (ROS) in certain metal (e.g. Cu) and PAH (e.g., phenanthrenequinone) mixtures. Moreover, the mutual inhibition of detoxification suggests the possibility of positive feedback among these mechanisms. The individual toxicities and interactive aspects of contaminant transport, detoxification, and the production of ROS are herein discussed.
Collapse
Affiliation(s)
- Patrick T Gauthier
- Faculty of Natural Resources Management, Lakehead University, Thunder Bay, ON, Canada P7B 5E1.
| | - Warren P Norwood
- Aquatic Contaminants Research Division, Environment Canada, Burlington, ON, Canada L7R 4A6
| | - Ellie E Prepas
- Faculty of Natural Resources Management, Lakehead University, Thunder Bay, ON, Canada P7B 5E1
| | - Greg G Pyle
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada T1K 3M4
| |
Collapse
|
19
|
Seale LA, Gilman CL, Moorman BP, Berry MJ, Grau EG, Seale AP. Effects of acclimation salinity on the expression of selenoproteins in the tilapia, Oreochromis mossambicus. J Trace Elem Med Biol 2014; 28:284-92. [PMID: 24854764 PMCID: PMC4082732 DOI: 10.1016/j.jtemb.2014.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 04/02/2014] [Accepted: 04/15/2014] [Indexed: 01/06/2023]
Abstract
Selenoproteins are ubiquitously expressed, act on a variety of physiological redox-related processes, and are mostly regulated by selenium levels in animals. To date, the expression of most selenoproteins has not been verified in euryhaline fish models. The Mozambique tilapia, Oreochromis mossambicus, a euryhaline cichlid fish, has a high tolerance for changes in salinity and survives in fresh water (FW) and seawater (SW) environments which differ greatly in selenium availability. In the present study, we searched EST databases for cichlid selenoprotein mRNAs and screened for their differential expression in FW and SW-acclimated tilapia. The expression of mRNAs encoding iodothyronine deiodinases 1, 2 and 3 (Dio1, Dio2, Dio3), Fep15, glutathione peroxidase 2, selenoproteins J, K, L, M, P, S, and W, was measured in the brain, eye, gill, kidney, liver, pituitary, muscle, and intraperitoneal white adipose tissue. Gene expression of selenophosphate synthetase 1, Secp43, and selenocysteine lyase, factors involved in selenoprotein synthesis or in selenium metabolism, were also measured. The highest variation in selenoprotein and synthesis factor mRNA expression between FW- and SW-acclimated fish was found in gill and kidney. While the branchial expression of Dio3 was increased upon transferring tilapia from SW to FW, the inverse effect was observed when fish were transferred from FW to SW. Protein content of Dio3 was higher in fish acclimated to FW than in those acclimated to SW. Together, these results outline tissue distribution of selenoproteins in FW and SW-acclimated tilapia, and indicate that at least Dio3 expression is regulated by environmental salinity.
Collapse
Affiliation(s)
- Lucia A Seale
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA.
| | - Christy L Gilman
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Benjamin P Moorman
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA
| | - Marla J Berry
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - E Gordon Grau
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA
| | - Andre P Seale
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA
| |
Collapse
|
20
|
Molecular cloning of four glutathione peroxidase (GPx) homologs and expression analysis during stress exposure of the marine teleost Sparus aurata. Comp Biochem Physiol B Biochem Mol Biol 2014; 168:53-61. [DOI: 10.1016/j.cbpb.2013.11.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 11/12/2013] [Accepted: 11/13/2013] [Indexed: 01/05/2023]
|
21
|
Wang L, Espinoza HM, Gallagher EP. Brief exposure to copper induces apoptosis and alters mediators of olfactory signal transduction in coho salmon. CHEMOSPHERE 2013; 93:2639-2643. [PMID: 24050714 PMCID: PMC3840796 DOI: 10.1016/j.chemosphere.2013.08.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/08/2013] [Accepted: 08/10/2013] [Indexed: 05/27/2023]
Abstract
Pacific salmon are particularly susceptible to copper (Cu)-induced olfactory injuries that can ultimately inhibit neurobehaviors critical to survival. However, the molecular mechanisms underlying Cu-mediated olfactory impairment remain poorly understood. In the present study, we conducted a short-term Cu exposure at levels relevant to urban runoff (5, 25 and 50 ppb) , and investigated the roles of impaired olfactory signal transduction and induced apoptosis as underlying mechanisms of olfactory injury. Increased cell death in the olfactory epithelium was evident in coho receiving 4h exposures to 25 and 50 ppb Cu. Expression of olfactory marker protein (omp), a marker of mature olfactory sensory neurons, also decreased at 50 ppb Cu. Immunohistochemical analysis of coho olfactory epithelium demonstrated a loss of type 3 adenylate cyclase (ACIII) in the apical olfactory epithelium cilia at all levels of Cu exposure, suggesting an inhibitory effect of Cu in olfactory signaling. Accompanying the loss of ACIII in Cu-exposed coho were reduced intracellular cyclic guanosine monophosphate (cGMP) levels in the olfactory rosettes. Collectively, these results support a linkage among the initial steps of olfactory signaling in Cu-induced salmon olfactory injury, and suggesting that monitoring olfactory cGMP levels may aid in the assessment of salmon olfactory injury.
Collapse
Affiliation(s)
| | | | - Evan P. Gallagher
- To whom correspondence should be addressed: Department of Environmental and Occupational Health Sciences, School of Public Health, 4225 Roosevelt Way NE, Suite 100, Seattle, WA 98105 – 6099, United States, Telephone: 1-206-616-4739, Fax: 1-206-685-4696,
| |
Collapse
|
22
|
Wang L, Bammler TK, Beyer RP, Gallagher EP. Copper-induced deregulation of microRNA expression in the zebrafish olfactory system. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:7466-74. [PMID: 23745839 PMCID: PMC4750873 DOI: 10.1021/es400615q] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Although environmental trace metals, such as copper (Cu), can disrupt normal olfactory function in fish, the underlying molecular mechanisms of metal-induced olfactory injury have not been elucidated. Current research has suggested the involvement of epigenetic modifications. To address this hypothesis, we analyzed microRNA (miRNA) profiles in the olfactory system of Cu-exposed zebrafish. Our data revealed 2, 10, and 28 differentially expressed miRNAs in a dose-response manner corresponding to three increasing Cu concentrations. Numerous deregulated miRNAs were involved in neurogenesis (e.g., let-7, miR-7a, miR-128, and miR-138), indicating a role for Cu-mediated toxicity via interference with neurogenesis processes. Putative gene targets of deregulated miRNAs were identified when interrogating our previously published microarray database, including those involved in cell growth and proliferation, cell death, and cell morphology. Moreover, several miRNAs (e.g., miR-203a, miR-199*, miR-16a, miR-16c, and miR-25) may contribute to decreased mRNA levels of their host genes involved in olfactory signal transduction pathways and other critical neurological processes via a post-transcriptional mechanism. Our findings provide novel insight into the epigenetic regulatory mechanisms of metal-induced neurotoxicity of the fish olfactory system and identify novel miRNA biomarkers of metal exposures.
Collapse
Affiliation(s)
| | | | | | - Evan P. Gallagher
- To whom correspondence should be addressed: Department of Environmental and Occupational Health Sciences, School of Public Health, 4225 Roosevelt Way NE, Suite 100, Seattle, WA 98105 – 6099, United States, Telephone: 1-206-616-4739, Fax: 1-206-685-4696,
| |
Collapse
|
23
|
Wang L, Gallagher EP. Role of Nrf2 antioxidant defense in mitigating cadmium-induced oxidative stress in the olfactory system of zebrafish. Toxicol Appl Pharmacol 2013; 266:177-86. [DOI: 10.1016/j.taap.2012.11.010] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 10/27/2012] [Accepted: 11/08/2012] [Indexed: 12/17/2022]
|
24
|
[Identification of genomic structure and resistance trait associated SNP loci in glutathione peroxidase gene of Hyriopsis cumingii]. YI CHUAN = HEREDITAS 2012. [PMID: 23208143 DOI: 10.3724/sp.j.1005.2012.01456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Based on the cDNA sequence of GPX in Hyriopsis cumingii, the complete genomic DNA of GPX gene and it's 5'-flanking region were identified from H. cumingii using PCR and genome walking technique. The length of the complete genomic sequence was 6 708 bp including the 5'-flanking region, two exons, and one intron. Sequence analysis of the 992 bp 5'-flanking region revealed that it contained a core promoter element (TATA-box) and other transcription regulation elements such as AP1, C/EBP, and CdxA. The sequence lengths of the two exons were 273 bp and 991 bp, respectively, and the intron was 4 491 bp in length. Sixteen single nucleotide polymorphisms (SNPs) were detected in the GPX gene from resistant stock (RS) and susceptible stock (SS) of H. cumingii. These polymorphisms were analyzed with regard to resistance to Aeromonas hydrophila. Among them, three SNPs including A-99G, A-86C, and A-49C in GPX promoter and five SNPs including A2841T, C2847T, G3146C, A3150G, and G4645T in GPX introns were associated with resistance/susceptibility of H. cumingii to A. hydrophila, both in genotype and allele frequency. Linkage disequilibrium analysis revealed that A-86C, A-49C, C2847T, A3150G, G4645T, A2841T, and G3146C were in high linkage disequilibrium, and haplotype analysis revealed that the frequency of two major predominant haplotypes (ACTGT and TG) in the resistant group was significantly higher than that in the susceptible group. The results suggest that the polymorphic loci in the GPX gene could be potential genetic markers for future molecular selection of strains resistant to diseases.
Collapse
|